
Complete Analysis of Implementing
Isogeny-based Cryptography using Huff Form of

Elliptic Curves

Suhri Kim

School of Mathematics, Statistics and Data Science, Sungshin Women’s University,
South Korea

suhrikim@gmail.com, suhrikim@sungshin.ac.kr

Abstract. In this paper, we present the analysis of Huff curves for im-
plementing isogeny-based cryptography. In this regard, we first investi-
gate the computational cost of the building blocks when compression
functions are used for Huff curves. We also apply the square-root Vélu
formula on Huff curves and present a new formula for recovering the
coefficient of the curve, from a given point on a Huff curve. From our im-
plementation, the performance of Huff-SIDH and Montgomery-SIDH is
almost the same, and the performance of Huff-CSIDH is 6% faster than
Montgomery-CSIDH. We further optimized Huff-CSIDH by exploiting
Edwards curves for computing the coefficient of the image curve and
present the Huff-Edwards hybrid model. As a result, the performance
of Huff-Edwards CSIDH is almost the same as Montgomery-Edwards
CSIDH. The result of our work shows that Huff curves can be quite
practical for implementing isogeny-based cryptography but has some lim-
itations.

Keywords: Isogeny, Post-quantum cryptography, Montgomery curves,
square-root Vélu formula, Huff curves, SIDH, CSIDH

1 Introduction

As the development of a quantum computer that is capable of implementing
Shor’s algorithm becomes visible, researches are being actively conducted to find
quantum-resistant algorithms that can substitute the currently used public-key
cryptography. These are called post-quantum cryptography (PQC), and among
PQC primitives, isogeny-based cryptography is known to have the smallest key
sizes.

Quantum-resistant cryptography based on isogenies was first proposed by
Couveignes [13] and later rediscovered by Stolbunov [25], which are currently
called the CRS scheme. However, not only the quantum sub-exponential attack
exists for the scheme [8], but the algorithm was also inefficient for practical use.
After the introduction of the Supersingular Isogeny Diffie-Hellman (SIDH) by De
Feo and Jao [18], the isogeny-based cryptography gains back its attention. Due

to the non-commutative structure of the endomorphism ring of supersingular
curves, SIDH resists the attack proposed in [8]. Additionally, instead of relying
on the discrete logarithm problems where the intractability assumption of the
problem is broken by Shor’s algorithm, the security relies on the problem of
finding an isogeny between two given isogenous elliptic curves over a finite field,
which is known to have quantum-exponential complexity [?]. The Supersingular
Isogeny Key Encapsulation (SIKE), a key encapsulation mechanism based on
SIDH, was submitted as one of the candidates to the NIST PQC standardization
project [1], and is currently an alternative candidate of Round 3.

Recently, CRS was revisited by De Feo, Kieffer, and Smith in [14], and inde-
pendently by Castryck et al. in [7]. The advantage of CRS is that CCA-secure
encryption can be constructed so that a non-interactive key exchange can be
obtained. In [14], they modernized the parameter selection of CRS for better
performance and presented an efficient way to compute the CRS group action.
CRS was further optimized by Castryck et al. in [7]. In [7], they proposed CSIDH
(Commutative SIDH), which solves the parameter selection problem in CRS by
using supersingular elliptic curves defined over Fp. Currently, the full key ex-
change of CSIDH at a 128-bit classical security level requires approximately
80ms, which is slower than SIDH. However, the vital aspect of CSIDH is that a
relatively efficient digital signature can be constructed based on CSIDH [4]. CSI-
FiSh [4] offers a practical digital signature that requires 390ms to sign a message.
For isogeny-based cryptography, this was a significant result at that time, which
facilitated the construction of various cryptographic primitives through elliptic
curve isogenies. To summarize, SIDH and CSIDH have their own advantages,
and their common disadvantage is that the performance is slower than other
quantum-resistant algorithms.

The implementation of isogeny-based cryptography involves isogeny opera-
tions in addition to the standard elliptic curve arithmetic over a finite field. Re-
garding the isogeny operations, the degree of an isogeny used in the algorithm
depends on the prime chosen for the scheme. The SIDH-based algorithms use the
prime p of the form p = `eAA `eBB f±1, where `A and `B are coprime to each other.
The `A and `B corresponds to the degree of isogenies used in the algorithm.
Since the complexity of computing isogenies increases as the degree increases,
isogenies of degrees 3- and 4- were mostly considered for implementation. The
CSIDH-based algorithms use the prime p of the form p = 4`1`2 · · · `n− 1, where
`i are odd-primes. Similarly, as `i are degrees of isogenies used in the scheme,
demands for an efficient odd-degree isogeny formula have increased after the pro-
posal of CSIDH. In [10], Costello and Hisil proposed an efficient way to compute
arbitrary odd-degree isogenies on Montgomery curves. Classical ways for com-
puting `-isogeny requires Õ(`) field operations. In [3], Bernstein et al. proposed
the square-root Vélu formula which computes the `-isogeny in Õ(

√
`) field oper-

ations. This ground-breaking work allows computing higher odd-degree isogenies
efficiently, which suits well for implementing B-SIDH [9] and CSIDH, where the
recent quantum analysis on CSIDH shows that larger odd-degree isogenies are
required to provide sufficient security level [?,?,?]. Regarding the elliptic curve

2

arithmetic, it is important to select the form of elliptic curves that can provide
efficient curve operations. The majority of implementations in isogeny-based
cryptography use Montgomery curves as it offers fast isogeny computation and
elliptic curve arithmetic. The state-of-the-art implementation proposed in [11,12]
is also based on Montgomery curves.

Currently, there is ongoing research on whether other forms of the elliptic
curve can yield efficient arithmetic or isogeny computation. The primary candi-
date is twisted Edwards curves, as it is birationally equivalent to Montgomery
curves, and mapping a point on one curve to a point on the other curve is cost-
less when projective coordinates are used. The first use of Edwards curves was by
Meyer et al. in [23], which used twisted Edwards curves for elliptic curve arith-
metic and Montgomery curves for isogeny computation [23]. This was further
optimized in [20], which used the Edwards curves for isogeny computation and
Montgomery curves for the elliptic curve arithmetic. However, as stated in [5]
and [20], using only Edwards curves for implementing SIDH-based algorithms is
not as efficient as using only Montgomery curves.

The efficiency of using Edwards curves began to stand out when used for im-
plementing CSIDH. Unlike SIDH-based algorithms, CSIDH-based algorithms use
higher odd-degree isogenies. Montgomery curves offer efficient isogeny evaluation
of arbitrary odd-degree isogenies [10]. However, it is hard to obtain an efficient
formula for recovering the coefficient of the image curve on Montgomery curves.
On the other hand, Edwards curves can provide an efficient formula for com-
puting the coefficient of the image curve. Therefore, in [22], they implemented
CSIDH by using Montgomery curves for isogeny evaluation and twisted Edwards
curves for recovering the coefficient of the image curve. In [21], they proposed
an optimized odd-degree isogeny formula by using the w-coordinate on Edwards
curves. By adapting the formula in [21], Edwards-only CSIDH can be imple-
mented, which is faster than Montgomery-CSIDH [7] or Hybrid-CSIDH [22].
The work of [21] shows that a certain form of an elliptic curve can lead to a bet-
ter result for certain isogeny-based algorithms. Hence, it is important to check
the implementation results on various elliptic curves.

1.1 Our Contributions

This work aims to provide an insight to exploit Huff curves in isogeny-based
cryptography. Isogenies on Huff curves were first proposed in [24]. However,
due to inefficient elliptic curve arithmetic and isogeny formula, it has not been
studied until the work of [15], and in [17]. The proposed compression functions
in [15, 17] for the points on a Huff curve allow Montgomery-like elliptic curve
arithmetic formulas. Considering the fact that implementing SIDH entirely on
Edwards curves is not faster than Montgomery curves as differential addition is
slower in Edwards curves, it is very appealing that the compression functions
in the Huff curve lead to an elliptic curve arithmetic formula having the same
computational cost as on Montgomery curve.

3

In this paper, based on the formula presented in [15] and [17], we examine
the applicability of Huff curves for isogeny-based cryptography. The following
list details the main contributions of this work.

Analysis of the computational costs We examine the computational costs of
the lower-level functions for implementing isogeny-based cryptography on Huff
curves when a compression method in [15] and [17] are used. Details of the
functions and their computational costs are presented in Section 3. Also, we
present 4-isogeny on Huff curves using the compression method proposed in [15],
by applying a similar method to derive the 4-isogeny formula presented in [17].
The formulas for 4-isogeny are presented in the Appendix.

Square-root Vélu formula on Huff curves We apply the square-root Vélu
formula on Huff curves to compute higher-odd degree isogenies efficiently. To use
the square-root Vélu formula proposed in [3], biquadratic polynomials must be
redefined to express the relationship between points P,Q, P −Q, and P +Q on a
Huff curve. We derive biquadratic polynomials for Huff curves and demonstrate
that the computational cost for evaluating the main polynomial hS is the same as
Montgomery curves. The definition of hS and details of the formula is presented
in Section 4.

The Huff-Edwards hybrid model for CSIDH We further optimized the
odd-degree isogeny formula on Huff curves by exploiting Edwards curves for
recovering the coefficient of the image curves in Huff form. The Montgomery-
Edwards hybrid model has been studied extensively. We noticed that the cost of
the conversion between the x-coordinate on Montgomery curves and w-coordinate
on Huff curve is free so that Edwards curves can also be exploited to enhance
the performance of Huff isogeny. The details are presented in Section 4.

Formula for recovering the curve coefficient of Huff curves We addi-
tionally present the formula to recover the coefficient of the Huff curve for SIDH-
based cryptography. We analyze that using the compression method in [15] is
faster for recovering the coefficient, so that such function is an efficient choice
for implementing SIDH. For CSIDH-based cryptography, one has to examine
whether supersingular Huff curves exist for a chosen prime. We deduce that for
a prime p ≡ 7 mod 8, there exist supersingular Huff curves over Fp, and Fp has
no supersingular Huff curves when p ≡ 3 mod 8.

Implementation of isogeny-based cryptography on Huff curves We
present the implementation result of SIDH and CSIDH using Huff curves. Based
on our experiment, for SIDH, the performance of Montgomery-SIDH and Huff-
SIDH is almost the same. For CSIDH, Huff-CSIDH is 6% faster than Montgomery-
CSIDH. Also, the performance of Huff-Edwards CSIDH is almost the same as
Montgomery-Edwards CSIDH. The details of the results are presented in Section
5.

4

1.2 Organization

This paper is organized as follows: In Section 2, we introduce two main isogeny-
based key exchange algorithms and a form of Huff curves that will be used for
the implementation. In Section 3, we demonstrate the computational cost of
lower-level functions for implementing isogeny-based cryptography. In Section 4,
we introduce the square-root Vélu formula and present the main polynomials
for Huff curves to exploit the square-root Vélu formula. In Section 5, we present
the implementation result of SIDH and CSIDH on Huff curves. We draw our
conclusion in Section 6.

2 Preliminary

In this section, we provide the necessary background that will be used through-
out the paper. First, we introduce two main streams in isogeny-based cryptog-
raphy – SIDH and CSIDH. Lastly, we describe variants of Huff curves and their
arithmetic.

2.1 Isogeny-based cryptography

We recall the SIDH and CSIDH key exchange protocol proposed in [18] and [7].
For more information, please refer to [18] and [7] for SIDH and CSIDH, respec-
tively. The notations used in this section will continue to be used throughout
the paper.

SIDH protocol Fix two coprime numbers `A and `B . Let p be a prime of the
form p = `eAA `eBB f ± 1 for some integer cofactor f , and eA and eB be positive
integers such that `eAA ≈ `eBB . Then construct a supersingular elliptic curve E
over Fp2 of order (`eAA `eBB f)2. We have full `e-torsion subgroup on E over Fp2
for ` ∈ {`A, `B} and e ∈ {eA, eB}. Choose basis {PA, QA} and {PB , QB} for the
`eAA - and `eBB -torsion subgroups, respectively.

Suppose Alice and Bob want to exchange a secret key. Let {PA, QA} be the
basis for Alice, and {PB , QB} be the basis for Bob. For key generation, Alice
chooses random elements mA, nA ∈ Z/`eAA Z, not both divisible by `A, and com-
putes the subgroup 〈RA〉 = 〈[mA]PA+[nA]QA〉. Then using Vélu’s formula, Alice
computes a curve EA = E/〈RA〉 and an isogeny φA : E → EA of degree `eAA ,
where kerφA = 〈RA〉. Alice computes and sends (EA, φA(PB), φA(QB)) to Bob.
Bob repeats the same operation as Alice so that Alice receives (EB , φB(PA), φB(QA)).

For the key establishment, Alice computes the subgroup 〈R′A〉 = 〈[mA]φB(PA)+
[nA]φB(QA)〉. By using Vélu’s formula, Alice computes a curve EAB = EB/〈R′A〉.
Bob repeats the same operation as Alice and computes a curve EBA = EA/〈R′B〉.
The shared secret between Alice and Bob is the j-invariant of EAB , i.e. j(EAB) =
j(EBA).

5

CSIDH protocol CSIDH uses commutative group action on supersingular
elliptic curves defined over a finite field Fp. Let O be an imaginary quadratic
order. Let E``p(O) denote the set of elliptic curves defined over Fp with the
endomorphism ring O. It is well-known that the class group Cl(O) acts freely
and transitively on E``p(O). We call the group action as CM-action and denote
the action of an ideal class [a] ∈ Cl(O) on an elliptic curve E ∈ E``p(O) by [a]E.

Let p = 4`1`2 · · · `n − 1 be a prime where `1, · · · , `n are small distinct odd
primes. Let E be a supersingular elliptic curve over Fp such that Endp(E) = Z[π],
where Endp(E) is the endomorphism ring of E over Fp. Note that Endp(E)
is a commutative subring of the quaternion order End(E). Then the trace of
Frobenius is zero, hence E(Fp) = p+ 1. Since π2 − 1 = 0 mod `i, the ideal `iO
splits as `iO = li l̄i, where li = (`i, π − 1) and l̄i = (`i, π + 1). The group action
[li]E (resp. [l̄i]E) is computed via isogeny φli (resp. φl̄i) over Fp (resp. Fp) using
Vélu’s formulas.

Suppose Alice and Bob want to exchange a secret key. Alice chooses a vector
(e1, · · · , en) ∈ Zn, where ei ∈ [−m,m], for a positive integer m. The vector
represents an isogeny associated to the group action by the ideal class [a] =
[le11 · · · lenn], where li = (`i, π− 1). Alice computes the public key EA := [a]E and
sends EA to Bob. Bob repeats the similar operation with his secret ideal b and
sends the public key EB := [b]E to Alice. Upon receiving Bob’s public key, Alice
computes [a]EB and Bob computes [b]EA. Due to the commutativity, [a]EB and
[b]EA are isomorphic to each other so that they can derive a shared secret value
from the elliptic curves.

2.2 Huff curves and their arithmetic

Huff curves Huff models for elliptic curves was first introduced by Joye, Ti-
bouchi, and Vergnaud in [19]. They proposed the group law and formula for
computing Tate pairings on Huff form of elliptic curves. Let K be a finite field
of characteristic not equal to 2. The Huff form of elliptic curve is given by the
equation:

Ha,b : ax(y2 − 1) = by(x2 − 1)

where a2 6= b2 and a, b 6= 0. The point O = (0, 0) is the neutral element and
−(x, y) = (−x,−y). Also, every Huff curve has three points at infinity, which
are also points of order 2. The curve Ha,b can also be simplified as

Hc : cx(y2 − 1) = y(x2 − 1)

where c = a/b, c 6= ±1. The general Huff curves which contains the Huff form of
elliptic curves is introduced in [26]. General Huff curves are given by the equation

Ga,b : x(ay2 − 1) = y(bx2 − 1)

where a 6= b and a, b 6= 0. Similar to the Huff curves, the point O = (0, 0) is the
neutral element and −(x, y) = (−x,−y). The j-invariant of the curve Ga,b is

jGa,b
=

28(a2 − ab+ b2)3

a2b2(a− b)2
,

6

and the j-invariant of the curve Ha,b is

jHa,b
=

28(a4 − a2b2 + b4)3

a4b4(a2 − b2)2
.

Isomorphisms The Huff curve Ha,b is isomorphic to a Weierstrass curve of the
form

WA,B : y2 = x3 +Ax2 +Bx

where A = (a2 + b2) and B = a2b2. The Huff curve Ha,b is isomorphic to an
Edwards curve of the form

Ed : x2 + y2 = 1 + dx2y2

where d = ((a− b)/(a+ b))2, and corresponding Montgomery curve of the form

MD : y2 = x3 +Dx2 + x

where D = (a2 + b2)/ab.

Arithmetic on Huff curves For points P = (xp, yp) and Q = (xq, yq) on a
Huff curve Ha,b, the addition of two points P +Q = (xr, yr) is defined as below,
and doubling can be performed with exactly the same formula.

xr =
(xp + xq)(1 + ypyq)

(1 + xpxq)(1− ypyq)

yr =
(yp + yq)(1 + xpxq)

(1− xpxq)(1 + ypyq)

The above formula is same for the curve Hc. For a general Huff curve Ga,b, the
unified addition is performed as below:

xr =
(xp + xq)(aypyq + 1)

(bxpxq + 1)(aypyq − 1)

yr =
(yp + yq)(bxpxq + 1)

(bxpxq − 1)(aypyq + 1)

where P = (xp, yp) and Q = (xq, yq) are points on Ga,b, and P +Q = (xr, yr).

3 w-coordinates on Huff curves

Recently, in [15] and independently in [17], they proposed a compression func-
tion on Huff curves, which allows faster elliptic curve arithmetic and isogeny
computation. We shall express this compression function as w-coordinate and
examine the computational cost of formulas on Huff curves when w-coordinate
is used. For the simplicity of the explanation, we shall denote w-function for the
compression method proposed in [15], and winv-function for the compression
method proposed in [17].

7

3.1 Compression function w on Huff curves

In [15], they proposed a compression method for Huff curves and presented an
isogeny formula. As they proposed the formulas for elliptic curve arithmetic and
isogenies for Huff curve of the form Ha,b, we shall present the formulas in this
setting. However, for the implementation, we apply the compression function w
on Hc, for simplicity. Note that this is equivalent to the case on Ha,b, with b = 1.
For the exact formula on Hc using w, please refer to the Appendix.

For a point P = (x, y) on a Huff curve Ha,b, define the compression function
w as w(P) = xy. Then w(P) = w(−P) and w(O) = 0. Using this function,
doubling and differential addition can be expressed as follows [15].

For P1, P2 ∈ Ha,b, let w1 = w(P1) and w2 = w(P2). Let w0 = w(2P1), w3 =
w(P1 + P2), and w4 = w(P1 − P2). Then,

w0 =
4w1(w2

1 + ew1 + 1)

(w2
1 − 1)2

, w3w4 =
(w1 − w2)2

(w1w2 − 1)2
,

where e = b
a + a

b .
For the rest of this subsection, we examine the computational cost of the

doubling, differential additions, and odd-degree isogeny formula on Huff curves,
in the setting of isogeny-based cryptography. We consider WZ-coordinate as
projective w-coordinate on Huff curves, where w = W/Z. The M and S refer to
a field multiplication and squaring, respectively.

Doubling Let P = (x, y) be a point on a Huff curve Ha,b. Let a = A/D,
b = B/D, w = xy, and w = W/Z. For w(P) = (W : Z) in projective w-
coordinates, the doubling of P gives w([2]P) = (W ′ : Z ′), where W ′ and Z ′ are
defined as:

W ′ = 4WZ(4AB(W − Z)2 + (A+B)2(4WZ))

Z ′ = 4AB((W − Z)2(W + Z)2)

The computational cost is 4M+2S, when we assume that (A + B)2 and 4AB
are precomputed.

Differential addition Let P1 = (W1 : Z1) and P2 = (W2 : Z2) be the points
on Ha,b. Let w0 = w(P1 − P2) and w3 = w(P1 + P2). Let w0 = W0/Z0 and
w3 = W3/Z3. Then,

W3 = Z0(W1Z2 −W2Z1)2,

Z3 = W0(W1W2 − Z1Z2)2.

The computational cost of differential addition and doubling on Huff curves is
6M+4S using affine curve coefficients and 8M+4S using projective coordinates
and projective curve coefficients.

8

Odd-degree isogeny formula In [15], they proposed the odd-degree isogeny
formula on Huff curves by composing the isomorphism between Huff and general
Huff curves, and odd-degree isogeny on general Huff curves.

Theorem 1 (Odd-degree isogeny on Ha,b using w-function [15]).
Let P be a point on a Huff curve Ha,b of odd order ` = 2s + 1. Let 〈P 〉 =

{(0, 0),±(α1, β1), · · · ,±(αs, βs)}, where P = (α1, β1). Let wi = αiβi for 1 ≤ i ≤
s. and w = w(Q), where Q = (x, y) ∈ Ha,b. Then for `-isogeny φ from Ha,b to
Ha′,b′ = Ha,b/〈P 〉 the evaluation of w, w(φ), is given by,

w(φ) = w

s∏
i=1

(w − wi)2

(wwi − 1)2
(1)

where

a′ =
a
∏s
i=1(bwi + a)∏s

i=1 wi(awi + b)
and b′ =

b
∏s
i=1(awi + b)∏s

i=1 wi(bwi + a)

Now to projectivize the formula, for (αi, βi) ∈ Ha,b, let (Wi : Zi) = (wi : 1)
for i = 1, ..., s where wi = αiβi. For an additional input point (W : Z) on the
curve Ha,b, the output is expressed as (W ′ : Z ′) where (W ′ : Z ′) = φ(W : Z).
Then, the equation (1) can be rewritten as:

W ′ = W ·
s∏
i=1

(WZi − ZWi)
2,

Z ′ = Z ·
s∏
i=1

(WWi − ZZi)2,

where the computing (WZi − ZWi) and (WWi − ZZi) requires 2M. Hence for
` = 2s + 1-isogeny, evaluation of an isogeny costs (4s)M+2S. To compute the
curve coefficients, let a = A/D and b = B/D. Then we have,

A′ = A ·
s∏
i=1

Zi(BWi +AZi)
2,

B′ = B ·
s∏
i=1

Zi(AWi +BZi)
2,

D′ = D ·
s∏
i=1

Wi(AWi +BZi)(BWi +AZi).

Note that only A′ and B′ are required when implementing isogeny-based
cryptography on Huff curves. Moreover, since we use only the ratio of A and B,
the term Zi can be omitted when computing A′ and B′. Therefore, recovering
the curve coefficient costs (4s)M+2S.

9

Coefficient transformation Note that when w-function is used for elliptic
curve arithmetic on Huff curves, instead of using the projective curve coefficients
A,B, and D, we use (A+ B)2 and 4AB for efficient computation. Hence, after
obtaining the coefficient of the image curve A′ and B′, (A′ + B′)2 and 4A′B′

must be computed in order to proceed with the elliptic curve arithmetic on the
image curve. Intuitively, this requires 2S.

3.2 Compression function winv on Huff curves

Huang et al. proposed an alternate compression method for Huff curves and pre-
sented an isogeny formula on Huff curves [17]. For the simplicity of the formula,
they used the Huff curve of the form Hc.

Let P = (x, y) be a point on a Huff curve Hc. In [17], they defined the
compression function winv as w(P) = 1/xy. Then w(P) = w(−P) and w(O) =
∞. Using this function, doubling and differential addition formula are defined
in [17]. Now, for P1, P2 ∈ Hc, let w1 = w(P1) and w2 = w(P2). Let w0 =
w(2P1), w3 = w(P1 + P2), and w4 = w(P1 − P2). Then,

w0 =
(w2

1 − 1)2

4w1(w1 + c)(w1 + 1/c)

w3w4 =
(w1w2 − 1)2

(w1 − w2)2
,

For the rest of this subsection, we examine the computational cost of the
doubling, differential additions, and odd-degree isogeny formula on Huff curves
when winv is used for the compression.

Doubling Let P = (x, y) be a point on a Huff curve Hc. Let ĉ = Ĉ/D̂, where
ĉ = 1

4

(
c+ 1

c − 2
)
. Let w = 1/xy, and w = W/Z. For w(P) = (W : Z) in

projective w-coordinates, the doubling of P gives w([2]P) = (W ′ : Z ′), where
W ′ and Z ′ are defined as:

W ′ = D̂(W − Z)2(W + Z)2

Z ′ = 4WZ(D̂(W + Z)2 + Ĉ · 4WZ)

The computational cost is 4M+2S, given Ĉ and D̂.

Differential addition Let P1 = (W1 : Z1) and P2 = (W2 : Z2) be the points
on Hc. Let w0 = w(P1 − P2) and w3 = w(P1 + P2). Let w0 = W0/Z0 and
w3 = W3/Z3. Then,

W3 = Z0(W1W2 − Z1Z2)2,

Z3 = W0(W1Z2 − Z1W2)2.

The computational cost of differential addition and doubling on Huff curves is
6M+4S using affine curve coefficients and 8M+4S using projective coordinates
and projective curve coefficients.

10

Odd-degree isogeny formula Using the compression function winv for the
points on a Huff curve, the odd-degree isogeny formula is presented as the fol-
lowing theorem [17]:

Theorem 2 (Odd-degree isogeny on Hc using winv-function [17]).
Let P be a point on a Huff curve Hc of odd order ` = 2s + 1. Let 〈P 〉 =

{(0, 0),±(α1, β1), · · · ,±(αs, βs)}, where P = (α1, β1). Let wi = 1/αiβi for 1 ≤
i ≤ s. and w = w(Q), where Q = (x, y) ∈ Hc. Then for `-isogeny φ from Hc to
Hc′ = Hc/〈P 〉 the evaluation of w, w(φ), is given by,

w(φ) = w

s∏
i=1

(wwi − 1)2

(w − wi)2
(2)

where

c′ = c

s∏
i=1

(1 + cwi)
2

(c+ wi)2

To transform the above formula by using projective coordinates and projec-
tive curve coeffcients, for (αi, βi) ∈ Hc, let (Wi : Zi) = (wi : 1) for i = 1, ..., s
where wi = 1/αiβi. For an additional input point (W : Z) on the curve Hc,
the output is expressed as (W ′ : Z ′) where (W ′ : Z ′) = φ(W : Z). Then, the
equation (2) can be rewritten as:

W ′ = W ·
s∏
i=1

(WWi − ZZi)2,

Z ′ = Z ·
s∏
i=1

(WZi − ZWi)
2.

Similarly, for ` = 2s + 1-isogeny, evaluation of an isogeny using winv-function
costs (4s)M+2S. To compute the curve coefficients, let c = C/D and c′ = C ′/D′.
Then we have,

C ′ = C ·
s∏
i=1

(DZi + CWi)
2

D′ = D ·
s∏
i=1

(CZi +DWi)
2

Therefore, recovering the curve coefficient costs (4s)M+2S.

Coefficient transformation When winv-function is used for elliptic curve
arithmetic on Huff curves, instead of using the projective curve coefficients C
and D, we use (C−D)2 and 4CD for efficient computation. Hence, after obtain-
ing the coefficient of the image curve, C ′ and D′, (C ′−D′)2 and 4C ′D′ must be
computed in order to proceed with elliptic curve arithmetic on the image curve.
Intuitively, this requires 2S.

11

Remark 1. Note that when w-function is used for Hc, the formula for doubling,
differential addition, and odd-degree isogenies is almost the reciprocal of the case
when winv-function is used for Hc. Let P1 = (x1, y1) and P2 = (x2, y2) be the
points on Hc, and w(P) = xy for P = (x, y) ∈ Hc. Let w1 = w(P1), w2 = w(P2),
w0 = w(2P1), w3 = w(P1 + P2), and w4 = w(P1 − P2). Then,

w0 =
4w1(w1 + c)(w1 + 1/c)

(w2
1 − 1)2

w3w4 =
(w1 − w2)2

(w1w2 − 1)2
,

which is almost the reciprocal of the case when winv-function is used. Hence
every computational cost for elliptic curve arithmetic and isogeny is the same
when Hc with w is used and when Hc with winv is used.

3.3 Relationship with Montgomery curves

In this section, we shall examine the relationship between w-coordinate on a
Huff curve and x-coordinate of a corresponding Montgomery curve. As denoted
in Section 2, a Huff curve Hc is isomorphic to a Montgomery curve MD for
D = (c2 + 1)/c, and Weierstrass curve WA,B for A = c2 + 1 and B = c2, given
by the following maps:

MD −→ WA,B −→ Hc

(x, y) −→ (cx,
√
c3y)

(x′, y′) −→
(

(x′ + c2)

y′
,
c(x′ + 1)

y′

)
When XZ-only Montgomery arithmetic and WZ-only Huff arithmetic is

used, switching between Huff curves and Montgomery curves is simple. A Mont-
gomery point (XM : ZM) can be transformed to the corresponding Huff WZ-
coordinates as follows, when winv-function is used as a compression method :

(XM : ZM) −→ (Winv : Zinv) = (XM : ZM)

When w-function is used as a compression method, then the transformation is
as follows:

(XM : ZM) −→ (W : Z) = (ZM : XM)

4 Square-root Vélu formula for Huff curves

4.1 Square-root Vélu formula

Recently, Bernstein et al. proposed an efficient algorithm that computes `-isogeny
in Õ(

√
`) field operations [3]. The conventional Vélu formula computes `-isogeny

12

in Õ(`) field operations. The high-level view of the Vélu formula can be consid-
ered as evaluation of polynomials over K whose roots are values of a function
from a cyclic group to K. Let G be a cyclic group with generator P . Then for a
finite subset S of Z, define a polynomial

hS(X) =
∏
s∈S

(X − f([s]P)) (3)

where [s]P denotes the sum of s copies of P . In isogeny-based setting, let E(K)
be an elliptic curve, P ∈ E(K). Then G = 〈P 〉 is a kernel of an `-isogeny
φ : E → E′, and f([s]P) can be considered as the x-coordinate of [s]P , for a
scalar multiplication [s]P .

Let Ma be a Montgomery curve, P ∈ Ma be a point of prime order ` 6= 2.
The isogeny φ : Ma → Ma′ with kernel 〈P 〉 is given by the equation below,
expressed in terms of equation (3):

φ(X) =
X` · hS(1/X)2

hS(X)2

where a′ = 2(1 + d)/(1 − d) for d = ((a + 2)/(a − 2))` · (hS(1)/hS(−1))8, and
S = {1, 3, . . . , ` − 2}. Now, φ(X) can be evaluated in Õ(

√
`) field operations if

hS is evaluated in Õ(
√
`) field operations.

The key for evaluating hS in Õ(
√
`) field operations is to decompose the set S

into smaller set I and J , having size similar to
√
S, satisfying certain conditions.

In [3], I and J are chosen so that most of the elements in S is represented
as elements of (I + J) ∪ (I − J). For details on the conditions of the set and
algorithms, please refer to [3]. Hence, the problem of evaluating a polynomial
whose roots are [s]P for s ∈ P is transformed to the problem of evaluating a
polynomial, whose roots are [i]P and [j]P for i ∈ I and j ∈ J , respectively.
Then, by computing the resultant of polynomials relating to the set I and J ,
we can obtain the evaluation of hS . To do this, we need to find the relations
between the x-coordinate of [i]P, [j]P, [i+ j]P , and [i− j]P for i ∈ I and j ∈ J .
Below, Lemma 1 states the existence of biquadratic polynomials of an elliptic
curve E that shows the relationship between points P,Q, P +Q, and P −Q for
P,Q ∈ E.

Lemma 1 (Biquadratic relations on x-coordinates [3]). Let q be a prime
power. Let E(Fq) be an elliptic curve. There exist biquadratic polynomials F0, F1,
and F2 in Fq[X1, X2] such that

(X − x(P +Q))(X − x(P −Q)) = X2 +
F1(x(P), x(Q))

F0(x(P), x(Q))
X +

F2(x(P), x(Q))

F0(x(P), x(Q))

for all P,Q ∈ E such that O /∈ {P,Q, P + Q,P − Q}. The x(P) denotes the
x-coordinate of a point P .

13

If E is defined by affine Montgomery equation By2 = x3 +Ax2 +x, then the
polynomials F0, F1, and F2 are defined as follows [3].

F0(X1, X2) = (X1 −X2)2

F1(X1, X2) = −2((X1X2 + 1)(X1 +X2) + 2AX1X2)

F2(X1, X2) = (X1X2 − 1)2

To use the square-root formula, we define the following biquadratic polynomials
specifically for Huff curves of the form Hc. Similarly, the relationship between
the w-coordinates of points P,Q, P+Q, and P−Q on Huff curves can be written
as follows:

(W − w(P +Q))(W − w(P −Q)) = W 2 +
G1(w(P), w(Q))

G0(w(P), w(Q))
W +

G2(w(P), w(Q))

G0(w(P), w(Q))

For the curve Hc using the w-function, then the polynomials G0, G1, and G2 are
defined as follows:

G0(W1,W2) = (W1W2 − 1)2

G1(W1,W2) = −2((W1W2 + 1)(W1 +W2) + 2C̄W1W2 + 4W1W2)

G2(W1,W2) = (W1 −W2)2

where C̄ = c + 1
c − 2. When winv-function is used for compression, then the

polynomials G0, G1, and G2 are defined as follows:

G0(W1,W2) = (W1 −W2)2

G1(W1,W2) = −2((W1W2 + 1)(W1 +W2) + 2C̄W1W2 + 4W1W2)

G2(W1,W2) = (W1W2 − 1)2

where C̄ = c+ 1
c−2. Using this biquadratic polynomials, the square-root formula

for Huff curves directly follows [3]. The following proposition states the isogeny
formula on Huff curves Hc using w- and winv-function, expressed in terms of
equation (3).

Proposition 1 (Square-root formula on Huff curves). Let Hc be an elliptic
curve over Fq in Huff form, and let P be a point of prime order ` 6= 2 in Hc. Let
w be a compression function for point on Hc. For Q ∈ Hc let w(Q) = W . Then
the evaluation of w(φ(Q)) where φ : Hc → Hc′ , a quotient isogeny with kernel
〈P 〉, is given as:

w(φ(W)) =
W `hS(W)2

hS(1/W)2

where S = {1, 3, . . . , `− 2} and c′ = c` · hS(−c)2/hS(−1/c)2.
Now, let winv be a compression function for point on Hc. For Q ∈ Hc let

winv(Q) = W . Then the evaluation of winv(φ(Q)) where φ : Hc → Hc′ , a

14

quotient isogeny with kernel 〈P 〉, is given as:

winv(φ(W)) =
W `hS(1/W)2

hS(W)2

where S = {1, 3, . . . , `− 2} and c′ = c` · hS(−1/c)2/hS(−c)2.

4.2 The Huff-Edwards hybrid model and computational costs

Note that computing the coefficient of the image of Montgomery curves using the
square-root Velu formula exploits the relationship between Montgomery curves
and Edwards curves [3]. This not only enhances the performance of computation
but also the formula for computing the coefficient of the image curve follows
the expression of the square-root Vélu formula for evaluating an isogeny. Hence,
Montgomery curves only need to compute hS(1), hS(−1), while Huff curves need
to compute hS(−c), hS(−1/c) for c ∈ Fp. However, as stated in Section 3, the
cost of the transformation between Montgomery curves and Huff curves is free
so that a similar idea can also be applied to Huff curves. The computation of
the coefficient of the image curve in Huff form can further be optimized using
the corresponding Edwards curves.

Let P be a point of prime order ` 6= 2 in a Huff curve Hc. Let winv be a
compression function for point on Hc, and ĉ = 1

4

(
c+ 1

c − 2
)
, and φ : Hc → Hc′ ,

a quotient isogeny with kernel 〈P 〉. Then ĉ′ = 1
4

(
c′ + 1

c′ − 2
)

can be computed
as ĉ′ = d/(1− d), where

d =

(
ĉ+ 1

ĉ

)`(
hS(1)

hS(−1)

)8

.

Note that when Edwards curves are exploited for recovering the coefficient
of the image curve in the Huff-Edwards hybrid model, the performance gain not
only comes from computing hS(1), hS(−1) instead of hS(−c), hS(−1/c), but also
from the fact that no more coefficient transformation is required. The isogeny
formula on Huff curves computes c′ of the image curve Hc′ , expressed in terms
of c of the domain curve Hc. Therefore, coefficient transformation is required
afterwards as ĉ′ = 1

4

(
c′ + 1

c′ − 2
)

is used for elliptic curve arithmetic, and c′

must be kept to proceed with isogeny computations. On the other hand, when
Edwards curves are exploited to recover the coefficient of the Huff curve, the
formula directly uses ĉ and ĉ′ so that coefficient transformation is not required
nor c is kept to proceed with isogeny computation.

Lastly, We compare the computational costs of biquadratic polynomials for
Montgomery curves and Huff curves. Computing `-isogeny consists of isogeny
evaluation and recovering the coefficient of the image curve. In Table 1, ` eval

refers to isogeny evaluation and ` coeff refers to computing the coefficient of
the image curve. The Huff-Edwards in Table 1 refers to the case when Huff
curves are used to evaluate isogeny, and Edwards curves are used to compute
the coefficients.

15

Table 1: Computational costs of biquadratic polynomials

Montgomery Huff Huff-Edwards

` eval
Computation hS(Q), hS(1/Q) hS(Q), hS(−1/Q) hS(Q), hS(−1/Q)

Cost 7M+2S 7M+3S 7M+2S

` coeff
Computation hS(1), hS(−1) hS(−c), hS(−1/c) hS(1), hS(−1)

Cost 3M+2S 7M+3S 3M+2S

4.3 Recovering the curve coefficient

From the biquadratic polynomials, we were able to derive the formula for recov-
ering the coefficient of the Huff curve from the w-coordinate of the points P,Q
and P −Q on a Huff curve, which was the missing formula in [15] and in [17].

When implementing SIDH-based cryptography, PA − QA and PB − QB are
also considered as a public key for faster kernel computation using the Mont-
gomery ladder. Hence φA(PB − QB) and φB(PA − QA) are also computed and
exchanged to compute the shared secret key efficiently. This can be thought of
as an increase in the public key size. But using the fact that the coefficient a
of the Montgomery curve Ma relates to the x-coordinates of P,Q, and P − Q
for P,Q ∈Ma, sending the coefficient of the image curve is omitted [12]. There-
fore, (φA(PB), φA(QB), φA(PB−QB)) and (φB(PA), φB(QA), φB(PA−QB)) are
exchanged during the protocol, and upon the receipt of the public key, the coeffi-
cient is recovered using the relationship, which costs 4M+1S+1I. The I denotes
the field inversion.

For Huff curves, similar relationship can be obtained. Let Hc be a Huff curve
using w as a compression function. For P,Q, and P − Q in Hc, let w(P) =
wp, w(Q) = wq, and w(P −Q) = wpq. Then the following holds:

w(P +Q) + w(P −Q) =
2((wpwq + 1)(wp + wq) + 2c̄wpwq + 4wpwq)

(wpwq − 1)2

(wp − wq)2

wpq(wpwq − 1)2
+ wpq =

2((wpwq + 1)(wp + wq) + 2c̄wpwq + 4wpwq)

(wpwq − 1)2

so that

c̄ =
(wp − wq)2 + w2

pq(wpwq − 1)2 − 2wpq((wpwq + 1)(wp + wq) + 4wpwq)

4wpqwpwq

=
((wp − wq)− (wpq(wpwq − 1)))2 − 4wpq(wp + wpw

2
q + 2wpwq)

4wpqwpwq
(4)

16

where c̄ = c+ 1
c −2. The computational cost is 3M+1S+1I. Similar relationship

can be obtain for winv-function, which is as follows.

winv(P +Q) + winv(P −Q) =
2((wpwq + 1)(wp + wq) + 2c̄wpwq + 4wpwq)

(wp − wq)2

(wpwq − 1)2

wpq(wp − wq)2
+ wpq =

2((wpwq + 1)(wp + wq) + 2c̄wpwq + 4wpwq)

(wp − wq)2

so that

c̄ =
(wpwq − 1)2 + w2

pq(wp − wq)2 − (2wpq((wpwq + 1)(wp + wq) + 4wpwq)

4wpqwpwq

=
((wpwq − 1)− (wpq(wp − wq)))2 − 4wpq(wp + wpw

2
q + 2wpwq)

4wpqwpwq
(5)

where c̄ = c+ 1
c − 2. The computational cost is 5M+1S+1I.

Summarizing the section, Table 2 denotes the computational cost of the
building blocks of isogeny-based cryptography on Montgomery curves and on
Huff curves. The middle rule in Table 2 divides the functions into two groups –
the upper half is the functions that are commonly used in SIDH and CSIDH-
based cryptography, and the lower half is the functions that are explicitly used
in SIDH-based cryptography.

In Table 2, DBLADD refers to the differential addition and doubling in pro-
jective coordinates, and DBL refers to the doubling. `-isog eval refers to the
evaluation of an `-isogeny and `-isog coeff refers to the computation of the
coefficient of the `-isogenous image curve, where ` = 2s + 1. CoeffTrans refers
to the cost of transforming the coefficient for efficient elliptic curve arithmetic,
which only occurs on Huff curves. The TPL refers to tripling of a point, and
3-isogeny and 4-isogeny are the combined computational cost of isogeny eval-
uation and coefficient computation. Lastly, get coeff refers to recovering of the
curve coefficient using points P,Q and P −Q on an elliptic curve.

Also, Mont refers to Montgomery curve, and Mont-Edwards Hybrid refers
to the hybrid method proposed in [22], where Montgomery curves are used for
elliptic curve arithmetic and isogeny evaluation, and Edwards curves are used
for computing the coefficient of the image curve. Huff-Edwards Hybrid refers to
the hybrid method where Huff curves are used for elliptic curve arithmetic and
isogeny evaluation, and Edwards curves are used for computing the coefficient of
the image curve. As the hybrid methods are used for implementing CSIDH-based
cryptography, the computational cost of the lower half of the table is omitted.
The function w(`) refers to w(`) = (h− 1)M + (t− 1)S. In w(`), h denotes the
hamming weight of ` and t is the bit length of `.

As shown in Table 2, except for the `-isogeny coeff, the computational cost
of the lower-level functions is the same for Montgomery curves and Huff curves.
Also, as the compression function w and winv are reciprocals of each other,
the formula of the lower-level functions are almost reciprocals of each other so
that w-function and winv-function induce the same computational cost. Hence,

17

when implementing CSIDH-based cryptography on Huff curves, the compression
function is free of one’s choice. On the other hand, for SIDH-based cryptography,
w-function is preferred as get coeff is slightly efficient than winv-function.

Table 2: Computational cost of building-blocks of isogeny-based cryptography
on Huff curves and Montgomery curves

Mont [7, 10] Mont-Edwards Hybrid [22] w winv Huff-Edwards Hybrid

DBLADD 6M + 4S 6M + 4S 6M + 4S 6M + 4S 6M + 4S

DBL 4M + 2S 4M + 2S 4M + 2S 4M + 2S 4M + 2S

`-isog eval 4sM + 2S 4sM + 2S 4sM + 2S 4sM + 2S 4sM + 2S

`-isog coeff (6s− 2)M + 3S (2s)M + 6S + 2w(`) 4sM + 2S 4sM + 2S (2s)M + 6S + 2w(`)

CoeffTrans - - 2S 2S -

TPL 7M + 5S - 7M + 5S 7M + 5S -

3-isogeny 6M + 5S - 6M + 5S 6M + 5S -

4-isogeny 6M + 6S - 6M + 6S 6M + 6S -

j-invariant 3M + 4S + 1I - 3M + 4S + 1I 3M + 4S + 1I -

get coeff 4M + 1S + 1I - 3M + 1S + 1I 5M + 1S + 1I -

Remark 2. On Huff curves, the CoeffTrans can be omitted when division poly-
nomial is used to represent the curve coefficient in terms of the kernel points. This
can be easily done for 3- and 4- isogenies. For general higher degree isogenies,
as representing the coefficient of the curve using kernel point is difficult, extra
CoeffTrans operation is required to proceed with the elliptic curve arithmetic
further or Huff-Edwards hybrid can be used to omit the transformations.

5 Implementation

In this section, we provide the performance result of isogeny-based cryptog-
raphy. To evaluate the performance, the algorithms are implemented in the
C language. For implementing SIDH, we use the field arithmetic of Round 3
version of SIKE, submitted to NIST. For implementing CSIDH, we use the
field arithmetic implemented in [7]. All the cycle counts were obtained on one
core of an Intel Core i7-7700 at 3.60 GHz, running Ubuntu 16.04 LTS. For
the compilation, we used gcc version 9.3.0 with an optimization level -O3. The
source code is available at https://github.com/suhrikim/HuffSIDH for SIDH and
https://github.com/suhrikim/HuffCSIDH for CSIDH.

5.1 Implementation of SIDH

We first present the parameter settings for SIDH implementation. Then we
present the implementation result with analysis. For implementing SIDH, we

18

used the Huff curve of the form Hc with w as compression function, as w-function
is more efficient than winv for recovering the coefficient of the curve after the
first round of the protocol.

Parameter Settings The prime used in SIDH-based cryptography is of the
form p = `eAA `eBB f ± 1. In this section, we present two implementations on Huff
curves when {`A, `B} = {2, 3} and {`A, `B} = {3, 5}. The former is the general
choice of `A and `B for implementing SIDH-based cryptography. As an extra
coefficient transformation is required for Huff curves for higher degree isogenies,
the latter is to examine the performance change caused by this.

For {`A, `B} = {2, 3}, we used the 751-bit prime proposed in [2], which is as
follows:

p751 = 2372 · 3239 − 1

For {`A, `B} = {3, 5}, we used the 621-bit prime of the form:

p621 = 267 · 3175 · 5119 − 1,

and 3175 ≈ 2277.368 and 5119 ≈ 2276.309.
Over finite field Fp2a = Fpa(i) for i2 = −1 and a ∈ {751, 621}, we used the

supersingular Montgomery curve of the form as the base curve:

M : y2 = x3 + 6x2 + x,

which is isomorphic to a Huff curve of the form:

Hca : cax(y2 − 1) = y(x2 − 1).

For a = 751, then c751 = 3 +
√

8 ∈ Fp2751 and for a = 621, then c621 = 3 +
√

8 ∈
Fp2621 .

For p621, the generator points for the Huff curve are the points PA, QA and
PB , QB such that PA, QA ∈ E[3175] and both points have exact order 3175,
PB , QB ∈ E[5119] and both points have an exact order 5119. To select such a
point, we first search for the points on the following Weierstrass curve:

W : y2 = x3 + (c2621 + 1)x2 + c2621x,

which is isomorphic to the Huff curve Hc621 . When (PA, QA) and (PB , QB) are
found, we compute the Weil paring e(PA, QA) ∈ E[3175] and e(PB , QB) ∈ E[5119]
to check that the result has order 3175 and 5119, respectively. When the points
are found, we transform the points on W to points on Hc621 , and express in w-
coordinate. The generator points on Montgomery curves are found in a similar
manner.

Also, when implementing 5-isogeny, we used the formula from [10] for isogeny
evaluation. For recovering the coefficient of the image curve, we used the 2-
torsion method described in [10]. The reason is that using the 2-torsion method,
the cost for recovering the coefficient of the image curve is 8M+4S, while using
the projectivized formula of [10] presented in [7], the cost is 10M+3S.

19

Implementation Results Table 3 presents the implementation results of SIDH
on Montgomery curves and Huff curves. Using the prime p621 and p751, the
performance of SIDH is compared between Montgomery curves and Huff curves.
The implementation using p621 uses 3- and 5-isogeny formula, which is presented
in Section 3.2. The prime p751 uses 3- and 4-isogeny, and the corresponding
formula on Hc using w-function is in the Appendix.

Table 3: Performance results of SIDH implementation.

Montgomery Curve Huff Curve

p621 p751 p621 p751

Isogeny degree used 3,5 2,3 3,5 2,3

Alice’s Keygen 144,248,840 243,489,372 144,182,511 243,590,780

Bob’s Keygen 160,539,980 273,583,953 160,668,976 273,541,121

Alice’s Shared Key 122,129,993 200,242,066 122,118,345 200,231,811

Bob’s Shared Key 138,590,523 233,094,860 138,760,218 232,956,506

Total 565,509,336 950,410,251 565,730,050 950,320,218

Security (Classical) 138 186 138 186

As denoted in Table 3, for p751, the performance of the Montgomery-SIDH
and Huff-SIDH are almost the same. This is obvious as the computational cost for
the formulas for implementing isogeny-based cryptography is almost the same.
For p621, although the Huff curve requires to transform the curve coefficient
on Bob’s side, the performance of the Montgomery-SIDH and Huff-SIDH is al-
most the same. We shall analyze the results in detail by dividing them into key
generation and shared key computation phases.

Public key generation During this phase, it is natural that there is no dif-
ference when comparing the computational cost of the two curves for Alice’s
side. For Bob’s side on Huff curves, after calculating the coefficient of the im-
age curve, extra coefficient transformation is required for efficient quintupling.
Hence, computing the coefficient on Huff curves costs 8M+4S for a total. For
Montgomery curves, 2-torsion is used for recovering the coefficient of the image
curve. Hence, after evaluating isogeny at a 2-torsion point for a Montgomery
curve, recovering the curve coefficient is required, and total also costs 8M+4S.
Therefore, the computation of 5-isogeny on both curves is almost the same.

Computing the shared key The difference in the computation between
two curves occurs when calculating the curve coefficient upon the receipt of
(φi(Pj), φi(Qj), φi(Pj − Qj)) for (i, j) ∈ {(A,B), (B,A)}. Now, note that upon
the receipt of (φi(Pj), φi(Qj), φi(Pj −Qj)) for (i, j) ∈ {(A,B), (B,A)}, the Huff
coefficient ĉ = c+ 1/c+ 2 of Hc is recovered using equation (4), not c itself. For

20

Alice, as ĉ is directly used for tripling and isogeny computation, the performance
on Huff curves and Montgomery curves is almost the same. However, on Bob’s
side in Huff curves, recovering ĉ is not enough – ĉ is used for quintupling, but
we need the actual c to compute the coefficient of the isogenous curve. For
Montgomery curves, Bob uses the extra 2-torsion point on the base curve to
compute the image curve’s coefficient. To reduce the key size, when computing
the shared key on Bob’s side, we compute the 2-torsion, given the coefficient of
the Montgomery curve. Hence both curves require solving quadratic equation
over Fp2 , which requires 1 field squaring and 1 square-root computation for both
curves. Hence, the performance of Montgomery-SIDH and Huff-SIDH is almost
the same.

5.2 Implementation of CSIDH

For CSIDH-based cryptography, the compression function to use is free of one’s
choice as the computational cost of the building blocks for CSIDH is the same for
w and winv. In this paper, we used winv for implementing CSIDH. To implement
CSIDH-based cryptography, we first need to check whether a supersingular curve
exists over a given prime field. In this section, we examine the existence of a
supersingular Huff curve over Fp for a prime p and present the base curve Hc

for the implementation. Then we present the implementation result of CSIDH
using Huff curves.

Prime field and base curve In order to implement the CSIDH-based cryp-
tography, we need to search for a supersingular Huff curve Ha,b over a prime
field p of the form p = f ·

∏
`i − 1, where `is are small distinct primes. Below is

the theorem proving that a supersingular Huff curve over Fp exists when p ≡ 7
mod 8. If p ≡ 3 mod 8, there is no supersingular Huff curve over Fp.

Theorem 3. There exists a supersingular Huff curve of the form Ha,b over Fp
when p ≡ 7 mod 8.

Proof. In the CSIDH setting, for every supersingular elliptic curve over Fp, there
exists a corresponding supersingular Montgomery curve over Fp. Hence it suffices
to show that for a given supersingular Montgomery curve, there exists an isomor-
phic Huff curve over Fp. Now, Huff curve Ha,b is isomorphic to a Montgomery
curve of the form:

M : y2 = x3 +
a2 + b2

ab
x2 + x (6)

Then, M is supersingular if and only if Ha,b is supersingular. Let (a2 + b2)/ab =
A. If we find a supersingular Montgomery curve y2 = x3 + Ax2 + x over Fp,
then by using the equation (6), we can find the corresponding supersingular
Huff curve over Fp. Solving the equation we have,

a =
Ab±

√
(Ab)2 − 4b2

2
(7)

21

From the above equation, Ha,b is defined over Fp, if and only if Ab2 − 4b2 is a
square in Fp, i.e. A2 − 4 is a square in Fp.

Now, suppose p ≡ 7 mod 8 and let M be a supersingluar curve having a
2-torsion point on Fp except for (0, 0). Then the 2-torsion subgroup of M satisfy
|M [2]| = 4. In this case, the supersingular curve M lies on the surface so that
EndFp

(M) ∼= Z[(1 +
√
−p)/2] [6]. Then A2 − 4 is a square in Fp, so that the

corresponding Ha,b exists over Fp. On the other hand, if p ≡ 3 mod 8, then
M lies on the floor so that A2 − 4 is not a square in Fp, so that there is no
supersingular Huff curve Ha,b over Fp.

The original implementation of CSIDH uses the prime of the form p ≡ 3
mod 8. However, from Theorem 3. we use the 511-bit prime presented in [16],
which works over Fp where

p = 24 · 33 · 5 · 7 · 112 · 13 · · · 373− 1. (8)

In this field, we choose a supersingular Huff curve of the form as the base curve:

Hc : cx(y2 − 1) = y(x2 − 1)

where c = 3−
√

8 ∈ Fp.

Remark 3. For a prime p such that p ≡ 3 mod 8, there exist a supersingular
general Huff curve over Fp. However, as the computational cost of elliptic curve
arithmetic and isogeny evaluations is slower than the Huff curve, we omit this
case.

Selecting a random point over Fp When implementing CSIDH, one has to
select a random point on a curve over Fp of a certain order to compute an isogeny
using Vélu’s formula. For a Montgomery curve, first, a random element in Fp is
selected, and we consider it as an x-coordinate of a given Montgomery curve.
Then, by using the curve equation y2 = x3+Ax2+x, r = x3+Ax2+x is computed
and checked whether r is a square or non-square in Fp. The computational cost
for checking whether a random point on a Montgomery curve is in Fp or Fp2\Fp
costs 2M + 1S (we omit the computational costs for computing the Legendre
symbol).

The following method checks whether the point (x, y) ∈ Hc is on Fp or
Fp2\Fp. Since w = 1/xy for a point (x, y) ∈ Hc, y = 1/wx. Now, from the curve
equation, the following holds:

cx(y2 − 1) = y(x2 − 1)
c

w
y − cx =

c

w
x− y(c

w
+ 1
)
y =

(
1

w
+ c

)
x

x2 = (w + c)/w(1 + cw)

Thus x ∈ Fp if (cw + 1)(cw + w2) is square in Fp. The computational cost for
checking whether a random point is in Fp or Fp2\Fp costs 2M + 1S.

22

Implementation results For the implementation, we used the prime field Fp,
where p is defined as in equation 8. In order to compare the performance with
Montgomery curves, we use the following supersingular curve over Fp as a base
curve.

M : y2 = x3 + x

The original implementation of Montgomery-CSIDH in [7] does not use the op-
timization method when evaluating isogenies. Hence, we modified the imple-
mentation for a fair comparison with the Huff-CSIDH. The difference in the
performance between the algorithms lies purely in the computation of the coef-
ficient of the image curve and coefficient transformation for Huff curves. Table
4 presents the performance of the group action on Montgomery curves and Huff
curves. In Table 4, Montgomery-Edwards CSIDH is a method proposed in [22],
which implements CSIDH using Montgomery curves but uses Edwards curves
for evaluating the coefficient of the image curve. Lastly, Huff-Edwards CSIDH is
a method that implements CSIDH using Huff curves, but uses Edwards curves
for evaluating the coefficient of the image curve.

Table 4: Performance results of group action in using traditional Vélu formula.

Group action

Montgomery-CSIDH 109,772,163

Montgomery-Edwards CSIDH 96,570,560

Huff-CSIDH 103,079,951

Huff-Edwards CSIDH 96,766,674

As shown in Table 4, Huff-CSIDH is 6% faster than Montgomery-CSIDH.
This is because although an extra coefficient transformation is required when
Huff curves are used for the implementation, recovering the Montgomery curve’s
coefficient is costly than on a Huff curve for odd-degree isogenies. For the hy-
brid implementations, Montgomery-Edwards CSIDH is almost the same as Huff-
Edwards CSIDH.

Additionally, for CSIDH, it is important to optimize the odd-degree isogeny
formula as isogeny computation contributes to the overall CSIDH performance.
Hence we present the CSIDH implementation using the square-root Vélu formula
in [3].

23

Table 5: Performance results of group action in CSIDH using the square-root
Vélu formula.

Group action

sqrt-Mont 97,549,802

sqrt-Huff 97,957,553

Table 5 presents the performance comparison of Montgomery-CSIDH and
Huff-CSIDH, when the square-root Vélu formula is used for computing odd-
degree isogenies. In Table 5, sqrt-Mont and sqrt-Huff refers to CSIDH imple-
mentation when the square-root Vélu formula is used for Montgomery curves and
Huff curves, respectively. As the effect of the square-root Vélu formula becomes
more conspicuous when isogeny of degree larger than 113 is used, the effect is not
immediate for the current parameter setting. However, as the square-root Vélu
formula exploits Edwards curves for recovering the coefficient of Montgomery
curve, we can see that the performance of sqrt-Mont is similar to Montgomery-
Edwards CSIDH in Table 4. As this is also the case for Huff curves, where
Edwards curves are used to recover the coefficients of the image curve, the per-
formance of sqrt-Huff is similar to Huff-Edwards CSIDH.

6 Conclusion

In this paper, we present the analysis of Huff curves’ usage for implementing
isogeny-based cryptography. First, we analyzed the computational cost of the
lower-level functions when the compression method is used for Huff curves. Then,
we proposed additional functions on Huff curves to implement isogeny-based
cryptography. We presented the implementation results of SIDH and CSIDH on
Huff curves.

For SIDH, we conclude that using w as a compression function on Huff curves
is preferred as the computational cost of recovering the coefficient is more ef-
ficient. As the computational cost for the lower-level function is the same on
Montgomery curves and Huff curves, the performance of Montgomery-SIDH and
Huff-SIDH is almost the same. For CSIDH, we present the birational polynomials
on Huff curves in order to exploit the square-root Vélu formula. We implemented
CSIDH using the classical Vélu formula and the square-root Vélu formula and
compare them with Montgomery curves. The performance of sqrt-Mont is al-
most the same as sqrt-Huff. To summarize, the performance of isogeny-based
cryptography on Huff curves is as fast as on Montgomery curves.

Based on our analysis, the Huff curve can be quite practical for implementing
isogeny-based cryptography but has limitations. First, as the points of order 2
are all at infinity on Huff curves, it is hard to construct a 2-isogeny formula using
w-coordinate so that only eA with an even number can be used to implement
SIDH with Huff curves. The second is that a supersingular Huff curve exists on

24

Fp, where p ≡ 7 mod 8. This result is contrary to the case where supersingular
Montgomery curve exists on Fp for both p ≡ 3 mod 8 and p ≡ 7 mod 8.

References

1. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., et al.: Supersingular isogeny key en-
capsulation. Submission to the NIST post-quantum standardization project, 2017

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. pp. 1–10. ACM (2016)

3. Bernstein, D.J., Feo, L.D., Leroux, A., Smith, B.: Faster computation of isoge-
nies of large prime degree. Cryptology ePrint Archive, Report 2020/341 (2020),
https://eprint.iacr.org/2020/341

4. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: International Conference on the
Theory and Application of Cryptology and Information Security. pp. 227–247.
Springer (2019)

5. Bos, J.W., Friedberger, S.J.: Arithmetic considerations for isogeny-based cryptog-
raphy. IEEE Transactions on Computers 68(7), 979–990 (July 2019)

6. Castryck, W., Decru, T.: CSIDH on the surface. In: International Conference on
Post-Quantum Cryptography. pp. 111–129. Springer (2020)

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
Advances in Cryptology – ASIACRYPT 2018. pp. 395–427. Springer International
Publishing, Cham (2018)

8. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. Journal of Mathematical Cryptology 8(1), 1–29 (2014)

9. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
IACR Cryptol. ePrint Arch. 2019, 1145 (2019)

10. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology – ASI-
ACRYPT 2017. pp. 303–329. Springer International Publishing, Cham (2017)

11. Costello, C., Longa, P., Naehrig, M.: SIDH library (2016-2018).
https://github.com/Microsoft/PQCrypto-SIDH

12. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 572–601. Springer, Berlin, Heidelberg (2016)

13. Couveignes, J.M.: Hard homogeneous spaces. (2006),
https://eprint.iacr.org/2006/291

14. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology – ASI-
ACRYPT 2018. pp. 365–394. Springer International Publishing, Cham (2018)

15. Dry lo, R., Kijko, T., Wroński, M.: Efficient Montgomery-like formulas for gen-
eral Huff’s and Huff’s elliptic curves and their applications to the isogeny-
based cryptography. Cryptology ePrint Archive, Report 2020/526 (2020),
https://eprint.iacr.org/2020/526

16. Heo, D., Kim, S., Yoon, K., Park, Y.H., Hong, S.: Optimized CSIDH implementa-
tion using a 2-torsion point. Cryptography 4(3), 20 (2020)

25

17. Huang, Y., Zhang, F., Hu, Z., Liu, Z.: Optimized arithmetic operations for isogeny-
based cryptography on Huff curves. In: Australasian Conference on Information
Security and Privacy. pp. 23–40. Springer (2020)

18. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography. pp. 19–
34. Springer, Berlin, Heidelberg (2011)

19. Joye, M., Tibouchi, M., Vergnaud, D.: Huff’s model for elliptic curves. In: Inter-
national Algorithmic Number Theory Symposium. pp. 234–250. Springer (2010)

20. Kim, S., Yoon, K., Kwon, J., Park, Y.H., Hong, S.: New hybrid method for isogeny-
based cryptosystems using Edwards curves. IEEE Transactions on Information
Theory (2019)

21. Kim, S., Yoon, K., Park, Y.H., Hong, S.: Optimized method for computing odd-
degree isogenies on Edwards curves. In: International Conference on the Theory
and Application of Cryptology and Information Security. pp. 273–292. Springer
(2019)

22. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) Progress in Cryptology – INDOCRYPT 2018. pp. 137–152. Springer Inter-
national Publishing, Cham (2018)

23. Meyer, M., Reith, S., Campos, F.: On hybrid SIDH schemes using Edwards and
Montgomery curve arithmetic (2017), https://eprint.iacr.org/2017/1213

24. Moody, D., Shumow, D.: Analogues of Vélu’s formulas for isogenies on alternate
models of elliptic curves. Mathematics of Computation 85(300), 1929–1951 (2016)

25. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Advances in Mathematics of Commu-
nication 4(2), 215–235 (2010)

26. Wu, H., Feng, R.: Elliptic curves in Huff’s model. Security and Communication
Networks 17(6) (2012)

Acknowledgement

Appendix A 4-isogenies on Huff Curves

Although [15] omits the 4-isogeny formula on Huff curves using w-function, by
adapting the idea from [17], we additionally present the 4-isogeny formula on
Huff curves using w-function. In this section, we shall briefly state the formula
for implementing SIDH using 4-isogeny.

Theorem 4 (2-isogenies for Ha,b using w-function). Let φ : Ha,b → Ha′,b′

be a 2-isogeny with kernel {(0, 0), (a : b : 0)}. Let w = xy for (x, y) ∈ Ha,b. Then
the evaluation of w under φ is given by

φ(w) =
(a2 − b2)w

(bw + a)(aw + b)
(9)

where

a′ =

√√√√−(√ 1

b2
+

√
1

a2

)2

, b′ =

√√√√−(√ 1

b2
−
√

1

a2

)2

26

To derive equation (9), we adapt the method used in [17]. That is, φ is first
derived from the below composition:

Ha,b
ι−→ Ga,b

ψ−→ Gâ,b̂
ι−1

−→ Ha′,b′

where ι denotes the transformation from a Huff curve to a general Huff curve,
ψ is a 2-isogeny on general Huff curve from [24]. Then φ = ι−1 ◦ψ ◦ ι. Similarly,
we can derive Huff 2-isogenies for the curve of the form Hc.

Theorem 5 (2-isogenies for Hc using w-function). Let φ : Hc → Hc′ be a
2-isogeny with kernel {(0, 0), (c : 1 : 0)}. Let w = xy for (x, y) ∈ Hc. Then the
evaluation of w under φ is given by

φ(w) =
w(c2 − 1)

(w + c)(cw + 1)
(10)

where c′ =| (c+ 1) | / | (1− c) |.
As shown in equation (10), 2-isogeny on Hc using w-function is identical to

setting b = 1 in equation (9). Also, equation (10) is just reciprocal of the 2-
isogeny on Hc using winv function defined in [17]. Lastly, we state the 4-isogeny
on Huff curve using w-function, directly derived from the idea presented in [17].

Theorem 6 (4-isogenies for Hc using w-function). Let φ : Hc → Hc′ be
a 4-isogeny with kernel P such that w(P) = w4 and P has order 4 in Hc. Let
w(Q) = w = xy for a point Q = (x, y) ∈ Hc. Then the evaluation of w under φ
is given by

φ(w) =
w(w − w4)2(ww2

4 + w − 2w4)

(2ww4 − w2
4 − 1)(ww4 − 1)2

where c′ = (1 +
√

1− w4
4)/(1−

√
1− w4

4).

Appendix B Formulas for implementing SIDH-based
cryptography

In this section, we present the doubling, tripling, 3-isogeny, and 4-isogeny for-
mula on a Huff curve of the form Hc, using w as a compression function. For
corresponding formulas on Hc using w function, please refer to [17].

Doubling Let P = (x, y) be a point on a Huff curve Hc. Let c = C/D and
ĉ = Ĉ/D̂, where ĉ = 1

4

(
c+ 1

c − 2
)
. For w(P) = (W : Z) in projective w-

coordinates, the doubling of P gives w([2]P) = (W ′ : Z ′), where W ′ and Z ′ are
defined as:

W ′ = 4WZ(D̂(W + Z)2 + Ĉ · 4WZ)

Z ′ = D̂(W − Z)2(W + Z)2

The computational cost is 4M + 2S, given Ĉ and D̂. Therefore, instead of using
the projective curve coefficient (C : D), it is efficient to use (Ĉ : D̂) = ((C−D)2 :
4CD) for implementation.

27

Tripling Let P = (x, y) be a point on a Huff curve Hc. Let c = C/D and
ĉ = Ĉ/D̂, where ĉ = 1

4

(
c+ 1

c − 2
)
. For w(P) = (W : Z) in projective w-

coordinates, the tripling of P gives w([3]P) = (W ′ : Z ′), where W ′ and Z ′ are
defined as:

W ′ = W (D̂W 4 − 6D̂W 2Z2 − 16ĈWZ3 − 8D̂WZ3 − 3D̂Z4)2

Z ′ = Z(3D̂W 4 + 16ĈW 3Z + 8D̂W 3Z + 6D̂W 2Z2 − D̂Z4)2

The tripling formula is the same to the case when winv is used. The compu-
tational cost is 7M + 5S, given Ĉ and D̂. For tripling it efficient to keep the
projective curve coefficient as ((C −D)2 : (C +D)2).

3-isogeny Let P = (x3, y3) be a 3-torsion point on a Huff curve Hc, w(P) =
(W3 : Z3). Let φ : Hc → Hc′ be a 3-isogeny generated by a kernel 〈P 〉, such
that Hc′ = Hc/〈P 〉. Let Q = (W : Z) be another point on Hc. Then the image
w(φ(Q)) = (W ′ : Z ′) is computed as:

W ′ = W (WZ3 − ZW3)2

Z ′ = Z(WW3 − ZZ3)2

and

Ĉ = (W3 − Z3)(W3 + 3Z3)3

D̂ = (W3 + Z3)(W3 − 3Z3)3

where c′ = C ′/D′ and Ĉ = (C ′+D′)2 and D̂ = (C ′−D′)2, to continue with the
tripling efficiently. The computational cost for 3-isogeny evaluation is 4M + 2S
and the computational cost for computing the coefficient of the image curve is
2M + 3S.

4-isogeny Let P = (x4, y4) be a 4-torsion point on a Huff curve Hc, w(P) =
(W4 : Z4). Let φ : Hc → Hc′ be a 4-isogeny generated by a kernel 〈P 〉, such
that Hc′ = Hc/〈P 〉. Let Q = (W : Z) be another point on Hc. Then the image
w(φ(Q)) = (W ′ : Z ′) is computed as:

W ′ = W (2W4Z4Z −W (W 2
4 + Z2

4))(Z4W −W4Z)2

Z ′ = Z(2W4Z4W − Z(W 2
4 + Z2

4))(WW4 − ZZ4)2

and

Ĉ = 4Z4
4 − 4W 4

4

D̂ = 4W 4
4

where ĉ = Ĉ/D̂ = 1
4

(
c′ + 1

c′ − 2
)
, to continue with the doubling efficiently. The

computational cost for 4-isogeny evaluation is 6M + 2S and the computational
cost for computing the coefficient of the image curve is 4S.

28

