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Abstract. Logic access control enforces who can read and write data; the enforcement
is typically performed by a fully trusted entity. At TCC 2016, Damgård et al.
proposed Access Control Encryption (ACE) schemes where a predicate function
decides whether or not users can read (decrypt) and write (encrypt) data, while the
message secrecy and the users’ anonymity are preserved against malicious parties.
Subsequently several ACE constructions with an arbitrary identity-based access
policy have been proposed, but they have huge ciphertext and key sizes and/or
rely on indistinguishability obfuscation. At IEEE S&P 2021, Wang and Chow
proposed a Cross-Domain ACE scheme with constant-size ciphertext and arbitrary
identity-based policy; the key generators are separated into two distinct parties,
called Sender Authority and Receiver Authority. In this paper, we improve over
their work with a novel construction that provides a more expressive access control
policy based on attributes rather than on identities, the security of which relies on
standard assumptions. Our construction combines Structure-Preserving Signatures,
Non-Interactive Zero-Knowledge proofs, and Re-randomizable Ciphertext-Policy
Attribute-Based Encryption schemes. The sizes of ciphertexts and encryption and
decryption keys are constant and thus independent of the number of receivers and
their attributes. Not only is our system more flexible, it also is more efficient and
results in shorter keys.

Keywords: Access Control Encryption; Ciphertext-Policy Attribute-Based Encryption;
Structure Preserving Signature; Non-Interactive Zero-Knowledge proofs

1 Introduction
Information Flow Control (IFC) systems enforce which parts of the communication amongst
the users are allowed to pass over the network [SM03, OSM00]. As introduced in the
seminal work of Bell and LaPadula [BL73] restrictions have to be imposed on who can send
a message (enforce the No-Write rule) and who can receive a message (enforce the No-
Read rule). Although encryption guarantees users’ privacy by limiting the set of recipients,
we need more functionality to control the access to information. Broadcasting of sensitive
data by malicious senders is a serious threat for companies that handle highly sensitive data
such cryptocurrency wallet with access to signing keys. Moreover, data regulations that
are country-dependent have brought new concerns for Cloud providers [YKM14], hence it
is vital to enforce potentially complex security policies. It is crucial to protect data against
unauthorized access and to control which group of users is allowed to use certain services.
Although some advanced cryptographical tools such Functional Encryption schemes provide
fine-grained access to encrypted data, they do not allow to enforce the No-Write property,
hence additional functionalities beyond these cryptographic primitives are required to
protect against data leakage and abuse.
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To achieve this aim, Damgård et al. [DHO16] have introduced a novel scheme called
Access Control Encryption (ACE) to impose information flow control systems using
cryptographic tools. They have defined two security notions for an ACE scheme: the
No-Read rule and the No-Write rule. Unauthorized receivers cannot decrypt the
ciphertext and unauthorized senders are not able to transmit data over the network. The
model assumes that all the communications are transmitted through an honest-but-curious
third party, called Sanitizer. The Sanitizer follows the protocol honestly but it is
curious to find out more about the encrypted message and the identities of the users. The
Sanitizer performs some operations on the received messages before transmitting them
to the intended recipients without learning any information about the message itself or
the identity of the users. More precisely, with a set of senders S and receivers R, an ACE
scheme determines via a hidden Boolean Predicate function Pf : S ×R → {0, 1} which
group of senders (like i ∈ S) are allowed to communicate with a certain group of receivers
(like j ∈ R): communication is allowed if and only if Pf(i, j) = 1, else the request will be
banned.

Damgård et al. presented two ACE constructions that support arbitrary policies. Their
first construction takes a brute-force approach that is based on standard number-theoretic
assumptions while the size of the ciphertext grows exponentially in the number of receivers.
The second scheme is more efficient and the ciphertext length is poly-logarithmic in the
number of the receivers, though, it relies on the strong assumption of indistinguishability
obfuscation (iO) [GGH+16]. In a subsequent work, Fuchsbauer et al. [FGKO17] proposed
an ACE scheme for restricted classes of predicates including equality, comparisons, and
interval membership. Although their scheme is secure under standard assumptions in
groups with bilinear maps and asymptotically efficient (i.e., the length of the ciphertext is
linear in the number of the receivers), the functionalities of their construction are restricted
to a limited class of predicates. Tan et al. [TZMT17] proposed an ACE scheme based on
the Learning With Error (LWE) assumption [Reg09]. Since their construction follows the
Damgård et al. approach, the ciphertexts in their construction also grow exponentially
with the number of receivers. On the positive side, their construction is secure against
post-quantum adversaries. Kim and Wu in [KW17] proposed a generic ACE construction
based on standard assumptions such that the ciphertext shrinks to poly-logarithmic size
in the number of receivers and with arbitrary policies. Their construction requires Digital
Signature, Predicate Encryption, and Functional Encryption schemes to obtain an ACE
construction based on standard assumptions.

Recently, Wang and Chow [WC21] proposed a new notion called Cross-Domain ACE
in which the keys are generated by two distinct entities, the Receiver-Authority and
the Sender-Authority. Structure Preserving Signatures, Non-Interactive Zero-Knowledge
proofs, and Sanitizable Identity-Based Encryption schemes constitute the main ingredients
in their construction. In this scheme, the length of the ciphetexts are constant, but their
construction fails to preserve the identity of the receivers and also the size of the stored
decryption key grows linearly. This paper proposes a modified version of Wang and Chow’s
construction [WC21] under the form of an Attribute-Based Access Control Encryption
scheme that supports cross-domain key generation and that is based on users’ attributes
instead of their identities.

Attribute-Based Encryption (ABE) schemes provide a powerful tool to enforce fine-
grained access control over encrypted data; they have been used in several applica-
tions [SW05]. Goyal et al. in [GPSW06], proposed two complementary types of ABE
schemes: Key-Policy Attribute-Based Encryption (KP-ABE) and Ciphertext-Policy Attri-
bute-Based Encryption (CP-ABE) schemes. In CP-ABE, the sender embeds a (policy)
function f(·) into ciphertext to describe which group of receivers can learn the encrypted
message. In this approach, the ciphertext is labeled by an arbitrary function f(·), and
secret keys are associated with attributes in the domain of f(·). The decryption algorithm
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Table 1: Comparison of Efficiency and Functionality. n is the number of receivers and
the total number of attributes in the system. r � n indicates the maximum number
of receivers that any sender is allowed to communicate with, and s � n denotes the
maximum number of senders that any receiver can receive a message from. t� n indicates
the maximum number of attributes in any access policy that a sender can transmit data.
The maximum number of legitimate attributes that any recipients possesses to decrypt
a ciphertext is denoted by w � n. PF and CD are short for Predicate Function and
Cross-Domain, respectively.

Scheme PF Ciph.
size

Enc.
Key

Dec.
Key

San.
Key

Enc.
cost

Dec.
cost

CD Assump.

[DHO16, ‡ 3] arbitrary
ID-based

O(2n) O(r) O(1) O(1) O(n) O(n) Yes DDH or
DCR

[DHO16, ‡ 4] arbitrary
ID-based

poly(n) O(1) O(1) O(1) O(1) O(1) No iO

[FGKO17] restricted
ID-based

O(n) O(1) O(1) O(1) O(1) O(1) No SXDH

[KW17] arbitrary
ID-based

poly(n) O(1) O(1) O(1) O(n) O(n) No DDH or
LWE

[WC21] arbitrary
ID-based

O(1) O(1) O(s) 0 O(1) O(s) Yes GBDP

This work
(Selectively
Secure)

arbitrary
Attribute-
based

O(1) O(1) O(1) 0 O(1) O(w) Yes MSE-
DDH

yields the plaintext if and only if the receivers’ attribute set A satisfies f(·), i.e., f(A) = 1.
On the other hand, in KP-ABE the secret keys are labeled by the function f(·); this label
is set in the setup phase and the sender is not able to change it. In KP-ABE, the access
policy cannot be deduced by an encrypted actor, while in CP-ABE data owners can define
the right to access and control data, hence it is a more suitable setting for ACE schemes.
The first CP-ABE scheme, which allows the data owners to implement an arbitrary and
fine-grained access policy in terms of any monotonic formula for each message was proposed
by Bethencourt et al. in [BSW07]; its security was proven in the Generic Group Model
(GGM). In a subsequent work, Cheung et al. [CN07] constructed a CP-ABE scheme in
the standard model, which is however restricted to a single AND-gate. Waters introduced
in [Wat11] an asymptotically efficient CP-ABE scheme in the standard model, which is
based on a Linear Secret Sharing Scheme (LSSS) to establish an arbitrary access policy.
Lewko and Waters [LW11] introduced a secure construction based on LSSS in which the
length of the ciphertext, the size of users’ secret keys, and the number of required pairings
to decrypt a ciphertext correspond to the size of the Monotone Span Program (MSP) that
defines the access structure. Some recent works have extended the functionality of these
schemes for various applications [SAMA17, LZN+20, HS16, AC17, RD14]. While these
CP-ABE schemes allow to define in an effective way the right to access data, either the
key or the ciphertext size grows linearly in the number of attributes. Therefore, CP-ABE
schemes based on AND-gate circuits are considered promising candidates for addressing
this downside. In this approach the sender defines a specific Boolean AND-gate circuit
such that a recipient can learn the encrypted data if and only if they satisfy all the
attributes, otherwise the decryption algorithm returns nothing. Considering AND-gate
circuits provides a constant ciphertext length; several CP-ABE schemes are based on this
approach [EMN+09, TDM12, CZF11, GMS+14]. While CP-ABE schemes only enable
fine-grained access to the encrypted data, they are not equipped to enforce policies for
writing a message as well; additional functionalities are required to cover the latter.
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1.1 Overview of Our Techniques
In this paper, we propose an efficient and secure Cross-Domain Attribute-Based Access
Control Encryption (CD-ABACE) scheme. Based on an Attribute-Based predicate
function, the senders with a group of attributes are limited to transmit data to only a
restricted group of the recipients. To obtain a CD-ABAC scheme that is efficient both
in the length of the parameters and the computational overhead, we utilize circuits with
AND-gate circuits. More specifically, we say a Boolean AND-gate circuit is satisfied (i.e,
the output is true) if and only if all the input gates are true. Particularly, for an attribute
space U we say the set of attributes B ⊂ U satisfies the AND-gate circuit with the set
of input constraints P ⊆ U if and only if P is a subset of B, i.e., P ⊆ B. As a simple
example, let U = {U1, U2, U3, U4}, then the set of input wires B = {U1, U3, U4} satisfies the
circuit P = {U1, U4}, because P ⊆ B. The main downside for this kind of circuits is that
the attribute sets in plain may reveal some meaningful information about the intended
constraints.

Based on realistic application scenarios for ACE constructions, the proposed scheme
follows the Cross-Domain key generation method, proposed by Wang and Chow in [WC21].
In an ACE scheme, the users might belong to two distinct companies with different security
levels, so one of them may not be able to grant access rights to the other. In this context,
two entities referred to as Sender Authority and Receiver Authority locally generate secret
keys for senders and receivers, respectively. Moreover, since users, including senders and
receivers, may need to be added to the system later on, the setup phase will be carried out
independently of the predicate function.

The paper re-defines the way to conceive the predicate function in ACE constructions
by considering users’ attributes instead of their identities. In a nutshell, the sender who
owns a secret encryption key for ciphertext index of P ⊂ U can transmit data to those
of receivers with private decryption key corresponding to key index B, iff Pf(B,P) = 1,
otherwise, the Sanitizer bans the communication between them. One of the main
differences between this approach and the original one is that Sanitizer would never
learn the identity of the receivers while it brings a weaker notion of anonymity. For this
aim, we give a generic construction of a Cross-Domain Access Control Encryption scheme
inspired by Attribute-Based Encryption schemes and then propose an efficient construction
with a constant key and ciphertext sizes. Moreover, in this construction the Sanitizer
only requires public parameters, but no secret or public keys. Our main contributions can
be summarized as follows:

• The length of the ciphertext remains constant regardless of the number of receivers
and the number of attributes in the access policy.

• All users’ secret keys for encryption and decryption consist of only one group element,
regardless of the number of attributes of the users.

• The predicate function takes as inputs user attributes instead of their identities.

• Every receiver needs to execute exactly two pairings to learn the message, while in
the encryption phase, the sender does not need to compute any pairings.

• As an additional result, we present an efficient CP-ABE scheme with constant size
ciphertexts and keys.

Table 1 compares the efficiency of the proposed construction and the recent works in
the literature. As illustrated, in our scheme the lengths of the ciphertext and the key are
improved to a constant size. The computational overhead for decryption grows linearly
with the number of attributes that a receiver owns, while the encryption cost is constant
and completely independent of the number of intended recipients. The predicate function
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takes as input the user attributes. Although the ciphertext access right preserves the
identity of receivers in a weak notion, it does not reveal their identity.

1.2 Road-map
The rest of the paper is organized as follows. In Sect. 2, we review the relevant preliminaries
and definitions and describe the system architecture. The main building blocks and a
formal definition of CD-ABACE schemes are described in Sect. 3. The security definitions
are described in Sect. 4. Then in Sect. 5, we present the construction of the proposed
CD-ABACE scheme and prove its security features in Sect. 6. The performance of the
proposed construction is compared in Sect. 7. Finally, we wrap up with conclusion in
Sect. 8.

2 Preliminaries and Definitions
To detail the Cross-Domain Attribute-Based Access Control Encryption (CD-ABACE)
schemes we need to review some preliminaries. Throughout, we suppose the security param-
eter of the scheme is λ and negl(λ) denotes a negligible function. Let U = {U1, . . . , Un} ∈ Znp
be a set and for each subset A ⊂ U we denote the ith component scalar of this subset by
Ai. We use Y ←$F (X) to denote a probabilistic function F that on input X is uniformly
sampled the output Y . Also, [n] denotes the set of integers between 1 and n, i.e, the
set {1, . . . , n}. The algorithms are randomized unless expressly stated. "PPT" refers to
"Probabilistic Polynomial Time". Two computationally indistinguishable distributions
A and B are shown with A ≈c B. We assumed a prime order field F and denote by
F<d[X] the set of univariate polynomials with degree smaller than d. The ith coefficient
of the univariate polynomial f(x) ∈ F<d[X] is denoted by fi and we have at most d+ 1
coefficients for a polynomial with degree d. The set {1, X,X2, . . . , Xd} forms the standard
basis: it is trivial to show that the representation of the coefficients for a polynomial with
degree d as the coefficients of powers X is unique.

Definition 1 (Access Structure [B+96]). For a given set of parties P = {p1, . . . , pn}, we
say a collection U ⊆ 2P is monotone if, for all A,B, if A ∈ U and B ⊆ A then B ∈ U.
Also, a(n) (monotonic) access structure is a (monotone) collection U ⊆ 2P \ {∅}. We call
the sets in U authorized sets and the sets that do not belong to U are called unauthorized.

Definition 2 (Binary Representation of a subset). For a given universe set U of size n,
we can represent each subset A as a binary string of length n. Particularly, the ith the
element of the binary string for the subset A ⊆ U is equal 1 (i.e., a[i] = 1) if Ai = Ui. We
show a binary representation set as binary tuple (a[1], . . . , a[n]) ∈ Zn2 .

Definition 3 (Zero-polynomial). For a finite set U = {k1, . . . , kn}, we define the zero-
polynomial ZA(X) for a nonempty subset of A ⊂ U as ZA(X) :=

∏n
i=1 (X − ki)a[i], where

a[i] is the binary representation of the complement set A. In other words, this univariate
polynomial vanishes on all the components of the set U such that the binary representation
of the subset A is zero.

The Zero-polynomial corresponding to subset A ⊂ U is divisible by the Zero-polynomial
of subset B ⊂ U if and only if A ⊆ B. The result of this division is equal to the Zero-
polynomial for the complement set of (B \ A) (i. e., (B \ A)). As a simple example, let
U = {1, 2, 3, 4}, A = {2, 3} and B = {1, 2, 3}. Then we have ZA(x) = (x− 1)(x− 4) and
ZB(x) = (x− 4). Obviously, the zero-polynomial ZA(x) is divisible by ZB(x) and the result
of this division is Z(B\A)(x) = (x− 1). Conversely, the inverse of this division is rational
and we cannot represent it in the standard basis.
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Definition 4 (Bilinear Groups [BF01]). A Type-III1 bilinear group generator BG(λ)
returns a tuple (G1,G2,GT , p, ê), such that G1, G2 and GT are cyclic groups of the same
prime order p, and ê : G1 ×G2 → GT is an efficiently computable bilinear map with the
following properties;

• ∀ a, b ∈ Zp, [a]1 • [b]2 = [ab]T = [b]1 • [a]2 ,

• [1]T 6= 1 .

We use the bracket notation: for randomly selected generators g ∈ G1 and h ∈ G2 we
denote x · g ∈ G1 with [x]1, and we write e ([a]1, [b]2) = [a]1 • [b]2.

The following definition is proposed by [DP08] in an asymmetric bilinear group as a
general Diffie-Hellman exponent theorem [BBG05]. This definition is non-interactive and
falsifiable. It is also demonstrated to hold for the generic group model similar to the BDH,
q-BDHI and (l,m, t)-MSE-DDH assumptions.

Definition 5 (Multi-Sequence of Exponents Diffie-Hellman ((l,m, t)-MSE-DDH) assump-
tion [DP08]). Under security parameter λ, let an asymmetric bilinear group genera-
tor BG(λ) = (G1,G2,GTp, ê). For given three integers l,m, t, consider two univari-
ate composite polynomials f and h of degree l and m that vanish on pairwise distinct
points ~x = (x1, . . . , xl) and ~y = (y1, . . . , ym), respectively. For randomly chosen integers
α, δ, k←$Z∗p, the (l,m, t)-MSE-DDH assumption states that no PPT adversary A can
distinguish between Γ = [kf(α)]T and a random element Γ←$GT with a non-negligible
advantage, when given,

~v1 =
(
[1]1 , [α]1 ,

[
α2]

1 , . . . ,
[
αl+t−2]

1 , [kαf(α)]1
)

~v2 =
(
[δ]1 , [δα]1 ,

[
δα2]

1 , . . . ,
[
δαl+t

]
1

)
~v3 =

(
[1]2 , [α]2 ,

[
α2]

2 , . . . ,
[
αm−2]

2

)
~v4 =

(
[δ]2 , [δα]2 ,

[
δα2]

2 , . . . ,
[
δα2m−1]

2 , [kh(α)]2
)
.

The adversary A can solve the (l,m, t)-MSE-DDH assumption with the advantage of:∣∣∣∣∣Pr

[
AMSE-DDH (~x, ~y,~v1−4,Γ = [kf(α)]T

)
= 1

]
− Pr

[
AMSE-DDH (~x, ~y,~v1−4,Γ←$GT ) = 1

]∣∣∣∣∣ ≤ negl(λ) .

Where ~v1−4 denotes all vectors ~v1, ~v2, ~v3, ~v4.

2.1 System Architecture
The proposed scheme’s architecture is based on the Cross-Domain ACE technique described
in [WC21]. In a Cross-Domain ACE setting two distinct entities generate the keys to
determine which group of senders can send data to a certain group of receivers and control
which group of receivers can read this data. To this end, there are five entities in this
system:
Receiver Authority (RA) as a trusted third party generates and distributes system
parameters and the secret decryption keys for the Receivers. For this aim, based on a
certified predicate function Pf, it authorizes the claimed attributes by the receivers and
returns the corresponding secret decryption keys.
Sender Authority (SA) as a semi-trusted entity generates the pair of SA’s public
parameters and master secret keys; it publishes the former, while it keeps the latter secret.

1For the two distinct cyclic groups G1 6= G2, there is neither efficient algorithm to compute a nontrivial
homomorphism in both directions, that is, from G1 → G2 and G2 → G1.
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Moreover, it generates the secret encryption keys for the Senders based on a predicate
function Pf and SA’s master secret keys.
Sanitizer is an honest-but-curious party in the network that checks the validity of the
communication links and acts based on the predicate function Pf. If the sender does not
allow to transmit a message to the recipients, then the Sanitizer bans the request, else it
broadcasts the received ciphertexts. The Sanitizer is semi-honest which means that it
follows the protocol honestly but tries to infer some sensitive information including the
identities of the users (Senders and receivers) or compromise the secrecy of a message.
Senders: to share a secret message among a group of receivers, they encrypt data and
send the resulting ciphertext to the Sanitizer along with a proof to ensure that they
possess a valid encryption key generated by the SA.
Receivers: by having access to the ciphertexts, they can recover the plaintexts using their
own attributes and the corresponding secrete key for decryption. Conversely, if the receiver
does not satisfy the access policy then the ciphertext never reveals any information about
the encrypted message.

In a nutshell, RA sets up the global public parameters of the network and publishes
them, while it securely stores its master secret key. After authorizing the receivers’ attribute
set, RA computes the decryption secret keys corresponding to their attribute sets. From
the public parameters issued by RA, SA generates the rest of parameters required for the
sender the authorization. Also, SA uses its master secret key to create the authorized
secret encryption keys for the senders corresponding to the predicate function Pf. Since
RA is generating the main parameters of the system, it can compromise the security
requirements, so we assume this entity is fully-trusted. RA, then it is assumed The sender
who wants to share a message securely among a group of receivers encrypts the plaintext
and proves the validity of the claimed secret encryption key. The Sanitizer receives
the sender’s request, and checks the validity of the proof and the signature to decide
on banning the unauthorized senders without learning their identities. Otherwise, if the
sender is – based on the predicate function – authorized to communicate with the selected
group of receivers, the Sanitizer re-randomizes the received ciphertext and then passes it
on the recipients. Finally, the receivers who are allowed to decrypt ciphertext based on
Pf, can run the decryption algorithm and retrieve the message, else they learn nothing
about it. It is assumed the Sanitizer is not fully trusted: while it follows the protocol
honestly, it is unable to compromise the message secrecy and anonymity of the users.

3 Background
In this section, we formally define the primitives required for the proposed construction.
Also, we propose a novel CP-ABE scheme with a constant key length and constant
ciphertext size. We believe that this is a result of that is valuable by itself.

3.1 Structure-Preserving Signatures
In a Structure-Preserving Signature (SPS), the signature and signed message are both
group elements; the verification requires a pairing-product process.

Definition 6 (Structure-Preserving Signatures [AFG+10]). An SPS scheme ΠSPS in a
type-III bilinear group, over message spaceM and signature space S consists of four PPT
algorithms (Pgen,KG,Sign,Vf), defined as follows,

• (pp)← SPS.Pgen(λ): This algorithm takes the security parameter λ as input, and
generates the public parameters pp.
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• (sk, vk)← SPS.KG(pp): Key generation is a probabilistic algorithm which takes the
public parameters pp as input. It returns a key-pair (sk, vk) composed of the secret
signing key and the public verification key.

• (σ)← SPS.Sign(pp, sk,m): The signing algorithm takes the public parameters pp,
secret signing key sk and a message m ∈M as inputs and outputs a signature σ ∈ S.

• (0, 1) ← SPS.Vf(pp, vk, σ,m): The verification is a deterministic algorithm that
takes the public parameters pp, a signature σ, the message m ∈ M and a public
verification key vk as inputs. It responds by either 0 (reject) or 1 (accept).

The primary security requirements for an SPS scheme are Correctness and Existential
Unforgeability against chosen message attack that are defined as follows,

Definition 7 (Correctness). An SPS scheme ΠSPS is called correct if we have,

Pr
[
(sk, vk)← KG(pp),∀ m ∈M,Vf (pp, vk,m,Sign(pp, sk,m)) = 1

]
≈c 1 .

Definition 8 (Existential Unforgeability against Chosen Message Attack (EUF-CMA)).
An SPS scheme ΠSPS is called EUF-CMA if for all PPT adversaries A, AdvEUF-CMA

A,SPS (1λ),
we have the following advantage function,

Pr
[

(sk, vk)← KGen(pp), (σ∗,m∗)←$AOSign(pp) :
m∗ 6∈ Qmsg ∧ SPS.Vf(vk, σ∗,m∗) = 1

]
.

The signature oracle OSign takes a message m ∈M and returns the corresponding signature
by running the Sign(pp, sk,m) algorithm. All the queried messages are kept track of via a
query set Qmsg. An SPS is called to be EUF-CMA-secure if for all PPT adversaries we
have, AdvEUF-CMA

A,SPS (1λ) ≤ negl(λ).

In the following, the Abe et al. [AGOT14] SPS construction is outlined, as a selectively
re-randomizable SPS in Type-III bilinear groups. This scheme has been proven to be
EUF-CMA-secure. If one possess a valid re-randomization token one can re-randomize the
signature without needing to know the secret signing key.

Abe et al. SPS scheme [AGOT14] This construction consists of the following PPT
algorithms,

• (pp)← SPS.Pgen(λ): This algorithm takes as input λ, picks X ←$G1, and runs a
Type-III bilinear group generator BG(λ) = (G1,G2,GT , p, ê). It returns the public
parameters of the system pp = (G1,G2,GT , p, ê, X).

• (sk, vk) ← SPS.KG(pp): The key generation algorithm takes as input pp, picks
v←$Zp and computes V = [v]2. It returns the public verification key vk = V and
the secret signing key sk = v.

• (σ,W ) ← SPS.Sign(pp, sk,m): The signing algorithm takes as inputs the public
parameters pp, the secret signing key sk and a message m ∈ G1. It samples r←$Z∗p
and computes σ = (R,S, T ) =

(
[r]2 ,mv/rX1/r, Sv/r [1/r]1

)
. It outputs the pair of

(σ,W = [1/r]1), where W is a token for re-randomizing the signature.

• (σ′,W ′)← SPS.Randz(pp, σ,W ): The re-randomizing algorithm takes as inputs pp,
signature σ ∈ S along with a token W , picks a random integer t←$Z∗p and computes
a re-randomized signature as σ′ = (R′, S′, T ′) = (R1/t, St, T t

2
W t(1−t)). It returns σ′

along with a new token W ′ = W t as the outputs.
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• (0, 1)← SPS.Vf(pp, vk, σ′,m): The verification algorithm takes as inputs the public
parameters pp, either a plain or a re-randomized signature σ or σ′, the message
m ∈M and the verification key vk. It first checks m,S, T ∈ G1, R ∈ G2 and whether
the pairing equations S •R = (m • V )(X • [1]2), T •R = (S • V )([1]1 • [1]2) hold or
not. If both conditions hold then it returns 1, otherwise it responds with 0.

The correctness of the scheme is trivial and the re-randomized signature is perfectly
indistinguishable from the original signature. Since in our main construction the generator
of the first group is hidden, then we use a variant of the selectively re-randomizable Abe
et al.’s SPS scheme with the same public parameters in the Type-III bilinear group.

• (pp)← SPS.Pgen(λ): This algorithm takes as input the security parameter λ and
picks a random integer α←$Z∗p and a group generator Y ←$G2. It returns the
public parameters pp by running a Type-III bilinear group generator BG(1λ) =
(G1,G2,GT , p, ê) and publishes pp = (G1,G2,GT , p, ê,

[
α2]

1 , Y ), while it keeps α
secret.

• (sk, vk)← SPS.KG(pp): It samples v←$Zp and publishes the public verification key
vk =

[
vα2]

1 while it securely stores the secret signing key sk = v.

• (σ,W )← SPS.Sign(pp, sk,m): The signing algorithm takes the public parameters
pp, the secret key sk and a message m ∈ G2 as inputs. It samples r←$Z∗p, computes
σ = (R,S, T ) =

([
rα2]

1 ,m
v/rY 1/r, Sv/r [1/r]2

)
, and outputs (σ,W = [1/r]2).

• (σ′,W ′)← SPS.Randz(pp, σ,W ): The re-randomizing algorithm takes as inputs the
public parameters pp, a signature σ ∈ S along with a token W , picks a random
integer t←$Z∗p and computes the re-randomized signature as σ′ = (R′, S′, T ′) =
(R1/t, St, T t

2
W t(1−t)) and returns it along with a new token W ′ = W t.

• (0, 1)← SPS.Vf(pp, vk, σ′,m): The verification algorithm accepts pp, either a plain
signature σ or a re-randomized signature σ′, a message m and the verification key vk
as inputs. It first checks m,S, T ∈ G2, R ∈ G1 and then checks the pairing equations
R • S = (vk •m)(

[
α2]

1 • Y ) and R • T = (vk • S)(
[
α2]

1 • [1]2). If both conditions
hold, then it returns 1, otherwise it responds with 0 (rejecting the signature)

The proof of correctness is identical to that of Abe et al.’s scheme, where instead of
picking a random X from G1, we utilize

[
α2]

1. Additionally, the proposed variant of Abe
et al.’s SPS scheme is EUF-CMA-secure, similar to the original construction of Abe et al.
This follows from the observation that α is sampled uniformly random and

[
α2]

1 has the
same distribution as [1]1. Since α is hidden, no PPT adversary can distinguish between
the case [1]1 and

[
α2]

1.

3.2 Non-Interactive Zero-Knowledge proofs
A Zero-Knowledge proof as a two-party protocol is a fundamental and powerful crypto-
graphic tool. It allows a prover to convince a verifier about the validity of a statement
without revealing any other information. Non-Interactive Zero-Knowledge (NIZK) argu-
ments remove the interaction between the parties in two possible settings either the Random
Oracle Model (ROM) [FS87] or the Common Reference String (CRS) model [BFM88].
The construction of NIZK arguments in the CRS model requires a trusted setup phase
that outputs some public parameters, known as the CRS, that it shared with the prover
and verifier to respectively generate and verify the proof in a single communication round.

We adopt the definition of Zero-Knowledge Non-Interactive Succinct Argument of
Knowledge (zk-SNARK) as an efficient family of the NIZK arguments from [Gro16].
For a security parameter λ, let R be a relation generator, such that R(1λ) returns an
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efficiently computable binary relation R = {(x,w)}, where x is the statement and w is the
corresponding witness. Let LR = {x : ∃ w | (x,w) ∈ R} be the NP-language consisting of
the statements in the relation R. Formally, a NIZK argument ΠNIZK under the relation
generator R consists of the following PPT algorithms:

• ( ~crs, ~ts) ← K ~crs(R): The CRS generator is a probabilistic algorithm that, given
relation (R), first samples the simulation trapdoor ~ts, and generates ~crs. It securely
stores the former while publishing the latter.

• (π,⊥)← P(R, ~crs, x,w): Prove is a probabilistic algorithm that takes as input (R,
~crs, x,w) and if (x,w) ∈ R, outputs a proof π, otherwise, it returns ⊥.

• (0, 1) ← V(R, ~crs, x, π): The verification algorithm is a deterministic process that
returns 1 if the given proof is correct ((x,w) ∈ R) and 0 if it is incorrect ((x,w) 6∈ R).

• (π′)← Sim(R, ~crs, ~ts, x): Simulator is an algorithm, that given the tuple (R, ~crs, ~ts, x),
outputs a simulated argument π′ without knowing the witness. It is computationally
infeasible for a PPT adversary to distinguish between π and π′.

Next we recall the security requirements for a NIZK argument in the CRS model.

Definition 9 (Completeness). A NIZK argument ΠNIZK is called complete, if for all λ,
and (x,w) ∈ R we have,

Pr
[
(R)← R(1λ), ( ~crs, ~ts)← K ~crs(R) : V(R, ~crs, x,P(R, ~crs, x,w)) = 1

]
≈c 1 .

Definition 10 (Soundness). A NIZK argument ΠNIZK is called Sound, if for all adversary
A, we have,

Pr
[

(R)← R(1λ), ( ~crs, ~ts)← K ~crs(R),
(x, π)← A(R, ~crs) : V(R, ~crs, x, π) = 0 ∧ x 6∈ LR

]
≈c 1 .

Definition 11 (Statistically Zero-Knowledge). A NIZK proof ΠNIZK is called statistically
Zero-Knowledge, if for all adversary A, εunb0 ≈c εunb1 , where

εunbb = Pr
[
( ~crs ‖ ~ts)← K ~crs(R) : AOb(·,·)(R, ~crs) = 1

]
.

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and else it returns P(R, ~crs, x,w).
Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, else it returns Sim(R, ~crs, x, ~ts).

Intuitively, a NIZK argument ΠNIZK is zero-knowledge if it does not leak extra infor-
mation beyond the validity of the statement. Now we recall the definitions of Knowledge
Soundness as a stronger notion of Soundness.

Definition 12 (Computational Knowledge-Soundness). A NIZK argument ΠNIZK is com-
putationally (adaptively) knowledge-sound, if for every PPT adversary A, there exists an
extraction trapdoor ~te and an extractor ExtA, s.t. for all λ we have,

Pr

(R)← R(1λ), ( ~crs ‖ ~te)← K ~crs(R),
(x, π)← A(R, ~crs), (w)← ExtA(R, ~crs, ~te, π) :
(x,w) 6∈ R ∧ V(R, ~crs, x, π) = 1

 ≈c 0 .

In this paper, we utilize a special and highly efficient class of NIZK arguments in the
CRS model, with small proof size and low verification cost, called Succinct Non-Interactive
Arguments of Knowledge (zk-SNARK). The most efficient zk-SNARK to date has been
proposed by Groth [Gro16]: its proof contains only three group elements.
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3.3 Re-randomizable CP-ABE schemes
In what follows, we capture a unified definition of Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) schemes and their security requirements. Then, we define a novel
CP-ABE scheme and its variant as a re-Randomizable CP-ABE scheme, in which one
party can re-randomize the generated ciphertext without needing the secret key.

Definition 13. (Ciphertext-Policy Attribute-Based Encryption schemes [BSW07]): For
a given attribute universe U with size n, let Σc and Σk = 2U be any collection of access
structures and key indices over the attribute space U, respectively. A CP-ABE scheme for
a Boolean function Bf : Σk × Σc → {0, 1} over message spaceM and ciphertext space C,
consists of the following algorithms:

• (pp,msk)← ABE .Pgen(λ,U): The parameter generation algorithm takes the security
parameter λ and attribute space U as inputs and outputs the public parameters pp
and the master secret key msk.

• (dkB)← ABE .KGen(msk,B): The key generation algorithm takes the master secret
key msk and an authorized key index B ∈ Σk as inputs and returns the private
decryption key dkB.

• (Ct)← ABE .Enc(pp,m,P): The Encryption algorithm takes the public parameters
pp, a messagem ∈M and a ciphertext index P ∈ Σc as inputs. It returns a ciphertext
Ct ∈ C along with the access structure P.

• (m′,⊥) ← ABE .Dec(pp, Ct, dkB,B,P): The decryption algorithm takes the public
parameters pp, a ciphertext Ct ∈ C and its corresponding collection P ∈ Σc along
with a private decryption key dkB for the key index B ∈ Σk as inputs. It responds
with m′ ∈M if and only if Bf(B,P) = 1, otherwise ⊥.

We give a standard definition of the security properties for CP-ABE schemes namely,
Correctness and Indistinguishability against Chosen Ciphertext Attack (IND-CCA) for
CP-ABE schemes.

Definition 14. (Correctness [GPSW06]). Let a CP-ABE scheme for a given security
parameter λ and attribute space U, all B ∈ Σk and all P ∈ Σc. We say that ΠCP-ABE over
message spaceM and ciphertext space C is correct if and only if for all m ∈M and Ct ∈ C
we have,

Pr
[

(pp,msk)← Pgen(λ), (dkB)← KGen(msk,B),
Dec (dkB,Enc(pp,m,P),B,P) = m : Bf(B,P) = 1

]
≈c 1 .

Definition 15. (IND-CCA [GPSW06]). Let ΠCP-ABE be defined for the attribute universe
U, message space M and a Boolean relation Bf : 2U × Σc → {0, 1}. For a security
parameter λ and a PPT adversary A, we define the Indistinguishability game under a
Chosen Ciphertext Attack (IND-CCA) as follows:

Initialization: The Challenger samples the pair of public parameters and the master
secret key by running the algorithm (pp,msk) ← Pgen(λ,U) and gives pp to A, while
keeping msk secure.

1st Query Phase: On a polynomially bounded requests, the adversary A chooses a key
index B ∈ Σk and queries the key generation oracle. The challenger executes KGen(msk,B)
and returns dkB.

Challenge: A selects two messages of the same length (m0,m1)←$M×M and
a challenge ciphertext index P∗ such that Bf(B,P∗) = 0 for all queried key indexes in
the first query phase. Then B flips a fair coin, produces a random bit b←$ {0, 1}, runs
Enc(pp,mb,P∗) and sends Ct∗ back to A.
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2nd Query Phase: After receiving the challenge ciphertext, A still is allowed to
request more decryption keys for key indices B with the limitation Bf(B,P∗) = 0.

Guess. A returns a bit b′ to B.
The advantage of A is AdvIND-CCA

A,ΠCP-ABE
(1λ, b) = 2

∣∣Pr [b = b′]− 1
2
∣∣, where the probability

is taken over all coin flips. We say ΠCP-ABE is IND-CCA if for all PPT adversaries A we
have, ∣∣∣∣AdvIND-CCA

A,ΠCP-ABE
(1λ, b = 0)−AdvIND-CCA

A,ΠCP-ABE
(1λ, b = 1)

∣∣∣∣ ≈c 0 .

To be more concrete, we say a CP-ABE scheme is adaptively secure if, for each request,
the adversary A can query the key generation algorithm such that its queries may depend
on the information it gathered in its previous requests. In a Selective secure CP-ABE as
a weaker security notion [BB04, CHK03], A should select the challenge access policy P∗
before the initialization phase, while the decryption key queries can be still adaptive. We
call a CP-ABE scheme co-selective IND-CCA secure [AL10], if A declares q decryption
key queries before the initialization phase, but she can adaptively select the challenge
index P∗ afterward.

Although an IND-CCA-secure CP-ABE satisfies the payload hiding property, a stronger
security concept, called attribute-hiding CP-ABE, ensures that the set of attributes
associated with each ciphertext is also obscured [KSW08]. Since the latter increases the
ciphertext size, this will not be considered in this work and our construction only satisfies
a weaker notion of attribute-hiding. More precisely, in an ACE construction, the receiver
anonymity ensures that the identity of the receivers remains anonymous even against the
Sanitizer and the malicious parties. The proposed construction guarantees that no PPT
adversary can obtain the receiver’s identity, deterministically. This is the same as the
notion of “weak attribute-hiding” in the context of Attribute-Based Signatures [SSN09].
Indeed, the access policy corresponding to a ciphertext only reveals the list of receivers who
satisfy a specific set of attributes, even though it never leaks any information about the
identity of the receivers. Under the assumption there is more than one user who satisfies a
set of certain attributes, the adversary is unable to deduce for which specific receiver the
challenge ciphertext is intended.

In the following, we define a new IND-CCA secure CP-ABE scheme with a constant
key and ciphertext size. The Boolean function of this scheme is applied in AND-gate
circuits. Although Guo et al. in [GMS+14] took a similar approach and presented a
constant-key size CP-ABE scheme, the ciphertext size in their scheme increases linearly
with total number of possible attributes.

A Constant-size ciphertext CP-ABE scheme This construction consists of the following
PPT algorithms,

• (pp,msk) ← ABE .Pgen(U, λ): Takes an attribute space U with size n along with
λ, and runs a Type-III bilinear group generator BG(λ) = (G1,G2,GT , p, ê). It also
selects a collision-resistant hash function H←$H. For a randomly selected integer
α←$Z∗p, it computes hi =

[
αi
]
2 as the set of monomials in G2 and g2 =

[
α2]

1. It
returns the master secret key msk = ([1]1 , α) and the system’s public parameters
pp = (G1,G2,GT , p, ê, g2, {hi}ni=0, [α]T ,H).

• (dkB) ← ABE .KGen(msk,B): Takes msk and generates a secret decryption key
corresponding to attribute set B ∈ Σk, such that |B| < n− 1. It first computes the
Zero-Polynomial ZB(x) =

∏n
i=1 (x− ki)b[i] such that ki = {H(Ui)}Ui∈U. It returns

the secret decryption key dkB = [1/ZB(α)]1.
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• (Ct) ← ABE .Enc (pp,m,P): This algorithm generates a ciphertext for message
m ∈ M, takes the public parameters pp and an access structure P ∈ Σc. It first
samples r←$Z∗p, calculates ZP(x) =

∑n
j=0 zjx

j and returns the ciphertext as a tuple
Ct = (P, C, C1, C2) = (P,m [rα]T , (

∏n
j=0 h

zj
j+1)r = [rαZP(α)]2 , g

−r
2 =

[
−rα2]

1).

• (m′,⊥)← ABE .Dec (pp, Ct, dkB): This algorithm takes as input the public param-
eters pp, a ciphertext Ct and a secret decryption key dkB. If P ⊆ B, it computes,
FB,P(x) =

∏n
i=1 (x− ki)c[i] =

∑n
j=0 fjx

j for c[i] = b[i] − p[i]. Then it returns

m′ = C ·
((
C2 •

∏n
i=1 (hi−1)fi

)
· (dkB • C1)

)−1
f0 , otherwise it responds with ⊥.

Theorem 1. The proposed CP-ABE scheme is consistent.

Proof. We demonstrate that a receiver who owns the set of attributes B ⊂ U can correctly
decrypyt the ciphertext if and only if the attribute set B satisfies the access structure P
(i.e., P ⊆ B). In the decryption phase we have,

V1 =
(
C2 •

n∏
i=1

(hi−1)fi
)

=
([
−rα2]

1 •

[(
n∑
i=1

fiα
i−1

)
+ f0/α− f0/α

]
2

)
([
−rα2]

1 • [(FB,P(α)− f0)/α]2
)

= [rα(f0 − FB,P(α))]T .

V2 = (dkB • C1) = [1/ZB(α)]1 • [rαZP(α)]2 = [rαZP(α)/ZB(α)]T = [rαFB,P(α)]T .

m′ = C · (V1 · V2)−1/f0 = C
(
[rαf0]T · [−rFB,P(α)]T · [rFB,P(α)]T

)−1/f0

= m · [rα]T · [−rα]T = m .

More precisely, the univariate polynomial ZB(x) vanishes on the point ki = H(Ui) for
those attributes that are not in the set of B, i.e., this polynomial has n − |B| roots. In
a similar way, the polynomial ZP(x) has degree n − |P| with factors (x − kj) for those
attributes that are in P. The Boolean relation Bf in the proposed CP-ABE enforces that
to decrypt a ciphertext the subset P has to be a subset of B and we have |n−B| ≤ |n− P|.
Since all the attributes which are out of the set B are equal to all the attributes out of the
set P, all the factors of polynomial ZB(x) simplify by the polynomial ZP(x). Since |P| ≤ |B|
and the result of division ZP(x)/ZB(x) is not rational and it is equal to FB,P(x), hence we
can evaluate this polynomial in from the second group by knowing the monomial set

[
αi
]
2.

Moreover, the univariate polynomial FB,P(x) vanishes on those ki for which B and P are
disjoint. Conversely, if P 6⊆ B then there exists at least one root for the polynomial ZB(x)
that does not cancel out by the numerator ZP(x). Hence the result of division is rational
and the receiver cannot compute the evaluated polynomial based on the defined standard
basis in the point of α from the second group.

Moreover, as in a traditional security evaluation of ABE schemes, we evaluate the
possibility of multiple users colluding. More precisely, malicious users cannot acquire
an encrypted message for which access is denied by the access right embedded in the
ciphertext, implying that they cannot retrieve the original plaintext by pooling their secret
decryption keys. This is because defying the secret value α that is encased as a master
secret key thus no two secret keys can create another which benefits more universally. It
follows naturally that a malicious user would need to guess correctly the α to cancel out
the numerator polynomial caused by the multiplication of least common factor of two
distinct decryption attribute set.

Theorem 2. Under the (l,m, t)-MSE-DDH assumption, a PPT adversary A cannot win
the security game IND-CCAACP-ABE(1λ,U) from Definition 15 for the proposed CP-ABE
scheme.
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Proof. We plan to prove this theorem by reduction. Let there exists a Probabilistic
Polynomial Time (PPT) adversary, A, who can break the proposed scheme in the introduced
security game in Definition 15 with a non-negligible advantage ε. Then we will show that
how a PPT adversary, B, can solve the (l,m, t)-MSE-DDH problem with a non-negligible
advantage of at least ε

2 . In fact, B takes on the role of the challenger and utilizes the
adversary A in order to solve the mentioned hard problem.

Let the challenger C of Decisional (l,m, t)-MSE-DDH hard assumption run the asymmet-
ric bilinear group generator BG(λ) for the security parameter λ and take (G1,G2,GT , p, ê)
such that [1]1, [1]2 and [1]T be the generators of the defined cyclic groups. The challenger C
first chooses three integers l,m, t, along with two univariate coprime polynomials f and h of
degree l andm with pairwise distinct roots ~x = (x1, . . . , xl) and ~y = (y1, . . . , ym). It samples
integers α, δ, k←$Z∗p uniformly at random and then flips a fair coin, β←$ {0, 1}, outside
B’s view. If β = 0, C sets Γ = [kf(α)]T , otherwise, it sets Γ = R, where R is a random ele-
ment of the target cyclic group GT . The challenger C sends Γ and the pair of vectors ~x and
~y along with ~v1 =

(
[1]1 , [α]1 , . . . ,

[
αl+t−2]

1 , [kαf(α)]1
)
, ~v2 =

(
[δ]1 , [δα]1 , . . . ,

[
δαl+t

]
1

)
,

~v3 =
(
[1]2 , [α]2 , . . . ,

[
αm−2]

2

)
and ~v4 =

(
[δ]2 , [δα]2 , . . . ,

[
δα2m−1]

2 , [kh(α)]2
)
to the ad-

versary B.
Initialization: In this phase, the simulator B sets the universe attribute set of U as

all the possible attributes in the defined network and a collision-resistant Hash function
H←$H. B publishes U and she receives back the challenge access policy P∗ along with the
query set Q as a group of attribute sets Bi ⊆ U for i ∈ [s], such that |Bi| ≤ e from A and
also P∗ 6⊆ Bi (i. e., Bf(Bi,P∗) = 0). In order to publish the public parameters, B computes
the public parameters computes the following polynomial that is the multiplication of
zero-polynomials corresponding for the chosen subsets Bi in the query set Q.

YQ(x) =
s∏
i=1

ZBi(x) =
s∏
i=1

n−e∏
j=1

(x− kj)bi[j]
 .

Here bi[j] represents the jth binary representation of subset Bi. The degree of univariate
polynomial YQ(x) is upper bounded by s(n − e). Moreover, since we know h(x) =∏m
i=0 (x− yi), it is assumed ZP∗(x) = YQ(x)h(x) such that |P∗| = n− (s(n− e) +m). This

can be feasible by defining the hash function H in the Random Oracle Model. Then she
assumes G = [f(α)YQ(α)]1 as a new generators for the first cyclic group G1.

In this case, the Challenger B calculates f(x)YQ(x) =
∑l+s(n−e)
j=0 pjx

j to compute g2
based on the newly defined generator as follows,

G2 =

l+s(n−e)∏
j=0

[
αj+2]pj

1

 = [f(α)YQ(α)]α
2

1 = Gα
2
.

We have to emphasize that the generator of the first cyclic group is not public. B by
knowing the vector ~v1 can compute the above equation if t ≥ s(n−e)+4. Consequently, the
challenger defines hi =

[
αi
]
2. Finally, the public parameters based on the new generator

are pp =
{
G2, {hi}ni=0, [αf(α)YQ(α)]T ,H

}
. While she securely stores the master secret

key msk = {G}.
1st Query phase. After receiving the public parameters, the adversary A has access

to the following oracles for a polynomially bounded number of queries.
Simulating the ODecKGen(Bi) oracle. The adversary A has access to this oracle

which is provided by B, to receive the secret decryption key corresponding to the attribute
set Bi ∈ Q. In this end, in order to simulate the secret decryption key B calculates the
univariate polynomial Λi(x) , such that f(x)YQ(x) = Λi(x)·ZBi(x). Based on the definition
of the polynomial YQ(x) we know it is divisible by ZBi(x), and we can rewrite the above
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equation as Λi(x) = (f(x)YQ(x))/ZBi(x). Since the polynomial Λi(x) is not rational, we
can take the coefficients in the standard basis as Λi(x) =

∑q
j=0 λjx

j . Finally, the challenger
returns the following equation as the simulated secret decryption key corresponding to Bi.

dkBi =
∏
j

[
αj
]λj
1 = [Λi(α)]1 = [f(α)YQ(α)]

1
ZBi (α)

1 = G
1

ZBi (α) .

Simulating the OEnc(m,P) oracle. The adversary A can adaptively request to
encrypt arbitrary messages from the message spaceM under a certain access structure P.
The challenger B samples a random integer r←$Z∗p, uniformly and computes the following
equations and sends back the tuple Ct = (P, C, C1, C2) to A.

C = m

s(n−e)+l∏
i=0

(
[
αi
]
1 • [α]2)pi

r

= m [rαf(α)YQ(α)]T .

C1 =
(

n∏
i=0

[
αi+1zi

]
2

)r
= [rαZP(α)]2 .

C2 = G−r2 .

The only condition is that (m− 2) ≥ n− |P|+ 1, i.e., |P| ≥ n−m+ 3.
Simulating the ODec(Ct,Bj) oracle. The adversary A has access to this oracle to

receive the decryption of ciphertext Ct by providing an attribute set Bj ∈ Q. To this
end, B executes dkBj ← DecKGen(msk,Bj) and takes the set P, defines c[i] = bj [i]− p[i]
and calculates, FBj ,P(x) =

∏n
i=1 (x− ki)c[i] =

∑
i fix

i. Whence she returns the decrypted
message m′ as follows,

m′ = C ·

(
C2 • (

n∏
i=1

hi−1)fi · (dkB • C1)
)−1/f0

.

Challenge: The adversary A chooses two same length plaintexts {m0,m1} ←$M×M
and sends them to B. Then B flips a fair coin to have the biased bit b←$ {0, 1}, and
computes the challenge ciphertext Ct∗ = (P∗, C∗, C∗1 , C∗2 ) as follows,

C∗ = mbΓ, C∗1 = [kh(α)]2 , C
∗
2 = [−kαf(α)]1 .

The randomness of the challenge ciphertext is assumed to be r∗ = k/(αYQ(α)) as the
randomness for the challenge ciphertext. In a nutshell, based on the (l,m, t)-MSE-DDH
assumption, there are two cases for the received challenge Γ with the same probability
1/2. If Γ = [kf(α)]T then C∗ = mb [kf(α)]T = mb [r∗αf(α)YQ(α)]T is in the correct
format. Also, C∗1 = [kh(α)]2 = [r∗αYQ(α)h(α)]2 = [r∗αZP∗(α)]2 and C∗2 = [−kαf(α)]1 =[
−r∗α2YQ(α)f(α)

]
1 = G−r

∗

2 . While in the case of an independent and random element
in the group GT , the computed C∗ is a random element out of the construction and the
adversary can distinguish by chance.

2nd Query phase. After receiving the challenge ciphertext Ct∗, the adversary A has
access to the queries defined in the first phase on the condition that she cannot query the
decryption oracle for the received challenge ciphertext.

Guess. Afterwards, A returns either 1 or 0. Let b′ and β′ be the values that are
guessed respectively by A for b and by B for β. If b′ == b, the adversary B outputs β′ = 0,
otherwise she returns β′ = 1, which indicates that she receives a random element in the
target group as the challenge. When β = 1, the adversary A obtains no information about b.
So she can guess it and we have Pr[b′ == b | β = 1] = 1/2. On the other hand, when b′ 6= b,
B returns β′ = 1, hence we have Pr[β′ == β | β = 1] = 1/2. Particularly, if β = 0, A can
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distinguish with a non-negligible advantage ε because she has received the true format of
the ciphertext for the challenge message mb. Thus, we have Pr[b′ == b | β = 0] ≥ ε+ 1/2.
As B correctly guesses β, when β = 0, we have Pr[β′ == β | β = 0] ≥ ε+ 1/2. Therefore,
the overall advantage of the adversary B in solving the (l,m, t)-MSE-DDH problem is,

AdvMSE-DDH
B (1λ) = Pr[β = 0] Pr[β

′
== β | β = 0] + Pr[β = 1] Pr

[
β
′

== β | β = 1
]
− 1/2

≥ 1/2 (ε+ 1/2) + (1/2 · 1/2)− 1/2 ≥ ε

2 .

Therefore, the adversary B can play the (l,m, t)-MSE-DDH game with a non-negligible
advantage ε

2 . By contradiction, since we know there is no PPT adversary B to break
the (l,m, t)-MSE-DDH assumption with a non-negligible advantage, then the proposed
CP-ABE scheme in Sect. 3 is secure in the IND-CCA game in Definition 15.

Definition 16 (Re-randomizable CP-ABE schemes (rCP-ABE)). For a given attribute
universe U with size n, let Σc be any collection of access structures over the attribute space
U and Σk be the key index set. A re-randomizable CP-ABE scheme, ΠrABE , for a Boolean
relation Bf : Σk × Σc → {0, 1}, over message spaceM and ciphertext space C, coincides
with the algorithms from Definition 13; the following algorithm supports this expansion:

• (C̃t) ← rABE .Randz(pp, Ct,P): The Re-randomization algorithm takes the public
parameters pp and a valid ciphertext Ct under the access structure P ∈ Σc as inputs.
It returns a re-randomized ciphertext C̃t ∈ C based on internal randomness without
requiring any secret information.

The Correctness and IND-CCA-security of a Re-randomizable CP-ABE derives
naturally from the initial CP-ABE, specified in Definitions 14 and 15. The decryption
functions in the former can thus accept either a ciphertext Ct or a re-randomized ciphertext
C̃t ∈ C, but they both yield the same output parameters. A re-randomizable CP-ABE
scheme also guarantees that no PPT adversary A can distinguish between a re-randomized
ciphertext and the initial ciphertext.

A Re-randomizable CP-ABE In what follows, we define a variant of the proposed
IND-CCA-secure CP-ABE scheme in Section 3.3, that supports the re-randomizing phase
as follows:

• (C̃t) ← rABE .Randz(pp, Ct): Takes the public parameters pp and a ciphertext Ct
under access structure P ∈ Σc as inputs. To re-randomize the ciphertext Ct ∈ C, it
samples an initial random integer s←$Z∗p and computes the Zero-polynomial ZP(x).
Outputs C̃t = (C̃, C̃1, C̃2) = (C · [sα]T , C1 · [sZP(α)]2 , C2 · g−s2 ).

The other algorithms are the same, except the decryption algorithm can take either C̃t
or Ct as input, and the same security properties hold.

3.4 Cross-Domain Attribute-Based Access Control Encryption scheme
We introduce the notion of Cross-Domain Attribute-Based Access Control Encryption (CD-
ABACE) schemes as an extended version of a re-randomizable CP-ABE construction.
The high-level idea behind the definition of a CD-ABACE is that we can generalize the
concept of Boolean relations in the plain CP-ABE schemes to the predicate function in
an ACE construction. In this scenario, the encryption key generator allows the sender
the ability to send a message to only those receivers who align with a certain access
structure based on a given predicate function. Properly, in place of the original approach
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of specifying the ciphertext access rights in the encryption phase, in this approach, it
is specified by Sender Authority in the encryption key generator phase. Moreover, the
generated encryption keys are signed by the SA, and no one can convincingly assert
ownership unless they have a correct signature.

Definition 17 (Cross-Domain Attribute-Based Access Control Encryption schemes). A
CD-ABACE scheme ΠCD-ABACE over the message spaceM, the ciphertext space C and a
predicate function Pf : Σk × Σc → {0, 1} has the following PPT algorithms:

• (ppra,mskra)← RAgen(U, λ): This randomized algorithm takes as inputs the security
parameter λ and the universe attribute set U, and outputs the pair of public
parameters ppra and master secret key mskra of the RA.

• (ppsa,msksa)← SAgen(ppra): This probabilistic algorithm takes ppra as input and
generates the parameters of the NZIK and the SPS. parameters. It returns ppsa and
msksa as the SA’s public parameters and the master secret key, respectively.

• (dkB)← DecKGen(mskra,B): This randomized algorithm takes RA’s master secret
key mskra and the authorized set of attributes B ∈ Σk as inputs and outputs the
corresponding private decryption key dkB.

• (ekP, σ,W ) ← EncKGen(ppra, ppsa,msksa,P,Pf): This algorithm takes the public
parameters, the Sender Authority’s master secret key msksa, and the authorized set of
attributes P ∈ Σc along with the predicate function Pf as inputs. It returns the secret
encryption key ekP that enforces that only the sender can send a message to those
receivers who satisfy P along with the signature σ and its underlying re-randomizing
token W .

• (Ct, π, x)← Enc(ppra, ppsa,m, ekP, σ,W ): This algorithm takes as inputs the public
parameters, a message m ∈M, the encryption key corresponding to the attribute
set of P, a valid signature σ and the token W . It returns the ciphertext Ct and a
NIZK proof π along with its underlying statement.

• (C̃t,⊥) ← Sanitization(ppra, ppsa, Ct, π, x,Pf): This algorithm takes as inputs the
public parameters ppra and ppsa, a ciphertext along with a NIZK proof π and its
corresponding statement x. Afterwards, the algorithm either re-randomizes the
ciphertext to C̃t or bans the request. To this end, it checks the validity of the
proof and, if it allows this flow based on the predicate function Pf, it transfers the
ciphertext C̃t ∈ C to the receivers, else it returns ⊥.

• (m′,⊥) ← Dec(ppra, ppsa, C̃t, dkB): The decryption algorithm takes as inputs the
public parameters ppra and ppsa, a re-randomized ciphertext C̃t and the decryption
key dkB. If Pf(B,P) = 1, then it returns a message m′ ∈M, otherwise it responds
by ⊥. In other words, a recipient with a wrong decryption key learns nothing from
the output of this algorithm.

4 Security Definitions
In this section, we present the required security properties for a CD-ABACE scheme:
Correctness, No-Read rule and No-Write rule. It must be noted that the following
security games are motivated by the notion of co-selective security in [AL10], such that
A has to declare q decryption key queries before the Initialization phase, while it can
select the target challenge ciphertext, adaptively. We slightly modify the extended security
notions introduced in [WC21] to adapt them to the CD-ABACE system model.
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Table 2: Security Games

No-ReadACD-ABACE(1λ,U)
1 : (ppra,mskra)← RAgen(1λ,U)
2 : (ppsa,msksa)← SAgen(ppra)
3 : P∗ ← A(ppra, ppsa)
4 : (m0,m1)←$AO(ppra, ppsa)
5 : (ekP∗ , σ

∗,W ∗)← EncKGen(P∗)
6 : b←$ {0, 1}
7 : (Ctb, πb, x)←$ Enc(ekP∗ ,mb)
8 : b′ ←$AO(Ctb, πb, x)

Oracle ODecKGen(Bj)
1 : Initialize QD = {∅}
2 : if Bj 6∈ QD :
3 : dkBj ← DecKGen(Bj)
4 : return (dkBj ) ∧QD = QD ∪ {Bj}
5 : else :
6 : return (dkBj )

No-WriteACD-ABACE(1λ,U)
1 : (ppra,mskra)← RAgen(1λ,U)
2 : (ppsa,msksa)← SAgen(ppra)
3 : (Ct∗, π∗, x∗,P∗)←$AO(ppra, ppsa)
4 : (Ct0, π0, x0) := (Ct∗, π∗, x∗)
5 : (ekP∗ , σ

∗,W ∗)← EncKGen(P∗)
6 : m∗ ←$M
7 : aux ← fix(Ct0)
8 : (Ct1, π1, x1)← Enc(ekP∗ ,m

∗, aux)
9 : b←$ {0, 1}

10 : ˜Ctb ← Sanitization(Ctb, πb, xb)
11 : b′ ←$AO( ˜Ctb)

Oracle OEncKGen(Pi)
1 : Initialize QE = {∅}
2 : if Pi 6∈ QE :
3 : (ekPi , σi,Wi)← EncKGen(Pi,Pf)
4 : return (ekPi , σi,Wi) ∧QE = QE ∪ {Pi}
5 : else :
6 : return (ekPi , σi,Wi)
Oracle OSanitization(m,Pi)
1 : (ekPi , σi,Wi)← EncKGen(Pi,Pf)
2 : (C̃t)← Sanitization(Enc(m, ekPi))
3 : return (C̃t)
Oracle ODec(C̃t,Bj)
1 : if Pf(Bj ,Pi) = 1 :
2 : dkBj ← DecKGen(Bj)
3 : m← Dec(C̃t, dkBj )
4 : else :
5 : return ⊥

Definition 18 (Correctness). For a given attribute universe U and predicate function
Pf : Σk × Σc → {0, 1}, we say that ΠCD-ABACE over message space M and ciphertext
space C is correct if we have,

Pr
[
Dec (dkB,Sanitization(Enc(m, ekP,P))) = m : Pf(B,P) = 1

]
≈c 1 .

Correctness captures the feature that a sender with an encryption key ekP is able to
deliver a message to those receivers for which the attribute set B satisfies Pf(B,P) = 1
with a high probability. In this case, the Sanitizer should pass the information on and a
receiver with decryption key dkB should be able to retrieve the message correctly from a
re-randomized ciphertext.

Definition 19 (No-Read Rule). Consider ΠCD-ABACE over the attribute universe U,
message spaceM, a ciphertext space C and a predicate function Pf : Σk × Σc → {0, 1}.
For a security parameter λ, we say that a PPT adversary A wins the defined No-Read
rule security game described in Table 2 with access to the oracles in the same table, if
she guesses the random bit b better than by chance. It is assumed that for a challenge
access structure P∗, A would not request the decryption key for attribute set Bj , such that
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Pf(Bj ,P∗) = 1. We say ΠCD-ABACE satisfies the No-Read rule if for all PPT adversaries A
with advantage AdvNo-Read

ΠCD-ABACE,A(1λ, b) = (Pr[A wins the No-Read game]− 1/2) we have,∣∣∣∣AdvNo-Read
ΠCD-ABACE,A(1λ, b = 0)−AdvNo-Read

ΠCD-ABACE,A(1λ, b = 1)
∣∣∣∣ ≈c 0 .

When we call A, it wins the defined security game iff b′ == b.

Similar to the ID-based ACE constructions, the No-Read rule in an attribute-based
model enforces that only eligible recipients who satisfy a certain access structure, should
learn the message while the other participants learn nothing. In particular, not only
an unauthorized receiver should be unable to read the message but also combining the
decryption secret keys of a group of unauthorized receivers should not reveal any information
about the message. Moreover, this property has to hold even if the recipients collude with
the Sanitizer.

Definition 20 (Parameterized No-Write Rule). Consider ΠCD-ABACE over the at-
tribute universe U, a message space M, ciphertext space C and a predicate function
Pf : Σk × Σc → {0, 1}. We say a ΠCD-ABACE scheme satisfies the Parameterized
No-Write rule, if no PPT adversary A with access to the oracles in Table 2 has a
non-negligible advantage in winning the No-Write game, i.e, under the advantage
AdvNo-Write

ΠCD-ABACE,A(1λ, b) = (Pr[A wins No-Write]− 1/2) we have,∣∣∣∣AdvNo-Write
ΠCD-ABACE,A(1λ, b = 0)−AdvNo-Write

ΠCD-ABACE,A(1λ, b = 1)
∣∣∣∣ ≈c 0 .

We say A wins the defined No-Write game iff b′ == b under the condition that for all
queried secret encryption keys Pi ∈ QE ∪ {P∗} and all requested private decryption keys
Bj ∈ QD, along with the challenge access structure P∗, we have Pf(Bj ,Pi) = 0. The
function fix(.) accepts a ciphertext Ct as input and generate auxiliary information aux of
Ct that is not sanitizable [WC21]. By seeding an encryption algorithm with this auxiliary
information, the resulting ciphertext has also the same auxiliary information.

5 The proposed construction
In this section we propose the CD-ABACE scheme such that the key and ciphertext
size are constant. Select a predicate function Pf : Σk × Σc → {0, 1} and a family of
collision-resistant hash functions H : {0, 1}∗ → Z∗p. The proposed CD-ABACE scheme
consists of the following six PPT algorithms:

(ppra,mskra) ← RAgen(U, λ): This algorithm is run by the RA to set up the public
parameters as follows,

(ppra,mskra)← RAgen(U, λ)
1 : Run BG(λ) = (G1,G2,GT , p, ê) // Type-III bilinear group

2 : H←$H // Collision-resistant hash function

3 : α←$Z∗p // Samples a random integer

4 : hi =
[
αi
]

2
// The set of monomials in G2

5 : g2 =
[
α2]

1
// only one element in G1

6 : mskra = ([1]1 , α) // Store them securely

7 : ppra = (g2, {hi}ni=0, [α]T ,H) // generator of G1 is secret

8 : return (mskra, ppra)
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(ppsa,msksa)← SAgen(ppra): The SA takes the public parameters ppra and runs the
following algorithm to generate ppsa and msksa.

(ppsa,msksa)← SAgen(ppra,mskra)
1 : Parse (BG(λ), ppra)
2 : Y ←$G2 // Samples a random generator

3 : sk = v←$Zp // Picks a random integer uniformly

4 : vk = gv2 =
[
α2v
]

1
// SPS’s verification key

5 : ( ~crs, ~ts)←$ KG ~crs(R) // CRS generator phase

6 : msksa = (sk, ~ts)
7 : ppsa = (RL, ~crs, Y, vk)
8 : return (msksa, ppsa)

(dkB)← DecKGen(mskra,B): The RA executes the following algorithm to generate the
private decryption key dkB underlying the key index B ⊂ U.

(dkB)← DecKGen(mskra,B)
1 : Parse (BG(λ),mskra)

2 : ZB(x) =
n∏
i=1

(x− ki)b[i] // Zero-polynomial for key index B

3 : return (dkB = [1/ZB(α)]1)

(ekP, σ,W ) ← EncKGen(ppra, ppsa,msksa,P,Pf): The SA takes as inputs the public
parameters along with msksa and executes this algorithm to decide the authorized receivers
for each sender based on a given predicate function Pf.

(ekP, σ,W )← EncKGen(ppra, ppsa,msksa,P,Pf)
1 : Parse (BG(λ), ppra,msksa)

2 : ZP(x) =
n∏
i=1

(x− ki)p[i] =
n∑
j=0

zix
i

3 : ekP =
n∏
i=0

hzii+1 = [αZP(α)]2 // User u can write to P

4 : tu ←$Z∗p // Unique random integer

5 : σ = (R,S, T ) = (gtu2 , eksk/tu
P Y 1/tu , Ssk/tu [1/tu]2)

6 : W = [1/tu]2 // Re-randomizing token

7 : return (ekP, σ = (R,S, T ),W )

(Ct, π, x)← Enc (ppsa, ppra,m, ekP, σ,W ): The sender who owns the secret encryption
key ekP runs this algorithm and sends the ciphertext and the NIZK proof (π, x) to the
Sanitizer.
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(Ct, π, x)← Enc (ppsa, ppra,m, ekP, σ,W )
1 : Parse (BG(λ), ppra, ppsa)
2 : r, t←$Z∗p // Samples two random integers

3 : Ct = (P, C, C1, C2) = (P,m [rα]T , ekrP, g−r2 )

4 : R′ = R1/t, S′ = St
2
, T ′ = T t

2
·W t(1−t)

5 : σ′ = (R′, S′, T ′) // Re-randomized signature

6 : vk′ = vk1/t // Re-randomizes the verification key

7 : ek′P = ektP // Re-randomizes the encryption key

8 : x = (R′, S′, T ′, vk′, ek′P, C, C2, C1) // Public Statement

9 : w = (ekP, R, S, T,m, r, t) // Secret Witnesses

10 : π ← P(RL, ~crs,w, x) // NIZK prove function

11 : return (Ct, π, x)

(C̃t,⊥) ← Sanitization(ppsa, ppra, Ct, π, x): The Sanitizer decides by running this
probabilistic algorithm whether to re-randomize and transfer the received ciphertext or to
ignore it.

(C̃t,⊥)← Sanitization(ppsa, ppra, Ct, π, x)
1 : Parse (BG(λ), ppra, ppsa)
2 : if {R′ ∈ G1 ∧ ek′P, S′, T ′ ∈ G2 ∧R′ • S′ = (vk′ • ek′P)(g2 • Y ) ∧
3 : R′ • T ′ = (vk′ • S′)(g2 • [1]2) ∧ V(RL, ~crs, π, x) = 1} :

4 : ZP(x) =
n∏
i=1

(x− ki)p[i] =
n∑
j=0

zjx
j

5 : s←$Z∗p // Samples a secret random integer

6 : (C̃, C̃1, C̃2) = (C · [sα]T , C1 · [sαZP(α)]2 , C2 · g−s2 )
7 : return C̃t = (P, C̃, C̃1, C̃2)
8 : else : abort

(m′,⊥) ← Dec(ppsa, ppra, C̃t, dkB): A receiver can run this algorithm to decrypt a
ciphertext C̃t. The receiver who owns the attribute set of B can learn the message if and
only if P ⊆ B, otherwise this algorithm returns ⊥.

(m′,⊥)← Dec(ppsa, ppra, C̃t, dkB)
1 : Parse (BG(λ), ppra, ppsa)
2 : if P ⊆ B : c[i] = b[i]− p[i]

3 : FB,P(x) =
n∏
i=1

(x− ki)c[i] =
n∑
j=0

fjx
j

4 : return m′ = C

((
C2 •

n∏
i=1

(hi−1)fi
)
· (dkB • C1)

)−1/f0

5 : else : abort

Our suggested CD-ABACE scheme is under an AND-gate circuit CP-ABE scheme
with constant key and ciphertext sizes, although this can be considered as a generic
construction that can be used with any CP-ABE scheme based on more substantial
circuit-level such as LSSS, Boolean, etc.
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6 Security Analysis
This section examines the security requirements of the proposed CD-ABACE scheme
based on three theorems.
Theorem 3. The proposed construction in Section 5, satisfies the correctness property of
Definition 18.

Proof. Our evaluation of the correctness of the scheme occurs in two phases. We claim that
Sanitizer confirms a sender with a valid and signed secret encryption key for attribute
set P to transmit data to a group of receivers with attribute set B so that they satisfy it if
Pf(B,P) = 1. Moreover, a target recipient with a private decryption key dkB can decrypt
the message entirely. The former relies on two properties including the correctness of the
SPS construction of Definition 7 and also the completeness of intended NIZK proof of
Definition 9. The latter also comes from the consistency of the proposed CP-ABE scheme
that we discussed in Theorem 1 and consequently, its re-randomizable variant. Thus we
can conclude the proposed CD-ABAC scheme is correct.

Theorem 4. The proposed CD-ABACE scheme satisfies the No-Read rule of Defini-
tion 19.

Proof. We wish to make the argument that for all PPT adversaries A, no player can
distinguish between two possible scenarios: the case that in the No-Read security game
b = 0 constitutes one scenario which we denote by H0, and the case that b is fixed to
1, called H1. I.e., (Ct0, π0, x0) ≈c (Ct1, π1, x1). We do so by defining several hybrid
experiments and by demonstrating that each of them is computationally indistinguishable
from the previous one.

• H1
0 : In this game, we modify H0 by creating the challenge NIZK proof π0 and

running π′0 ← Sim( ~crs, ~ts, x0).

The Zero-Knowledge property of NIZK arguments defined in Definition 11 guarantees that
this experiment is indistinguishable from the one for H0.

• H1
1 : In this game, we modify H1 by simulating the proof π1 by running the simulator

π′1 ← Sim( ~crs, ~ts, x1).
According to the Zero-Knowledge property of NIZK arguments, this experiment is

indistinguishable from H1.

• H: In this game, we modify H1
b by assuming the challenger runs the encryption

algorithm under message m1−b instead of mb.

According to the IND-CCA security property of the proposed CP-ABE scheme, this
experiment is indistinguishable from H1

b . To be more concrete, A cannot distinguish
between Ctb and Ct1−b even if the proofs are simulated.

Thereby we can conclude , H0 ≈c H1
0 ≈c H ≈c H1

1 ≈c H1.

Theorem 5. No PPT adversary A can win the No-Write security game of Definition 20
for the proposed CD-ABACE scheme under a fixed predicate function Pf : Σk × Σc →
{0, 1}.
Proof. The proof technique is inspired by [KW17, WC21]’s No-Write rule proof strategies.
The following experiments rely on security properties of the cryptographic primitives,
namely the knowledge soundness of the NIZK, the existential unforgeability of the SPS
and the IND-CCA security of the rCP-ABE. By playing a sequence of indistinguishable
games between a PPT adversary A and the challengers BKS, BEUF-CMA and BIND-CCA,
we gradually turn the No-Write rule game into the security features of the underlying
primitives.



Mahdi Sedaghat and Bart Preneel 23

• G0: The first security game is the defined No-Write game in Definition 20, thus
we can write,

AdvNo-Write
ΠCD-ABAC,A(1λ, b) = Pr[A Wins G0] .

• G1: In this game, we modify G0 such that the existence of an extraction trapdoor is
assumed. In this case, there exists an extractor that takes ~te and the received tuple
(Ct0, π0, x0), and returns the corresponding witness (w0)← Ext(~te, Ct0, π0) such that
w0 = (ekP∗ , σ

∗,m0, r0, t0). The indistinguishability of G0 and G1 can be proven via
the Knowledge Extraction property of NIZK arguments, specified in Definition 10.
This property guarantees the existence of an efficient extractor under non-falsifiable
assumptions and we can write, Pr[A Wins G0] ≈c Pr[A Wins G1]. This advantage
consequently depends on two possible cases,

Pr[A Wins G1] = Pr[A Wins G1 : (w0, x0) ∈ RL] + Pr[A Wins G1 : (w0, x0) 6∈ RL] .

The probability of an adversary in the latter case can be bounded by the advantage
a soundness attacker faces under the NIZK proof, i.e.,

AdvNo-Write
ΠCD-ABAC,A(1λ, b) ≤ Pr[A Wins G1 : (w0, x0) ∈ RL] +Advks

NIZK(Bks) .

Hence the game is won by the adversary when the former is the case.

• G2: This is the game G1, except for a valid pair of witness and statement in RL,
one can reduce it to a forgery attack for the underlying SPS scheme, if the extracted
signature is created under a fresh attribute set. More specifically, if A does not query
the encryption key for the attribute set P∗, i.e. P∗ 6∈ QE , then BEUF-CMA returns
the pair (ekP∗ ,P∗) as a forgery for the EUF-CMA security game of Definition 8. We
can write,

AdvNo-Write
ΠCD-ABAC,A(1λ, b) ≤ Advks

NIZK(Bks)+
Pr[A Wins G1 : (w0, x0) ∈ RL ∧ P∗ 6∈ QE ]+
Pr[A Wins G1 : (w0, x0) ∈ RL ∧ P∗ ∈ QE ] ≤
Advks

NIZK(Bks) +AdvEUF-CMA
sps (BEUF-CMA)+

Pr[A Wins G1 : (w0, x0) ∈ RL ∧ P∗ ∈ QE ] .

• G3: This game is the same as previous game G2, except for a random message
m∗←$M and the random bit b←$ {0, 1}, the challenger executes the sanitization
algorithm under Ct1−b. Then, the difference between the views in G2 and G3 is
bounded by AdvIND-CCA

rCP−ABE(BIND-CCA) and we can write,

AdvNo-Write
ΠCD-ABAC,A(1λ, b) ≤ Advks

NIZK(Bks)+
AdvEUF-CMA

sps (BEUF-CMA) +AdvIND-CCA
rCP−ABE(BIND-CCA) .

Thereby we can conclude,

AdvNo-Write
ΠCD-ABAC,A(1λ, b) ≤ negl(λ) .
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7 Performance Analysis
In this section, we examine how the performance of our proposed CD-ABACE scheme
compares to the selectively-secure Wang and Chow scheme [WC21], which is the only
implemented ACE construction to date.

As Table 4 illustrates, our scheme has improved the receivers’ key length and privacy
level from identity-based to attribute-based. The ciphertext size has also been reduced,
along with the number of public parameters. In [WC21], since the second group generator
is hidden, the SA requires selecting a new generator to create the parameters of the
signature scheme. In contrast, the proposed variant of Abe et al.’s SPS requires no new
generator for the second cyclic group, and the intended NIZK proof cuts out the need for
target group operations.

We analyze the scheme’s performance based on the implementation results on Wang
and Chow scheme [WC21], which was conducted on Windows 10 Enterprise with an Intel
Core i7-3770 CPU at 3.40 GHz with 16 GB of memory. The paper applies the JPBC
framework [DCI11], a Java library for the Pairing-based Cryptography [Lyn06] in order to
achieve portability. Table 3 lists the size of the groups’ elements and the exponentiation
running time and pairing cost. Note that for exponentiation it is taken into account
pre-processing, but for pairing there is no pre-processing

Table 3: Size of elements and Cost of operations [WC21]
Parameter |Zp| |G1| |G2| |GT |
size (byte) 58 116 232 696
Parameter E1 E2 ET P
Time (ms) 3 5 22 468

Based on the experiments in Table 3 and the performance given in Table 4, we can
determine the overhead introduced by the ciphertext’s length, encryption and secret
decryption key and the public parameters sizes (and compare them with [WC21]). As an
example, assume n = 1000 as the total number of attributes (the total number of users),
and t = 400 as the maximum number of attributes specified in the access policy (r = 400
as the maximum number of receivers that any sender is allowed to communicate with),
and w = 500 as the maximum number of attributes owned by a receiver (s = 500 as the
maximum number of senders that any receiver can receive a message from). The size
of the public parameters in the network is equal to 140 360 bytes (140 476 bytes). The
ciphertext size in our construction is 1972 bytes independent of the intended attributes
and the number of receivers (while the ciphertext in [WC21] is 3712 bytes long). Moreover,
the memory required to store the secret encryption and private decryption keys is 1044
bytes (696 bytes) and 116 bytes (116 000 bytes), respectively. The encryption algorithm’s
runtime in a pre-processed setting is 56 ms (71 ms), and the decryption algorithm takes
1458 ms (3458 ms) to process.

Although the authors in [WC21] examined the NIZK proof system in the Random
Oracle Model, for the evaluation of the intended NIZK argument, we assess zk-SNARKs
based on the pairing-friendly elliptic curve BLS12-381. We use the JubJub curve [jub20]
explored by Zcash for fast elliptic-curve arithmetic operations in the circuit. The JubJub
curve is a twisted Edwards curve defined over Fq with q being the prime order of BLS12-381.
Among other features, the Sapling algorithm in Zcash uses the Jubjub curve to prove
relations of the form y = βgα to determine that α is in the correct interval for the witness
α [jub20]. The first part of the relation can be expressed with 756 constraints, but
the latter is made of 252 constraints, hence a total of 1008 constraints [jub20, Section
A.4]. The former is all we need in our setting; it requires 756 constraints for each case
of exponentiation. In the encryption phase, the sender should prove the knowledge of
exponent for eight different relations including, (C,C1, C2, R

′, S′, T ′, vk′, ek′P). In total, this
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Table 4: Performance Analysis. |Gi|: The bit length of elements and Ei: The exponentia-
tion cost in Gi for i ∈ {1, 2, T}. P: The pairing cost.

Scheme Public pa-
rameters

Ciphertext
size

Enc.
Key
size

Dec.
Key
size

Enc.
cost

Dec. cost

[WC21] (r + 3)|G1| +
|GT | + (r +
1)|G2|

10|Zp| +
7|G1| +
|G2|+ 3|GT |

4|G1| +
|G2|

s|G2| 4E1 +
3E2 +2ET

sE2 + ET +
2P

This
work

2|G1|+ |GT |+
(n− t+ 1)|G2|

3|G1|+
4|G2|+ |GT |

|G1| +
4|G2|

|G1| 3E1 +
5E2 + ET

(w− t)E2 +
ET + 2P

circuit requires 6048 constraints and we have implemented the most efficient zk-SNARK
to date proposed by Groth [Gro16] using the libSNARK library [lib14].

The proof systems on the instance R1CS are benchmarked with 6048 constraints
and 6048 variables, of which 10 are input variables. A CPU with a clock speed of 2.50
GHz and 16 GB of RAM was used in the benchmarks. At the bandwidth level, the CRS
generation phase requires 906.5 ms, and the generated CRS is 1 207 662 bytes long. The
proof phase takes 964 ms, while the length of proof is equal to 127 bytes (three group
elements) independent of the number of attributes and any other variables. Moreover, the
verification algorithm can be performed in 1.1 ms.

8 Conclusion
In this work, we proposed an efficient and secure Cross-Domain Attribute-Based Access
Control Encryption scheme that is based on the set of attributes that the users possess. In
comparison with the previous paper, the length of the secret decryption and encryption
keys and the ciphertext size has been substantially reduced to a constant number of cyclic
groups elements. Moreover, the computational overhead of encryption and decryption is
linear in the number of the policy attributes and user attributes, respectively. Also, it is
formally proved the proposed scheme satisfies the No-Read and the No-Write rules
based on standard assumptions.

We leave the construction of a CD-ABACE scheme based on a Boolean circuit
instead of AND-gate circuits with the same performance as an interesting open problem.
Consequently, applying a Boolean circuit can be one step ahead to improve the anonymity
of the receivers to a stronger notion.
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