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Abstract. In this paper, we present ZEN, a toolchain for producing efficient zero-knowledge proof
systems of privacy-preserving verifiable neural network models. Taking an existing neural network as
an input, ZEN produces a verifiable computation scheme for a classification task or a recognition task,
namely ZENclass and ZENrec. Both ZENclass and ZENrec ensure the privacy, more precisely, the zero-
knowledge property of the input data. In practice, this means removing the personal identifications,
such as the facial image or other biometric data, from the attack surface. And thanks to three decades’
consecutive efforts on zkSNARK from our community, the entire process is non-interactive and verifi-
able. Thus, our schemes potentially enable many important applications, ranging from trustless oracles
for decentralized ledgers to privacy-preserving facial identification systems. To our best knowledge,
ZEN is the first zero-knowledge neural network scheme that preserves the privacy of input data while
delivering verifiable outputs.
To build efficient schemes with no additional accuracy loss, ZEN includes two major technical contribu-
tions. First, we propose a zkSNARK friendly quantization approach, which is semantically equivalent
to the state-of-the-art quantization algorithm, yet brings significant savings in constraint size. Second,
we propose a novel encoding scheme, namely stranded encoding, that encodes batched dot products,
the workhorse of many matrix operations, using only a fraction of finite field elements. This brings
sizable savings in terms of the number of constraints for the matrix operation circuits. Our end-to-end
evaluation demonstrates the effectiveness of ZEN: compared with simply combining the state-of-the-art
full quantization scheme with zkSNARK (ZEN-vanilla), ZEN has 3.68 ∼ 20.99× (14.14× on average)
savings in the number of constraints (as a result, in prover time as well) thanks to our zkSNARK
friendly quantization and stranded encoding.

1 Introduction

Neural network based software systems become integral parts of our daily life. While many of these systems,
such as biometric-based recognition, bring us great convenience, they also become attack surfaces and result
in privacy leakages. There is an increasing number of hacks and leakages on sensitive facial recognition
data [Gau, O’F, She]. With on-going more adoptions of neural networks, the privacy leakage concern would
be ever-growing. In major countries around the world, legislation efforts, such as GDPR, have been made
to protect personal identifiable information. Privacy-preserving cryptographic methods have been a major
candidate for legislation compliance.

In recent years, the advancement in zero-knowledge proof systems, especially zkSNARKs (zero-knowledge
Succinct ARgument of Knowledge) [PHGR13, BCTV14, AHIV17, BBB+18, WTS+18, BBHR18, BCR+19,
XZZ+19, BCG+20] makes efficient, verifiable while zero-knowledge computation possible. One natural ques-
tion to ask is:

Can we leverage zero-knowledge proof systems to construct privacy-preserving, verifiable neural net-
work schemes?

Many prior works achieve privacy-preserving machine learning via secure multi-party computation (MPC)
and/or homomorphic encryption (HE) [GDL+16, JVC18, DSC+19, JKLS18, MZ17, LJLA17, RRK18, SS15].
Zero-knowledge neural network schemes are also applicable to all these scenarios. Additionally, they also spark
many new use cases due to the fact that (1) the neural network computation result will be publicly verifiable;
(2) the whole process is non-interactive. For example, it can be used as a trustless oracle and a Know-Your-
Customer (KYC) mechanism for decentralized ledgers [Wik]; it can also be used in privacy-preserving facial
identification systems for verifiable auditability.
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1.1 Our Contributions

In this paper, we present ZEN: a ZEro-knowledge proof system for Neural networks. ZEN is the first work
in this domain that aims for privacy-preserving, verifiable inference. In short, ZEN makes the following
contributions:

– ZEN schemes: The definitions of privacy-preserving, verifiable inference schemes based neural networks,
that cover both classification and recognition, namely ZENclass and ZENrec.

– zkSNARK friendly quantization: a series of zkSNARK friendly quantization algorithms that save the
number of constraints in a proof system, while introducing no additional accuracy loss.

– Optimizing matrix operations using stranded encoding: a new encoding scheme for expressing matrix
operations over finite fields, which leads to significant savings in the number of constraints in a proof
system.

– ZEN implementation: An open-sourced toolchain (Fig. 1) that implements ZENclass and ZENrec with
zkSNARK friendly quantization and stranded encoded matrix operations. Our evaluation shows that
ZEN brings 3.68 ∼ 20.99× (14.14× on average) savings in the number of constraints compared with a
vanilla implementation of the neural network on zkSNARK.
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Fig. 1: Overview of ZEN tool chain.

1.2 Our Techniques

Privacy-preserving, verifiable inference schemes Based on potential use cases, we formally define two
privacy-preserving, verifiable inference schemes, namely,

– ZENclass, a verifiable classification scheme; and
– ZENrec, a verifiable recognition scheme.

Collectively, those two schemes cover the two most widely used tasks for neural networks (§3). Differ-
ent from existing verifiable machine learning schemes such as zkDT [ZFZS20], SafetyNet [GGG17], and
vCNN [LKKO20], both our schemes ensure that the results of classification and recognition are verifiable
while the inputs (typically some personal identifiable biometric data) remain private; hence, compliant with
legislation.

In both schemes, we assume that the prover and the verifier “agree” on the neural network model to be
used. In our classification scheme (ZENclass), the prover needs to convince the verifier that she has the secret
input such that a certain classification result is obtained. Similarly, in our recognition scheme (ZENrec), we
assume the prover and the verifier also “agree” on a reference “ground truth” embedding. For example, in
the case of face recognition, this embedding can be viewed as the neural network model’s output on a user’s
face image when setting up the recognition. However, the prover only knows a commitment to the reference
embedding. This prevents the embedding from leaking personal identifiable biometric data [CJM20]. For this
reason, ZENrec could be potentially used in privacy-preserving biometric-based authentication and trustless
oracle for decentralized ledgers.

zkSNARK friendly quantization Prior to our work, a prohibitive factor of applying zero-knowledge proof
systems over neural networks is the unfitted data type of neural network models. Popular neural network
models use arithmetic operations on signed floating numbers and are therefore not compatible with existing
zero-knowledge proof systems that operate over finite fields. Existing work on neural network quantization
[JKC+18, DMM+18, MNA+18, SCC+19, LTA16] cannot be directly employed here for two reasons: first,
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Table 1: Overall result

Dataset Model
ZEN-vanilla ZEN Saving ZEN.prove ZEN.verify

(K Constraints) (K Constraints) (×) (s) (ms)

MNIST ShallowNet 408 111 3.68 7.01 5.51
CIFAR-10 LeNet-5-small 16, 975 938 18.08 39.37 5.45
CIFAR-10 LeNet-5-medium 85, 292 5, 540 15.38 383.01 5.49

ORL LeNet-Face-small 57, 505 2, 737 20.99 174.21 5.05
ORL LeNet-Face-medium 274, 643 17, 506 15.67 1880.21 5.07
ORL LeNet-Face-large 610, 950 55, 365 11.03 11334.31 5.17

part of the inference operations over the output of the quantized models remain on signed floating numbers;
second, they still require operations such as divisions that are non-atomic to zkSNARK systems.

To overcome the first obstacle, we integrate a state-of-the-art full quantization algorithm [JKC+18] to
the existing zkSNARK library as our baseline system: given a floating-point neural network, producing a
neural network model consisting of only unsigned integer operations (§4.1). We show that although being
fairly inefficient, one can already build a proof system for generic neural networks with the fully quantized
neural network models. We call the proof systems generated by directly applying these fully quantized neural
network models to an existing zkSNARK library ZEN-vanilla. It serves as an important stepping stone for
the rest of the work.

We then introduced two important zkSNARK friendly optimizations (§4.2) to the full quantization algo-
rithm, namely, sign-bit grouping, and remainder-based verification. The core idea behind both optimizations
is to use algebraic equalities to avoid bit-decompositions, another non-atomic operation for zkSNARK, as
possible. With sign-bit grouping, we completely eliminate the bit-decompositions due to element-wise zero-
comparisons in each layer. With remainder-based verification, we reduce the bit-decompositions caused by
divisions (due to the scale factor) in each layer. Both optimizations bring significant savings in terms of
the number of constraints in the generated circuits. In addition, since these optimizations only use algebraic
equalities, the resulted quantized neural network models are still equivalent to the quantized models from
[JKC+18]. As a result, our solution does not incur any additional accuracy loss.

Optimizing matrix operation circuits using stranded encoding One crucial observation we have is:
most quantized neural network works well with 8-bit unsigned integers, while most zkSNARKs use ellipitic
curves (e.g. BLS12-381 [BLS02]) with an underlying finite field of order ≈ 2254; given such a field, can we
encode matrix operations more efficiently by multiplexing a single finite field element for multiple elements
in the matrix? This is analogous to the SIMD (Single Instruction Multiple Data) technique that is widely
used in modern CPUs and GPUs [PH12].

The answer is affirmative. However, simply stacking 8-bit unsigned integers in finite field elements would
not work. To solve this problem with subtlety, we propose a novel encoding scheme, namely stranded encoding,
which encodes batched vector dot products with fewer field operations (§5). To compute s dot products
simultaneously, i.e., given (|Aj | = |Bj | = n, j ∈ {1, . . . , s}) as input, compute

(A1 ·B1), (A2 ·B2), . . . , (As ·Bs),
a näıve encoding requires 2ns field elements. Our stranded encoding encodes these dot product operations
with 2n field elements:

xi =

s∑
j=1

aj,iδ
φ(j), yi =

s∑
j=1

bj,iδ
φ(j)

where xi, yi ∈ Fp, i ∈ {1, . . . , n}. For appropriate φ(·) (see Definition 4), these s dot products could be
extracted from the following quantity

n∑
i=1

xiyi = (A1 ·B1)δ2φ(1) + . . .+ (A2 ·B2)δ2φ(2)+

. . .+ (As ·Bs)δ2φ(s)
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Table 2: Case study: benefits of optimizations on the number of constraints for the four layers in LeNet-5-
Medium CIFAR-10. Opt. Lv1 only includes sign-bit grouping; Opt. Lv2 adds remainder-based verification;
Opt. Lv3 adds stranded encoding. See 6.1.

Kernels ZEN-vanilla Opt. Lv1 Opt. Lv2 Opt. Lv3

Conv 69,692,928 28,630,272 8,082,688 5,195,008

FC 394,000 219,706 132,490 54,906

AvgPool 14,925,312 4,982,976 7,872 7,872

ReLU 114,227 97,920 97,920 97,920

A caveat here is to pack as many matrix coefficients into a field element, while still allowing a proper φ(·)
to extract A1 ·B1, . . . , As ·Bs correctly. We formally formulate this as a discrete optimization problem; and
develop a cost model for stranded encoding, so that our implementation automatically chooses the optimal
batch size s for any instance.

Implementation and evaluation We implemented both ZEN-vanilla and the fully optimized ZEN toolchain.
We summarize our benchmark results in Table 1. We see an improvement of 3.67∼21.01× (14.27× on aver-
age), depending on the inference model. Further discussions will be given in the corresponding sections.

As one shall see, while the verification speed is more or less stable, the proving cost increases drastically
with the increase of the number of constraints. We make various optimizations that reduce the number of
constraints. See Table 2 for a highlight of optimizations on LeNet-5-Small for CIFAR-10.

Our code is open-sourced, publicly available on GitHub. 3

Our underlying zero-knowledge proof scheme is from the celebrated work of Groth [Gro16]. We remark
that the selection of underlying zero-knowledge proof systems is largely orthogonal to our ZEN design. In
particular, our optimization is independent of the underlying proving system, and we expect to see similar
gains from our optimizations for other proving systems. With [Gro16], our proof size is always a constant,
i.e., 196 bytes for our choice of parameters. Verify a proof can be done within 5∼7 ms in all cases. This
feature may be particularly appealing in practical use cases such as blockchains, where decisions (whether
authentication passes or not) need to be made almost instantly.

1.3 Related work

MPC, FHE, DP for secure machine learning Many research efforts [CJM20, HSLA20, HSC+20, JL17,
CKM17, GRSY20, ZFZS20] have been devoted to the security and privacy in machine learning recently.
These works largely fall into three categories. The first approach [DSC+19, JKLS18, GDL+16] utilizes ho-
momorphic encryption to execute machine learning models on encrypted data homomorphically. The second
approach [MZCS18, BDK+18, DSZ15, JVC18] builds upon the multi-party computations (MPC), enabling
multiple parties with local datasets to learn the same machine learning model for the aggregated datasets,
while preserving privacy for individual’s data. The third approach [ACG+16, ZYCW20, BNS19] adopts dif-
ferential privacy (DP) to ensure that the individual data points in a large dataset will not be leaked even if
they have been utilized to train a machine learning model.

While all these work provide privacy of the data during training and inferencing, they are largely orthog-
onal to our ZEN in that, on top of data privacy, we also aim to guarantee the integrity of computation by
a succinct, non-interactive proof and an efficient verification.

In the zero-knowledge proof domain, prior to our work, [ZFZS20] explores zero-knowledge proof for
machine learning. Their work has a limited scope and focuses on a simple decision tree model. [LKKO20]
also uses zero-knowledge proofs for verifiable machine learning. There, the proof system is used to guarantee
the integrity of the computation while zero-knowledge property of the input is absent. In other words, their
input to the neural network model is neither binded nor hided. Our solution, to some extend, covers a superset
of use cases in [LKKO20]. To the best of our knowledge, our work is the first efficient zero-knowledge proof
for neural networks.

3 https://github.com/UCSB-TDS/ZEN

https://github.com/UCSB-TDS/ZEN
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Table 3: Comparison of zero-knowledge proof systems, where (Gen,Prove,Verify, |π|) denote the trusted setup
algorithm, the prover algorithm, the verification algorithm, and the proof size. C is the size of a log-space
uniform circuit with depth d, n is the size of its input. The concrete numbers indicate the performance of a
circuit computing the root of a Merkle tree of 256 leaves (the CRH used in this Merkle tree is SHA256) 4.

Construction Gen Prove Verify |π| Gen Prove Verify |π|

LibSNARK [BCTV14, BCG+20] O(C) O(C logC) O(1) O(1) 1027s 360s 2× 10−3s 0.19KB

Ligero [AHIV17] N.A. O(C logC) O(C) O(
√
C) N.A. 400s 4s 1, 500KB

Bulletproofs [BBB+18] N.A. O(C) O(C) O(logC) N.A. 2, 555s 98s 2KB
Hyrax [WTS+18] N.A. O(C logC) O(

√
n+ d logC) O(

√
n+ d logC) N.A. 1, 041s 9.9s 185KB

LibSTARK [BBHR18] N.A. O(C log2 C) O(log2 C) O(log2 C) N.A. 2, 022s 0.044s 395KB
Aurora [BCR+19] N.A. O(C logC) O(C) O(log2 C) N.A. 3, 199s 15.2s 174.3KB
Libra [XZZ+19] O(n) O(C) O(d logC) O(d logC) 210s 201s 0.71s 51KB

Zero-knowledge proof systems A large body of zero-knowledge proof systems [BCTV14, AHIV17, BBB+18,
WTS+18, BBHR18, BCR+19, XZZ+19, BCG+20] have been proposed to facilitate the design and imple-
mentation of programs under the zero-knowledge setting. These systems usually show diverse prover time,
verification time, and proof size, leading to trade-offs in these three dimensions. In particular, we focus on the
scheme developed by Groth [Gro16] and the ark-snark implementation [ark, BCG+20] to provide constant
size proofs and millisecond-level verifications. We stress again that the selection of zero-knowledge proof
systems is largely orthogonal to our ZEN design; our design is applicable to other proof systems and will
deliver various performance preference, suiting dedicated use cases.

Neural network quantization Quantizing neural networks [LDC+20, SCC+19, LTA16], i.e., reducing the data
bit-width, is a common method in practice that reduces memory consumption and accelerates the intensive
neural network computation. One popular approach [SCC+19, DMM+18, MNA+18] replaces the float32 data
in neural network kernels with variable-precision data (e.g., float16) and gain speedup during the training
procedure. Note that floating-point arithmetic remains after quantization and will not be efficient in a zero-
knowledge proof system. Another approach [JKC+18, GGSS19] turns to fixed-point models. They efficiently
utilize integer-arithmetic instructions on ARM CPUs and mobile accelerators. However, these work either
build upon huge look-up tables or require intensive division operations; both are expensive/prohibitive for
zkSNARKs.

1.4 Paper organization

§2 presents necessary background for this paper. We introduce our privacy-preserving, verifiable classifi-
cation and recognition schemes based on neural networks in §3. Next, §4 and §5 present our zkSNARK
friendly quantization method and stranded encoding respectively. Finally, implementation and evaluations
are reported in §6.

2 Background

The major cryptographic building block used in this paper is zkSNARK, formally publicly-verifiable prepro-
cessing zero-knowledge Succinct Non-interactive ARgument of Knowledge. We briefly introduce zkSNARK
in §2.1, and compare different schemes of zkSNARKs and explain our choice in §2.2.

2.1 What is a zkSNARK?

We informally define zkSNARK in the context of arithmetic circuit satisfiability. A more formal definition
can be found in [BCI+13].

We denote a finite field of order p as Fp. An Fp-arithmetic circuit is a circuit whose inputs and outputs
are from Fp. We consider circuits that have an input x ∈ Fnp and a witness w ∈ Fhp . We restrict the circuits
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to the ones with only bilinear gates, i.e. addition, multiplication, negation, and constant gates with input
y1, . . . , ym is bilinear if the output is 〈~a, (1, y1, . . . , ym)〉 · 〈~b, (1, y1, . . . , ym)〉 for ~a,~b ∈ Fm+1

p .
It is not hard to convert boolean circuits to arithmetic circuits via bit decomposition. We define arithmetic

circuit satisfiability as follows:

Definition 1. The arithmetic circuit satisfiability of an Fp-arithmetic circuit C : Fnp × Fhp → Flp can be

defined by the relation RC = {(x,w) ∈ Fnp × Fhp : C(x,w) = 0l} and the language LC = {x ∈ Fnp : ∃ a ∈
Fh s.t. C(x,w) = 0l}.

A zkSNARK for Fp-arithmetic circuit satisfiability is a triple of polynomial time algorithms, namely
(Gen,Prove,Verify):

– Gen(1λ, C) → (pk, vk). Using a security parameter λ and an Fp-arithmetic circuit C as inputs, the key
generator Gen randomly samples a proving key pk and a verification key vk. These keys are considered as
public parameters pp := (pk, vk), and can be used any number of times to prove/verify the membership
in LC .

– Prove(pk, x, w) → π. Taking a proving key pk, and any (x,w) ∈ RC as inputs, the Prove algorithm
generates a non-interactive proof π for the statement x ∈ LC .

– Verify(vk, x, π)→ {0, 1}. Taking the verification key vk, public input x, and proof π, the Verify algorithm
output 1 is the verification success, i.e. the verifier is convinced that x ∈ LC .

Remark 1. In practice, the prover may segment the proving processing into multiple stages. For example, it
may commit to an input and publish the commitment first, and at a later stage generates the proof. It may
even commit different parts of the inputs independently and separately. +For simplicity, for the rest of the
paper, we will model this whole process as a single function. It is straightforward to see that our security
features remain intact in this simplified model.

A zk-SNARK has the following properties:

Completeness. For any security parameter λ, any Fp arithmetic circuit C, and (x,w) ∈ RC , an honest
prover can convince the verifier, namely that the verifier will output 1 with probability 1 − negl(λ) in the
following experiment: (vk, pk)← (1λ, C); π ← Prove(pk, x, w); 1← Verify(vk, x, π).

Succinctness. An honestly-generated proof π has Oλ(1) bits and Verify(vk, x, π) runs in time Oλ(|x|) 5.

Proof of Knowledge. If the verifier accepts a proof output by a computationally bounded prover, the
prover must know a witness for a given instance. This is also called soundness against bounded provers. More
precisely, for every poly(λ)-size adversary A, there is a poly(λ)-size extractor E such that Verify(vk, x, π) = 1
and (x,w) /∈ RC with probability negl(λ) in the following experiment: (pk, vk) ← KeyGen(1λ, C); (x, π) ←
A(pk, vk); w ← E(pk, vk).

Zero Knowledge. An honestly generated proof is zero knowledge. Specifically, there is a poly(λ)-size sim-
ulator Sim such that for all stateful poly(λ)-size distinguishers D, the probability of D(π) = 1 on an honest
proof and on a simulated proof is indistinguishable.

2.2 zkSNARK schemes and implementations

zkSNARK’s security can be reduced to knowledge-of-exponent and variants of Diffie-Hellman assumptions in
bilinear groups [Gro10, BB04, Gen04]. Although the knowledge-of-exponent assumption is considered fairly
strong, Gentry and Wichs showed that assumptions from this class are likely to be inherent for efficient,
non-interactive arguments for NP relations [GW11].

There are a number of zero-knowledge proof systems proposed in recent years [BCTV14, AHIV17,
BBB+18, WTS+18, BBHR18, BCR+19, XZZ+19, BCG+20]. Table 3 lists some of them and compares the
trade-offs of different systems. In this paper, we use the ark-snark implementation [ark] that was part of

4 The concrete numbers are from [XZZ+19].
5 Oλ(·) hides a fixed polynomial factor in λ.
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[BCG+20]. We will use the scheme by Groth [Gro16], commonly referred to as Groth16, to generate and
verify proofs. This scheme is state-of-the-art in terms of proof size and verifier efficiency. Nonetheless, we
reiterate that our work can be easily adapted to other proof systems at the back-end and the proposed
front-end optimizations remain effective.

2.3 Neural network based classification and recognition

Neural network (NN) is an important type of machine learning algorithm with wide applications in computer
vision [HZRS16, LBBH98] and natural language processing [DS20, WJI+20]. It generally contains a sequence
of neural network layers to extract features and make predictions. During computation, these layers are
usually executed sequentially and each layer takes input from the computation results of the previous layer.
Formally, given a sequence of neural network layer fi(·|Wi) that is parameterized by the weight Wi, each
layer consumes an input feature Xi−1 from the previous layer and generates a feature map Xi

Xi = fi(Xi−1|Wi), i ∈ {1, 2, ..., n}

Here, X0 is the input image and n is the number of neural network layers. To extract non-linear features,
an activation function is usually applied after each neural network layer to introduce nonlinearity. The
most popular one is the ReLU function that element-wisely compares features with zero (i.e., ReLU(Xi) =
max(Xi, 0)).

Two important workloads of NNs are the classification [HZRS16, LBBH98] and the recognition [SYS+20,
WWZG20]. While these two workloads enjoy the same performance benefit from neural network layers, they
are largely differentiated by the final layer for prediction. Given c candidate classes (e.g., cat, dog, and
house), the classification task aims to classify an image into one of these classes by predicting directly the
probabilities of each class. Formally, given a NN with n layers, the classification task takes the features
Xn ∈ Rc from the nth layer and selects the prediction ŷ = argmaxiXn as the class i with the highest
predicted probability.

The recognition task aims to compare two images and identify whether these two images belong to a
same category. It is widely used for facial recognition that compares two images and decides whether these
two images contain a same person. This task usually extracts the high-level features of two images and

computes their distance for comparison. In particular, given the features X
(1)
n and X

(2)
n from two images,

the recognition flags them as the same category if their distance is larger than a pre-defined threshold (=0.5
by default). Note that the recognition task usually uses a large dimension of Xn to maintain fine-grained
features for comparison.

3 Zero-Knowledge Proofs for Neural Network based Classification and
Recognition

In this section, we present our constructions of verifiable neural network based classification and recognition
with zero knowledge.

A neural network, N : V1 → V2, is a function from one vector space to another. In practice, both V1 and
V2 are defined on floating-point numbers, such as float16 or float32. To embed a neural network to arithmetic
circuits, we propose a zkSNARK friendly quantization. This allows us to convert a neural network, defined
on floating-point numbers, to a fully quantized neural network, where both the feature map and the weight of
all neurons are unsigned integers, and thus could be easily embedded in finite fields. A fully quantized neural
network, Q : Fd1p → Fd2p , is a mapping from a size d1 vector over Fp to a size d2 vector on the same field. A
neural network model can be trained for different tasks, such as classification, regression, and recognition.

Apart from zk-SNARK, we use a cryptographic commitment scheme as a building block, formally,
COMM : {0, 1}O(λ) × {0, 1}∗ → {0, 1}O(λ) . We require the scheme to be both binding and hiding. Looking
ahead, we will be using Pedersen commit which is statistically hiding and computationally binding under
well-accepted assumptions.
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3.1 ZENclass: zero-knowledge verifiable neural network based classification

Motivated by the application in the introduction, our zero-knowledge verifiable neural network classification
scheme (ZENclass) assumes that the prover and the verifier agree on a neural network model prior to
communication. This includes the network architecture, weight of each layer, and the choice of activation
functions, etc. During our instantiation, we use Groth16 method to generate proofs. This implies that the
prover and the verifier also need to agree on certain common reference string (CRS) that depends on the
network model. During the whole process, the prover keeps the input private, but will publicly commit to
the input data (binding). At a later time, the prover generates a proof for the result of the classification.
Upon receiving the commitment and the proof, the verifier decides if the proof is valid or not. During the
whole process, the prover’s input data is kept secret (hiding).

Let Q be a quantized neural network that represents the mapping Q : Fdp → [M ], where [M ] is the set of
all possible classifications. A zero-knowledge verifiable neural network based classification scheme (ZENclass)
can be defined as the following algorithms:

– (pk, vk)← ZENclass.Gen(1λ,Q): given a security parameter λ and a quantized neural network model Q
for classification, randomly generate a proving key pk and a verification key vk.

– (cm, ya, π) ← ZENclass.Prove(pk, a, r): given an input a ∈ Fdp and a random opening r, the prover
commits to the input with r, i.e., cm ← COMM(r, a), and runs the neural network classification to get
ya ← Q(a). Finally, the prover generates a proof for the above process.

– {0, 1} ← ZENclass.Verify(vk, cm, ya, π): validate input a’s classification result on model Q given the
verification key vk, a’s commitment, a’s classification result ya, and the zero-knowledge proof π.

π is a zk-SNARK proof that the prover produces for the following NP statement:

Protocol 1 (NP statement for ZENclass) Given a commitment of input cm, “I” know a secret input a
and a secret opening r such that:

– The commitment is well-formed: cm = COMM(r, a).
– The classification result is valid: ya = Q(a).

We define ZENclass formally as follows:

Definition 2 (ZENclass). A scheme is a zero-knowledge verifiable neural network based classification if the
following holds:

– Completeness. For any quantized neural network Q and an input a ∈ Fdp, (pk, vk)← ZENclass.Gen(1λ,Q),
(cm, ya, π)← ZENclass.Prove(pk, a, r), it holds that:

Pr[ZENclass.Verify(vk, cm, ya, π) = 1] = 1

– Soundness. For any PPT adversary A, the following probability is negligible in λ:

Pr


(vk, pk)← ZENclass.Gen(1λ,Q),
cm′ ← COMM(r, a),
(a′, cm′, y′a, π

′)← A(1λ, pk, vk, r′),
1← ZENclass.Verify(vk, cm′, y′a, π

′),
Q(a′) 6= ya for a′ 6= a


– Zero Knowledge. An honestly-generated proof is perfect zero knowledge. For security parameter λ,

(pk, vk)← ZENclass.Gen(1λ,Q), PPT distinguisher D, there exists a PPT simulator Sim such that
the following probabilities are indistinguishable (at most differs by negl(λ)):
• The probability that D(cm, ya, π) = 1 on an honest proof:

Pr


(pk, vk)←

ZENclass.Gen(1λ,Q),
D(cm, ya, π) (a, r)← D(pk, vk),
= 1 (cm, ya, π)←

ZENclass.Prove(pk, a, r)
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• The probability that D(cm, ya, π) = 1 on a simulated proof:

Pr

 (pk, vk)← Sim(1λ,Q),
D(cm, ya, π) (a, r)← D(pk, vk),
= 1 (cm, ya, π)←

ZENclass.Sim(pk, a, r)


3.2 ZENrec: zero-knowledge verifiable neural network based recognition

A second use case of neural networks that we study in this paper is recognition. Neural network based
recognition tasks usually consist of two steps. Taking face recognition as an example, the first step is to use
a neural network to map an input face image a to a face embedding, represented by a vector ya. The second
step is to compare this face embedding with a so-called ground truth embedding yg via a distance metric L.
If the loss is smaller than certain specified threshold (L(ya, yg) ≤ τ), then the recognition succeeds.

As motivated in the introduction, zero-knowledge verifiable neural network based recognition can be
applied to many scenarios to preserve the privacy of sensitive input, such as biometrics information. Our zero-
knowledge verifiable neural network based recognition (ZENclass) scheme assumes that the prover and the
verifier agree on a neural network model, a commitment to the ground truth embedding cmg ← COMM(s, yg)
where yg is the ground truth embedding and s is some random opening, the distance metric L, and the
threshold τ . Similar to the previous case, they also agree on a CRS for our proving system. The prover
generates a proof to convince the verifier that she has a secret input ya such that the output of the distance
metric L, evaluated over both the ya and the agreed and committed ground true yg, is less than or equal
to τ . Again, the prover cannot alter her inputs once committed (binding), while her inputs remain private
(hiding) during the whole process.

Let Q be the quantized neural network, represented via a mapping Q : Fd1p → Fd2p . Let L : Fd2p ×Fd2p → Fp
be a distance metric over the embedding space, and τ ∈ Fp be the agreed threshold. A zero-knowledge
verifiable neural network based recognition scheme (ZENrec) can be defined as the following algorithms:

– (pk, vk) ← ZENrec.Gen(1λ,Q): given a security parameter λ and a quantized neural network model Q
for recognition, randomly generate a proving key pk and a verification key vk.

– (cmg, cm1, cm2, π)← ZENrec.Prove(pk, a, yg, r1, r2, s):
given an input a, the ground truth embedding yg, and some random secrets r1, r2 and s, the prover
runs the neural network model Q on a to obtain the embedding result ya, commits the input a to
cm1 ← COMM(r1, a) and the output ya to cm2 ← COMM(r2, ya), respectively. The prover also commits
the ground truth embedding ya to cmg ← COMM(ya, s) using s. The prover generates a proof π for
verifying these computations as well as L(ya, yg) ≤ τ .

– {0, 1} ← ZENrec.Verify(vk, cmg, cm1, cm2, π): validate the recognition result, given the commitment of
the ground truth embedding (cmg) the commitment of input a (cm1), the commitment of a’s neural
embedding ya (cm2), and the zero-knowledge proof π.

Informally, π is a zero-knowledge proof of the following statement:

Protocol 2 (NP statement for ZENrec) Given commitments cm1, cm2 and cmg, “I” know some secret
inputs a, ya, yg, r1, r2 and s such that:

– The following commitments are well-formed:

cm1 = COMM(r1, a),

cm2 = COMM(r2, ya),

cmg = COMM(s, yg)

– The neural embedding is valid: ya = Q(a).
– The distance between a’s embedding and the ground truth embedding is not greater than the threshold τ :

L(ya, yg) ≤ τ

we define ZENrec formally as follows:
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Definition 3 (ZENrec). A scheme is a zero-knowledge verifiable neural network based recognition if the
following holds:

– Completeness. For any quantized neural network Q and an input a ∈ Fdp, (pk, vk)← ZENrec.Gen(1λ,Q),
(cmg, cm1, cm2, π)← ZENrec.Prove(pk, a, yg, r1, r2, s), it must hold that:

Pr[ZENrec.Verify(vk, cmg, cm1, cm2, π) = 1] = 1

– Soundness. For any PPT adversary A, the following probability is negligible in λ:

Pr



(vk, pk)← ZENrec.Gen(1λ,Q),
(a′, y′a, y

′
g, cm

′
g, cm

′
1, cm

′
2, π
′)←

A(1λ, pk, vk, r′1, r
′
2, s
′),

cm′g = COMM(s′, y′g),
cm′1 = COMM(r′1, a

′),
cm′2 = COMM(r′2, y

′
a),

1← ZENrec.Verify(vk, cm′g, cm
′
1, cm

′
2, π
′),

Q(a′) = ya,
L(ya, yg) > τ


– Zero Knowledge. An honestly-generated proof is perfect zero knowledge. For security parameter λ,

(pk, vk) ← ZENrec.Gen(1λ,Q), PPT distinguisher D, there exists a PPT simulator Sim such that the
following probabilities are indistinguishable (at most differs by negl(λ)):
• The probability that D(cmg, cm1, cm2, π) = 1 on an honest proof:

Pr


(pk, vk)←

D(cmg, cm1, ZENrec.Gen(1λ,Q),
cm2, π) (a, yg, r1, r2, s)← D(pk, vk),

= 1 (cmg, cm1, cm2, π)←
ZENrec.Prove(pk, a, yg, r1, r2, s)


• The probability that D(cmg, cm1, cm2) = 1 on a simulated proof:

Pr

 (pk, vk)← Sim(1λ,Q),
D(cmg, cm1, (a, yg, r1, r2, s)← D(pk, vk),
cm2, π) = 1 (cmg, cm1, cm2, π)←

Sim(pk, a, yg, r1, r2, s)
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Fig. 2: Popular neural network kernels

4 zkSNARK Friendly Quantizaiton

In this section, we introduce our zkSNARK friendly quantization to fit floating-point neural network models
to zkSNARK. Recall that popular neural networks require arithmetic computation on floating-point numbers
(e.g., float32). However, zero-knowledge systems work over finite fields where data is represented by large
unsigned integers (e.g., uint256). This poses special challenges on the operation and data, namely, converting
floating points to non-negative integers, and handling divisions. To bridge this gap of numerical data types,
we first integrate a full quantization scheme in [JKC+18] to the existing zkSNARK library as our baseline
system, ZEN-vanilla. Then, we introduce two zkSNARK friendly optimizations on top of our baseline system,
to significantly reduce the number of constraints while maintaining an equivalent accuracy.
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4.1 Our baseline quantization scheme

Amid a vast amount of existing work on neural network quantization [JKC+18, DMM+18, MNA+18,
SCC+19, LTA16], applying neural network models in zkSNARKs requires full quantization: converting a
floating-point neural network model to a neural network model consisting of only unsigned integer arith-
metic. As a result, we choose the full quantization scheme in [JKC+18] as our baseline.

Given a weight matrix W and a data matrix X, a neural network kernel computes the output matrix Y
as follows:

Y = WX, W ∈ Rm×n, X ∈ Rn, Y ∈ Rm (1)

The first step of quantization is to generate floating-point scale parameters (sY , sW , sX ∈ R) and the lifted
zero points (zY , zW , zX ∈ uint) for each matrix. As a result, we have the quantized representation6:

Y = sY (QY − zY Jm,1) W = sW (QW − zWJm,n)

X = sX(QX − zXJn,1)

During neural network computation, we can substitute Y , X, and W in Eq. 1 with their quantized repre-
sentation:

sY (QY − zY Jm,1) = sW sX(QW − zWJm,n)(QX − zXJn,1)

The second step is to replace the floating-point scale parameters with unsigned integers and enable the full
quantization computation:

M = b2k sW sX
sY

c

QY − zY Jm,1 = M(QW − zWJm,n)(QX − zXJn,1)/2k (2)

By multiplying with 2k with a large k (=22 by default), we preserve the precision of the floating-point scale
parameters in an unsigned integer.

This quantization scheme establishes state-of-the-art accuracy on uint8 quantization without introducing
any additional accuracy loss, for a variety of real-world neural networks. We implement this quantization
with the existing zkSNARK library as our baseline system, ZEN-vanilla.

4.2 Improving quantization using sign-bit grouping and remainder-based verification

ZEN-vanilla produces effective privacy-preserving, verifiable neural network models. However, ZEN-vanilla is
not efficient due to its large number of constraints. We further introduce two zkSNARK friendly optimizations
on top of the baseline quantization scheme, namely, sign-bit grouping and remainder-based verification. Both
optimizations use algebraic equalities to reduce the number of expensive bit-decomposition operations in
zkSNARK, while maintaining the semantics of the quantization. As a result, our techniques incur similar
accuracy loss as [JKC+18]. Nonetheless, we note that [JKC+18] itself introduces accuracy loss.

Sign-bit grouping. In ZEN-vanilla, the constraints for a forward step on each layer is generated by Eq. 2.
We first reformulate Eq. 2 to:

QY = zY Jm,1 +M(QW − zWJm,n)(QX − zXJn,1)/2k

Despite that both sides are guaranteed to be positive, each element of (QW − zW ) and (QX − zX) may
still be negative. As a result, one may still need O(mn) sign-checks in the generated constraints, where each
sign-check needs expensive bit-decomposition.

Instead, we use sign-bit grouping that uses the associativity of matrix multiplication to group operands
of the same sign:

G1 = QWQX , G2 = zXQW , G3 = zWQX , M
′ = bzY 2k

M
c

QY = M(G1 + nzW zXJm,1 +M ′Jm,1 −G2 −G3)/2k (3)

6 Jk,l represents a k × l matrix of ones.
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Note that we add zY before subtraction such that all intermediate elements in the reformulated system is
guaranteed to be positive. Now we can directly encode Eq. 3 on the finite field without the need of any sign
check, and thus completely remove bit-decompositions. This optimization saves O(mn log p) constraints for
W ∈ Rm×n, where p is the order of the finite field used by zkSNARK.

Remainder-based verification. Observe that in Eq. 3, we still need to perform divisions. However, the
division operation is non-atomic in zkSNARK systems. To näıvely support this division operation, we need
to first conduct the expensive bit-decomposition. Then, we need to drop the n least significant bits and pack
the rest back to enforce equality in Eq. 3. While this strategy allows verifying Eq. 3, it would introduce
heavy overhead from the bit decomposition.

By contrast, we propose a remainder-based verification optimization to avoid the high overhead from bit
decomposition. We first use an extra matrix R to store the division remainder. During verification, we will
utilize this remainder matrix to avoid the division in zkSNARK systems. Formally, we have the following
verification procedure:

QY 2k +R = M(G1 + nzW zXJm,1 +M ′Jm,1 −G2 −G3) (4)

As a result, we can verify the computation without the need of any division operations. This optimization
saves O(m log p) constraints (Y ∈ Rm, p is the order of the finite field used by zkSNARK).

4.3 Apply zkSNARK friendly quantization to different kernels

We introduce the quantization of individual neural network kernels. We illustrate these neural network kernels
in Fig. 2. Since the fully connected kernels and convolution kernels can be implemented as dot products, we
can directly use Eq. 4 to verify these two kernels. In the following section, we will show the quantization of
the ReLU kernel and the average pool kernel.

ReLU kernel. The ReLU kernel contains only maximum operations, and is used to extract nonlinear
neural network features, as illustrated in Fig. 2(a). Formally, given a quantized matrix represented in a triple
(Q, s, z), where Q is the quantized matrix (Q ∈ Ncin×m×n), s is the scale parameter (s ∈ R), and z is the
zero point z ∈ N. We compute the ReLU kernel by element-wisely applying the maximum comparison

QReLU = max(Q, zJcin,m,n))

The key insight is that z is an integer value corresponding to the lifted zero in the floating-point data.
Note that this design involves only integer arithmetics, and avoids the conversion between floating-point and
integer completely.

Average pool kernel. The average pool kernel computes the average values among a set of integers. It is
useful to summarize neural network features across spatial dimensions, as illustrated in Fig. 2(b). Formally,
given a matrix in quantized representation (Q, s, z) (Q ∈ Ncin×m×n), and a pooling parameter r, the average
pooling operator splits the data into a set of r × r grid and computes the average in each grid

q̄c,i,j =

r−1∑
p=0

r−1∑
t=0

qc,ri+p,rj+t/r
2, c ∈ {1, 2, ..., cin}

i ∈ {1, 2, ..., bm
r
c}, j ∈ {1, 2, ..., bn

r
c}

We observe that this kernel cannot be easily supported in zkSNARK systems. First, the average pooling
operator contains division operation, which is not generally supported in zkSNARK systems. Second, even
if division for certain pooling parameters (e.g., r = 2) can be conducted with bit operations, it may still lead
to non-integer outputs after division. To this end, we incorporate the remainder-based verification strategy
to average pool kernel. In particular, we first use an extra scalar γ to store the division remainder and use
the following verification for the average pooling layer

q̄c,i,jr
2 + γ =

r−1∑
p=0

r−1∑
t=0

qc,ri+p,rj+t, c ∈ {1, 2, ..., cin}

i ∈ {1, 2, ..., bm
r
c}, j ∈ {1, 2, ..., bn

r
c}
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Fig. 3: Dot product/other computation Ratio in LeNet-5-Medium and LeNet-5-Small.
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Fig. 5: Data layout for variable batch size s. Each block has k bits and can store a value up to 2k. k is a
hyperparameter that is generally larger than 8 to accumulate the dot product and avoid overflow.

5 Optimizing Matrix Operation Circuits using Stranded Encoding

In this section, we propose stranded encoding, a general methodology of optimizing matrix operation circuits
for zkSNARKs. Our profiling on neural networks shows that matrix operation, especially dot products,
consumes most computation in neural networks, as shown in Fig. 3.

One important observation that we make is: neural network models can be effectively quantized to models
consisting of small integers, such as uint8 or uint16, while the underlying finite field is usually much larger (e.g.
≈ 2254 in case of BLS12-381 [BLS02]). From this observation, we propose a new encoding scheme, namely
stranded encoding, that could encode multiple low precision integers in the larger finite fields.
Näıve encoding. One intuitive solution is, to encode A · B where A = [a1, a2], B = [b1, b2], ai, bi ∈ uint8,
we can use finite field elements x and y (x, y ∈ Fp, p ≥ 216) to encode A and B:

x = a1 + a2δ

y = b1 + b2δ

where δ ≥ 216. This encoding is already additive homomorphic, i.e., A + B = [a1 + b1, a2 + b2] since
x+ y = (a1 + b1) + (a2 + b2)δ, from which a1 + b1 and a2 + b2 can be easily extracted. This näıve encoding is
not multiplicative homomorphic though. Take dot product computation A ·B = a1b1 + a2b2 as an example.
We know that

xy = a1b1 + (a1b2 + a2b1)δ + a2b2δ
2
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To get A ·B, we need to extract each aibi separately from xy. This costs O(n), n = |A| = |B|, which defeats
the purpose of the encoding.

Stranded encoding. To address this problem, we propose a stranded encoding of low precision integers in
finite field elements. The core idea of stranded encoding is to encode multiple matrix operations at the same
time. For example, to better encode A ·B = a1b1 + a2b2 and C ·D = c1d1 + c2d2, we could first encode the
low-precision integers in finite fields as follow:

x1 = a1 + c1δ x2 = a2 + c2δ

y1 = b1 + d1δ y2 = b2 + d2δ

with sufficiently large δ (δ ≥ 217). Now, A ·B and C ·D can be all easily extracted from
∑
xiyi, since:

x1y1 = a1b1 + (a1d1 + c1d1)δ + c1d1δ
2

x2y2 = a2b2 + (a2d2 + c2d2)δ + c2d2δ
2

x1y1 + x2y2 = (a1b1 + a2b2) + (. . .)δ

+ (c1d1 + c2d2)δ2

We can extract A ·B and C ·D from x1y1 + x2y2 by mod δ and extracting the lowest 9 bits.

It is not hard to see that this stranded encoding can be easily extended to the case that vector length
|A| = |B| = |C| = |D| = n > 2, as illustrated in Fig. 4:

A ·B =

n∑
i=1

aibi, C ·D =

n∑
i=1

cidi

We encode xi and yi as:

xi = ai + ciδ, i ∈ {1, 2, . . . , n}
yi = bi + diδ, i ∈ {1, 2, . . . , n}

Here, we set δ = 2k, k = 2win+log n, where win is the bit width of the low precision unsigned integer and
n is the size of the vector. We need to add n here to catch the possible overflow of accumulating n win-bit
unsigned integers. Now we have:

n∑
i=1

xiyi =

n∑
i=1

aibi + (. . .)δ +

(
n∑
i=1

cidi

)
δ2

= A ·B + (. . .)δ + (C ·D)δ2

(5)

Finally, we can decode the dot products A ·B and C ·D with bit operations

A ·B =

(
n∑
i=1

xiyi

)
mod δ

C ·D =

(
n∑
i=1

xiyi

)
� 2k

where mod is the module operation and� 2k indicates right-shift by 2k bits. While the decoding adds more
overhead, this overhead is amortized as we increase the number of batched operations in stranded encoding.

In the above example, we batch two dot product operations: A ·B, C ·D. We will discuss how to extend
stranded encoding with a larger batch size next.

Stranded encoding with arbitrary batch sizes. Let batch size s be the number of batched dot product
operations. To achieve further saving in the constraint size, we would like to extend s from 2 to larger batch
sizes.
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However, a näıve extension of the stranded encoding when batch size s = 2 would not work. For example,
for s = 3, we encode A ·B, C ·D, E · F (A = [a1, . . . , an] etc.) as follows:

xi = ai + ciδ + eiδ
2

yi = bi + diδ + fiδ
2

Then, the multiplication becomes:

xiyi =aibi + (aidi + bici)δ + (cidi + aifi + biei)δ
2

+ (cifi + diei)δ
3 + eifiδ

4

It becomes very difficult to extract cidi from xiyi since cidi is “mixed” in the coefficient of δ2. To solve this
problem, we use the following encoding instead for i ∈ {1, ..., n}:

xi = ai + ciδ + eiδ
3

yi = bi + diδ + fiδ
3

Now it is not hard to see:

xiyi =aibi + (. . .)δ + (cidi)δ
2 + . . .+ (eifi)δ

6 (6)

As a result:

n∑
i=1

xiyi =A ·B + (...)δ + (C ·D)δ2 + . . .+ (E · F )δ6

In fact, stranded encoding can be generalized to an arbitrary batch size s (with constraints). Formally,
we define stranded encoding as follows:

Definition 4 (Stranded encoding scheme). For a series of dot product A1 · B1, . . . , As · Bs, where
Aj = [aj,1, . . . , aj,n], Bj = [bj,1, . . . , bj,n](j ∈ {1, . . . , s}) and aj,i, bj,i ∈ [2win ], stranded encoding encodes
these dot product operations in finite field elements xi, yi ∈ Fp, p ≥ 2wout , i ∈ {1, . . . , n} as follows:

xi =

s∑
j=1

aj,iδ
φ(j), yi =

s∑
j=1

bj,iδ
φ(j)

where δ = 22win+logn and φ(·) : {1, . . . , s} → N can be defined by the following optimization problem:

min φ(s)

s.t. Ω1 = {φ(1) + φ(s), ..., φ(s− 1) + φ(s)}
Ω2 = {2φ(1), 2φ(2), ..., 2φ(s− 1), 2φ(s)}
Ω1 ∩Ω2 = ∅

(7)

In addition, n needs to satisfy the following constraint:

(2φ(s) + 1)(2win + log n) ≤ wout (8)

As a result:

n∑
i=1

xiyi = (A1 ·B1)δ2φ(1) + . . .+ (A2 ·B2)δ2φ(2)+

. . .+ (As ·Bs)δ2φ(s) (9)
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The core of this definition is to formulate stranded encoding as an optimization problem in Eq. 7.
Intuitively, as shown in Eq. 9, Ω2 is the set of exponents of δs in the terms of xiyi that end up to be “useful”,
Ω1 represents the set of exponents of δs in the terms of xiyi that are going to be discarded. For example,
in case of s = 2, φ(1) = 0, φ(2) = 1, Ω1 = {1}, Ω2 = {0, 2}. This can be verified in Eq. 5. In case of s = 3,
φ(1) = 0, φ(2) = 1, φ(3) = 3, Ω1 = {1, 3, 4, 5}, Ω2 = {0, 2, 6}. This can be verified in Eq. 6.

In addition, the constraint shown in Eq. 8 prevents the stranded encoding scheme from blowing up the
finite fields. Since δ = 22win+logn > max{Ai ·Bi}, each term in Eq. 9 is non-overlapping in the final encoded
bits (as shown in Fig. 5). Now, we only need to worry about the last term not exceeding the size of the finite
field, which is captured by Eq. 8. We list the φ(s) for different s and their corresponding nmax in Table 4.

Cost based optimization. Now, we can analyze the benefits brought by stranded encoding in terms of the
number of constraints. Since the encoding part is “free”: the addition would not cost extra constraints. The
major cost is decoding, which requires bit decomposition (generating O(wout) constraints). For example, in
the SNARK implementation we use, bit decomposition of a finite field element used in BLS12-381 generates
632 constraints. Then, the amortized cost of each element-wise multiplication in dot product is:

cost(s, n) =
O(wout)

sn
(10)

where s is the batch size and n is size of the vectors to be dot producted. For the cost function listed in Eq. 10,
we always choose the best batch size s for the given input. For example, in our setting, win = 8, wout = 254,
the fixed cost of bit decomposition is 632. For n < 632/3, we don’t do stranded encoding since the amortized
cost is greater than 1. For 632/3 ≤ n ≤ 4096, we chose batch size 4. And for n > 4096, we choose batch size
3. We believe this cost function can be used to guide different choices of the integer precision of quantized
neural network and different sizes of finite fields that are used by zkSNARK.

Table 4: Largest supported vector size nmax in stranded encoding for different batch size s (ωin = 8 and
ωout = 254). ‘-’ indicates not supported.

s 2 3 4 5

φ(s) 1 3 4 9

2φ(s) + 1 3 7 9 19

nmax 268 220 212 -

6 Evaluation

In this section, we evaluate ZEN over various datasets and popular neural network models.
Implementation. ZEN implementation consists of three major parts: a quantization engine, circuit

generators, and a scheme aggregator. The quantization engine takes a pretrained floating-point pyTorch
model, applies our zkSNARK friendly quantizations, and produces a quantized neural network. Circuit
generators generate individual components of circuit. We implemented circuit generators for FC, Conv,
average pooling, and ReLU kernels. Our system also include a SNARK friendly Pedersen commitment circuit
generator from the underlying zkSNARK system we used. The stranded encoding is implemented in FC and
Conv circuit generators. The scheme aggregator assembles all component circuits together, and produces the
final zero-knowledge proof systems according to the specified ZENclass or ZENrec scheme.

We implemented the ZEN prototype using ∼ 3, 000 lines of Rust code. Our system uses arkworks’s
implementation [ark] of Groth16 scheme [Gro16] as the underlying zkSNARK, to convert the generated
circuits to CRS, prover and verifier. We choose the BLS12-381[BLS01] as the underlying curve for in Groth16.

Datasets. We select three popular datasets (MNIST, CIFAR-10, and ORL) used by many secure machine
learning papers [DSC+19, ZYCW20, GDL+16, JVC18, JKLS18]. The characteristics of these datasets are
summarized in Table 5. Among these datasets, MNIST and CIFAR-10 are used for the classification task
and ORL is used for the recognition task (e.g., face recognition). In particular,
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Table 5: Datasets used in our evaluation.
Dataset Task #Images Size #Class

MNIST [LC10] Classification 70, 000 28× 28× 1 10
CIFAR-10 [KNH] Classification 60, 000 32× 32× 3 10
ORL [Cam02] Recognition 400 56× 46× 1 40

Table 6: Neural Networks used in our evaluation.

Network
Number of Layers

# FLOPs (K)
Conv FC Act Pool

ShallowNet 0 2 1 0 102

LeNet-5-small 3 2 4 2 530

LeNet-5-medium 3 2 4 2 7,170

LeNet-Face-small 3 2 4 2 2,880

LeNet-Face-medium 3 2 4 2 32,791

LeNet-Face-large 3 2 4 2 127,466

– MNIST is a large dataset for handwritten digits classification with 60, 000 training images and 10, 000
testing images. Images in MNIST are gray-scale of shape 28× 28× 1.

– CIFAR-10 is a classification dataset with 10 classes (e.g., cat and dog). It contains 50, 000 training images
and 10, 000 testing images of shape 32× 32× 3.

– ORL dataset contains face images from 40 distinct subjects with diverse lighting, facial expression, and
facial details. Since ORL dataset does not specify the training and testing dataset split, we randomly
select 90% images as the training dataset and use the remaining 10% images as the testing dataset.

All images are stored with uint8 data type and values are between 0 and 255.

Models. We use ShallowNet, a lightweight neural network model and a series of LeNet variants [LBBH98],
as summarized in Table 6: ShallowNet contains two fully connected layers and one ReLU activation layer.
LeNet has three convolutional layers, two fully connected layers, and four activation layers. These variants
have different kernel sizes to adapt different sizes of inputs. The evaluation on these five variants demonstrates
the performance of ZEN under diverse model sizes.

Experiment Configuration. All the evaluations run on a Microsoft Azure M16-8ms instance with 8
core Intel Xeon Platinum 8280M vCPU @ 2.70GHz and 437.5 GiB DRAM. We compile ZEN code using
Rust 1.47.0 in release mode.

0% 20% 40% 60% 80% 100%

ZEN

ZEN-
Vanilla

Constraints Ratio

Conv AvgPool FC ReLU Commitment

Fig. 6: Breakdown of constraints in LeNet-5-small on CIFAR-10 from both ZEN-vanilla and ZEN.
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Fig. 7: Benefits on reducing conv-layer number of
constraints. Shape is [# of in channels]×[# of out
channels]×[kernel width]×[kernel height].

Fig. 8: Benefits on reducing FC-layer number of con-
straints. Shape is [# of in channels]×[# of out chan-
nels].

6.1 Micro-benchmarks.

In this section, we evaluate the performance improvements of our optimizations with a set of micro-benchmarks.
As a common practice, we focus on the number of constraints since it dominants the computations in all
stages. We defer end-to-end metrics evaluations (e.g., commit time, prover time, verifier time, and proof size)
to the next section.

Constraints breakdown by operators We compare the breakdown of number of constraints in generated LeNet-
5-small on CIFAR-10 circuits using ZEN-vanilla and fully optimized ZEN in Fig. 6. We breakdown the
constraints to those from the commitment scheme and those from 4 different kinds of kernels: convolutional,
fully connected, average pooling, ReLU.

Overall, we observe that convolution kernels and fully connected kernels account for most constraints in
both the ZEN-vanilla (82.2%) and fully optimized ZEN (95.1%) implementation. Since these two kinds of
kernels heavily rely on dot product, this justifies our effort on using stranded encoding to improve batched
dot product circuits. Additionally, average pooling kernels accounts for 17.5% constraints in the ZEN-vanilla,
while only becomes almost negligible in the fully optimized ZEN. This demonstrates the significance of our
remainder-based verification optimization. It is also worth noting that commitment accounts for only 0.2%
constraints in the ZEN-vanilla, but this ratio rises to 2.9% constraints in ZEN. Note that the absolute
number of constraints from commitment remains the same in both ZEN-vanilla and ZEN. This ratio change
comes from optimizations in ZEN that significantly reduces the number of constraints from neural network
part.

Evaluating optimizations on fully connected and convolutional kernels Since constraints caused by convolu-
tional (Conv) kernels and fully connected (FC) takes up more than 80% share in total number of constraints
in both ZEN-vanilla and fully optimized ZEN, we perform a detailed study on the effectiveness of optimiza-
tions on FC and Conv kernels. We chose Conv and FC kernels for a comprehensive study also because they
can benefit from all three optimizations.

For each kernel of each size, we first report the number of constraints in ZEN-vanilla. Then, we report
the numbers of constraints savings (×) from sign-bit grouping, remainder-based verification, and stranded
encoding cumulatively. Note that, the stranded encoding implementation we use incorporates the cost based
optimization already: it chooses an optimal batch s according to the data shape; it is not applied when there
is no cost saving (this can be viewed as s = 1).

Fig. 7 shows the reduction in the number of constraints on Conv kernels. We observe that the number of
constraints can be reduced by 7.5× to 73.9× with our optimizations.

Looking at individual kernels, we find that sign-bit grouping and remainder-based verification significantly
bring benefits on diverse Conv kernels, especially on small Conv kernels of shape 8×1×5×5 and 16×4×5×5.
We also notice that the stranded encoding optimization brings benefits on large kernels; and is not effective
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Table 7: Overall performance of ZEN.

Dataset Model
Constraints

(K)
Setup
(s)

Comm.
(ms)

Prove
(s)

Verify
(ms)

CRS Size
(MB)

MNIST ShallowNet 111 9.07 18.29 7.01 5.51 35.81
CIFAR-10 LeNet-5-sm. 938 77.43 30.39 39.37 5.45 413.51
CIFAR-10 LeNet-5-med. 5,540 569.83 43.30 383.01 5.49 2,620.32

ORL LeNet-Face-sm. 2,737 274.11 140.17 174.21 5.05 1,248.31
ORL LeNet-Face-med. 17,506 2392.22 153.38 1880.21 5.07 8,217.77
ORL LeNet-Face-lg. 55,365 13007.78 123.31 11334.31 5.17 25,788.50

for small kernels. As we discussed in the cost-based optimization in §5, stranded encoding may introduce
overhead from encoding and decoding procedure. For small kernels, cost-based optimization will select the
batch size s = 1 to avoid such overhead.

Fig. 8 shows similar savings on the number of constraints for FC kernels as the case on Conv kernels.
Comparing with Fig. 7, we observe that stranded encoding brings more significant savings on FC kernels,
especially on the ones with large kernel sizes. The insight is that the amortized cost of stranded encoding
decreases proportionally as the kernel size increases. To this end, we can expect higher benefit from stranded
encoding on kernels with larger sizes.

Fig. 9: Benefit from different batching size s for FC-layer. Shape is [# of in channels] × [# of out channels].

Benefits from different batching size s We further evaluate the benefits of stranded encoding under different
batch size s in Fig. 9. We skip s = 4 for the FC kernel of shape 100 × 16384 since our BatchEngine with
s = 4 requires a vector of length less than 212 = 4096, as described in Table 4.

Table 8: Overall saving on the number of constraints. The unit of number of constraints is thousand (K).

Dataset Model
Naive Optimized Saving
(K) (K) (×)

MNIST ShallowNet 408 111 3.68

CIFAR-10 LeNet-5-small 16, 958 938 18.08

CIFAR-10 LeNet-5-medium 85, 210 5, 540 15.38

ORL LeNet-Face-small 57, 444 2, 737 20.99

ORL LeNet-Face-medium 274, 383 17, 506 15.67

ORL LeNet-Face-large 610, 428 55, 365 11.03

We observe that the constraint saving increases as the FC size grows. In particular, when the kernel shape
is 100× 16384, s = 3 can lead to 2.8× constraint saving, which almost reaches the theoretical upper bound
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Table 9: Accuracy comparison between floating-point (FP) models and zkSNARK friendly quantized models.

Dataset Model
FP Acc. Quant. Acc. ∆Acc.

(%) (%) (%)

MNIST ShallowNet 95.13 94.91 −0.22

CIFAR-10 LeNet-5-small 55.76 55.35 −0.41

CIFAR-10 LeNet-5-medium 64.23 63.68 −0.55

ORL LeNet-Face-small 84.3 84.0 −0.3

ORL LeNet-Face-medium 88.6 88.2 −0.4

ORL LeNet-Face-large 91.6 92.1 0.5

on constraint saving. The reason is that the overhead incurred from the encoding and decoding procedure
remains constant in ZEN, regardless the FC size. As the FC size increases, this overhead accounts for less
ratio of constraints and the savings from stranded encoding increases. In the meanwhile, stranded encoding
brings little benefits on small FC layers (e.g., 100 × 256) due to the encoding and decoding overhead. This
observation motivates the utilization of s = 1 for these small FC layers. Comparing across different batch
size s, we notice that a larger batch size usually leads to higher saving. This result shows that we should
choose a larger batch size s when the vector satisfies the corresponding length requirement.

Case study: end-to-end benefits of optimizations on LeNet-5-Medium We show the end-to-end benefits of
different levels of optimizations on LeNet-5-Medium inference on CIFAR-10 dataset, as already shown with
Table 2 in introduction. Starting from ZEN-vanilla, we add individual optimizations and show the total
number of constraints from all NN layers. In ZEN-vanilla, LeNet-5-Medium has almost 85 million constraints.
This large number of constraints comes from the intensive computation and bit decomposition in NNs. When
all three optimizations are applied, ZEN significantly reduces the total number of constraints by 15.45×.
This is similar to the constraint saving on popular NN kernels in Fig. 8 and Fig. 7. These results show that
our optimization techniques can significantly mitigate the intensive number of constraints on NN workloads
and enable more efficient deployment of ZEN.

Performance implication of number of linear combinations Apart from number of constraints, we also ob-
served that the setup time and prover time is related to the number of linear combinations of public input
and witnesses. However, the cost of linear combinations is system specific. We discuss the performance
implications of number of linear combinations on ZEN (using ArkWorks SNARK [ark] as backend) in §A.

6.2 End-to-end performance.

In this section, we evaluate the end-to-end performance of a large set of NNs on various datasets. We provide
a comprehensive evaluation of ZEN, including the number of constraints, setup time, commit time, prover
time, verifier time, CRS Size, and accuracy.

Overall performance Table 10 shows the overall performance of ZEN on 6 neural networks with diverse
numbers of constraints, ranging from 111 thousands to 55, 365 thousands. We observe that a model with a
higher number of constraints comes with higher prover and setup time consumption and a larger CRS size.
For a small model ShallowNet on MNIST with 111 K constraints, we have a short time of 9 seconds and 7
seconds for setup and proving, respectively; the CRS consists of 35.81 MB of data. The overall cost increases
linearly with the number of constraints. For large models such as LeNet-Face-large on ORL with over 55, 365
thousands constraints, we require nearly 3.5 hours for setup, and over 3 hours for proving. We also require
over 25, 788.5 MiB of data for CRS.

Overall saving on the number of constraints Table 8 shows the overall saving on the number of constraints
with our optimizations. Overall, we can significantly reduce the number of constraints by 14.14× on average.
This shows a similar saving on the number of constraints as our case study in the micro-benchmarks. On
large models such as LeNet-Face-Large, we achieve a saving of 11.03×. On small models of LeNet-5-small
and LeNet-Face-small, we achieve more than 18.08× saving. This is mainly due to the fact that kernels in
these small models are dot products of vectors that can be drastically improved with our sign-bit grouping
and remainder-based verification. This result is similar to our microbenchmark in Fig. 7 and Fig. 8.
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Accuracy drop from quantization Table 9 compares the accuracy between our quantized model (which is sim-
ilar to [JKC+18]) and the original floating-point model. Given an float32 model, we generate the quantized
uint8 model with our zkSNARK friendly quantization. We aim to minimize the accuracy loss from quantiza-
tion while supporting zkSNARK systems with full quantization. The accuracy of the original floating-point
model is out-of-scope for ZEN. Overall, the average accuracy loss of our quantization is 0.23% compared
with the floating-point model, which is similar to [JKC+18]. This result shows that ZEN can effectively
guarantee the integrity of computation and provide succinct proof on diverse NNs without incurring notice-
able accuracy loss. Surprisingly, we observe a 0.5% accuracy improvement for LeNet-Face-large on the ORL
dataset. This accuracy improvement comes from the regularization effect of quantization on neural networks,
which mitigates over-fitting on large models.
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Table 10: Overall performance of ZEN.

Dataset Model
Linear Combinations

(K)
Constraints

(K)
Setup
(s)

Comm.
(ms)

Prove
(s)

Verify
(ms)

CRS Size
(MB)

MNIST ShallowNet 561 111 9.07 18.29 7.01 5.51 35.81
CIFAR-10 LeNet-5-sm. 6,885 938 77.43 30.39 39.37 5.45 413.51
CIFAR-10 LeNet-5-med. 49,489 5,540 569.83 43.30 383.01 5.49 2,620.32

ORL LeNet-Face-sm. 21,681 2,737 274.11 140.17 174.21 5.05 1,248.31
ORL LeNet-Face-med. 169,147 17,506 2392.22 153.38 1880.21 5.07 8,217.77
ORL LeNet-Face-lg. 601,396 55,365 13007.78 123.31 11334.31 5.17 25,788.50

Table 11: Overall saving on the number of linear combinations. The unit of number of linear combinations
is thousand (K).

Dataset Model
Naive Optimized Saving
(K) (K) (×)

MNIST ShallowNet 1, 532 561 2.73

CIFAR-10 LeNet-5-small 51, 986 6, 885 7.55

CIFAR-10 LeNet-5-medium 264, 535 49, 489 5.34

ORL LeNet-Face-small 175, 783 21, 681 8.11

ORL LeNet-Face-medium 857, 551 169, 147 5.07

ORL LeNet-Face-large 1, 961, 749 601, 396 3.26

A Discussion: Performance Implication of Number of Linear Combinations.

We include the impact of our optimizations on the number of linear combinations in Fig. 10 and Fig. 11.
Overall, we observe that our optimizations can save the number of linear combinations from 1.4× to 24.4×.
We see that stranded encoding consistently saves the number of linear combinations across various kernel
sizes. Meanwhile, sign-bit grouping and remainder-based verification may slightly increase the number of
linear combinations on certain NN kernels (e.g., 100× 4096 and 100× 16384 in Fig. 11).

We show the overall performance of ZEN in Table 10 and Table 11. We observe that the latency of
ZEN is related to both the number of linear combinations and the number of constraints, which is a system-
specific limitation on the ArkWorks SNARK backend. Table 11 shows that the number of linear combinations
varies significantly from 1, 532K to 1, 961, 749K. With our optimizations, we can save the number of linear
combinations from 2.73× to 8.11× (5.34× on average).

Fig. 10: Benefits on reducing conv-layer number of
linear combinations. Shape is [# of in channels]×[#
of out channels]×[kernel width]×[kernel height].

Fig. 11: Benefits on reducing FC-layer number of lin-
ear combinations. Shape is [# of in channels]×[# of
out channels].


	ZEN: Efficient Zero-Knowledge Proofs for Neural Networks

