
Ariadne Thread and Salt: New Multivariate
Cryptographic Schemes with Public Keys in

Degree 3

Gilles Macario-Rat1 and Jacques Patarin2

1 Orange, Orange Gardens, 46 avenue de la République, F-92320 Châtillon, France
gilles.macariorat@orange.com

2 Versailles Laboratory of Mathematics, UVSQ, CNRS, University of Paris-Saclay
jpatarin@club-internet.fr

Abstract. In this paper, we present two new perturbations for the de-
sign of multivariate schemes that we call “Ariadne Thread” and “Salt”.
From these ideas, we present some efficient multivariate encryption and
signature schemes with explicit parameters that resist all known attacks.
In particular they resist the two main (and often very powerful) attacks in
this area: the Gröbner attacks (to compute a cleartext from a ciphertext)
and the MinRank attacks (to recover the secret key). Ariadne Threat and
Salt can also be seen as new “perturbations” that we can use to enforce
many multivariate schemes. The “Salt” perturbation works only for pub-
lic key equations of degree (at least) 3. Similarly at present the “Ariadne
Thread” perturbation seems to be particularly powerful with public keys
of degree 3. Despite this, the size of the public key may still be reason-
able since we can use larger fields (and also maybe non dense equations).
Ariadne Thread perturbation seems to be particularly interesting for en-
cryption. This is unusual since in multivariate cryptography encryption
is generally more difficult than signatures.

Keywords: public-key cryptography, post-quantum multivariate cryptography,
UOV, HFE, AES.

1 Introduction

Many schemes in Multivariate cryptography have been broken. Among the most
spectacular attacks we can mention that the C* scheme of Matsumoto and Imai
[14] has been broken in [16], the SFlash scheme submitted to the NESSIE compe-
tition has been broken in [6, 10, 11] , the LUOV scheme [5] submitted to the Post-
Quantum NIST competition has been broken in [8], and the GeMMS schemes
[7] has been broken in [18]. At present the two main general attacks in multi-
variate cryptography are the use of Gröbner bases in “direct attacks” (in order
to find a solution of the public equations involved without finding the secret
key, cf [12]), and the MinRank attacks in order to find the secret key [13, 2]. In
many schemes the Gröbner attack is dangerous because the degree of regularity

of the public equations is smaller than for random quadratic equations. Recently
the MinRank attacks have become much more powerfull than before due to the
introduction of the Minor equations [2].

Despite these dangerous and powerful attacks, multivariate cryptography re-
mains an interesting area of research. This is mainly due to three facts. First,
the schemes, if they can resist non-quantum attacks, are also expected to re-
sist quantum computers, i.e. multivariate cryptography is one of the family of
“post-quantum” cryptography (with lattices, codes, hash-based cryptography,
isogenies, combinatorial schemes). Second, the MQ problem (solving a set of
Multivariate Quadratic equations on finite field) is NP-hard on any finite field,
and seems to be very difficult to solve when the equations are random and the
number of variables is about the same as the number of equations. Third, some
properties can be obtained at present only with multivariate cryptography such
as ultra-short public-key signatures, or encryption with ultra-short blocs [15].

In this paper, we present two new tools that can be useful to design multivari-
ate encryption scheme, or to enforce the security of any multivariate encryption
scheme. We call these ideas “Ariadne Thread” and “Salt”. At present it is easier
to design public key multivariate signature schemes than public key multivariate
encryption schemes, therefore it is nice to have new encryption possibilities.

2 Ariadne Thread and Salt: main ideas

2.1 Notations

As in all classical multivariate schemes, we use a finite field Fq with q elements
and we deal with the ring of polynomials in n variables (x1, . . . , xn) (or simply
x) over Fq, noted Fq[x]. Therefore here Fq[x]m will refer to the ring module of
n-ary m-dimensional polynomials, that we call (n,m)-polynomials for short. We
note deg(f) the degree of a polynomial f . Classically by extension, the degree
of a (n,m)-polynomial is the maximum degree of its (n, 1)-components. In the
particular case n = m, by the mean of an adequate isomorphism between Fnq
and Fqn , we could note xq

i

the i-th iterate Frobenius mapping, considered as a
(n, n)-polynomial of degree 1.

2.2 The tweak

We start from some trapdoor scheme, y = f(x), where f is a degree-d (n,m)-
polynomial that we can invert somehow. Typical examples of f are HFE and
UOV among many others, but for the sake of our presentation, we can stick to
a generic f . Our purpose is to add a perturbation to f , in order to get a new
scheme, with stronger security, and in particular dismiss all possible ”low rank”
issues. We will discuss this point hereafter. Classical schemes have degree 2 such
as HFE or UOV; we will consider here larger degrees, mainly d = 3, that provide
more interest to our new perturbation.

We now introduce our new “tweak”: p(x)P (x), where p and P are respectively
random (n, 1)- and (n,m)-polynomials. We also require that deg(p)+deg(P) = d.

2

The new trapdoor can be expressed as f̃(x) = f(x) + p(x)P (x). The advantages
of this new trapdoor are the followings.

– Its degree is still at most d.

– Whatever the degree of p, p(x) can only take q values (those of Fq). In turn,
it follows immediately that p(x)P (x)

1. has probability about 1/q to be zero, relatively to x,

2. can be approximate by a set : S = {aP : a ∈ Fq} of q polynomials.

– It gives the opportunity to design “high rank” schemes, since the polynomials
p and P may be chosen adequately, and therefore thwarts the MinRank
attacks.

2.3 Ariadne Thread for encryption

The Ariadne perturbation is the conjunction of our new tweak and a special
mode of operation. In this mode, to invert the trapdoor y = f(x) + p(x)P (x),
we assume that p(x) = 0. Then, we are led to simply solve y = f(x). So, we
compute a first set S0 of potential solutions of y = f(x) with the appropriate
method, and keep the only solutions S1 = {x ∈ S0|p(x) = 0}. Notice here, that
in a single inversion, there is only a probability of about 1/q that one gets a
correct solution. The rest of the time, one gets unwanted solutions, or even no
solution at all. However, with multiple inversions in an adequate protocol, this
mode of operation is suitable for encryption as we will show later.

Remark 1. On the contrary, we explain here why Ariadne Thread is not suitable
for the signature mode. Indeed, the signature mode would reveal publicly couples
of the kind (mi, σi) satisfying mi = P(σi). Then all the signatures σi must
also satisfy some equation p′(σ) = 0, where p′ is a (n, 1)-polynomial related to
the secret key. If enough signatures are known, a linear system leading to the
coefficients of p′ can be solved, so the key is broken.

2.4 Salt for signature

The Salt perturbation is the conjunction of the same tweak, but a different mode
of inversion. In order to invert the trapdoor y = f(x) + p(x)P (x), we make an
exhaustive search on all the q possible values of p(x). For one possible value a, we
simply invert y = f(x) +aP (x), and keep only the solutions satisfying p(x) = a.
Of course, we have made here the additional assumption that y = f(x) + aP (x)
is indeed efficiently invertible. This assumption is highly related to the choice of
the initial scheme f but not difficult to fulfil. For instance, for HFE, it suffices
to assume that the polynomial P has “HFE” shape, or for UOV, it is “UOV-
compatible”, etc. This mode of operation is more suitable for signature, and
costs also a factor q compared to the original scheme.

3

3 Security analysis of Ariadne and Salt in degree 2

We first give a word about these new perturbations when d = 2, and show
that they have not much interest in this case. We analyse them particularly
in the light of the HFE and UOV schemes, but the analyse can certainly be
generalized to other schemes. The most restrictive condition we have to fulfil is
deg(p) + deg(P) = 2, then we can imagine:

– deg(p) = 0, deg(P) = 2. We skip this case, since p must be constant and
therefore does not add entropy.

– deg(p) = 1, deg(P) = 1. In this case p and P are linear. For HFE and re-
garding the MinRank Attack, this perturbation simply increases the rank of
the secret polynomial by an amount of 1, which is not competitive, since the
perturbation already costs a factor q. For UOV, this perturbation amounts to
transform 1 ‘oil’ variable into 1 ‘vinegar’ variable, which is useless compared
to the original scheme.

– deg(p) = 2, deg(P) = 0. Here, p is a random quadratic form, P is a random
element of Fnq . This case has already been described in literature as the “+”
perturbation, i.e. adding a small amount of random quadratic polynomials
to the original scheme. The effect of this perturbation can be cancelled by
considering the adequate projection, and the natural isomorphism between
Fnq and Fqn :

y = f(x) + p(x)P
yq = f(x)q + p(x)P q

yP q − yqP = f(x)P q − f(x)qP

In particular, regarding the Gröbner basis computation attack, this shows,
that the degree of regularity does not increase compared to the one of y =
f(x)

4 Security analysis of Ariadne and Salt in degree 3:
Gröbner and MinRank

4.1 Grobner

Our motivation for this new perturbation and particularly our interest in degree
3, lies in the behavior of Gröbner basis algorithms (see [1]). First, theory and also
experiment can show that for “big enough” q, the degree Dreg of regularity of a
random (n, n)-polynomial f of degree 3 is 2n+1. This can be infer from the index
of the first non-negative coefficient of the Hilbert series: H(z) = (1−z3)n/(1−z)n
[1]. The complexity of solving a random system by Gröbner basis, of n equations

in n variables of degree 3 over Fq can be estimated as
(
n+Dreg

n

)ω
, where ω is

the greatest lower bound for the exponent of matrix multiplication algorithm.
Taking into account the field equations xqi − xi = 0, we get a more accurate
formula for our case: Dreg = min(2n+1, q). So for q big enough, we clearly hope
to have smaller n in degree 3 than in degree 2 for same level of security.

4

4.2 Minrank

In degree 3, we consider that the most useful definition of rank that should
apply to a (n, n)-polynomial f in our case, is the minimum r of “elemen-
tary” products occurring in a sum that amounts to f , or so to say : f(x) =∑r
i=1 a3i−2(x)a3i−1(x)a3i(x), where ai(x) are degree-1 (n, n)-polynomials. Since

d = 3, the condition deg(p) + deg(P) = d can non trivially be fulfilled with
(deg(p) = 2 and deg(P) = 1) or (deg(p) = 1 and deg(P) = 2). The (classical)
rank of a random degree-2 (n, 1)- or (n, n)- polynomial is n, with overwhelming
probability. Hence, the rank of the tweak and therefore of the secret trapdoor,
can be provably set to a value greater than n.

5 HFE-Ariadne in degree 3: examples of parameters and
security results

We now propose a variant of HFE in degree 3 using the Ariadne Thread pertur-
bation, for encryption mode.

5.1 Description of HFE-Ariadne

In this particular case, we have n = m, which enables us to use a natural
isomorphism between Fnq and Fqn . We set f(x) = xq+2 + αx3, a cubic binomial,

α being chosen randomly in Fqn . The secret trapdoor is then f̃(x) = xq+2+αx3+
p(x)P (x), with deg(p) = 1, and deg(P) = 2. The public key is a composition
P = S ◦ f̃ ◦ T where S and T are two secret linear bijective maps of Fnq . The
secret key is a description of α, p, P , S and T . Typical values of the parameters
q and n are below 100, around 30 for instance. See below the Rationale section
for parameter selection and further explanation.

5.2 Encryption protocol

We now describe the process for encryption and decryption. Alice and Bob first
agree on a public symmetric cipher such as AES, that we note E(K,X) and
where K is the symmetric key and X is a binary representation of the clear text.
The role of the symmetric cipher it to prevent an attacker from deriving algebraic
equations issued from many related inputs. Then Alice and Bob agree on a suffi-
ciently large amount of symmetric keys Ki, and also a value l. The way Alice and
Bob make the agreement is not important, the cipher and the keys have just to be
public, or at least known by Alice and Bob at the right time. Alice wants to send
confidentially a message to Bob. To do so, she embeds the message into X and
sends the list of the first l computed values yi = P(E(Ki, X)), i = 1, . . . , l. The
reason for doing so, is that, with high probability the Ariadne Thread condition
be satisfied, namely one or more values satisfy p(T (E(Ki, X))) = 0. Individu-
ally, the condition has roughly a probability 1/q to be fulfilled, so the list should

5

have around q elements, that is l ≈ q. Then for each received value yi, Bob com-
putes all the solutions in z of f(z) = S−1(yi) and keeps the potential messages
E−1(Ki, T

−1(z)), for z satisfying p(z) = 0. To manage the detection of correct
decryption, Alice and Bob can adopt for instance one of these strategies:

– X is the message and Bob decrypts until two potential messages are equal.
– A part of X is reserved for a message authentication code (MAC), and Bob

decrypts until one of the potential messages has the correct MAC.

In the event of failure, Bob may ask Alice to renew the list by using the next l
keys. Fortunately, the probability of many retries decreases exponentially. More-
over Bob should also randomly ask Alice for a retry even in case of success, with
an adequate probability, so that an eavesdropper may not distinguish the cases
with failure from the successful ones.

5.3 Rationale, sizes and performance

One major interest of the Ariadne-perturbation is that it thwarts the MinRank
attack. So we should only be concerned by direct attacks. We observed for small
values of n (up to 7 for which the complexity is still achievable), that the behav-
ior of F4 algorithm which computes solutions of P(x) = y is the same for random
systems with same dimensions (same number of equations and variables). There-
fore, we hypothesized that this result could be generalized to higher values of n,
and also that hybrid attacks [3] (combination of Gröbner basis and exhaustive
search), should be the best option for an attacker. We used the Magma script
in appendix that gives the complexity of such attack, based on the fact that the
complexity can be upper bounded by

(
n+Dreg

n

)ω
, and that Dreg, the degree of

regularity of the system can be evaluated by a Hilbert series.
For the HFE polynomial, we can choose the smallest degree possible (over

Fqn), but we do not recommend only one monomial, so it should have at least
two monomials, in order to avoid attacks such as the ones against C∗ and SFlash,
hence the choice xq+2 +αx3. If one needs a non homogeneous version, then it is
possible to add the monomials in xq+1, xq, x2, and x.

We note λ the security level. We should choose the parameters n and q such as
the least complexity of hybrid attacks is above 2λ. Then, there are many ways
to choose (q, n), which give different balances between size and performance.
For instance we propose the following sets of parameters for a level of security
λ = 128 (assuming ω = 2.37).

– q = 5, n = 56, the size of public keys is 648 Kbytes, average decryption takes
0.09s, and average encryption 2.5s.

– q = 7, n = 47, size is 325 Kbytes, average decryption takes 0.28s, and average
encryption 1.7s.

– q = 11, n = 40, size is 230 Kbytes, average decryption takes 1s, and average
encryption 1,3s.

– q = 13, n = 39, size is 208 Kbytes, average decryption takes 2s, and average
encryption 1.4s.

6

Of course, encryption and decryption are highly parallelizable, and could benefit
from multi-core CPUs.

6 UOV-Salt in degree 3: example of parameters and
security results

We now propose a variant of UOV using the Salt perturbation and degree 3, for
signature mode.

6.1 Description of UOV-Salt

In what follows, no and nv are respectively the number of oil and vinegar vari-
ables. We note n = no + nv, and the different variables xo = (x1, . . . , xno),
xv = (x1+no , . . . , xn), x = (x1, . . . , xn).

We set f(x) =
∑no

i=1 xiQi(xv) + C(xv), the “classical” UOV trapdoor ex-
tended in degree 3, where Qi are random degree-2 (nv, no)-polynomials, C is a
random degree-3 (nv, no)-polynomial. This is the same idea as in the original
scheme: the trapdoor is linear in xo, hence it can easily be inverted if xv is set.
The UOV perturbed scheme becomes: f̃(x) = f(x) + p(x)P (x), where p is a
degree-2 (n, 1)-polynomial, P is a degree-1 (n, no)-polynomial compatible with
the UOV structure. More precisely P (x) =

∑no

i=1 αixi + L(Xv) where the αi are
random elements of Fno

q and L is a random degree-1 (nv, no)-polynomial. One
can easily check that when xv is set and p is guessed, the perturbed trapdoor
can be inverted as claimed. The public key is a composition P = f̃ ◦ T where
T is some secret linear bijective map over Fnq . The secret key is a description of
Qi, C, p, P and T . See below the Rationale section for parameter selection and
further explanation.

6.2 Signature protocol

To sign a value y, the signer aims to find a value z such as P(z) = y, or equiv-
alently find x such as f̃(x) = y. In order to invert the trapdoor, the signer
chooses at random xv, makes all the q possible “guesses” on p(x), invert each
linear system on xo, (if possible), and stops as soon as one guess on p(x) is
correct, otherwise makes a new choice for xv. Then, once a value x is found,
the signer outputs z = T−1(x). To verify a signature z of y, the verifier, simply
checks that P(z) = y.

6.3 Rationale, sizes and performance

The direct attack using Gröbner basis computation can be performed by fixing
nv variables out of n. The resulting system has no equations in no variables and
we estimate with simulation that it behaves with F4 like a random system as
soon as nv ≥ no. So, the solving complexity of hybrid attacks can be used when
no = nv. We estimate that the Salt perturbation thwarts the Kipnis-Shamir

7

attack, and as a rule of thumb, that qnv > 2λ and qno > 22λ should be sufficient
to thwart other obvious attacks. We expect to have a more precise evaluation of
these points in the future.

There are many ways to choose the parameters. So, for a security level of λ =
128, (assuming ω = 2.37) we propose the following parameters: q = 821, no = 27,
nv = 27. The public key size is 914 Kbytes, a signature size is (27+27)∗10 = 540
bits (each element of F821 is coded on 10 bits). On our Magma simulation, on
average, a signature takes 330 ms and a verification 130 ms.

Here also the signature is parallelizable and could take benefit from multi-
core CPUs.

6.4 Shorter signature thanks to UOV

In the previous section, we assumed that the input size of the signature function
was twice the size of the security level, which enables to “plug” the output of a
hash function of the same size, instead of the message itself, whenever the size
of the message exceeds this size. This is the classical mode of signature using a
hash function. In this section, we show how to reduce the size of the signature
by exploiting the special property of UOV, which is that the inversion of UOV
is based on the linearity of the oil variables.

Let’s now suppose that y is the hash to sign, its size is at least 2λ bits as
expected. Say it can be expressed as n′ elements of Fq. We define an UOV-Salt
scheme P as previously, with a parameter no satisfying qno ≈ 2λ (instead of
22λ previously). So P(x) is a (n, no)-polynomial. We now introduce a public
function L(x, y) : Fnq ×Fn′

q 7→ Fno
q . We require this function to have the following

properties : to be affine in x, to be easy to compute, and to be collision-free with
good probability. First we may write : L(x, y) = g0(y) +

∑n
i=1 xigi(y) which is

by design affine in x. Then for instance the public functions gi may be random
degree-1 (n′, no)-polynomials. Or, in order to avoid to describe them, they can
be simulated by a pseudo random generator with adequate output size, with y
used as a seed.

Now, to sign a value y, the signer must find a value z satisfying P(z) = L(z, y)
and proceeds as follows. As y is given, the term L(z, y) is evaluated in y and
the equation becomes P(z) = α0 +

∑n
i=1 αizi, where the αi belong to Fno

q .
Solutions in z can be found with the same method as before: make the change
of variables z = T−1(x), draw vinegar variables at random, guess p(x), solve the
system in degree 1 obtained in the oil variables, check if p(x) is correct, then go
back in z variable. To verify a signature z of y, the verifier, simply checks that
P(z) = L(z, y).

For a security level of λ = 128, we propose the following parameters: q =
8, no = 45, nv = 45. The public key size is 2070 Kbytes, the signature is
(45 + 45) ∗ 3 = 270 bits.

8

6.5 Variants and further directions

An immediate generalization of our idea is to replace the tweak p(x)P (x) by a
sum with similar terms:

∑s
i=1 pi(x)Pi(x), where s is a small number. This variant

seems to have significant effects on the signature scheme. First, the impact on
the performance is clearly a slow down of factor qs on the search of a signature.
However, it has also an impact on the security, since it “hides” more deeply the
trapdoor inside the public key. It seems that it could compensate for a decrease
of the number of vinegar variables. For instance, for the same level λ = 128, we
may propose the following parameters: q = 8, s = 3, no = 45, nv = 42. The
public key size is 1917 Kbytes, the signature is (45 + 42) ∗ 3 = 261 bits. Further
investigations are ongoing.

7 Conclusion

“Ariadne Thread” and “Salt” are two new tool in Multivariate cryptography.
From these ideas we have obtained multivariate scheme for encryption and sig-
nature with very nice properties: they are fast, have a reasonable size of public
key, and they resist all the known attacks in multivariate cryptography. We think
that it is particularly important to notice that MinRank attacks are thwarted.
However since these ideas of “Ariadne Thread” and “Salt” are very new, and
since many failures have occurred in multivariate cryptography it is natural to
be suspicious about these ideas and to want to wait for more analysis before
using these schemes in real life applications. The fact in this paper we use public
equations of degree 3 (instead of 2 usually in multivariate cryptography) might
also open the door to new and powerful attacks. . .

References

1. Bardet M., Faugère JC., Salvy B. (2015). On the complexity of the F5 Gröbner
basis algorithmJournal of Symbolic Computation, 70, 49 - 70.

2. Bardet M. et al. (2020) Improvements of Algebraic Attacks for Solving the Rank De-
coding and MinRank Problems. In: Moriai S., Wang H. (eds) Advances in Cryptol-
ogy – ASIACRYPT 2020. ASIACRYPT 2020. Lecture Notes in Computer Science,
vol 12491. Springer, Cham. https://doi.org/10.1007/978-3-030-64837-4_17

3. Bettale L., Faugère JC., Perret L. (2009). Hybrid approach for solving multivariate
systems over finite fieldsJ. Math. Cryptol., 3(3), 177–197.

4. Beullens W. (2020). Improved Cryptanalysis of UOV and Rainbow. IACR Cryptol.
2020: 1343. https://eprint.iacr.org/2020/1343

5. Beullens W., Preneel B. (2017) Field Lifting for Smaller UOV Public Keys. In: Patra
A., Smart N. (eds) Progress in Cryptology – INDOCRYPT 2017. INDOCRYPT
2017. Lecture Notes in Computer Science, vol 10698. Springer, Cham. https://

doi.org/10.1007/978-3-319-71667-1_12
6. Bouillaguet C., Fouque PA., Macario-Rat G. (2011) Practical Key-Recovery for

All Possible Parameters of SFLASH. In: Lee D.H., Wang X. (eds) Advances
in Cryptology – ASIACRYPT 2011. ASIACRYPT 2011. Lecture Notes in Com-
puter Science, vol 7073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/
978-3-642-25385-0_36

9

7. Casanova A., Faugère JC., Macario-Rat G., Patarin J., Perret L., Ryckeghem J.
(2017). GeMSS: A Great Multivariate Short Signature. Research Report. UPMC -
Paris 6 Sorbonne Universités ; INRIA Paris Research Centre, MAMBA Team, F-
75012, Paris, France ; LIP6 - Laboratoire d’Informatique de Paris 6, https://hal.
inria.fr/hal-01662158,

8. Ding J., Deaton J., Schmidt K., Vishakha, Zhang Z. (2020) Cryptanalysis of
the Lifted Unbalanced Oil Vinegar Signature Scheme. In: Micciancio D., Risten-
part T. (eds) Advances in Cryptology – CRYPTO 2020. CRYPTO 2020. Lecture
Notes in Computer Science, vol 12172. Springer, Cham. https://doi.org/10.1007/
978-3-030-56877-1_10

9. Ding J., Perlner R., Petzoldt A., Smith-Tone D. (2018) Improved Cryptanalysis of
HFEv- via Projection. In: Lange T., Steinwandt R. (eds) Post-Quantum Cryptog-
raphy. PQCrypto 2018. Lecture Notes in Computer Science, vol 10786. Springer,
Cham. https://doi.org/10.1007/978-3-319-79063-3_18

10. Ding J., Schmidt D. (2005) Rainbow, a New Multivariable Polynomial Signa-
ture Scheme. In: Ioannidis J., Keromytis A., Yung M. (eds) Applied Cryptography
and Network Security. ACNS 2005. Lecture Notes in Computer Science, vol 3531.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496137_12

11. Dubois V., Fouque PA., Shamir A., Stern J. (2007) Practical Cryptanalysis of
SFLASH. In: Menezes A. (eds) Advances in Cryptology - CRYPTO 2007. CRYPTO
2007. Lecture Notes in Computer Science, vol 4622. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-74143-5_1

12. Faugère JC., Joux A. (2003) Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems using Gröbner bases. In: Boneh D. (eds) Advances in Cryptol-
ogy - CRYPTO 2003. CRYPTO 2003. Lecture Notes in Computer Science, vol 2729.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45146-4_3

13. Kipnis A., Shamir A. (1999) Cryptanalysis of the HFE Public Key Cryptosystem
by Relinearization. In: Wiener M. (eds) Advances in Cryptology — CRYPTO’ 99.
CRYPTO 1999. Lecture Notes in Computer Science, vol 1666. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/3-540-48405-1_2

14. Matsumoto T., Imai H. (1988) Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Barstow D. et al. (eds) Advances
in Cryptology — EUROCRYPT ’88. EUROCRYPT 1988. Lecture Notes in Com-
puter Science, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/

3-540-45961-8_39

15. Patarin J., Macario-Rat G., Bros M., and Koussa E. (2020). Ultra-Short Mul-
tivariate Public Key SignaturesIACR Cryptol. ePrint Arch. 2020: 914. https:

//eprint.iacr.org/2020/914

16. Patarin J. (1996) Hidden Fields Equations (HFE) and Isomorphisms of Polyno-
mials (IP): Two New Families of Asymmetric Algorithms. In: Maurer U. (eds) Ad-
vances in Cryptology — EUROCRYPT ’96. EUROCRYPT 1996. Lecture Notes
in Computer Science, vol 1070. Springer, Berlin, Heidelberg. https://doi.org/10.
1007/3-540-68339-9_4

17. Patarin J. (1995) Cryptanalysis of the Matsumoto and Imai Public Key Scheme
of Eurocrypt’88. In: Coppersmith D. (eds) Advances in Cryptology — CRYPT0’
95. CRYPTO 1995. Lecture Notes in Computer Science, vol 963. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/3-540-44750-4_20

18. Tao C., Petzoldt A., Ding, J. (2020). ”Improved Key Recovery of the HFEv- Sig-
nature Scheme”. IACR Cryptol. ePrint Arch. 2020: 1424. https://eprint.iacr.
org/2020/1424

10

Appendices

A Magma code for the complexity

HilbertSeries:= function(q,n,DEGS);

//Input

// q size of the finite field

// n number of variables

// DEGS list of degree of equations

//Ouput

// The index of the first non negative coefficient

// of the Hilbert Series of the corresponding system

if #DEGS lt N then return "Under determined system"; end if;

R<z>:= PowerSeriesRing(Rationals());

if q eq 2 then return "Not implemented"; end if;

HS:= &*[1-z^d : d in DEGS] / (1-z)^N;

DREG := 0;

while Coefficient(HS,DREG) gt 0 do

DREG +:= 1;

end while;

return DREG;

end function;

complexity:=function(q,n,Degs: omega := 2.37);

//Input

// q size of the finite field

// n number of variables

// DEGS list of degree of equations

// Optional: algebraic constant

//Output

// Log2 of complexity

// Estimated degree of regularity

// Use of Field equations

dreg:=HilbertSeries(n,Degs);

dreg2:=HilbertSeries(n,Degs cat [q: i in [1..n]]);

res:=dreg2 lt dreg;

dreg:=Minimum(dreg,dreg2);

return Log(2,Binomial(n+dreg,n)^omega),dreg, res;

end function;

hybrid:=function(q,n,Degs);

//Input

// q size of the finite field

// n number of variables

// DEGS list of degree of equations

//Output

11

// Log2 of complexity

// Estimated degree of regularity

// Number of variables to fix : best trade-off

// Use of Field equations

compmin:=1000;

dregmin:=0;

kmin:=0;

fieldmin:=false;

for k:=0 to n do;

comp,dreg,field:=complexity(q,n-k,Degs);

comp+:=k*Log(2,q);

if comp lt compmin then

compmin:=comp;

kmin:=k;

dregmin:=dreg;

fieldmin:=field;

end if;

end for;

return compmin, dregmin, kmin, fieldmin;

end function;

Table 1. Complexity (log2) of hybrid attacks for random systems of n equations in n
variables of degree 3. k: number of variables to fix for the best trade-off, Dreg: degree
of regularity for the best trade-off. Comp=qk

(
n−k+Dreg

Dreg

)ω
q n Comp Dreg k

5 56 130.03 1 56

7 47 129.72 5 36

8 45 130.90 6 32

9 42 128.60 9 24

11 40 128.63 9 22

13 39 131.30 8 23

16 37 130.41 11 17

17 37 131.90 11 17

19 36 130.38 11 16

23 34 128.42 10 16

29 33 128.74 16 9

37 32 129.24 18 7

49 31 128.19 16 8

73 30 128.06 18 6

121 29 128.31 19 5

277 28 128.04 22 3

821 27 128.02 24 2

12

13

