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Abstract. The concept of private stream aggregation (PSA) has been proposed by Shi et al. (NDSS
2011) to allow for data analysis in a privacy-preserving manner. In this work, we introduce the notion
of labeled secret sharing (LaSS) schemes and show how to use it to construct PSA schemes. We also
show how to realize LaSS using pseudorandom functions or alternatively with a hash function modeled
as a random oracle and how it can be used to construct PSA schemes. Additionally, we revisit the
security model of Becker et al. (NDSS 2018) and describe stronger security notions for PSA. We then
present additional constructions achieving the stronger security notions by relying on recent results on
multi-client functional encryption. For all of our constructions, we present implementations to show
their practicality and the performance gains over existing solutions.
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1 Introduction

The concept of private stream aggregation (PSA) has been initially introduced by Shi et al. [SCR+11] to
provide a cryptographic solution that allows an untrusted aggregator the statistical evaluation over data
provided by different users. In more detail, we consider a setting where we have n different users U1, . . . , Un
and an aggregator (denoted as U0). The users Ui generate data di with respect to different time frames t.
To allow the aggregator U0 to compute statistics over the input of the users in the different time frames t,
the users Ui take their data di, randomize it using some random noise ri and encrypt the result using their
encryption key ski under the time step t, which results in a ciphertext cti,t. The aggregator then evaluates
the decryption procedure using its aggregator key sk0 on all the ciphertexts it receives from the different
users ct1,t, . . . , ctn,t, during a time step t, to receive as an output the sum of the input data together with the
added noise

∑
i∈[n] di + ri. A graphical illustration of the PSA setting can be found in Fig. 1.

To guarantee privacy for the different users in the described setting, a PSA scheme needs to fulfill
aggregator obliviousness (AO). AO ensures that the aggregator does not learn anything about the input of an
individual user Ui beyond what is leaked from the sum of the data of the users. This results in data privacy for
an individual user Ui. Besides AO, we also want to guarantee that the output statistics are not significantly
influenced by a missing database record. Therefore, we also require that the PSA scheme fulfills some notion
of differential privacy, called distributed differential privacy. In the setting of distributed differential privacy,
every user adds some noise to its data input and then sends their data to an untrusted aggregator, while still
preserving differential privacy. This stands in contrast to the classical differential privacy setting in which a
trusted aggregator adds some noise to the evaluated statistics.

In this work, we introduce the notion of labeled secret sharing (LaSS) schemes and present a compiler that
turns a LaSS scheme into a PSA scheme. Besides this, we also show how to construct a LaSS scheme from
pseudorandom functions (PRF), a standard cryptographic primitive or, alternatively, from a hash function
modeled as a random oracle.

Besides the presentation of the LaSS-based PSA scheme, we also analyze the relation between functional
encryption (FE) [O’N10,BSW11] and PSA. Functional encryption is a more general notion than PSA. In FE,
different functional keys skf (associated with different functions f) can be generated using a so called master
secret key msk. These functional keys can be used together with a ciphertext ct, that encrypts a message m.
The result of the decryption procedure is the function f , associated with the functional key skf , applied on
m, i.e. f(m). This stands in contrast to the classical notion of encryption where it is only possible to decrypt
the whole message or nothing.

To allow for the interaction between multiple users in this setting, the notion of multi-client functional
encryption (MCFE) has been introduced [GGG+14]. In the setting of multi-client functional encryption,
several users Ui can provide data by encrypting their input xi using their personal encryption keys ski.
Decryption then requires a functional key skf and n different ciphertexts, where n is the number of users. A
graphical description of this setting can be found in Fig. 2. We further distinguish between MCFE schemes
that are labeled and MCFE schemes that are without labels. In the labeled setting, every ciphertext cti is
generated under a specific label ` and the decryption of ciphertexts is only possible if all of the ciphertexts
that are used in the decryption procedure are generated under the same label `. These labels have the purpose
of preventing mix-and-match between ciphertexts. In the unlabeled setting, none of these restrictions are
enforced.

In recent years, a lot of research has been done in constructing more practical functional encryption schemes
for specific function classes [ALS16,Gay20,BCFG17,ABDP15,BJK15,KLM+18].6 Especially for the function-
ality class of inner-products a lot of functional encryption schemes [ALS16,Gay20,BCFG17,ABDP15,BJK15],
as well as multi-client schemes in the labeled and unlabeled setting have been proposed [ABM+20,ABG19,
LT19,ACF+18,AGRW17,CDG+18a,CDG+18b,CDSG+20]. As already mentioned above, we investigate the
implication of MCFE for the inner-product functionality on PSA and show how to construct PSA from
6 It is not known how to construct practical functional encryption for a general class of functions, since all known
constructions for a general class of functions require non standard assumptions [GGG+14,GGH+13,ABG+13,
GGHZ16,Wat15].
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Users

d1 U1
c1,t = Enc(sk1, x1, t)

x1 = χ(d1, r1)
...

dk Uk
ck,t = Enc(skk, xk, t)

xk = χ(dk, rk)
...

dn Un
cn,t = Enc(skn, xn, t)

xn = χ(dn, rn)

Aggregator

Dec(sk0, {ci,t}i∈[n])
=
∑

i∈[n](di + ri)

∑
i∈[n](di + ri)

Fig. 1: The PSA Setting, where di denotes the
data, ri the random noise and χ the randomiza-
tion function.

Clients

x1 C1
c1,` = Enc(sk1, x1, `)

...

xk Ck
ck,` = Enc(skk, xk, `)

...

xn Cn
cn,` = Enc(skn, xn, `)

Evaluator

Dec(skf , {ci,`}i∈[n])
= f(x1, . . . , xn)

Key
Authority

skf

f(x1, . . . , xn)

Fig. 2: The MCFE Setting, where xi denotes the
messages.

inner-product MCFE that fulfills a stronger security definition than the standard notion of AO-security. We
denote this new security notion as “many-times” security and the initial AO-security notion as “encrypt-once”
security.

Beyond this, we present some possible extensions of our constructions in Section 7.

1.1 Applications

In this section, we describe some application scenarios in which function evaluations over encrypted data
using PSA and FE can be useful. These application scenarios have already been mentioned in [SCR+11].

Smart metering. Compared to traditional meters, which read the electrical usage once a month, smart
meters read the electrical usage every 15 minutes. This more frequent reading allows to obtain precise
information about, for example, the number of people in a household, their sleep and work habits, as well as
their use of common household appliances. To allow for the desired data analysis while preserving the privacy
of each individual household, a PSA scheme or a MCFE scheme can be used.

Public health and clinical research. The analysis of medical data is necessary to conduct medical
research. The extent to which medical data is collected and disseminated is restricted due to privacy concerns.
To protect the privacy of the medical data but nevertheless allow for some computation a PSA scheme or a
MCFE scheme can be used.

Cloud services. The number of people and organizations that store their data in the cloud has been
increasing over the last few years. To analyze the behavior of their users, the cloud providers wish to compute
statistics over the data they store. A PSA scheme or a MCFE scheme can be deployed to allow for the
computation of the statistics while protecting the privacy of every individual user.

For more application scenarios of PSA and FE, such as sensor network aggregation, population monitoring
and sensing, we refer to [SCR+11].

1.2 Our Contributions

We can summarize our contributions as follows:
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– The introduction of labeled secret sharing (LaSS) schemes and its realization from pseudorandom functions
or hash functions modeled as random oracles.

– The construction of a simpler PSA scheme that fulfills the standard security notion of aggregator
obliviousness under adaptive corruptions from a LaSS scheme.

– Description of significant shortcomings in the PSA construction and security model by Becker et al.
[BGZ18].

– The presentation of a stronger security model for private stream aggregation with and without time steps.
– A black-box MCFE-based construction that achieves the stronger security notions and allows for richer

functionalities than summation.
– Implementations of the PSA scheme based on a LaSS scheme using AES and SHA-3, as well as an

implementation of the MCFE-based construction without time steps based on DDH, Paillier and LWE.
In addition we present a comparison between other implemented PSA schemes.

All the constructions we present in this work can be instantiated using quantum-safe assumptions.

1.3 Technical Overview

In this section, we describe the techniques used to obtain our results. We start with labeled secret sharing
schemes, followed by the contributions in the encrypt-once security model and we conclude with our results
in the many-times security model.

Labeled Secret Sharing Schemes. In a labeled secret sharing scheme, we want to allow n different parties
to non-interactively generate multiple secret sharings of 0.7 All of these different secret sharings are generated
with respect to a label `. In more detail, every party is in possession of a secret key ski that allows, together
with the label `, the generation of a share si,`. Combining the shares of all the different users Ui, with i ∈ [n],
under the same label ` yields 0. We say that a LaSS scheme is secure, if the secret sharings generated under
the different labels are indistinguishable from “real” secret sharing schemes.

A LaSS scheme can be realized using pseudorandom functions and several shared keys between the
different parties. Now, we give an informal description about how our construction works. The detailed
construction is described in Section 3.

The idea of our construction is that every user Ui is in possession of a secret key ski that can be used to
generate a new share, depending on the label `. This can easily be realized for a single label by just generating
a secret sharing of 0.

The problem of this approach is that it only allows the generation of a single secret sharing. A possible way
to allow the user to generate multiple secret sharings under different lables would be to generate several secret
sharings of 0 during the setup procedure. All of this secret shares would then be a part of the encryption
key ski of ever user. The drawback of this straw-man solution is that the secret keys of the clients become
very big and that the number of secret sharings is bounded. A better solution for this problem is to allow
different users to generate a fresh secret sharing of 0 for each label on the fly. To achieve this non-interactive
agreement, we distribute shared keys between all the users during the setup phase. In more detail, every user
Ui is in possession of n− 1 keys ki,1, . . . , ki,n−1, where ki,j is the shared key between user Ui and user Uj .
This results in n(n−1)

2 keys overall. These keys can then be used together with a pseudorandom function PRF
to generate the label-dependent shares si,`, by computing si,` :=

∑
j 6=i(−1)j<iPRFki,j (`). To illustrate that

these keys together generate a fresh secret sharing of 0, where the reconstruction simply consists of summing

7 In the formal definition, we are more general and allow a LaSS scheme to generate fresh secret sharings for a
pre-determined secret s. For simplicity, we only focus on the case s = 0 here.
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up all the different si,`, we consider the following visualization:

U1 U2 · · · Un
U1 0 k`1,2 · · · k`1,n
U2 −k`2,1

. . .
...

...
...

. . . k`n−1,n
Un −k`n,1 · · · −k`n,n−1 0

Here, k`i,j are the “intermediate” keys defined by the PRF evaluation, i.e. k`i,j := PRFki,j (`) with ki,j
as the shared key between user Ui and user Uj . We can easily see that summing up all the entries of the
matrix yields 0. Using this matrix representation, we see that the sum

∑
j 6=i(−1)j<iPRFki,j (`) is the sum of

all the entries in a column of the matrix. This overall results in the desired secret sharing of 0, with the sum∑
i∈[n] si,` being the reconstruction procedure.
To instantiate our scheme in the random-oracle model, we can simply replace the PRF with a hash

function modeled as a random oracle.
The approach that we use to construct the LaSS scheme has already been described in previous works [ÁC11,

KDK11] in the context of smart metering. The authors of these works only present an informal security
analysis of their schemes but no formal security proof. In this work, we close this gap by presenting a formal
security proof of this construction by relying on [ABG19].

Encrypt-Once Security Model. Our PSA scheme that achieves security in the encrypt-once model is
based on a LaSS scheme. In more detail, we present a compiler that turns any LaSS scheme for n+ 1 parties
into a PSA scheme. The main idea of the compiler is that every user Ui uses the share si,t as its one-time
pad encryption key for time step t to encrypt the message xi,t, i.e. cti,t := si,t + xi,t. The aggregator U0 can
then generate its share s0,t for time step t and decrypt by computing s0,t +

∑
i∈[n] cti,t.

For our implementation we instantiate the PRF-based LaSS using AES and the LaSS scheme in the
random oracle model using SHA-3.

Many-Times Security Model. In addition to the LaSS-based PSA scheme, we also present how to obtain
a PSA scheme in a more general security model from inner-product multi-client functional encryption. The
fact that multi-client functional encryption implies private stream aggregation has already been mentioned in
several works [CDG+18a,ABKW19,BJL16,LT19]. In the recent work of [LT19] the authors describe concretely
how to obtain a PSA scheme from a MCFE scheme with labels by generating the functional key for the all
one vector as the aggregator key. In this work, we formally define this straightforward construction and show
the different grades of security it fulfills.

In the initial security definition of PSA, time steps t in the encryption procedure are required and only a
single encryption of every user is possible. We can think of two variants of this security definition:

1. No time steps and multiple encryptions for each user.
2. Time steps and multiple encryptions for each user under every time step.

In Section 5, we present the formal definition of these notions, as well as a black-box construction based on
MCFE that achieves theses security levels. For the implementation of the black-box MCFE-based construction,
we use the MCFE scheme of Abdalla et al. [ACF+18], which allows for instantiations based on DDH, Paillier,
and LWE. More details on this can be found in Section 6.1.

In [BGZ18], Becker et al. present another security notion that also does not rely on time steps. In their
security game, the adversary is only allowed to ask a single challenge query for every user. This results in an
even weaker security model than the encrypt-once model, since several encryptions, one per time step, can
be generated in the encrypt-once model. Therefore, the security model of Becker et al. can be seen as an
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equivalent to the encrypt-once model with only a single time step, which overall results in a one-time secure
scheme.8 To achieve this level of security, however, no complexity assumptions would be needed since the
information-theoretic construction described in Section 1.3 on Page 4 would already suffice.

To show why the restriction on the challenge queries is necessary, we present, in Remark 5.3, a concrete
attack on the scheme by Becker et al. when two challenge queries are allowed. The attack is indeed generic
and applies to any scheme in which users only encrypt a scalar.

The “All-Ciphertext” Condition. Another restriction that is enforced on the challenge oracle queries of
the adversary in the security game is that the adversary needs to specify a set U ′ of users in advance for
which a query needs to be submitted and in the case that the adversary compromises the aggregator, it must
hold that the sum of the submitted challenge messages for the determined subset of users U ′ is equal. This
is an unnatural requirement which is enforced due to information leakage that occurs when the adversary
does not have all the ciphertexts for non-compromised users. A similar problem occurs in the setting of
multi-client functional encryption, where it is required that the adversary asks a challenge oracle query in
every uncorrupted position. This is also due to possible information leakage that can occur if challenge queries
are not submitted in every uncorrupted position. To also achieve security in the case that a challenge query
has not been submitted in every uncorrupted positions several security compilers have been introduced in the
context of MCFE. The first of these compilers has been proposed in the work of Abdalla et al. [AGRW17].
This compiler is restricted to MCFE schemes without labels. Since then, several other compilers have been
proposed for the more general setting of MCFE with labels [ABG19,ABKW19,CDG+18b]. These compilers
can directly be adapted to the setting of private stream aggregation and achieve security in a game where no
restrictions regarding the challenge queries are enforced on the adversary.

The second security definition described above together with the mentioned security compiler can be seen
as the strongest possible security definition in the setting of PSA.

1.4 Related Work

In this section, we present the main related work, which contains of work in smart metering, functional
encryption and the recent results in private stream aggregation.

Smart Metering. The constructions we present have been already considered in the context of smart
metering [ÁC11,KDK11]. Smart metering and PSA differ in a few points. In the setting of smart metering,
the definition explicitly considers node and communication failures, whereas this has only been considered
in follow up works on private stream aggregation [CSS12,JK12] as an additional security property. In the
smart metering setting, they also do not consider a specific aggregator but allow a public computation of
the outcome. It has already been noted in [SCR+11] that it is possible for some schemes to allow public
aggregation, also our scheme fulfills this property. We describe this in more detail in Section 7. In the two
works [ÁC11,KDK11], the authors only present an informal security analysis, but no formal proof of security.
In this work we close this gap by providing a formal proof of AO-security.

Functional Encryption. As already mentioned above, in this work, we rely on the recent results on inner-
product MCFE, since we need it for the instantiation of our MCFE-based PSA scheme in the many-times
security model. Our construction can be instantiated using the following works [ABM+20,ABG19,LT19,
ACF+18,AGRW17,CDG+18b,CDSG+20] for the setting without time steps and the works [ABM+20,ABG19,
LT19,CDG+18b,CDSG+20] for the setting with time steps. For the implementation of the MCFE-based PSA
scheme in the many-times security model without time steps, we rely on the work of Abdalla et al. [ACF+18],
8 Interestingly, this level of security can also be achieved by our construction, if the underlying LaSS scheme only
works for a single label `, which, as mentioned above, can be achieved information-theoretically using a secret
sharing of 0. More detail on this is given in Section 1.3 on Page 4 and in Remark 5.3.
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which has been proven to fulfill the MCFE notion in [ABKW19]. We present the implementation results in
Section 6.2.

To get rid of the requirement in the challenge queries, we can use one of the security compilers presented
in [AGRW17,ABKW19,CDG+18b,ABG19]. For the many-times security setting without time steps, the
compilers of Abdalla et al. [AGRW17,ABKW19] can be used, this would only require the existence of a
symmetric encryption scheme as the underlying assumption. The more general setting of many-times security
with time steps the compiler of Abdalla et al. [ABG19] can be used. This compiler only requires the existence
of PRFs.

Private Stream Aggregation. After the introductory paper of PSA [SCR+11] many other schemes in the
same setting have been proposed. These contributions can be divided into different categories: PSA schemes
under stronger security notions, such as dynamic joins and leaves [CSS12,JK12], PSA schemes from lower
assumptions, such as DDH [BJL16,VA18], Paillier [JL13] or LWE [BGZ18,VA18] and works that focus on
the analysis of the differential privacy mechanisms used in the setting of PSA [VA18]. Besides this, there are
also several works that use PSA as a building block in larger protocols [SSL+15,RZL+13,LSL+13,BGZ17].
For a survey of the different types of aggregation schemes, we refer to [JKD12].

The main related works are the ones by Becker et al. [BGZ18] and by Valovic and Aldà [VA18]. Becker et
al. [BGZ18], present a new PSA scheme using additive homomorphic encryption and the augmented learning
with errors (A-LWE) assumption, which they call LaPS. Their construction is secure in the one-time security
setting without time steps, as we point out in this work, and the enforcement of the “all-ciphertexts” condition
on the adversary, which can be removed using one of the compilers mentioned above. The authors also present
an implementation of their construction together with some benchmarks. In Section 6, we compare their
results with our implementation.

The scheme by Valovich and Aldà [VA18] uses a similar approach, but requires a weak key-homomorphic
PRF. Their scheme only requires a secret sharing of 0 between the different parties instead of shared keys
between every user. Their security proof in the encrypt-once model only works in the selective corruption
setting, a more restrictive security setting where the adversary needs to announce all its corruption queries at
the beginning of the security game. Security against adaptive corruption of this scheme can also be proven
using the techniques of Abdalla et al. [ABG19], which we also use in this work.

1.5 Concurrent Work

Concurrently to our work, Takeshita et al. [TKGJ20] proposed a new lattice-based PSA scheme called SLAP.
The SLAP scheme is based on the underlying ideas of homomorphic encryption schemes and lattice-based
hardness assumptions. This stands in contrast to other constructions which rely on homomorphic encryption
schemes in a more general way such as LaPS [BGZ18]. This tailored approach to the application of PSA
leads to more efficient constructions and is more optimally tailored to the application of PSA. The SLAP
scheme has two variants. The first scheme draws its core ideas from the BGV scheme [BGV12] and is also
based on NTRU [HPS98]. The second scheme is based on the B/FV schemes [FV12] and also relies on the
LPR hardness [LPR10].

Additionally, the authors also implement their scheme and highlight the improvements compared to the
work of Becker et al. [BGZ18]. We evaluate their results in context with our results in Section 6.

2 Preliminaries

Notation. We denote the set {1, . . . , n} as [n] and the set [n] ∪ {0} as [n]0. For vectors we write x and
denote the i-th element as xi. We use (−1)j<i to denote j−i

|j−i| . The winning probability of an adversary
A in a game or experiment G, which is Pr[G(λ, n,A) = 1], is denoted as WinG

A(λ, n) with λ the security
parameter and n an additional parameter. The probability is taken over the random coins of G and A.
In this context, we define the distinguishing advantage between games G0 and G1 of an adversary A as
AdvG

A(λ, n) =
∣∣WinG0

A (λ, n)−WinG1
A (λ, n)

∣∣.
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2.1 Private Stream Aggregation

In this section, we recap the definition of private stream aggregation as introduced in [SCR+11].

Definition 2.1 (Private Stream Aggregation). Let T = {0, 1}∗ or {⊥} be a set of time steps. A private
stream aggregation (PSA) scheme for the time step set T is a tuple of three algorithms PSA = (Setup,Enc,Dec):

– Setup(1λ, n): Takes as input a unary representation of the security parameter λ and the number of parties
n and outputs n secret keys {ski}i∈[n] for the parties and an aggregator secret key sk0.

– Enc(ski, xi, t): Takes as input a secret key ski, some message xi ∈ Xi to encrypt, and a time step t ∈ T ,
and outputs ciphertext cti,t.

– Dec(sk0, {cti,t}i∈[n]): Takes as input the aggregator key sk0 and n ciphertexts encrypted under the same
time step t and outputs a value y.

A scheme PSA is correct, if for all λ, n ∈ N, {ski}i∈[n]0
← Setup(1λ, n), t ∈ T , xi ∈ Xi, we have

Pr[Dec(sk0, (Enc(ski, xi, t))i∈[n]) =
∑
i∈[n] xi] = 1.

When T = {0, 1}∗, we say that the scheme is with time steps. When T = {⊥}, we say that the scheme is
without time steps, and we often omit t.

We also define PSA in the context without time steps, this is not captured in the initial definition of PSA
by Shi et al. [SCR+11]. This is due to the fact that we define in Section 5.1 a stronger notion of AO-security,
in which multiple left-or-right oracle queries without any time steps are possible.9

In our adaptation of the security definition, we allow the adversary to also ask challenge queries for the
compromised positions under the condition that both of the challenge messages in this case are the same.
This does not give the adversary any distinguishing advantage compared to the initial definition of Shi et
al. [SCR+11].

AOPSA
β (λ, n,A)

{ski}i∈[n]0
← Setup(1λ, n)

α← AQComp(·),QEnc(·,·,·),QLeftRight(·,·,·,·)(1λ, n)
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

Fig. 3: Aggregator Obliviousness Security Game.

Definition 2.2 (Aggregator Obliviousness). Let PSA be a PSA scheme and T a set of time steps. We
define the experiment AOPSA

β in Fig. 3, where the oracles are defined as:

– Compromise oracle QComp(i): Outputs the private key ski of user i. For i = 0, it outputs the aggregator
key sk0. We denote by CS the set of compromised users at the end of the experiment.

– Encryption oracle QEnc(i, xi, t): Outputs cti,t = Enc(ski, xi, t) on a query (i, xi, t).
– Left-or-Right oracle QLeftRight(i, x0

i , x
1
i , t

?): Outputs cti,t? = Enc(ski, xβi , t?) on a query (i, x0
i , x

1
i , t

?).
This oracle can be queried on at most one time step t?, the adversary determines a subset U of users and
the adversary is required to query it once for every i ∈ U . Further queries that hurt this condition will be
ignored.

and where Condition (*) holds if all the following conditions hold:
9 The definition of no time steps in the encrypt once model is easily achievable by generating an additive secret
sharing of 0 and use the secret shares as the secret keys of the different users and the aggregator.
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– If i ∈ CS (i.e., user i is compromised): for any query QLeftRight(i, x0
i , x

1
i , t

?), x0
i = x1

i .
– The queries to the encryption oracle QEnc must be of the form (·, ·, t) with t 6= t?, where t? is the time
step queried to the left-right oracle QLeftRight.

– If 0 ∈ CS (i.e., the aggregator is compromised): for time step t?, for any family of queries{
QLeftRight(i, x0

i , x
1
i , t

?)
}
i∈[n], for any family of inputs {xi ∈ Xi,σ}i∈CS we define x0

i = x1
i = xi for

any slot i ∈ CS, and we require that: ∑
i∈[n] x

0
i =

∑
i∈[n] x

1
i .

We define the advantage of an adversary A in the following way:

AdvAO
PSA,A(λ, n) =

∣∣Pr[AOPSA
0 (λ, n,A) = 1]− Pr[AOPSA

1 (λ, n,A) = 1]
∣∣ .

A private stream aggregation scheme PSA is aggregator oblivious (AO-secure), if for any n, for any polynomial-
time adversary A, there exists a negligible function negl such that: AdvAO

PSA,A(λ, n) ≤ negl(λ).

In the description of the left-or-right oracle, we make some additional requirements that this oracle needs
to be queried on a determined subset of users. We describe how this restriction can be removed in the next
section.

In addition to the notion of aggregator obliviousness, a PSA scheme involves the application of a differential
privacy mechanism. In more detail, the input xi, that is taken as an input to the encryption procedure
of the PSA scheme, is derived by applying a randomization function χ on the data input di, as well as
some noise ri, i.e. xi = χ(di, ri). Differential privacy in the context of PSA has already been extensively
analyzed [SCR+11,BGZ18,VA18]. In [VA18], the authors show that every differential privacy preserving
mechanism preserves computational differential privacy when executed through a PSA scheme. We rely on
this result in our work and do not consider differential privacy specifically.

2.2 Multi-Client Functional Encryption

In this section, we define the notion of MCFE [GGG+14].

Definition 2.3 (Multi-Client Functional Encryption). Let F = {Fρ}ρ be a family (indexed by ρ) of
sets Fρ of functions f : Xρ,1×· · ·×Xρ,nρ → Yρ.10 Let Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client
functional encryption scheme (MCFE) for the function family F and the label set Labels is a tuple of four
algorithms MCFE = (Setup,KeyGen,Enc,Dec):

– Setup(1λ, n): Takes as input a unary representation of the security parameter λ and the number of parties
n, and outputs n secret keys {ski}i∈[n] and a master secret key msk.

– KeyGen(msk, f): Takes as input the master secret key msk and a function f ∈ Fρ, and outputs a functional
decryption key skf .

– Enc(ski, xi, `): Takes as input a secret key ski, a message xi ∈ Xρ,i to encrypt, a label ` ∈ Labels, and
outputs a ciphertext cti,`.

– Dec(skf , {cti,`}i∈[n]): Takes as input a functional key skf and n ciphertexts under the same label ` and
outputs a value y ∈ Yρ.

A scheme MCFE is correct, if for all λ, n ∈ N, f ∈ Fρ, ` ∈ Labels, xi ∈ Xρ,i, when ({ski}i∈[n] ,msk) ←
Setup(1λ, n) and skf ← KeyGen(msk, f), we have

Pr
[
Dec(skf , (Enc(ski, xi, `))i∈[n]) = f(x1, . . . , xn)

]
= 1 .

When ρ is clear from context, the index ρ is omitted. When Labels = {0, 1}∗, we say that the scheme is
labeled or with labels. When Labels = {⊥}, we say that the scheme is without labels, and we often omit `.

We also recap the security definition:
10 All the functions inside the same set Fρ have the same domain and the same range.
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Definition 2.4 (Security of MCFE). Let MCFE be an MCFE scheme, F = {Fρ}ρ a function family
indexed by ρ and Labels a label set. For xx ∈ {pos+, any} and β ∈ {0, 1}, we define the experiment xx-INDMCFE

β

in Fig. 4, where the oracles are defined as:

– Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote by CS the set of
corrupted slots at the end of the experiment.

– Left-Right oracle QLeftRight(i, x0
i , x

1
i , `): Outputs cti,` = Enc(ski, xβi , `) on a query (i, x0

i , x
1
i , `). We

denote by Qi,` the number of queries of the form QLeftRight(i, ·, ·, `).
– Encryption oracle QEnc(i, xi, `): Outputs cti,` = Enc(ski, xi, `) on a query (i, xi, `).
– Key generation oracle QKeyG(f): Outputs skf = KeyGen(msk, f).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QLeftRight(i, x0
i , x

1
i , `), x0

i = x1
i .

– For any label ` ∈ Labels, for any family of queries {QLeftRight(i, x0
i , x

1
i , `) or QEnc(i, xi, `)}i∈[n]\CS , for

any family of inputs {xi ∈ Xρ,i}i∈CS , for any query QKeyG(f), we define x0
i = x1

i = xi for any slot i ∈ CS
and any slot queried to QEnc(i, xi, `), and we require that:

f(x0) = f(x1) where xb = (xb1, . . . , xbn) for b ∈ {0, 1} .

We insist that if one index i /∈ CS is not queried for the label `, there is no restriction.
– If xx = pos+: For any label ` ∈ Labels, either the adversary makes no left-right oracle query or makes at
least one left-right encryption query for each slot i ∈ [n] \ CS.

We define the advantage of an adversary A in the following way:

Advxx-IND
MCFE,A(λ, n) =

∣∣Pr[xx-INDMCFE
0 (λ, n,A) = 1]− Pr[xx-INDMCFE

1 (λ, n,A) = 1]
∣∣ .

A multi-client functional encryption scheme MCFE is xx-IND secure, if for any n, for any polynomial-time
adversary A, there exists a negligible function negl such that: Advxx-IND

MCFE,A(λ, n) ≤ negl(λ).

We omit n when it is clear from the context. We also often omit A from the parameter of experiments or
games when it is clear from context.

To turn a MCFE scheme that is pos+-IND-secure into an MCFE scheme that is any-IND-secure, we can
use one of the compilers presented in [ABG19,ABKW19,CDG+18b]. The most current compiler has been
presented in [ABG19]. It only relies on pseudorandom functions, but has a quadratic blow up in the size of
the ciphertexts.

xx-INDMCFE
β

({ski}i∈[n] ,msk)← Setup(1λ, n)
α← AQCor(·),QLeftRight(·,·,·,·),QEnc(·,·,·),QKeyG(·)(1λ, n)
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise.

Fig. 4: Security games for MCFE.

2.3 Inner-Product Functionality

We describe the functionalities supported by the constructions in this paper, by considering the index ρ of F
in more detail.

The index of the family is defined as ρ = (R, n,m,X, Y ) where R is either Z or ZL for some integer L,
and n,m,X, Y are positive integers. If X,Y are omitted, then X = Y = L is used (i.e., no constraint).
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This defines Fρ = {fy1,...,yn : (Rm)n → R} where

fy1,...,yn(x1, . . . ,xn) =
n∑
i=1
〈xi,yi〉 = 〈x,y〉 ,

where the vectors satisfy the following bounds: ‖xi‖∞ < X, ‖yi‖∞ < Y for i ∈ [n], and where x ∈ Rmn
and y ∈ Rmn are the vectors corresponding to the concatenation of the n vectors x1, . . . ,xn and y1, . . . ,yn
respectively.

2.4 Pseudorandom Functions

We recap the definition of a pseudorandom function (PRF) [GGM86].

Definition 2.5 (Pseudorandom Function). Let PRF : K × V → W be a deterministic polynomial-time
algorithm, with key space K, domain V and range W. For β ∈ {0, 1}, we define the experiment INDPRF

β

in Fig. 5, where the oracle OPRF is defined as:

OPRF(t) =
{

PRFK(t) if β = 0
RF(t) if β = 1

with RF(t) denoting a random function. We define the advantage of an adversary A in the following way:

AdvIND
PRF,A(λ) = |Pr[INDPRF

0 (λ,A)]− Pr[INDPRF
1 (λ,A)]|

A pseudorandom function PRF is secure, if for any polynomial-time adversary A, there exists a negligible
function negl such that: AdvIND

PRF,A(λ) ≤ negl(λ).

INDPRF
β (λ,A)

K← K

α← AOPRF(·)(1λ)
Output: α

Fig. 5: Security Games for PRF

2.5 Symmetric Encryption and One-time Pad

In this section, we recap the security definition for symmetric encryption and the one-time pad. First, we
formally define a symmetric encryption scheme.

Definition 2.6 (Symmetric Encryption). A symmetric encryption scheme (SE) for the key space K
and the message spaceM is a couple of algorithms SE = (Enc,Dec):

– Enc(K,m): Takes as input the symmetric key K, a message m ∈M to encrypt, and outputs a ciphertext
ct.

– Dec(K, ct): Takes as input the symmetric key K and a ciphertext ct and outputs a message or ⊥ if
decryption fails.

A scheme SE is correct, if for all ρ ∈ N, K← K, m ∈M, we have

Pr [Dec(K,Enc(K,m)) = m] = 1
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Security for a symmetric encryption scheme is defined in the following way.

Definition 2.7 (IND-CPA Security of SE). Let SE = (Enc,Dec) be an SE scheme, for the message
spaceM. We define the experiment IND-CPASE

β in Fig. 6, where the oracle is defined as:

– Left-or-Right Oracle QLeftRight(m0,m1): Outputs ct = Enc(K,mβ).

We define the advantage of an adversary A in the following way:

AdvIND-CPA
SE,A (λ) = |Pr[IND-CPASE

0 (λ,A) = 1]− Pr[IND-CPASE
1 (λ,A) = 1]| .

A symmetric encryption scheme SE is called IND-CPA secure, if for any PPT adversary A it holds that
AdvIND-CPA

SE,A (λ) ≤ negl(λ). A scheme SE is called perfectly secure, if for any adversary A with a single oracle
query to QLeftRight it holds that AdvIND-CPA

SE,A (λ) = 0

IND-CPASE
β (λ,A)

K← K

α← AQLeftRight(·,·)(1λ)
Output: α

Fig. 6: IND-CPA Security Game for a symmetric en-
cryption scheme

Enc(K,m ∈M) :

ct := m+ K
Return ct
Dec(K, ct) :

m := ct− K
Return m

Fig. 7: The One-Time Pad

A specific symmetric encryption scheme that fulfills perfect security is the one-time pad (Fig. 7). The
perfect security has first been proven in [Sha01] for the XOR operation. An adaption of this proof to finite
groups is straightforward and can be found for example in [Wic15].

Theorem 2.8 (One-Time Pad). The scheme SE = (Enc,Dec) defined in Fig. 7 is perfectly secure. Namely,
for any adversary A it holds that AdvIND-CPA

SE,A = 0 for a single oracle query to QLeftRight.

3 Labeled Secret Sharing Scheme

In this section, we introduce the notion of a labeled secret sharing (LaSS) scheme, together with its security
definition.

3.1 Definition of Labeled Secret Sharing Schemes

Definition 3.1 (Labeled Secret Sharing Scheme). Let Labels = {0, 1}∗ be a set of labels. A labeled
secret sharing (LaSS) scheme for the labels Labels is a tuple of three algorithms LaSS = (Setup,ShareGen,
Reconstruct):

– Setup(1λ, s, n): Takes as input a unary representation of the security parameter λ, a secret s and the
number of parties n and outputs n secret keys {ski}i∈[n].

– ShareGen(ski, `): Takes as input a secret key ski, and a label ` ∈ Labels, and outputs a share si,`.
– Reconstruct({si,`}i∈[n]0): Takes as input n+ 1 shares generated under the same label ` and outputs a value
t.

11



xx-INDLaSS
β

s← A(1λ, n)
({ski}i∈[n])← Setup(1λ, s, n)
α← AQCor(·),QShare(·,·)(1λ, s, n)
Output: α

Fig. 8: Security games for LaSS.

A LaSS is correct, if for all λ, s, n ∈ N, {ski}i∈[n]0
← Setup(1λ, , s, n), ` ∈ Labels, we have

Pr[Reconstruct((ShareGen(ski, `))i∈[n]) = s] = 1.

In a similar flavor to Adballa et al. [ACF+18], we define an Add procedure for our scheme.

Definition 3.2 (Linear Homomorphism). A LaSS scheme LaSS = (Setup,ShareGen,Reconstruct) satis-
fies the linear encryption property if there exists a deterministic algorithm Add that takes a share si,` and a
value xi,` as an input, such that the following are identically distributed:

Add(si,`, xi,`) and si,` .

When these modified shares are used in the reconstruction procedure, it outputs s+
∑
i∈[n] xi,`, where

xi,` are the values added to the shares si,`.
Now, we are ready to state the security for LaSS. We distinguish between two security notions: semi-

adaptive and adaptive security. In the semi-adaptive security game, the adversary is required to submit an
additional bit with the first challenge query of every slot that indicates whether the slot can be corrupted
later in the security game or not.

Definition 3.3 (Security of LaSS). Let LaSS be a LaSS scheme and Labels a label set. For xx ∈ {semi, ad}
and β ∈ {0, 1}, we define the experiment xx-INDLaSS

β in Fig. 8, where the oracles are defined as:

– Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We denote by CS the set of
corrupted slots at the end of the experiment.

– Share generation oracle QShare(i, `): Outputs

ShareGen(ski, `) if β = 0 and PS(i, `) if β = 1 ,

where PS(i, `) denotes the generation of the i-th share of a perfect secret sharing.
• If xx = semi: The adversary is required to submit an additional bit b for the first query to every slot i.
In the case that b = 0 for a slot i, the adversary is not allowed to corrupt the corresponding slot later
in the security game. We call such a slot an explicitly honest slot. For the case that b = 1 for a slot i,
the adversary is allowed to corrupt the corresponding slot later in the security game but the output of
the oracle is ShareGen(ski, `) on a query (i, `, 1).

We define the advantage of an adversary A in the following way:

Advxx-IND
LaSS,A (λ, n) =

∣∣Pr[xx-INDLaSS
0 (λ, n,A) = 1]− Pr[xx-INDLaSS

1 (λ, n,A) = 1]
∣∣ .

A labeled secret sharing scheme LaSS is xx-IND secure, if for any n, for any polynomial-time adversary A,
there exists a negligible function negl such that: Advxx-IND

LaSS,A (λ, n) ≤ negl(λ).

It trivially holds that ad-IND⇒ semi-IND for a LaSS scheme.11

11 The reduction just ignores the additional bit and forwards the challenge queries.
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3.2 Our Constructions

In this section, we present our LaSS scheme. We consider two different instantiations of this construction, a
PRF-based construction in the standard model and a construction in the ROM, which are both described
in Fig. 9. The scheme in the standard model achieves semi-adaptive security and the scheme in the ROM
adaptive security. An informal description of this scheme can be found in Section 1.3.

Setup(1λ, s, n) :
For i ∈ [n], j > i:
ki,j = kj,i ← {0, 1}λ

If s 6= 0
ti ← Zp for all i ∈ [n− 1]
tn := s−

∑
i∈[n−1] ti

ski = ({ki,j}j∈[n] , ti)
Return {ski}i∈[n]

ShareGen(ski, `) :
Parse ski = ({ki,j}j∈[n]0

, ti)
vi,` :=

∑
j 6=i(−1)j<iPRFki,j (`) ∈ Zp

vi,` :=
∑
j 6=i(−1)j<iH(ki,j‖`) ∈ Zp

si,` := vi,` + ti

Return si,`
Reconstruct({si,`}i∈[n]) :
Return

∑
i∈[n] si,`

Fig. 9: Our LaSS scheme in the Standard Model and the Random Oracle Model .

Correctness. The correctness of our scheme in the standard model follows from the generation of the vi,`
values for all i ∈ [n] under a specific label `. We can see this by considering the following sum:∑

i∈[n]

vi,` =
∑
i∈[n]

∑
j 6=i

(−1)j<iPRFki,j (`) =
∑
i∈[n]

∑
j 6=i

PRFki,j (`)−
∑
j 6=i

PRFki,j (`) = 0 .

Taking this into account, we can directly see what happens if the additional shares ti are introduced:∑
i∈[n]

vi,` + ti =
∑
i∈[n]

vi,` +
∑
i∈[n]

ti = 0 +
∑
i∈[n]

ti = s ,

which shows the correctness of our construction.
For the correctness of the scheme in the ROM, we can argue in the exact same way, i.e. we can show that

all the keys Ki,t for all the users Ui with i ∈ [n] together with the aggregator key K0,t sum up to 0:∑
i∈[n]

vi,` =
∑
i∈[n]

∑
j 6=i

(−1)j<iH(ki,j‖`) =
∑
i∈[n]

∑
j 6=i

H(ki,j‖`)−
∑
j 6=i

H(ki,j‖`) = 0 .

Together with the analysis from above for the shares ti, the correctness of our scheme follows.
The correctness for the Add procedure follows accordingly.

Security. Now, we present the proof of security for both of the presented schemes. For the proof of security of
the PRF-based construction we rely on a hybrid argument where the different game transitions are described
in Fig. 10. For the proof of the security of the construction in the random oracle model, we can directly use
the programmability of the random oracle.

For the scheme in the standard model, we make use of a technique from Abdalla et al. [ABG19] which
has also been used in the subsequent work of Ciampi et al. [CSW20]. The main difficulty that we have to
overcome in this proof is that the adversary is able to ask corruption queries adaptively. To ensure that a
reduction to the security of the PRF still works, we use a hybrid strategy in which some, but not all, of the
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corrupted users need to be guessed in advance and make use of the corruption bit that is submitted by the
adversary.12

Theorem 3.4 (Semi-Security in the Standard Model). Let PRF be an IND secure pseudorandom
function, then the PSA scheme LaSS = (Setup,ShareGen,Reconstruct) described in Fig. 9 is semi-IND-secure.
Namely, for any PPT adversary A, there exists a PPT adversary B such that:

Advsemi-IND
LaSS,A (λ) ≤ (n+ 1)n(n− 1)2 · AdvIND

PRF,B(λ) .

Proof. To prove this theorem, we proceed via a hybrid argument, using the games described in Fig. 10. Note
that G0 corresponds to semi-INDLaSS

0 (λ, n,A), and G?1 corresponds to semi-INDLaSS
1 (λ, n,A). Thus, we have:

Advsemi-IND
LaSS,A (λ, n) = |WinG0

A (λ, n)−WinG?1
A (λ, n)| .

We describe the different intermediate games in more detail:

– Game G?0: The game is the same as the semi-IND0 game, with the difference that the number of explicitly
honest slots is guessed initially, by choosing a uniformly random κ? ← {0, . . . , n}. In the case that
the guess is incorrect, it ignores A’s output α and outputs 0, instead. Since the guess is correct with
probability 1

n+1 , we have

WinG?0
A (λ, n) = 1

(n+ 1) ·Winsemi-IND0
LaSS (λ, n) .

– Game G?1: We change the distribution of the share generated by the QShare oracle in the case that κ? ≥ 2.
For these, the vi,`? values are computed as usual, but a share of a perfect κ?-out-of-κ? secret sharing of 0
is added. We justify this transition using the security of the PRF and by guessing the explicitly honest
slots. Since guessing the entire set of explicitly honest slots would incur an exponential security loss, we
introduce the shares gradually. Starting with a 2-out-of-2 perfect secret sharing, then a 3-out-of-3 until
we reach a κ?-out-of-κ? secret sharing among all the queried slots. This gradual introduction happens via
a hybrid argument that is described in Fig. 10. To go from one hybrid to another, we only require to
guess a slot pair (i, j) (the first and the last slot to be revealed) correct and rely on the security of the
PRF using the key ki,j . Namely, in Lemma 3.5, we show that there exists a PPT adversary B0 such that:

|WinG?0
A (λ, n)−WinG?1

A (λ, n)| ≤ n(n− 1)2 · AdvIND
PRF,B0

(λ, n) .

Putting everything together, we obtain the theorem.
ut

12 Guessing all of the corrupted users would result in an exponential security loss in the reduction and an adaptively
secure scheme.
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G?0.k for k ∈ {0, . . . , n} :
κ? ← {0, . . . , n}, for all w ∈ {2, . . . , κ?}, uw ← Zp
s← A(1λ)
{ski}i∈[n] ← Setup(1λ, s, n)
α← AQCor(·),QShare(·,·,·)(1λ, s, n)
Output α if Condition (*) is satisfied AND
the guess κ? is correct, or 0 otherwise.

QCor(i) :
Return ski

QShare(i, `?, b) :
Parse ski := {ki,j}j∈[n],

vi,`? :=
∑
j 6=i(−1)j<iPRFki,j (`?).

We denote by {i1, . . . , iκ} the set of explicitly
honest slots in the order they are revealed, and
we set θ := min(κ?, k).
If θ ≥ 2 then do the following:
– If i = i1, then si,`? := vi,`? +

∑θ
w=2 uw

– If i = is, for w ∈ {2, . . . , θ},
then si,`? := vi,`? − uw

– If i = is, for w ∈ {θ + 1, . . . , κ?},
then si,`? := vi,`?

– If i = is, for w > κ?, that means k > κ?,
the guess was incorrect.

Ends the game and outputs 0.
If θ < 2, then si,`? := vi,`? .

Return si,`? + ti

Fig. 10: Games for the proof of Lemma 3.5. The guess κ? is correct if it equals the size of the set of explicitly
honest users.

Lemma 3.5 (Transition from G?0 to G?1). For any PPT adversary A, there exists a PPT adversary B
such that

|WinG?0
A (λ, n)−WinG?1

A (λ, n)| ≤ n(n− 1)2 · AdvIND
PRF,B′(λ) .

Proof. To prove that G?0 is indistinguishable from G?1 we need to apply a hybrid argument over the explicitly
honest users by relying on the security of the PRF.

Using the definition of the games in Fig. 10 and the triangular inequality, we can see that

|WinG?0
A (λ, n)−WinG?1

A (λ, n)| ≤
n∑
k=2
|WinG?0.k−1

A (λ, n)−WinG?0.k
A (λ, n)| ,

where G?0 corresponds to game G?0.0 (and G?0.1) and whereas G?1 is identical to game G?0.n. Since G?0.0 = G?0.1,
we do not analyze the transition between these two games.

Now, we can bound the difference between each consecutive pair of games for every k ∈ {2, . . . , n}.

Lemma 3.6. For every k ∈ {2, . . . , n}, there exists a PPT adversary Bk against the IND property of PRF
such that

|WinG?0.k−1
A (λ, n)−WinG?0.k

A (λ, n)| ≤ n(n− 1) · AdvIND
PRF,Bk(λ) .

Proof. The proof for this transition works mainly as described in [ABG19].
We build an adversary Bk that simulates G?0.k−1+β for k ∈ {2, . . . , n} to A when interacting with the

underlying INDPRF
β experiment.

As already mentioned above, if κ? < 2, the games G?0.k−1 and G?0.k are the same. Therefore, we only
consider the case where κ? ≥ 2.

The adversary Bk starts by guessing the pair of the first and k’th honest slot (i?, j?), by sampling random
values i?, j? ← [n], with i? < j?. Whenever A asks a share generation oracle query, Bk replies as described
in Fig. 10 for every explicitly honest slot in the order they are revealed. Since Bk has guessed the first and
k’th explicitly honest slot correctly, it knows how to answer the queries for every explicitly honest slot that is
revealed in between. If it turns out that the guess of Bk is incorrect, the simulation ends and returns 0. If the
guess is correct, we can rely on the security of the PRF on the key ki?,j? and exchange the PRF evaluation with
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a random function evaluation RF(`?). Then we argue that RF(`?) is identically distributed to RF(`?)+us,`? and
therefore, since the former distribution corresponds to G?0.k−1 and the latter to game G?0.k, the computational
indistinguishability between G?0.k and G?0.k−1 follows. Since the guessing of the two honest slots happens with
probability 2

(n+1)n , we have a resulting security loss of n(n−1)
2 , i.e. 2

n(n−1) · |WinG?0.k−1
A (λ, n)−WinG?0.k

A (λ, n)| ≤

AdvIND
PRF,Bk(λ) ⇔ |WinG?0.k−1

A (λ, n) −WinG?0.k
A (λ, n)| ≤ n(n−1)

2 · AdvIND
PRF,Bk(λ). Finally, we switch back from a

random function evaluation RF(`?) to the PRF evaluation PRFki?,j? (`?) by relying on the security of the PRF
on the key ki?,j? a second time. This results in the advantage described in the lemma.

For every corruption query QCor(i), Bk just returns the corresponding secret key ski. ut
ut

The Add procedure for this scheme is the simple addition procedure, i.e. Add(si,`, xi,`) := si,` + xi,`. We
can show that the Add procedure fulfills the linear homomorphism property.

Lemma 3.7 (Linear Homomorphism). Let LaSS = (Setup,ShareGen,Reconstruct) be the LaSS scheme
described in Fig. 9 and Add the algorithm described above, then Add is a linear homomorphism.

Proof. This lemma can be proven with a reduction to the one-time pad.
We build a PPT adversary B that outputs a share si,` to A as a reply to a challenge query xi,`, when

interacting with the one-time pad in the IND-CPAOTP
β experiment. We describe the behavior of adversary B.

For the challenge query xi,` submitted by A, the adversary B submits (0, xi,`) as the challenge query to
the one-time pad and receives as a reply the share si,`. For the case that challenger used the left challenge,
i.e. 0, the output is a random share si,` and for the case that the challenger encrypted the right value, i.e.
xi,`, it corresponds to the output of Add(si,`, xi,`).

This argument can be applied to every label ` ∈ Labels and every slot i ∈ [n], which proves the lemma. ut

The security of the ROM construction follows immediately from the security for the scheme in Fig. 9, by
just instantiating the PRF using the random oracle, i.e. PRFki,j (∗) = H[ki,j‖∗].

To obtain stronger security bounds, we provide a security proof that relies on the programmability of the
ROM.

Theorem 3.8 (Adaptive-Security in the Random Oracle Model). Let H be a hash function, then
the LaSS scheme LaSS = (Setup,ShareGen,Reconstruct) described in Fig. 9 is ad-IND-secure. Namely, when
the hash function H is modeled as a random oracle, for any PPT adversary A it holds that:

Advad-IND
LaSS,A (λ, n) ≤ qH

2λ ,

where qH is the numbers of queries to the oracle H.

Proof. In G1, the values vi,`, and therefore the resulting shares si,` are generated uniformly at random on the
fly. The random oracles are programmed to explain these values, when the adversary corrupts a new slot i or
calls the share generation oracle QShare for the last remaining honest slot.

To complete the proof, we need to bound the probability of the event Abort, which comes from collisions.
Let us consider the q-th query QCor(i) and bound the probability of the event Abort. Let j /∈ CS \ {i},

we start by bounding the probability that HT contains a key of the form ki,j‖?. Since ki,j is drawn uniformly
random and independently from {0, 1}λ, for any key of HT of the form ?′‖?, the probability that ?′ = ki,j is
exactly 1/2λ. Thus, the probability that HT1 contains a key of the form ki,j‖? is qH

2λ , with qH the number of
queries to H of the form ?′‖?. (Even if keys of HT are also added by the challenger and not only when the
adversary queries H, the keys added by the challenger can never create an abort, so we are ignoring them.)

By remarking that only the first query QCor(i) for a given i might abort (if the query happens for an
already queried i, the same result gets returned) and by union bound, the probability for the execution of
Abort is at most qH

2λ . ut
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Games G0,G1:
HT is an empty array
If HT[z] does not exist, HT[z]← Zmp
Return HT[z]

Gβ for β ∈ {0, 1}:
s← A(1λ, n)
({ski}i∈[n])← Setup(1λ, s, n)
α← AQCor(·),QShare(·,·)(1λ, s, n)
Output: α

QCor(i):
If already called for the same i,
return same answer
Add i to CS
For all j /∈ CS,

Define ki,j = kj,i ← {0, 1}λ

Abort if HT contains a key of the form
ki,j‖? for j /∈ CS

For all previous queries QShare(i, `) for
some time step `,

Sample a random j∗ ← [n] \ CS
For all j ∈ [n] \ (CS ∪ {j∗})

ki,j,` := H(ki,j‖`)
Define ki,j∗,` := (−1)j∗<i(vi,`

−
∑
j 6=i,j∗(−1)j<iki,j,`)

HT[ki,j∗‖`] := ki,j∗,`

For all previous queries QShare(j, `) that
have been asked for all j /∈ CS

For all j ∈ CS
vj,` :=

∑
k 6=j(−1)j<kHT[kj,k‖`]

Sample a random j∗ ← [n] \ CS
For all j ∈ [n] \ (CS ∪ {j∗})

ki,j,` := H(ki,j‖`)
Define ki,j∗,` := (−1)j∗<i(−

∑
j 6=i vj,`

−
∑
j 6=i,j∗(−1)j<iki,j,`)

HT[ki,j∗‖`] := ki,j∗,`

QShare(i, `):
If i ∈ CS
vi,` :=

∑
j 6=i(−1)j<iH[ki,j‖`]

si,` := vi,` + ti

Return si,`
If QShare(i, `) has already been queried
si,` := vi,` + ti

Return si,`
If QShare(j, `) has already been queried
for all j /∈ CS

For all j ∈ CS
vj,` :=

∑
k 6=0(−1)j<kHT[kj,k‖`]

vi,` := −
∑
j 6=i vj,`

si,` := vi,` + ti

Return si,`
Define vi,` ← {0, 1}λ

si,` := vi,` + ti

Return si,`

Fig. 11: Share generation queries QShare of the games for the proof of Theorem 3.8. Corruption queries QCor
of the games for the proof of

The Add procedure of the construction in the ROM is the same as for the construction in the standard
model. The proof is the same as for Lemma 3.7.

4 PSA in the Encrypt-Once Model

In the following sections, we prove the correctness of this construction and give an overview of the security
proof.
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Setup(1λ, n) :
{ski}i∈[n]0 ← LaSS.Setup(1λ, 0, n+ 1)
For i ∈ [n]0, j > i:
Return {ski}i∈[n]0

Enc(ski, xi ∈ Zp, t) :
si,t := LaSS.ShareGen(ski, t)
Return cti,t := LaSS.Add(si,t, xi) ∈ Zp
Dec(sk0, {cti,t}i∈[n]) :
s0,t := LaSS.ShareGen(sk0, t)
Return LaSS.Reconstruct(s0,t ∪ {cti,t}i∈[n])

Fig. 12: The LaSS-based PSA scheme.

4.1 Correctness

The correctness of our scheme follows from the correctness and the linear homomorphism property of the
LaSS scheme:

Reconstruct(s0,t ∪ {cti,t}) = Reconstruct(s0,t ∪ {Add(si,t, xi,t)}) = 0 +
∑
i∈[n]

xi,t =
∑
i∈[n]

xi,t .

4.2 Security

In this section, we give an overview of the proof of security for the compiler described in Fig. 12. For the
proof of security, we rely on a hybrid argument, where the different game transitions are described in Fig. 13

Game cti,t Justification

G0
si,t := ShareGen(ski, t)
cti,t := Add(si,t, x0

i,t)

G1
si,t ← Zp

cti,t := Add(si,t, x0
i,t)

semi-IND security
of LaSS

G2
si,t ← Zp

cti,t := Add(si,t, x1
i,t )

information-
theoretic argument

G3
si,t := ShareGen(ski, t)
cti,t := Add(si,t, x1

i,t)
semi-IND security

of LaSS

Fig. 13: Overview of the games to prove the security of the PSA scheme using a semi-IND secure LaSS.

Theorem 4.1 (AO-Security). Let LaSS be a semi-IND secure labeled secret sharing scheme, then the PSA
scheme PSA = (Setup,Enc,Dec) described in Fig. 12 is AO-secure. Namely, for any PPT adversary A, there
exists a PPT adversary B such that:

AdvAO
PSA,A(λ) ≤ 2 · AdvIND

LaSS,B(λ, n+ 1) .

18



Proof. To prove this theorem, we proceed via a hybrid argument, using the games described in Fig. 13. Note
that G0 corresponds to AOPSA

0 (λ, n,A), and G3 corresponds to AOPSA
1 (λ, n,A). Thus, we have:

AdvAO
PSA,A(λ, n) = |WinG0

A (λ, n)−WinG3
A (λ, n)| .

We describe the different intermediate games in more detail:
– Game G1: We change the way the shares of each client are generated. Instead of executing the ShareGen

every client generates a perfect share of a secret sharing of 0. We justify this transition using the
semi-adaptive security of LaSS together with the fact that we can determine the bit b for every slot, by
checking if the first challenges are different (b = 0) or the same (b = 1). Namely, in Lemma 4.2, we show
that there exists a PPT adversary B0 such that:

|WinG0
A (λ, n)−WinG1

A (λ, n)| ≤ AdvIND
LaSS,B0

(λ, n+ 1) .

– Game G2: We change the generation of the ciphertext from an encryption of x0
i to an encryption of x1

i .
The transition from G1 to G2 is justified by an information-theoretic argument using the Add procedure
for all the different slots i ∈ [n]. In more detail, we prove the transition by relying on the perfect security
of several instances of the one-time pad. Namely, in Lemma 4.3, we show that

|WinG?2
A (λ, n)−WinG?3

A (λ, n)| = 0 ,

for all adversaries A.
– Game G3: The transition from G2 to G3 is almost symmetric to the transition from G0 to G1, justified by

the semi-adaptive security of LaSS. Namely, it can be proven as in Lemma 4.2 that there exists a PPT
adversary B0 such that:

|WinG2
A (λ, n)−WinG3

A (λ, n)| ≤ AdvIND
LaSS,B0

(λ, n) .

Putting everything together, we obtain the theorem. ut

Lemma 4.2 (Transition from G0 to G1). For any PPT adversary A, there exists a PPT adversary B
such that

|WinG0
A (λ, n)−WinG1

A (λ, n)| ≤ Advsemi-IND
LaSS,B0

(λ, n+ 1)

Proof. We prove this theorem by construction an adversary B against the semi-IND security game.
Whenever A asks a left-or-right oracle query (i, x0

i,t, x
1
i,t, t), B sets b = 0 if x0

i,t 6= x1
i,t and b = 1 otherwise. B

then submits (i, t, b) to its share generation oracle and receives si,t as a reply. It computes cti,` := Add(si,t, x0
i,t?)

and sends it as a reply to A.
For every compromise query for i asked by A, B forwards it to its corruption oracle, receives ski and sends

it to A.
Finally, B outputs whatever A outputs. This concludes the proof of the lemma. ut

Lemma 4.3 (Transition from G1 to G2). For any adversary A it holds that

|WinG1
A (λ, n)−WinG2

A (λ, n)| = 0

Proof. This theorem follows directly from the linear homomorphism property of the LaSS scheme. In more
detail, the linear homomorphism property states that for any value xi,t the values si,t and Add(si,t, xi,t) are
identically distributed for all i ∈ [n]. This also implies that si,t is identically distributed to Add(si,t, x0

i,t) and
Add(si,t, x1

i,t), which proves the theorem. ut

5 PSA in the Many-Times Model

In this section, we first introduce a stronger security definition for PSA that allows for multiple left-or-right
oracle queries. Second, we show that this security definition can be realized using functional encryption in
the setting with and without time steps.
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5.1 Stronger Security for PSA

The stronger notion of AO security that we present in this section allows an adversary to ask multiple
left-or-right queries under different time steps, as well as queries to the encryption oracle on the same time
steps that are queried to the left-or-right oracle. We also get rid of the restriction that an adversary has to
query the left-or-right oracle for a specific determined subset of users.

Definition 5.1 (Stronger Security for PSA). Let PSA be a PSA scheme and T a set of time steps. We
define the experiment str-AOPSA

β in Fig. 14, where the oracles are defined as:

– Compromise oracle QComp(i): works as in Definition 2.2.
– Left-Right oracle QLeftRight(i, x0

i , x
1
i , t): Outputs cti,t = Enc(ski, xβi , t) on a query (i, x0

i , x
1
i , t).

– Encryption oracle QEnc(i, xi, t): as in Definition 2.2.

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., user i is compromised): for any query QLeftRight(i, x0
i , x

1
i , t), x0

i = x1
i .

– If 0 ∈ CS (i.e., the aggregator is compromised): for any time step t ∈ T , for any family of queries
{QLeftRight(i, x0

i , x
1
i , t) or QEnc(i, xi, t)}i∈[n]\CS , for any family of inputs {xi ∈ Xi}i∈CS , we define x0

i =
x1
i = xi for any slot i ∈ CS and any slot queried to QEnc(i, xi, t), and we require that:∑

i∈[n] x
0
i =

∑
i∈[n] x

1
i .

We insist that if one index i /∈ CS is not queried there is no restriction.

We define the advantage of an adversary A in the following way:

Advstr-AO
PSA,A (λ, n) =

∣∣Pr[str-AOPSA
0 (λ, n,A) = 1]− Pr[str-AOPSA

1 (λ, n,A) = 1]
∣∣ .

An aggregator oblivious encryption scheme PSA is strong-AO-secure, if for any n, for any polynomial-time
adversary A, there exists a negligible function negl such that: Advstr-AO

PSA,A (λ, n) ≤ negl(λ).

str-AOPSA
β (λ, n,A)

{ski}i∈[n]0
← Setup(1λ, n)

α← AQComp(·),QLeftRight(·,·,·,·),QEnc(·,·,·)(1λ, n)
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

Fig. 14: Stronger AO Security Game.

Remark 5.2 (On the Number of Challenge Queries). In the case of a corrupted aggregator, the number of
linearly independent challenge queries the adversary is allowed to ask is defined by the dimension of the input
of each individual party. In the setting where every user encrypts a scalar, which is the case in the standard
definition of PSA, every further challenge query that the adversary asks for a user needs to be linearly
dependent to the first query that the adversary has asked for this user. In more detail, let (x1,0

i , x1,1
i ) denote

the first challenge query for the user Ui than it must hold for every further challenge query (xj,0i , xj,1i ) asked for
Ui that x1,0

i −x
1,1
i = xj,0i −x

j,1
i . For the adapted setting where every user Ui encrypts a vector xi of dimension

m instead of scalar, the adversary can ask up to m linearly independent challenge queries, where the only
restriction that is enforced on the queries is that

∑
k∈[n] x

1,0
i,k −

∑
k∈[n] x

1,1
i,k =

∑
k∈[n] x

j,0
i,k −

∑
k∈[n] x

j,1
i,k where

(x1,0
i ,x1,1

i ), with x1,b
i = (x1,b

i,1 , . . . , x
1,b
i,m) for b ∈ {0, 1}, is the first challenge query asked by the adversary for

user Ui and (xj,0i ,xj,1i ) , with xj,bi = (xj,bi,1, . . . , x
j,b
i,m) for b ∈ {0, 1}, the j-th query asked by the adversary for

user Ui. Note that in the setting with time steps this restriction applies for every time step separately.
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Since in the scalar case for the stronger notion of AO-security with time steps only one challenge query
per label is allowed, this notion is equivalent to the encrypt-once security.

After the general discussion on the number of challenge queries, we concretely consider the security notion
of [BGZ18].

Remark 5.3 (On the Security of LaPS [BGZ18]). Since the encryption procedure of the LaPS scheme
presented in [BGZ18], takes as an input a scalar xi and since the scheme does not rely on time steps, it follows
from the observation in Remark 5.2 that only a single challenge query for linearly independent messages is
allowed. To highlight why this is the case, we describe a concrete attack in this setting when two challenge
queries of linearly independent messages are allowed, i.e. (x1,0

i∗ , x
1,1
i∗ ), (x2,0

i∗ , x
2,1
i∗ ) with x1,0

i∗ − x
1,1
i∗ 6= x2,0

i∗ − x
2,1
i∗ ,

for a specific user Ui∗ . The attack works as follows:

1. The adversary compromises the aggregator, i.e. it queries the compromise oracle QComp(i) for i = 0 and
receives sk0.

2. The adversary determines a random subset of users U ⊂ [n], with i∗ ∈ U and submits a set of challenge
queries (x1,0

i , x1,1
i )i∈U with

∑
i∈U x

1,0
i =

∑
i∈U x

1,1
i for which it receives as a reply (ct1

i )i∈U .
3. The adversary submits the challenge query (x2,0

i∗ , x
2,1
i∗ ), which is linearly independent from the query

(x1,0
i∗ , x

1,1
i∗ ) for which it receives as a reply ct2

i∗ .
4. The adversary computes Dec(sk0, {ct1

i }i∈U\{i∗} ∪ {ct2
i∗}) and if it is equal to x2,0

i∗ +
∑
i∈U\{i∗} x

1,0
i it

outputs 0, otherwise it outputs 1.

The security model that only allows for a single linearly independent challenge query is equivalent to
the encrypt-once model with only a single time-step, and therefore it is weaker than the encrypt-once
model. Moreover, as already mentioned in the introduction, we do not need to rely on a computational
assumption to construct a scheme that fulfills this one-time security definition, as done in [BGZ18], since the
information-theoretic construction in Section 1.3 on Page 3 already suffices.

5.2 Constructing PSA from Inner-Product MCFE

We formalize the generic construction of a PSA scheme that fulfills our strong AO security notion from inner-
product MCFE in Fig. 15, as already observed by Libert and Titiu [LT19, Page 8-9]. To allow for several linearly
independent challenge queries (see Remark 5.2), we instantiate our construction using an MCFE scheme that
allows a user to encrypt a vector of dimension m ([ABM+20,ABG19,LT19,ACF+18,AGRW17,CDG+18b]
fulfill this property) instead of a scalar. The security proof of this construction is straightforward and for
completeness it can be found in Appendix A.

Setup(1λ, n) :
({ski}i∈[n] ,msk)← Setup′(1λ, n)
sk0 ← KeyGen′(msk,1), 1 = (1, . . . , 1) ∈ Zmnp
Return {ski}i∈[n]0

Enc(ski,xi ∈ Zmp , t) :
cti,t = Enc′(ski,xi, t)
Return cti,t
Dec(sk0, {cti,t}i∈[n]) :
Return Dec′(sk0, {cti,t}i∈[n])

Fig. 15: Compiler from an any-IND-secure MCFE scheme MCFE with labels into an PSA scheme that is
str-AO-secure.
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Theorem 5.4. Let MCFE = (Setup′,KeyGen′,Enc′,Dec′) be an any-IND-secure MCFE scheme with labels
Labels for a family of functions F . Then the PSA scheme PSA = (Setup,Enc,Dec) scheme described in Fig. 15
is str-AO-secure PSA scheme for time steps T = Labels. Namely, for all PPT adversaries A there exists a
PPT adversary B such that

Advstr-AO
PSA,A (λ, n) ≤ Advany-IND

MCFE,B (λ, n) .

The construction described in Fig. 15 can be adapted to any inner-product functionality by defining the
aggregator key as a functional key for a different vector y ∈ Zmp than the all one vector. This allows the
aggregator to compute richer functionalities than the sum.

6 Implementation

In this section, we present the implementation results of our schemes, the LaSS-based scheme and the MCFE-
based scheme, and a comparison with the results of Becker et al. [BGZ18]. The implementation is (anonymously)
available at https://anonymous.4open.science/r/aa436f15-e630-44b7-85ca-1dd2103ae3dc.

6.1 Encrypt-Once Model

For the implementation of the LaSS-based construction (Section 4), we use AES as the instantiation for
the PRF. For the construction in the ROM, we use SHA-3 as an instantiation for the hash function. The
LaSS-based schemes are implemented in Go language using its native Crypto library for the AES and the
SHA-3 implementation with keys of size 256 bits and benchmarked on a laptop with Intel Core i5-6200 2.3GHz
processor.13 We compare the performance of our scheme with the evaluation times reported in [BGZ18] for
the LaPS scheme with 80 bit security14 and for the SLAP scheme [TKGJ20] with 128 bit security .

AES SHA-3 LaPS [BGZ18] SLAP [TKGJ20]
p Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec.
22 0.539 0.509 1.783 1.654 3.576 1.868 n/a n/a
216 0.539 0.509 1.783 1.654 3.724 1.964 1.17 3.26
264 0.539 0.509 1.783 1.654 n/a n/a n/a n/a

Table 1: Comparison for n = 1000 of our PRF-based PSA scheme, instantiated using AES and SHA-3. Times
given in ms.

In Table 1, we present our running time together with the running time of the LaPS scheme [BGZ18]
and the SLAP scheme [TKGJ20], which, to the best of our knowledge, are the only other implemented
PSA schemes. The table shows that the encryption and decryption times of our LaSS-based construction,
instantiated using AES, are much less than the encryption and decryption times of the LaPS and SLAP
scheme. In addition to that, the encryption and decryption time of the LaSS-based scheme is independent of
the size of the underlying plaintext space. This is not the case for the LaPS and SLAP scheme, since a larger
plaintext space requires larger LWE parameters and therefore results in longer encryption and decryption
times.

The evaluation times of the LaPS and SLAP scheme are dependent on the size of the plaintext space but
they do not seem to be dependent on the number of users in the system. This is due to the fact that the size
of the secret key of every user is constant, and overall linear, in the number of users in the system. On the
other hand, the secret key size of the LaSS-based construction is linear, and overall quadratic, in the number
13 To allow for a better comparison with the results of Becker et al. [BGZ18] and Takeshita et al. [TKGJ20], we also

implement our scheme using the Laplace distribution.
14 Note that their scheme was implemented in C++ and benchmarked using slightly better hardware which only

boosts its performance.
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of users in the system. This results in a dependence between the encryption and decryption time and the
number of users. Therefore we present additional performance evaluations depending on the number of users
in Table 2.

AES SHA-3
n Enc. Dec. Enc. Dec.
102 0.057 0.043 0.158 0.137
103 0.539 0.509 1.868 1.654
104 7.418 6.906 18.920 17.323

Table 2: Performance comparison for p = 264 of our PRF-based PSA scheme, instantiated using AES and
SHA-3. Times given in ms.

6.2 Many-Times Model

For the implementation of the MCFE-based PSA scheme, we used the implementations of the GoFe li-
brary [GOF].15 The 80-bit security is achieved by using a standard choice of 2048-bit groups in which the
DDH assumption or the DCR assumption is believed to be hard. For the LWE instantiation, the parameters
are chosen as described in the work of Agrawal et al. [ALS16].

DDH Paillier LWE
p Enc. Dec. Enc. Dec. Enc. Dec.
22 24.83 12798 39.06 47342 673 2355
216 24.83 12802 39.06 47342 80245 220112
264 24.83 n/a 39.06 47342 n/a n/a

Table 3: Comparison for n = 1000 of our MCFE-based construction instantiated using DDH, Pallier and
LWE. Times given in ms.

Table 3 shows that the performance of the MCFE-based constructions is much worse than the performance
of the PRF-based construction. This is due to the more complex structure of MCFE schemes compared to
the simple PRF-based construction. For the DDH instantiation, it is also worth mentioning that a discrete
logarithm computation is required, which takes approximately 3ms for p = 216 and 1s for p = 232, using
the baby-step giant-step algorithm. For p = 264, this computation is out of reach for a laptop. Since the
MCFE-based construction is black-box and several inner-product MCFE schemes have recently been proposed,
it is likely that more efficient inner-product MCFE schemes will be available in the future. Using these
schemes as the instantiation for our MCFE-based construction will result in better performance.

7 Extensions

In this section, we highlight some extensions that are easily achievable by the presented schemes.

Extended Functionality. The presented LaSS scheme can easily be adapted to allow for a multiplicative
secret sharing of 1
15 More details on the library can also be found in [MSH+19].
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The shares in this scheme would then be computed as si,` :=
∏
j 6=i(PRFki,j (`))(−1)j<i (or si,` :=∏

j 6=i(H(ki,j‖`))(−1)j<i for the scheme in the ROM) and the Add procedure using xi would be defined
as Add(si,`, xi) := si,` · xi. The presented proof of security for the additive scheme can be straightforwadly
adapted to the presented multiplicative one.

Instantiating our black-box compiler (Fig. 12) using the described scheme results in a PSA scheme that
allows for the multiplication of the plaintexts of the users.

Such a straightforward adaption is not possible for every PSA scheme.

Vector Inputs. We can also extend our LaSS scheme such that the shares are vectors of dimension m
(si,` ∈ Zmp ) instead of scalars (si,` ∈ Zp). This would result in the fact that the Add procedure can also take
vectors x of dimension m as an input. Using such a LaSS scheme to instantiate our compiler in Fig. 12 would
allow for the construction of a PSA scheme that is able to handle vectors.

To still achieve (semi-)adaptive security for the LaSS construction, we need to replace the PRF, or
respectively the hash function, with a PRF, or a hash function, that has Zmp as a target space.

Public Aggregation. To allow for public aggregation in the LaSS-based construction, we only need to
establish shared keys between the different users that encrypt messages. The decryption function is then the
reconstruction procedure of the LaSS scheme taking all the ciphertexts of the different users as an input.

For the MCFE-based construction, we can achieve public aggregation by publishing the functional key for
the one vector 1, this enables every user in the system to decrypt a set of ciphertexts.

Decentralization and Dynamic Joins and Leaves. Another possible extension is the decentralization of
the setup procedure. To achieve this in the LaSS-based construction we simply execute several key exchange
protocols between the different users. This ensure that every user is in the possession of a shared key with all
the other users but their exists no trusted party that has knowledge of all the generated keys16.

For the MCFE-based PSA scheme we can achieve decentralization by using a decentralized multi-client
functional encryption (DMCFE) scheme [ABG19,LT19,CDG+18a,CDG+18b,ABKW19] as the underlying
MCFE scheme. In a DMCFE scheme the setup is decentralized and the generation of functional keys require
the participation of all the users in the system. Combining these two aspects results in a decentralized setup
in our PSA scheme. By relying on a dynamic decentralized multi-client functional encryption (DDMCFE)
scheme [CDSG+20], it is even possible to allow for dynamic joins and leaves. This has already been mentioned
in [CDSG+20].

8 Conclusion

In this work, we showed how to construct a simple PSA scheme that relies on minimal assumptions and
achieves the standard notion of AO-security. We presented stronger notions of AO-security and showed how
to construct schemes that fulfill these stronger notions based on MCFE. In the process, we revisited the
work by Becker et al. [BGZ18] and pointed out important shortcomings in their scheme and security analysis,
which does not provide security guarantees when users are allowed to encrypt multiple messages. Finally,
we compared an implementation of our results with other existing PSA schemes. Taking all into account,
it shows that our work significantly improves over prior work in terms of practical efficiency, security and
complexity assumptions.

Acknowledgments

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme
FENTEC (Grant Agreement no. 780108).
16 In the case that there exists a single party that generates the shared keys, this entity can also break the privacy of

all the users in the system.

24



References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner
products. In PKC 2015, LNCS 9020, pages 733–751. Springer, Heidelberg, March / April 2015. (Page 1.)

ABG+13. P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation and applications.
Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689. (Page 1.)

ABG19. M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-product functional
encryption. In ASIACRYPT 2019, Part III, LNCS 11923, pages 552–582. Springer, Heidelberg, December
2019. (Pages 1, 4, 5, 6, 9, 13, 15, 21, and 24.)

ABKW19. M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing inner-product functional
encryption. In PKC 2019, Part II, LNCS 11443, pages 128–157. Springer, Heidelberg, April 2019. (Pages 4,
5, 6, 9, and 24.)

ABM+20. M. Abdalla, F. Bourse, H. Marival, D. Pointcheval, A. Soleimanian, and H. Waldner. Multi-client inner-
product functional encryption in the random-oracle model. In SCN 20, LNCS 12238, pages 525–545.
Springer, Heidelberg, September 2020. (Pages 1, 5, and 21.)

ÁC11. G. Ács and C. Castelluccia. I have a dream! (differentially private smart metering). In Information Hiding,
pages 118–132, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. (Pages 4 and 5.)

ACF+18. M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for inner
products: Function-hiding realizations and constructions without pairings. In CRYPTO 2018, Part I,
LNCS 10991, pages 597–627. Springer, Heidelberg, August 2018. (Pages 1, 4, 5, 12, and 21.)

AGRW17. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product functional encryption from
pairings. In EUROCRYPT 2017, Part I, LNCS 10210, pages 601–626. Springer, Heidelberg, April / May
2017. (Pages 1, 5, 6, and 21.)

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard
assumptions. In CRYPTO 2016, Part III, LNCS 9816, pages 333–362. Springer, Heidelberg, August 2016.
(Pages 1 and 23.)

BCFG17. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic functions
with applications to predicate encryption. In CRYPTO 2017, Part I, LNCS 10401, pages 67–98. Springer,
Heidelberg, August 2017. (Page 1.)

BGV12. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In ITCS 2012, pages 309–325. ACM, January 2012. (Page 6.)

BGZ17. D. Becker, J. Guajardo, and K.-H. Zimmermann. Somar: Privacy-preserving social media advertising
architecture. In Proceedings of the 2017 on Workshop on Privacy in the Electronic Society, WPES ’17,
page 21–30, New York, NY, USA, 2017. Association for Computing Machinery. (Page 6.)

BGZ18. D. Becker, J. Guajardo, and K.-H. Zimmermann. Revisiting private stream aggregation: Lattice-based
PSA. In NDSS 2018. The Internet Society, February 2018. (Pages 3, 4, 6, 8, 21, 22, and 24.)

BJK15. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product encryption. In ASIACRYPT 2015,
Part I, LNCS 9452, pages 470–491. Springer, Heidelberg, November / December 2015. (Page 1.)

BJL16. F. Benhamouda, M. Joye, and B. Libert. A new framework for privacy-preserving aggregation of time-series
data. ACM Trans. Inf. Syst. Secur., 18(3), March 2016. (Pages 4 and 6.)

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011,
LNCS 6597, pages 253–273. Springer, Heidelberg, March 2011. (Page 1.)

CDG+18a. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client functional
encryption for inner product. In ASIACRYPT 2018, Part II, LNCS 11273, pages 703–732. Springer,
Heidelberg, December 2018. (Pages 1, 4, and 24.)

CDG+18b. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Multi-client functional encryption
with repetition for inner product. Cryptology ePrint Archive, Report 2018/1021, 2018. https://eprint.
iacr.org/2018/1021. (Pages 1, 5, 6, 9, 21, and 24.)

CDSG+20. J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval. Dynamic decentralized functional
encryption. In CRYPTO 2020, Part I, LNCS 12170, pages 747–775. Springer, Heidelberg, August 2020.
(Pages 1, 5, and 24.)

CSS12. T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with fault tolerance. In FC
2012, LNCS 7397, pages 200–214. Springer, Heidelberg, February / March 2012. (Pages 5 and 6.)

CSW20. M. Ciampi, L. Siniscalchi, and H. Waldner. Multi-client functional encryption for separable functions.
Cryptology ePrint Archive, Report 2020/219, 2020. https://eprint.iacr.org/2020/219. (Page 13.)

FV12. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive,
Report 2012/144, 2012. http://eprint.iacr.org/2012/144. (Page 6.)

25

http://eprint.iacr.org/2013/689
https://eprint.iacr.org/2018/1021
https://eprint.iacr.org/2018/1021
https://eprint.iacr.org/2020/219
http://eprint.iacr.org/2012/144


Gay20. R. Gay. A new paradigm for public-key functional encryption for degree-2 polynomials. In PKC 2020,
Part I, LNCS 12110, pages 95–120. Springer, Heidelberg, May 2020. (Page 1.)

GGG+14. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou. Multi-
input functional encryption. In EUROCRYPT 2014, LNCS 8441, pages 578–602. Springer, Heidelberg,
May 2014. (Pages 1 and 8.)

GGH+13. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013. (Page 1.)

GGHZ16. S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Functional encryption without obfuscation. In TCC 2016-A,
Part II, LNCS 9563, pages 480–511. Springer, Heidelberg, January 2016. (Page 1.)

GGM86. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM,
33(4):792–807, October 1986. (Page 10.)

GOF. Gofe - functional encryption library. (Page 23.)
HPS98. J. Hoffstein, J. Pipher, and J. H. Silverman. Ntru: A ring-based public key cryptosystem. In Algorithmic

Number Theory, pages 267–288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. (Page 6.)
JK12. M. Jawurek and F. Kerschbaum. Fault-tolerant privacy-preserving statistics. In PETS 2012, LNCS 7384,

pages 221–238. Springer, Heidelberg, July 2012. (Pages 5 and 6.)
JKD12. M. Jawurek, F. Kerschbaum, and G. Danezis. Privacy technologies for smart grids - a survey of options.

Technical Report MSR-TR-2012-119, Microsoft, November 2012. (Page 6.)
JL13. M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of time-series data. In FC

2013, LNCS 7859, pages 111–125. Springer, Heidelberg, April 2013. (Page 6.)
KDK11. K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for the smart-grid. In PETS 2011,

LNCS 6794, pages 175–191. Springer, Heidelberg, July 2011. (Pages 4 and 5.)
KLM+18. S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu. Function-hiding inner product

encryption is practical. In SCN 18, LNCS 11035, pages 544–562. Springer, Heidelberg, September 2018.
(Page 1.)

LPR10. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In
EUROCRYPT 2010, LNCS 6110, pages 1–23. Springer, Heidelberg, May / June 2010. (Page 6.)

LSL+13. M. Lu, Z. Shi, R. Lu, R. Sun, and X. S. Shen. Pppa: A practical privacy-preserving aggregation scheme
for smart grid communications. In 2013 IEEE/CIC International Conference on Communications in
China (ICCC), pages 692–697, 2013. (Page 6.)

LT19. B. Libert and R. Titiu. Multi-client functional encryption for linear functions in the standard model from
LWE. In ASIACRYPT 2019, Part III, LNCS 11923, pages 520–551. Springer, Heidelberg, December 2019.
(Pages 1, 4, 5, 21, and 24.)

MSH+19. T. Marc, M. Stopar, J. Hartman, M. Bizjak, and J. Modic. Privacy-enhanced machine learning with
functional encryption. In ESORICS 2019, Part I, LNCS 11735, pages 3–21. Springer, Heidelberg, September
2019. (Page 23.)

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556,
2010. http://eprint.iacr.org/2010/556. (Page 1.)

RZL+13. Ruixue Sun, Zhiguo Shi, R. Lu, Min Lu, and X. Shen. Aped: An efficient aggregation protocol with
error detection for smart grid communications. In 2013 IEEE Global Communications Conference
(GLOBECOM), pages 432–437, 2013. (Page 6.)

SCR+11. E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation of time-series
data. In NDSS 2011. The Internet Society, February 2011. (Pages 1, 2, 5, 6, 7, and 8.)

Sha01. C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun.
Rev., 5(1):3–55, 2001. (Page 11.)

SSL+15. Z. Shi, R. Sun, R. Lu, L. Chen, J. Chen, and X. Sherman Shen. Diverse grouping-based aggregation protocol
with error detection for smart grid communications. IEEE Transactions on Smart Grid, 6(6):2856–2868,
Nov 2015. (Page 6.)

TKGJ20. J. Takeshita, R. Karl, T. Gong, and T. Jung. Slap: Simple lattice-based private stream aggregation
protocol. Cryptology ePrint Archive, Report 2020/1611, 2020. https://eprint.iacr.org/2020/1611.
(Pages 6 and 22.)

VA18. F. Valovich and F. Aldà. Computational differential privacy from lattice-based cryptography. In Number-
Theoretic Methods in Cryptology, pages 121–141, Cham, 2018. Springer International Publishing. (Pages 6
and 8.)

Wat15. B. Waters. A punctured programming approach to adaptively secure functional encryption. In
CRYPTO 2015, Part II, LNCS 9216, pages 678–697. Springer, Heidelberg, August 2015. (Page 1.)

26

http://eprint.iacr.org/2010/556
https://eprint.iacr.org/2020/1611


Wic15. D. Wichs. Lecture 1: Perfect secrecy and statistical authentication. In CS 7880 Graduate Cryptography,
2015. (Page 11.)

27



A Proof of Theorem 5.4

Proof. We construct an adversary B against the any-IND security of the scheme MCFE.
If A asks a query QComp(i), B distinguishes between two different cases, depending on the user i queried

to the oracle:

1. For i ∈ [n], B asks a query QCor′(i) to its corruption oracle and obtains the key ski, which it forwards to
A.

2. If i = 0, B asks a query QKeyG′(1), with 1 = (1, . . . , 1) to its key derivation oracle. The challenger replies
with sk1, which B sets as the aggregator key, sk0 := sk1 and forwards it to A.

Whenever A asks encryption oracle queries QEnc(i, xi, t) or left-right oracle queries QLeftRight(i, x0
i , x

1
i , t

?),
B forwards the queries to its own corresponding oracles QEnc′ or QLeftRight′. As an answer for an encryption
oracle query, B receives cti,t and for a left-right oracle query it receives ctβi,t. B forwards the received ciphertext
to A.

It is straightforward to see that the adversary B perfectly simulates the str-IND security game for PSA to
A. Hence, we have:

Advstr-AO
PSA,A (λ, n) ≤ Advany-IND

MCFE,B (λ, n) .

ut
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