
An Incentive-Compatible Smart Contract for
Decentralized Commerce

Nikolaj I. Schwartzbach
Dept. of Computer Science

Aarhus University
Aarhus, Denmark

Index Terms—game theory, smart contract, electronic com-
merce

Abstract—We propose a smart contract that allows two mu-
tually distrusting parties to transact any non-digital good or
service on a blockchain. The contract acts as an escrow and
settles disputes by letting parties wager that they can convince
an arbiter they were the honest party. We analyze the contract as
an extensive-form game and prove that the contract is secure in a
strong game-theoretic sense if and only if the arbiter is biased in
favor of honest parties. We show this is inherent to any contract
that achieves game-theoretic security for interesting trades. We
consider a generalization of the contract with different ways of
paying back the wagers, and we can instantiate it to make a
tradeoff between security and the size of the wager. By relaxing
the security notion such that parties have only weak incentive to
behave honestly, we can replace the arbiter by a random coin toss
protocol. We implement the contract in Ethereum and estimate
the amortized cost of running the contract as 2-3 USD for the
seller and 4-5 USD for the buyer.

I. INTRODUCTION

A fundamental problem of electronic commerce is ensuring
both ends of the trade are upheld: an honest seller should
always receive payment, and an honest buyer should only
pay if the seller was honest. Traditionally, this is ensured by
introducing a trusted intermediary who holds the payment in
escrow until the trade has completed, after which it releases
the funds to the seller. It typically requires the parties not
to be anonymous, to enable either party to hold the other
party accountable in case of fraudulent behavior, and poten-
tially subject to legal repercussions. This, in conjunction with
reputation systems, has proved to be an effective means to
honest and efficient trading, as evidenced by the enormous
market cap of online marketplaces such as Amazon or Alibaba.
However, this relies on being able to trust the intermediary
to behave honestly: while the intermediary has a strong
incentive to maintain a good reputation, this does not address
the fundamental issue from a cryptographic point of view.
Besides obvious privacy concerns, a central marketplace also
has an incentive to engage in monopolistic behavior, such
as removal of competitors’ products or differential pricing
based on customer demographics to the extent that it remains
undetected [1].

Recent years have seen the creation of darknet markets
that take advantage of cryptocurrency and mix networks
to provide decentralized and somewhat anonymous trade of
goods and services. They arguably solve some issues with

central marketplaces, but in doing so, also enable black
market/criminal activity to remain relatively unchecked. The
most infamous darknet market was “Silk Road”, known for
selling illicit goods such as drugs, weapons, and fake pass-
ports. It operated from February 2011 until the authorities
seized it in October 2013, and the developer, Ross Ulbricht,
sentenced to double life imprisonment. But this is a rarity:
because of the anonymous nature of the markets, it is often
difficult to prosecute individuals, and many convictions of
buyers are based on circumstantial metadata such as credit
card transactions to purchase cryptocurrency of similar size.
However, most darknet markets remain inherently centralized,
in that all data and escrowed funds are processed directly by
the market itself, essentially at its mercy. It requires buyers
and sellers to trust both the benevolence and competence
of the market, a trust which is at best misplaced and at
worst disastrous in consequence. There are many examples of
prominent darknet markets being hacked, and all funds held
in escrow stolen, or of the operators of the market themselves
performing an exit scam, i.e. suddenly stealing the funds
in escrow and subsequently closing the market. It is often
difficult, if not impossible, to recover the stolen funds and
hold anyone accountable [2].

In this paper, we consider a seller who wants to sell an
item to a buyer without having to rely on a trusted third party.
We assume both parties are rational and have shared access
to a blockchain that allows them to deploy smart contracts
that can exchange cryptocurrency. Our goal is to replace the
trusted third party with a smart contract, such that parties can
be trusted to complete their end of the trade. As the parties
are rational, we want to prove they maximize their utility
by behaving as they should. We ask, can we design a smart
contract to facilitate decentralized trading of non-digital goods
and services in a way that provably ensures honest behavior
in rational agents?

A. Our results

We propose a smart contract for escrow of funds that enables
any two parties to engage in the trade of a physical good or
service for cryptocurrency. The contract relies on an arbiter
that is invoked only in the case of a dispute. The purpose of
the arbiter is to distinguish the honest party from the dishonest
party. Either party may issue a dispute by making a “wager”
of size λ that they will win the arbitration: the winner is repaid

their deposit and the funds held in escrow. We prove that
both buyer and seller are incentivized to behave honestly if
and only if the arbiter is biased in favor of honest parties.
Specifically, let γ be the “error rate” of the arbiter: then we
show there is a value of λ such that the contract has strong
game-theoretic security if and only if γ < 1

2 . This is not a
particularity of our contract: we show this is inherent to any
contract that achieves game-theoretic security for interesting
trades. By instead considering a weaker notion of security
where parties do not have strict incentive to behave honestly,
we can use a random coin flip protocol as the arbiter. However,
the contract remains secure in a strong way against risk-averse
adversaries. We sketch a simple construction based on Blum’s
coin toss protocol.

The contract can be run on any blockchain that supports
smart contracts (such as Ethereum). As a result, many proper-
ties (anonymity, efficiency, etc.) of the contract are inherited
from the corresponding blockchain. We feature a discussion of
different ways to instantiate the smart contract. In particular,
the contract can be used in a manner that complies with current
laws and regulations by using a blockchain with revocable
anonymity: a party who takes part in distributing illicit goods
can be deanonymized by the courts, while all other parties
remain anonymous. This would allow for a kind of certification
or blue-print of marketplaces based on smart contracts even
if they are essentially anonymous, so long as the underlying
blockchain uses revocable anonymity. We implement the con-
tract in Solidity and evaluate it on the Ethereum blockchain.
We find that the amortized cost of running the contract is 2-3
USD for the seller and 4-5 USD for the buyer.

B. Related work

A variety of solutions have been proposed for replacing
the trusted third party by a smart contract in so-called atomic
swaps. Most academic work has focused on digital goods, the
delivery of which can be deterministically determined.

Dziembowski, Eckey and Faust propose a protocol, called
FairSwap [3], with essentially optimal security: the goods are
delivered to the buyer if and only if the seller receives the
money. Their solution relies on cryptography and assumes
the goods can be represented as a finite field element. As a
result, their protocol does not apply in any meaningful way to
physical goods. It seems unlikely we can achieve this notion of
security for non-digital goods due to a fundamental difference
between the physical and the digital world.

Asgaonkar and Krishnamachari propose a smart contract
for the trade of digital goods [4]: both parties deposit funds a
priori (a dual-deposit) which is only refunded if the trade was
successful. They prove that the honest strategy is the unique
subgame perfect equilibrium for sufficiently large deposits.
Like FairSwap, their solution only works for digital goods
as it requires a hash function to verify delivery of the item.

Witkowski, Seuken and Parkes consider the setting of es-
crow in online auctions [5]. Their idea is to pay some of the
buyers a rebate to offset their expected loss from engaging
in a transaction with the seller. Whether a buyer is paid a

rebate depends on the reports of other buyers. They prove
that the seller has a strict incentive to be honest, while the
buyers are only weakly incentivized to do so. They show
that strict incentives for the buyers are possible if the escrow
has distributional knowledge about the variations in seller
abilities, based on a peer prediction method. Unfortunately,
their solutions rely on a somewhat idealized setting in which
there are many buyers concurrently transacting with the same
seller, as otherwise buyers and/or sellers may have an incentive
to collude, thus breaking security. Besides, it is not obvious
how to apply their work to a non-auction setting.

Outside academic circles, there are several proposed so-
lutions, of which the most promising are Kleros [6], [7]
and OpenBazaar [8]. They are both blockchain-based and as
such provide some level of decentralization. Unfortunately,
the dispute resolution of OpenBazaar remains centralized in
a sense, since all moderation is done by an agreed upon
moderator, requiring both buyer and seller to trust the mod-
erator. From a cryptographic point-of-view this only serves to
move the problem of having to trust the seller to having to
trust the moderator. The dispute resolution of Kleros is more
sophisticated, in that arbitration is done by a decentralized
court where jurors can opt-in on a case-by-case basis. Jurors
who vote in accordance with the majory decision are rewarded
with money, while jurors who vote differently are penalized.
They argue security by the use of focal points, defined as
the strategy people choose in the absence of communication:
jurors will act honestly because they expect other jurors to
do so. Unfortunately, no empirical study of Kleros has been
published, so whether the focal point of Kleros is “truth”
remains conjecture at this point. Besides, neither system has
any formal analysis of correctness or security, and thus fall
short in rigorously solving the buyer and seller’s dilemma.
To the best knowledge of the author, there is no “truly
decentralized” market with game-theoretic security at the time
of writing.

II. THE BASIC CONTRACT

In this section, we describe our contract for the trade of
non-digital goods and services. We consider a buyer B who
wants to purchase an item it from a seller S. The item can be
a physical good or a service. The item is sold for a price of x,
and has a “perceived value” to the buyer of y > x, while the
seller perceives the value at x′ < x. From a game-theoretic
point of view, we have to assume y > x > x′, as otherwise nei-
ther buyer nor seller has incentive to engage in the transaction.
The item it is non-digital which means it has to be shipped
through a physical channel “off-chain”. See Fig. 1 for an
illustration. By definition, no computer program can rigorously
determine whether or not it was physically delivered to the
buyer. This is a fundamental difference between the digital and
the physical world. We assume both parties have access to a
blockchain, which for our purposes is a shared data structure
that allows both parties to deploy a smart contract π that can
maintain state, respond to queries, and transfer funds. Unlike
a human third party, the smart contract can be guaranteed

it

S π B

A

xx

it
= y= x′

Fig. 1. A seller S and a buyer B engaged in the transaction of the non-digital
good it , using a smart contract π and arbiter A. The item is sold for x funds
and has a perceived value of y > x to B. The money x is transferred from B
to S through the contract π. The dashed line is a unidirectional “off-chain”
channel, through which it can be sent. The dotted lines indicate that A is
only invoked in case of disputes.

to behave honestly due to the security of the underlying
blockchain. For simplicity, we assume the blockchain is secure
and incorruptible, and consider only attacks on the contract
itself. For now, we assume transaction fees are negligible
compared to the items being transacted, such that they can be
disregarded entirely. We will dispense with this assumption
later.

The contract is parameterized by an arbiter A which is
a protocol invoked in case of disputes: its purpose is to
distinguish the honest party from the dishonest party. We
denote by γ the error rate of the arbiter. In the case of digital
goods, cryptography allows us to get γ = 2−κ for any κ which
has been exploited in previous work [3], [4]. We assume each
party holds an estimate of γ > 0 that they provide as input
to the contract. This value might be established empirically,
though it likely depends on the nature of the goods transacted.
A naive solution is to invoke the arbiter at every transaction to
determine whether or not the seller should be paid. However,
this is impractical because invoking the arbiter is potentially
expensive; we desire a solution that only invokes the arbiter
when necessary. We parameterize the contract by a wager
constant λ > 0. The contract proceeds as follows: both parties
sign a contract committing to making the trade, and B places
x money in escrow. S then delivers it to B “off-chain” who
then notifies the smart contract to transfer the funds in escrow
to S, thus terminating the contract. If S does not deliver it to
B, then B can trigger a dispute by placing a “wager” of size
λ that they can convince the arbiter that they were the honest
party. If S does not respond (or forfeits), it is assumed it was
not delivered to B and the contract refunds x+λ funds to B.
However, a dishonest buyer may trigger the dispute phase even
when they received it . In this case, the honest S may counter
the wager by also placing a wager of size λ that they will
win the arbitration. Of course, a dishonest S may also counter
the wager. If both parties counter, the arbiter is invoked and
chooses a winner among them. The winner is repaid x + λ,
while the loser receives nothing. We can use the leftover λ
to compensate the arbiter for their time. We handle crashing
by having timeouts in the contract in a way that favors the
party that did not crash; a buyer that crashes is assumed to
have received it . Likewise, a seller who fails to respond to a

dispute is assumed to forfeit.

III. PRELIMINARIES

We give a brief recap of some basic game-theoretic concepts
for the purpose of self-containment. For details, see [9]–[11].

Definition 1. A finite game G in extensive form with perfect
information consists of:

• A set of n players P1,P2, . . .Pn.
• A rooted tree T . We denote by L the set of leafs in T ,

i.e. nodes with outdegree 0.
• A mapping u : L → Rn, that for each leaf ` gives the

utility ui(`) of player Pi.
• A partition of the non-leafs into n sets, one for each

player. We say a node is owned by a player if it belongs
to their partition.

A game is played by starting at the root and recursively letting
the player who owns the node choose a child to descend into.
At some point we reach a leaf `, after which player Pi is given
ui(`) utility. A subgame of G is a subtree that is also a finite
game in extensive form. �

Definition 2. A strategy si for a player Pi in a game G is a
distribution over the children of each node owned by Pi in G.
If the strategy chooses a child with probability 1 in each node
owned by Pi, we say the strategy is pure. A strategy profile
s = (s1, s2, . . . sn) is a strategy for each player, and defines
a distribution on the output leafs. If C is a set of players, we
may write s = (sC , s−C). We denote by ui(s) the expected
utility of player Pi when playing strategy profile s. �

Definition 3. A strategy profile s∗ is a t-resilient (Nash)
equilibrium for G if for every coalition C ⊆ {1, 2, . . . n} such
that |C| = t, and every strategy sC , and every i ∈ C,

ui(s
∗
C , s
∗
−C) ≥ ui(sC , s∗−C)

If in addition, s∗ is a t-resilient equilibrium for every subgame
of G, we say s∗ is a t-resilient subgame perfect equilibrium
(SPE). It the above formula only holds with a gap such that
ui(s

∗
C , s
∗
−C) + ε ≥ ui(sC , s

∗
−C) for some ε > 0, we say the

equilibrium is an ε-equilibrium. �

Our security definition will be a refinement of what is
known as an evolutionary stable strategy (ESS). They are
studied in biology as a refinement of the Nash equilibrium for
determining which strategies are stable wrt. natural selection.
An ESS is an equilibrium such that no other equilibrium can
replace it as the dominant strategy in a population. We use a
slight generalization of the definition by Thomas [11]:

Definition 4. A strategy profile s∗ is a (t-resilient) evolution-
ary stable strategy (ESS) if it holds that:

• (Completeness). s∗ is a t-resilient equilibrium.
• (Soundness). For every coalition C of size t, and every

strategy s 6= s∗, and every i ∈ C, ui(s∗C , s−C) >
ui(sC , s−C). �

IV. GAME-THEORETIC SECURITY

We now turn to instantiate the basic smart contract to
achieve security in a game-theoretic sense. Unlike the standard
cryptographic model, where parties can be partitioned into
honest and dishonest parties, instead, we assume all parties
are rational, meaning they seek to maximize their own utility
with no concern for the intended behavior of the protocol
designer: a rational party will at each point in the execution of
the protocol choose the action that maximizes their expected
utility. We say the protocol is secure when the maximal utility
is achieved when a party behaves honestly.

We consider an n-party protocol π where each party Pi
has a set Si of possible strategies, of which there is a unique
honest strategy s∗i ∈ Si. We define S = S1 × · · · × Sn as
the set of strategy profiles, and let s∗ = (s∗1, . . . , s

∗
n) ∈ S be

the unique honest strategy profile. For our purposes, subgame
perfection is likely not sufficient in itself: if the incentive to
choose s∗ is too small, then there may be other reasons to
deviate not captured by the utilities of the game, say for sport
or for revenge. If the difference is sufficiently large (say > ε)
then we say the protocol is secure in a game-theoretic sense
against ε-deviating rational adversaries.

Definition 5 (Strong security). Let π be an n-party protocol
with strategy space S, where s∗ ∈ S is the unique honest
strategy profile. We say π has t-resilient, ε-strong game-
theoretic security if the following is satisfied:
• (Completeness) - s∗ is the unique t-resilient subgame

perfect equilibrium.
• (Soundness) - For every s 6= s∗, and every coalition C of

size t, and every i ∈ C: ui(s∗C , s−C)− ε ≥ ui(sC , s−C).

The following is an immediate consequence:

Lemma 1. If π has t-resilient ε-strong game-theoretic security
for some ε > 0 then s∗ is a t-resilient evolutionary stable
strategy.

A feature of this definition is its resilience to collusion
in separate instances of the game: the games are essentially
independent so we may suppose they are played in some
order. We now ask if the resulting finite multi-stage game
is still secure. Fortunately, this turns out to be the case due
to our security definition since subgame perfection satisfies
what is known as the one-shot deviation principle (in finite
games): security in a single game implies security security in
the repeated setting. To see why, we proceed using backwards
induction. In the last game, the rational buyer will act honestly
by security of the protocol; there is no avenue to deviate from
the honest strategy. Knowing this, the second-to-last buyer
must also act honestly, and so on, showing that rational parties
will not collude.

A. Analysis of contract

To analyze the contract from a game-theoretic perspective,
we consider the contract as an extensive-form game and draw
the corresponding game tree (seen in Fig. 2). The payoff for

[
y − x
x− x′

]
[
y
−x′

] [
y − (x+ λ)(1− γ)
x (1− γ)− λγ − x′

]
[
−x
x

]
[
−(x+ λ) γ

xγ − λ (1− γ)

] [
0
0

]

send not send

dispute accept

forfeit counter

accept dispute

forfeitcounter

Fig. 2. Game tree of the smart contract after both parties have accepted the
transaction. The first coordinate is the buyer payoff and the second is seller
payoff. Light nodes are seller actions; dark nodes are buyer actions. The heavy
edges denote honest actions.

each party is defined as their expected change in funds, where
for simplicity we have explicitly omitted transaction fees. As
an example, consider a dispute between a dishonest buyer and
an honest seller. The buyer has earned y value since the seller
was honest. The buyer may lose the arbitration with probability
1−γ, in which case they lose x+λ, for an expected payoff of
y− (x+λ)(1−γ). Likewise, the seller receives their payment
of x with probability 1−γ and loses λ with probability γ, for
an expected payoff of x (1 − γ) − λγ − x′. The other cases
are similar and are summarized in Fig. 2.

Lemma 2. There is a value of λ such that the contract is
complete if and only if the arbiter is biased in favor of honest
parties.

Proof. We proceed using backwards induction in the game
tree. We see that the honest actions yield a strictly larger payoff
if and only if the following inequalities are satisfied:

x (1− γ)− λγ − x′ > −x′ (1)
0 > xγ − λ (1− γ) (2)

y − x > y − (x+ λ)(1− γ) (3)

Eq. (1) says that an honest seller counters a dispute from a
dishonest buyer. Eq. (2) says that a dishonest seller forfeits
a dispute from an honest buyer. Eq. (3) says that a buyer
will not dispute when they received it . In addition, we need
0 > −x and y − x > 0 but these come from the problem
statement. From Eq. (1) we get λ < x (1−γ

γ), while Eq. (2)
yields λ > x (γ

1−γ). From Eq. (3) we also get λ > x (γ
1−γ)

but this is equivalent to Eq. (2). In summary, any value of λ
that achieves completeness must satisfy:

x

(
γ

1− γ

)
< λ < x

(
1− γ
γ

)
But this can only be true when γ < 1

2 .

Lemma 3. Let ε > 0 and suppose y− ε ≥ x ≥ ε. Then there
is a value of λ such that the contract is ε-sound if and only
if γ < 1

2 and ε ≤ x (1− 2γ).

Proof. In any dishonest strategy profile, one of the parties
must choose a dishonest action. If we can show all honest
actions have ≥ ε more utility than the dishonest actions,

then the contract is ε-sound. This gives the same equations
as Lemma 2, except we subtract ε from the left-hand side
and swap > for ≥. Solving for λ, the first equation gives
λ ≤ x (1−γ)−ε

γ . The second gives λ ≥ xγ+ε
1−γ , while again the

third is equivalent to the second. We also need −ε ≥ −x and
y − x ≥ ε but these are given in the problem statement. In
summary, any values of λ, ε must satisfy:

xγ + ε

1− γ
≤ λ ≤ x (1− γ)− ε

γ

Again, we must have γ < 1
2 since ε > 0, while the latter

condition can be established by solving for ε.

Theorem 1. The contract has x (1−2γ)-strong game-theoretic
security whenever γ < 1

2 and λ = x.

Proof. Since γ < 1
2 the conditions for completeness are

satisfied for λ = x. For soundness, let ε = x (1 − 2γ).
We choose a value of λ that satisfies the lower bound:
λ ≥ xγ+ε

1−γ = xγ+x (1−2γ)
1−γ = x. In particular, for λ = x the

equation is always true.

V. THE GENERALIZED CONTRACT

In this section, we consider a generalization of the previous
contract that allows us to obtain various tradeoffs between
security and wager size. We show that the lower bound of
γ < 1

2 is inherent to any contract that achieves game-theoretic
security for ‘interesting trades’. We define an interesting trade
as a trade where parties have a net increase in utility if they are
successful in cheating, compared to being honest. If a trade is
not interesting, security is trivial.

Theorem 2. Any protocol that achieves completeness for
interesting trades can only be complete if it invokes an arbiter
who is biased in favor of honest parties.

Proof. In any interesting trade, a rational party will always
choose to be dishonest unless there is some chance that the
strategy gives smaller utility. This necessitates the use of some
mechanism A that determines if a party was dishonest. A
rational dishonest party will never reveal themselves if they
lose utility by doing so, so A needs to be external to the
parties in the protocol. We call such a mechanism an arbiter.
We can assume the arbiter is only invoked if one of the parties
were dishonest, and we will assume A outputs a single bit
determining whether a fixed party (say the seller) were the
dishonest party. If a party is deemed dishonest by the arbiter,
we say they are the ‘winner’; otherwise they are the ‘loser’.
We let γ be the error rate of A, i.e. the probability that the
loser were honest. Let ω, ` be functions such that the winner
is paid ω money and the loser is paid ` money. We have to
assume that ω > ` such that winning is preferred over losing.
Now, consider a seller who has to decide whether or not to
counter a dispute from the buyer. Regardless of whether the
seller is honest or not, they have to decide whether to forfeit
or counter. If the seller is honest we want them to counter the

dispute, i.e. ω (1− γ) + `γ > 0. If the seller is dishonest we
want them to forfeit, i.e. ωγ + ` (1− γ) < 0. That is,

ωγ + ` (1− γ) < ω (1− γ) + `γ.

Since we have ω > ` this can only be true for γ < 1
2 .

A. Affine rebate functions

In the following we let α be a constant such that the winner
is paid back αλ money. Naturally, we must have that α ≥ 0
as the winner cannot lose more than they have wagered. Also,
we must have α ≤ 2 to prevent the contract from minting
money. Note that the original contract is a special case where
α = 1.

Lemma 4. The contract is complete if and only if γ < 1
2 ,

and λ > x
(

γ
1−αγ

)
, and either 1) α ≥ 1

1−γ ; or 2) λ <

x
(

1−γ
1−α(γ−1)

)
.

Proof. In order to show completeness, we again proceed using
backwards induction. As before, we only need to consider a
seller faced with a dispute, as this implies the other cases. That
is, we have the following two equations:

(x+ αλ) (1− γ)− λ > 0 (4)
0 > (x+ αλ)γ − λ (5)

For any choice of α, in Eq. (5) by isolating λ we get the
lower bound of λ > x

(
γ

1−αγ

)
from the statement. For the

other clause, we can write Eq. (4) differently:

x (1− γ) > λ (1− α (1− γ)) (6)

In order to isolate λ we need to divide with α (1− γ). When
α < 1

1−γ this number is positive which means we retain the
direction of the inequality, thus giving the upper bound of
λ < x

(
1−γ

1−α(γ−1)

)
. However, when α ≥ 1

1−γ , we divide
by a negative number, thus flipping the inequality and giving
a trivial lower bound of λ > −x

(
1−γ

α(1−γ)−1

)
, showing the

desired statement.

Theorem 3. The contract has (maximal) ε-strong game-
theoretic security if and only if γ < 1

2 and one of the following
conditions are established:

1) α = 2; and λ ≥ xγ+ε
1−2γ .

2) 1
1−γ < α < 2; and ε ≥ x

(
1−2γ
2−α

)
; and λ ≥ xγ+ε

1−αγ .

3) α = 1
1−γ ; and ε = x (1− γ); and λ = x

(
1−γ
1−2γ

)
.

4) α < 1
1−γ ; and ε = x

(
1−2γ
2−α

)
; and λ = x

(
1

2−α

)
.

Proof. Again, it suffices to consider a seller faced with a
dispute. This leads to the following two inequalities:

(x+ αλ) (1− γ)− λ− ε ≥ 0 (7)
−ε ≥ (x+ αλ) γ − λ (8)

Note that since we assume ε > 0, this automatically implies
completeness. We now consider different values of α, choose
the maximum permitted value of ε to maximize security, and

solve for λ. Note that we are intentionally leaving out some
cases where ε is small.

1) When α = 2, Eq. (8) gives a lower bound of λ ≥ xγ+ε
1−2γ ,

while as in the proof for completeness Eq. (7) gives a
trivial lower bound.

2) When 1
1−γ < α < 2, equations Eq. (7) and Eq. (8) give

lower bounds of:

λ ≥ xγ + ε

1− αγ
λ ≥ x (1− γ)− ε

1− α+ αγ

When ε ≥ x
(

1−2γ
2−α

)
the lower bound from Eq. (7) is

strongest. Since we choose the maximal value of ε, i.e.
not ε < x 1−2γ

2−α , this gives the desired bound.
3) When α = 1

1−γ , Eq. (7) gives an upper bound on the
security parameter ε ≤ x(1 − γ). Similarly, Eq. (8)
gives a lower bound of λ ≥ (1−γ)(xγ+ε)

1−2γ . Choosing
the maximum ε = x (1 − γ) and substituting gives the
desired result.

4) When α < 1
1−γ , Eq. (7) gives an upper bound of λ ≤

x (1−γ)−ε
1−α+αγ , while Eq. (8) gives a lower bound of λ ≥
xγ+ε
1−αγ . This means there is a value of λ such that ε-
soundness is satisfied if and only if:

xγ + ε

1− αγ
≤ x (1− γ)− ε

1− α+ αγ

The maximal value of ε satisfying this equation is
ε = x

(
1−2γ
2−α

)
which solves to λ = x

2−α , showing the
desired.

B. Tradeoffs

We now have a characterization of different ways of in-
stantiating the contract, allowing us to reason about pros and
cons of different choice of parameters. We consider a few
special cases: Suppose that, in addition to receiving their own
wager back, the winner also receives the loser’s wager, i.e. the
generalized contract with α = 2. By Theorem 3, we have no
upper bound on ε, allowing us to get arbitrarily high security
by making the wager sufficiently large. The downside to this is
that it results in larger wagers: suppose we let ε = x (1−2γ),
the maximum value in the old contract, then the new wager
is:

λ =
xγ + x (1− 2γ)

1− 2γ
= x+

xγ

1− 2γ
> x

which is always larger than the old wager. This is natural in
a sense: since we expect to win back the wager by disputing,
the wager needs to be larger to offset the increased incentive
to issue a false dispute.

Corollary 1. With a winner rebate of size λ, the contract
has ε-strong security (for any ε > 0) whenever γ < 1

2 and
λ = xγ+ε

1−2γ .

Instead, consider what happens the wager is withheld even
for the winning party, i.e. letting α = 0. This naturally requires
λ < x since otherwise there would be no incentive to dispute.
We again refer to Theorem 3 which gives the following result:

Corollary 2. When the contract withholds all wagers, it has
1
2x (1− 2γ)-strong game-theoretic security when γ < 1

2 , and
λ = 1

2x.

It is not hard to see (referring to Theorem 3) that this is the
minimal value of λ we can use if we want to maximize the
security of the protocol. It seems our construction requires
λ = Ω(x). This is natural in a sense: if λ were a constant,
by increasing x, at some point the expected utility from
attempting to cheat would outweigh the cost of losing the
wager.

Invoking the arbiter is not free. This is the very motiva-
tion behind our contract: if the arbiter were free and better
than random, we could trivially invoke it in every purchase
to determine who should receive the money. However, this
unfairly punishes honest parties by requiring them to pay for
an expensive and unnecessary arbitration. Still, we have to
compensate the arbiter somehow. We can accomplish this by
varying α such that the left over funds equal the price of
the arbitration. If P is the price of the arbitration, we can
accomplish this by letting α = 2−P/λ. This works whenever
P > 2λ such that the total wager exceeds the price of paying
for the arbitration. We may instantiate this in various ways by
referring to Theorem 3.

VI. PRACTICAL CONSIDERATIONS

In this section we consider various issues that arise when
implementing the contract in practice.

A. Transaction fees

Our analysis assumes transaction fees are negligible, which
is not the case in practice. In this section, we consider adding
transaction fees to our model. Doing so in general is tricky
business and is very specific to the implementation and the
blockchain of choice. Instead, we adopt a simplified approach
where playing a move in the game tree has a unit cost of τ
for some τ > 0, the only exception being the default action
in case of timeouts: a player can always time out to choose
the default action at zero cost. For simplicity, we let α = 1.

Lemma 5. With transaction fees of size τ , the contract is
complete if and only if the arbiter is biased in favor of honest
parties, the transaction fee is bounded τ < x (1 − γ) − λγ,
and the item is of sufficient value, x− x′ > τ .

Proof. We proceed using backwards induction in the game
tree. It is not hard to see we still need γ < 1

2 . Consider a seller
faced with a dispute. When they are dishonest their incentive
to be honest is increased by τ , while the converse is true
when they are honest. This yields τ < x (1 − γ) − λγ. Now
consider a buyer. If they did receive the item, their incentive
to accept has only increased by τ . If they did not receive the
item, their added cost of τ for issuing a dispute must outweigh
the size of the payment. This means we must have x > τ .
Finally, consider a seller deciding whether to send or not. If
they do not send they incur a cost of 0, while accepting gives
x− x′ − τ > 0.

Lemma 6. With transaction fees of size τ , the contract is ε-
sound only when ε ≤ x (1− 2γ)− τ , and the transaction fee
is bounded τ < x (1− 2γ).

Proof. We proceed using backwards induction and employ the
same procedure as the proof of Lemma 3.

With these two lemmas in place we can prove game-theoretic
security using similar arguments as before. This allows us to
establish the following:

Theorem 4. With transaction fees of size τ , the contract has
[x (1 − 2γ) − τ]-strong game-theoretic security when λ = x
and x− x′ > τ .

B. Denial-of-service attacks

We briefly consider a malicious sellers that wastes the
buyer’s time and resources by accepting a contract only for
it to time out. When there are no transaction fees, this attack
is free to deploy and clearly imposes negative utility on the
buyer, since their funds are locked until the timeout passes.
With transaction fees, the attack is no longer free, though it is
still fairly cheap for large purchases. To circumvent this, we
can force the seller to make a deposit in order to accept the
contract. The deposit is paid back when contract is completed.
In this way, the seller can only mount the attack by suffering
a similar utility loss as the buyer which a rational seller would
not do.

C. Coin toss arbitration

In this section we consider the special case in which the
output of the arbiter is independent of the evidence being
submitted, i.e. γ = 1

2 . The advantage of this is that we can
implement such an arbiter using a cryptographic protocol.
However, we showed that strong game-theoretic security is
only possible when γ < 1

2 so we need to relax our security
definition.

Definition 6 (Weak security). Let π be a protocol with strategy
space S where s∗ ∈ S is the unique honest strategy profile. We
say π enjoys weak game-theoretic security if s∗ is a subgame
perfect equilibrium.

While this guarantees that being honest is an equilibrium strat-
egy it does not provide a strict incentive to do so. In particular,
there is no guarantee that a strategy with weak security is an
evolutionary stable strategy. However, it remains secure in a
strong sense against risk averse players. Unfortunately, this
also means it is strictly insecure against risk seeking players.

Theorem 5. Using a coin toss arbiter, the contract has weak
game-theoretic security for γ = 1

2 and λ = x.

Proof. For s∗ to be a subgame perfect equilibrium, there must
be no s 6= s∗ that achieves a strictly larger payoff. As before,
this can only be achieved when:

x (1− γ)− λγ ≥ xγ − λ (1− γ) (9)

which solves to λ = x for γ = 1
2 .

We can implement the coin toss arbiter using a variant of
Blum’s coin flipping protocol [12], [13]. Suppose we have
a commitment scheme, and let commit be the commitment
function. Then the arbitration proceeds as follows:

1) S samples a random bit bS ∈R {0, 1}, and a random
string r ∈R {0, 1}κ.

2) S computes C ← commit(b, r) and submits C to the
smart contract.

3) B samples a random bit bB ∈R {0, 1} and submits it to
the smart contract.

4) S submits bS and r to the blockchain.
5) The smart contract verifies that bS , r is a valid opening

of C: if not, let b := 0. Otherwise let b := bS ⊕ bB .
6) The smart contract transfers x + λ to S if and only if

b = 1, and transfers x+ λ to B otherwise.

If at some point either party times out, it is assumed they
forfeited, and the funds held in escrow are released to the other
party. Analysis of the protocol is straight forward: the output
is uniform, and security reduces to that of the commitment
scheme. From a cryptographic perspective, this protocol is
unsatisfactory because it does not satisfy fairness: S can
choose not to complete step 4 and simply abort the protocol
without revealing the output to B if they are dissatisfied with
the result. However, this is not an issue for our application,
since S loses the dispute by doing so. In general, it is hard
to achieve a fair coin flip on a blockchain: the best known
protocol to date samples Θ(n2) fair random values using an
amortized O(log n) exponentiations per value [14].

D. Choice of blockchain

We did not consider any specific blockchain in the previous
sections: our contract works for any blockchain with the
capability to execute smart contracts. As a result, the contract
inherits many properties of the underlying blockchain, which
means the contract can be instantiated in a variety of ways. In
this section, we consider some instantiations of the contract in
different types of blockchain.

a) Pseudonymity: Instantiating the contract on a public
ledger such as Ethereum is the most straight-forward solution.
Of course, this means that all transactions are public and
available to other parties. However, for some applications this
can be considered a feature: having access to the transaction
history of a seller indicates how likely they are to cheat
and holds the parties somewhat responsible for their actions.
Dellarocas [15] shows that under the right conditions, a long-
lived seller has strong incentive to behave honestly when faced
with many short-term buyers. The incentive is strongest in the
initial phase where the seller has to work hard to build up a
good reputation and diminishes as their reputation increases.

b) Full anonymity: It is possible to use the contract
to facilitate fully anonymous trading by using a blockchain
with built-in anonymity (Monero, Zcash, etc.). Doing so
necessitates the use of the coin toss arbiter, as it is impossible
to remain anonymous when submitting an evidence string
containing personal information. However, this makes it im-

possible to enforce regulation on the goods being transacted,
and such a market would likely be used for criminal activity.

c) Revocable anonymity: We can make the contract
comply with all laws and regulations by using a blockchain
that supports revocable anonymity, e.g. Concordium [16], [17].
To register in such a blockchain, a party needs to identify itself
with an identity provider using some formal document. They
can then create new anonymous user accounts to be used on
the blockchain. Using a designated verifier zero-knowledge
protocol, a user can prove to satisfy some predicate on their
real identity, such as verifying that their age is ≥ 18. The user
are in principle anonymous, but can be deanonymized under
suitable conditions, say if illegal behavior is suspected. This
requires an agreement between several qualified authorities,
the so called anonymity revokers. For example, the local
police, or the local courts may be able to deanonymize users
in their relevant jurisdictions. This serves as a “best of both
worlds” in that regular users retain their anonymity, while
criminal users are subject to legal repercussions.

VII. IMPLEMENTATION IN ETHEREUM

We implemented the smart contract in Solidity and tested it
on the Ethereum platform [18]. For simplicity we instantiate
the contract using α = 1 and the coin-toss arbiter as presented
in the last section. The code can be found at (https://github.
com/SSODelta/DecentralizedCommerce). To avoid repeatedly
covering the large cost of deploying a contract, the seller
deploys a single Vendor contract that processes all their sales
and displays listings. The contract is parameterized by a
timeout constant as well as the PGP key of the vendor. A
prospective buyer issues a request to the seller’s contract
by depositing the correct amount of money. The seller can
then accept or reject the request. If accepted, the contract
proceeds as described in previous sections. To implement
the commitment scheme we use the keccak256 function
together with a random nonce. This is secure in the random
oracle model. The most expensive part of the interaction is
deploying the Vendor contract. This fee is paid once by the
seller. In our implementation this incurred a transaction cost
of 1.4 · 106 gas. With a gas cost of 40 gwei (1ETH = 109

gwei), and an exchange rate of 600 USD / ETH, this comes
out to approx. 24 USD. Fortunately, this fee only needs to be
paid once per vendor. The most expensive recurring part of the
transaction is requesting a new purchase from the seller which
is paid by the buyer. This costs 1.3 · 105 gas which is approx.
3 USD. All remaining operations cost approx. 5 · 104 gas
which is roughly 0.8 USD. For more details, see Table I. This
means the (amortized) transaction fee of using the contract
for a purchase is approx. 2-3 USD for the seller and 4-5
USD for the buyer. For illustration suppose γ = 0.25, this
gives [0.5x−4] USD game-theoretic security for the purchase
of an item of cost x USD. For x = 100 USD, this gives
46 USD security, meaning a dishonest party loses 46 USD
(in expectation) by acting dishonestly. The contract can likely
be optimized: most of the cost comes from having to store
data on the blockchain which is expensive on the Ethereum

Seller actions

Deploying Vendor contract 1.4 · 106 gas 33 USD

Update listing
4.5 · 104 gas 1.1 USDCounter/forfeit dispute

Accept/reject contract
3.6 · 104 gas 0.9 USDClaim delivery

Abort / timeout

Buyer actions

Request new purchase 1.3 · 105 gas 3.1 USD

Issue dispute 6.0 · 104 gas 1.4 USD

Open commitment 4.5 · 104 gas 1.1 USD

Confirm delivery
3.9 · 104 gas 0.9 USDAbort / timeout

TABLE I
Cost of issuing commands in the smart contract by our implementation on
the Ethereum blockchain. We assume a gas cost of 40 gwei (1 ETH = 109

gwei) and an exhange rate of 600 USD / ETH. It is worth noting that
transaction fees have reached record levels in the latter half on 2020; if the
contract were benchmarked in Dec 2019 the price would be 15-20x lower.

blockchain. Instead, we can use IPFS to store all the data
and only store hashes in Ethereum [19]. This would likely
decrease the cost of running the contract. It is worth noting
that transaction fees for Ethereum reached record levels in the
latter half of 2020. If the same benchmark were done in Dec
2019, the estimates would decrease 15-20-fold.

ACKNOWLEDGMENT

I am grateful to the Aarhus Crypto Group and my advisor
Ivan Damgård for supporting this research.

CONCLUSION

In this paper, we proposed a smart contract for trading any
physical goods or services using a smart contract as an escrow.
The contract settles disputes by a wager between the buyer
and seller, where the parties wager that they can convince an
arbiter of their honesty. The contract was shown to be secure
in a strong game-theoretic sense for certain values of the size
of the wager, assuming the arbiter is biased in favor of honest
parties. We showed this was inherent to any such protocol
achieving game-theoretic security. By generalizing the contract
we were able to obtain tradeoffs between security and size of
the wager. We showed how to weaken the security definition to
replace the arbiter by replaced by a random coin toss. Finally
we implemented the contract in Solidity and evaluated it on
the Ethereum blockchain.

Future work: It would be interesting to weaken the
security model to dispense with the lower bounds of γ < 1

2 and
λ = Ω(x). One option is to introduce a reputation system and
take into account the probability with which you get cheated.
In order for the contract to be used in practice, there is need
for an optimized implementation of the contract with a formal
proof of correctness. Finally, empirical studies on arbiters are
necessary for parties to obtain estimates of γ.

https://github.com/SSODelta/DecentralizedCommerce
https://github.com/SSODelta/DecentralizedCommerce

REFERENCES

[1] J. Haucap and U. Heimeshoff, “Google, facebook, amazon, ebay: Is the
internet driving competition or market monopolization?” International
Economics and Economic Policy, vol. 11, no. 1-2, pp. 49–61, 2014.

[2] D. S. Dolliver, “Evaluating drug trafficking on the tor network: Silk road
2, the sequel.” The International journal on drug policy, vol. 26 11, pp.
1113–23, 2015.

[3] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
967–984.

[4] A. Asgaonkar and B. Krishnamachari, “Solving the buyer and seller’s
dilemma: A dual-deposit escrow smart contract for provably cheat-proof
delivery and payment for a digital good without a trusted mediator,”
CoRR, vol. abs/1806.08379, 2018.

[5] J. Witkowski, S. Seuken, and D. C. Parkes, “Incentive-compatible escrow
mechanisms,” in Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, ser. AAAI’11. AAAI Press, 2011, p. 751–757.

[6] C. Lesaege, F. Ast, and W. George, “Kleros Short Paper v1.0.7,” Tech.
Rep., 09 2019.

[7] “Kleros escrow explainer - secure your blockchain transactions today,”
accessed on 10/10/2020. [Online]. Available: https://blog.kleros.io/
kleros-escrow-secure-your-blockchain-transactions-today/

[8] “How moderators and dispute resolution work in openbazaar,”
accessed on 16/10/2020. [Online]. Available: https://openbazaar.org/
blog/how-moderators-and-dispute-resolution-work-in-openbazaar/

[9] M. J. Osborne and A. Rubinstein, A course in game theory. Cambridge,
USA: The MIT Press, 1994, electronic edition.

[10] I. Abraham, D. Dolev, R. Gonen, and J. Halpern, “Distributed
computing meets game theory: Robust mechanisms for rational
secret sharing and multiparty computation,” in Proceedings of the
Twenty-Fifth Annual ACM Symposium on Principles of Distributed
Computing, ser. PODC ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 53–62. [Online]. Available:
https://doi.org/10.1145/1146381.1146393

[11] B. Thomas, “On evolutionarily stable sets.” Springer Verlag, 1985.
[12] M. Blum, “Coin flipping by telephone a protocol for solving impossible

problems,” SIGACT News, vol. 15, no. 1, p. 23–27, Jan. 1983.
[13] I. Damgård, “Commitment schemes and zero-knowledge protocols,” in

Lectures on Data Security, Modern Cryptology in Theory and Practice,
Summer School, Aarhus, Denmark, July 1998. Berlin, Heidelberg:
Springer-Verlag, 1999, p. 63–86.

[14] I. Cascudo and B. David, “Albatross: publicly attestable batched ran-
domness based on secret sharing,” Cryptology ePrint Archive, Report
2020/644, 2020.

[15] C. Dellarocas, “Reputation mechanisms,” in Handbook on Economics
and Information Systems. Elsevier Publishing, 2006, p. 2006.

[16] I. Damgård, H. Gersbash, U. Maurer, J. B. Nielsen, C. Orlandi, and T. P.
Pedersen, “Concordium White Paper, vol. 1.0,” Tech. Rep., 04 2020.

[17] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,”
in Advances in Cryptology — EUROCRYPT 2001, B. Pfitzmann, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 93–118.

[18] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger.”

[19] J. Benet, “Ipfs - content addressed, versioned, p2p file system,” 07 2014.

https://blog.kleros.io/kleros-escrow-secure-your-blockchain-transactions-today/
https://blog.kleros.io/kleros-escrow-secure-your-blockchain-transactions-today/
https://openbazaar.org/blog/how-moderators-and-dispute-resolution-work-in-openbazaar/
https://openbazaar.org/blog/how-moderators-and-dispute-resolution-work-in-openbazaar/
https://doi.org/10.1145/1146381.1146393

	Introduction
	Our results
	Related work

	The basic contract
	Preliminaries
	Game-theoretic security
	Analysis of contract

	The generalized contract
	Affine rebate functions
	Tradeoffs

	Practical considerations
	Transaction fees
	Denial-of-service attacks
	Coin toss arbitration
	Choice of blockchain

	Implementation in Ethereum
	References

