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Abstract

Until now, there are two different methods to compute 4-GLV decompositions on the elliptic
curves over Fp2 which are quadratic twists and possess a “restricted” endomorphism ψ satisfying
ψ2 + 1 = 0. They are Longa and Sica’s twofold Cornacchia-type algorithm (ASIACRYPT 2012)
and Benjamin Smith’s method–ready-made short bases (AMS 2015). In this paper, we first extend
Smith’s method from the case of quadratic twists to the case of quartic or sextic twists and give
ready-made short bases for 4-GLV decompositions on these high degree twisted curves. After
our supplements, Smith’s method can be used to compute 4-GLV decompositions on more elliptic
curves. Secondly, we focus on exploring more potential of Longa and Sica’s algorithm, which is an
elaborate iterated Cornacchia algorithm that can compute short bases for 4-GLV decompositions.
The algorithm consists of two sub-algorithms, the first one in the ring of integers Z and the second
one in the Gaussian integer ring Z[i]. We observe that Z[i] in the second sub-algorithm can be

replaced by another Euclidean domain Z[ω] (ω = −1+
√
−3

2
). As a consequence, we design a new

twofold Cornacchia-type algorithm with a theoretic upper bound of output C · n1/4, where C =
3+
√
3

2

√
1 + |r|+ |s| with small values r, s given by the curve.

The new twofold algorithm can be used to compute 4-GLV decompositions on two classes of
curves. First it gives a new and unified method to compute all 4-GLV decompositions on j-invariant
0 elliptic curves over Fp2 . We exploit the fact that this family of curves must have an endomorphism
φ satisfying φ2 + φ + 1 = 0 (and hence Z[φ] = Z[ω]). Of the two previous methods on this class
of elliptic curves, the first one was proposed by Hu, Longa and Xu in 2012 (Designs, Codes and
Cryptography) but is applicable only to curves which are twists of degree 6 and possess a “restricted”
endomorphism ψ satisfying ψ4 − ψ2 + 1 = 0, the second one follows from the the work of Longa
and Sica (ASIACRYPT 2012) and is applicable only to curves with a “restricted” endomorphism ψ
satisfying ψ2 + 1 = 0. Second it can be used to compute the 4-GLV decomposition on the Jacobian
of the hyperelliptic curve defined as C/Fp : y2 = x6 + ax3 + b, which has an endomorphism φ with
the characteristic equation φ2 + φ+ 1 = 0 (hence Z[φ] = Z[ω]).
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Mathematics Subject Classification (2010) 14H52 · 14G50

1



1 Introduction

The 2-GLV method, introduced by Gallant, Lambert and Vanstone [1] in 2001, is a generic approach to

speed up the computation of scalar multiplication on certain elliptic curves (GLV curves) defined over

fields with large prime characteristic by using endomorphisms of the curves to decompose the scalar

multiplication. A GLV curve is certain elliptic curve E over Fq possessing an endomorphism φ whose

characteristic polynomial is x2 +rx+s ∈ Z[x]. Let G ⊂ E(Fq) be a cyclic subgroup of large prime order

n, for a point P ∈ G, then φ(P ) = [λ]P for some λ ∈ [1, n − 1] satisfying λ2 + rλ + s ≡ 0 mod n. For

any k ∈ [1, n− 1], one can find |k1|, |k2| ≤ c
√
n for some constant c > 0 such that k = k1 + k2λ mod n.

The 2-dimensional decomposition of [k]P is then [k]P = [k1]P + [k2]φ(P ). By this decomposition one

can speed up the scalar multiplication for GLV curves.

The GLV curves, however, are special curves with special j-invariants, one might wonder whether

it matters in practice. In 2002, for elliptic curves over Fp2 with j-invariant in Fp, Iijima, Matsuo, Chao

and Tsujii [2] constructed an efficient computable homomorphism arising from the Frobenius map on a

twist of E. In 2009, Galbraith, Lin and Scott [3] generalized the construction of [2] to a large class of

elliptic curves over Fp2 so that the GLV method is applicable. The construction in [3] is as follows: Let

E be an elliptic curve defined over Fp. Let π0 be the p-power Frobenius map on E and tπ0
the trace of

π0. E′/Fp2 is a twist of E/Fp with τ : E0 → E′ the twist isomorphism. Let G ⊂ E′(Fp2) be a cyclic

subgroup of large prime order n. Then ψ = τπ0τ
−1 is an endomorphism of E′, which is defined over

Fp2 . When E′ is a quadratic twist of E, ψ acting on points in E′(Fp2) satisfies the equation ψ2 + 1 = 0.

One can decompose [k]P as [k]P = [k1]P + [k2]ψ(P ) for P ∈ G. When E′ is a quartic or sextic twist of

E, ψ acting on points in E′(Fp2) satisfies a quartic equation. In this case, Galbraith et al. gave 4-GLV

expansions on E′(Fp2), they decomposed [k]P as [k]P = [k1]P + [k2]ψ(P ) + [k3]ψ2(P ) + [k4]ψ3(P ) for

P ∈ G.

Note that the characteristic equation of ψ is ψ2 − tπ0
ψ + p = 0, for any point Q ∈ E′(F̄p2), we

have ψ2(Q) − tπ0ψ(Q) + [p]Q = OE′ . Furthermore, when ψ acts on points in E′(Fp2), it also satisfies

ψ2 + 1 = 0 or a quartic equation for the degree of twist 2 or 4,6. Here, we call the endomorphism

restricted to points in E′(Fp2) the “restricted” endomorphism. The curves E′/Fp2 are called the GLS

curves and the 2-dimensional decomposing method using the “restricted” endomorphism ψ satisfying

ψ2 + 1 = 0 is called the GLS method.

In 2012, Longa and Sica [5] introduced a 4-GLV method by combining GLV and GLS methods

(GLV+GLS), which is a natural extension of Zhou et al. idea [4] of constructing 3-GLV decompositions.

When E is a GLV curve with an efficient complex multiplication, then two endomorphisms φ and ψ can

be constructed on the GLS curve E′/Fp2 . The two “restricted” endomorphisms satisfying φ2+rφ+s = 0

and ψ2+1 = 0 were used to get the 4-GLV decomposition [k]P = [k1]P+[k2]φ(P )+[k3]ψ(P )+[k4]φψ(P )
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for P ∈ G. The GLV method can also be extended to genus 2 curves, one can refer [6] for the 4-GLV

decomposition and [10] for the 8-GLV decomposition.

Scalar decomposition is the crucial step to make the GLV method successful, and it can be reduced

to solving the closest vector problem (CVP), as a result the LLL algorithm [12] is used. For the 2-GLV

decomposition, Gallant et al. [1] exploited the efficient Cornacchia’s algorithm, an application of the

extended Euclidean algorithm. For the 4-GLV decomposition on the special class of elliptic curves with

j-invariant 0, Hu, Longa and Xu [7] proposed an explicit lattice-based decomposition method with an

almost optimal upper bound of coefficients O(2
√

2n1/4). For the general 4-GLV decompositions, Longa

and Sica [5] assumed that the “restricted” endomorphisms φ and ψ, when viewed as algebraic integers,

generate disjoint quadratic extensions of Q. Under the assumption, they designed a specific and more

efficient reduction algorithm called the twofold Cornacchia-type algorithm, which consists two parts,

the first part in the ring of integers Z and the second part in the Gaussian integer ring Z[i].

Recently, in most cryptographic situations, lattice basis reduction is not necessary to find a short

basis for the scalar decomposition, one can simply write down short vectors from scratch. Galbraith et

al. [3] constructed an endomorphism equipped with a convenient ready-made basis for 2-dimensional

decompositions and Benjamin Smith [18] constructed more families of endomorphisms from Q-curves

equipped with a ready-made basis. Then, Smith [17] generalized these ready-made bases to all of the

other known efficient endomorphism constructions for curves. He used elementary facts about quadratic

rings to immediately write down a ready-made short basis of the lattice for the GLV, GLS, GLV+GLS,

and Q-curve constructions on elliptic curves [6, 18], and for genus 2 real multiplication constructions

[20, 19]. His method is mainly adapt to ordinary curves. He did not pretend that this represents a

significant optimization in scalar multiplication, since the lattice reduction step is always an offline

precomputation – but it does give a better insight into the structure of scalar decompositions.

Our contributions here are two parts. First, for GLV+GLS, Smith’s method can not compute 4-

GLV decompositions on GLS curves with degree of twist 4 or 6. In §3, we make supplements to Smith’s

method under the same assumption that Z[φ] contains Z[ψ] so as to make his method adapt to more

elliptic curves over Fp2 .

Second, we focus on exploring more potential of Longa and Sica’s algorithm, which is an easy-to-

implement and very efficient algorithm with complexity O(log2(n)). It is our observation that the second

part of Longa and Sica’s algorithm can be implemented not only in Z[i] but also in other imaginary

quadratic orders which are Euclidean, for example, the orders Z[−1+
√
−3

2 ], Z[
√
−2], Z[ 1+

√
−7

2 ] and

Z[ 1+
√
−11
2 ]. In this paper we only consider the ring of integers Z[ω] = Z[−1+

√
−3

2 ] of Q(
√
−3), the

discussion of the other cases is similar. We construct a new twofold Cornacchia-type algorithm for

scalar decomposition, the first part in Z and the second part in Z[ω]. Moreover, our new algorithm gain
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a theoretic upper bound of output C · n1/4, where C = 3+
√
3

2

√
1 + |r|+ |s| with small values r, s given

by the curve. The upper bound is very close to Hu et al.’s [7] and better than Longa and Sica’s [5] and

Yi et al.’s [8].

Our new twofold Cornacchia-type algorithm can be used to compute 4-GLV decompositions on

two classes of curves. The first class of curves are j-invariant 0 elliptic curves over Fp2 . There are

two 4-GLV decompositions have been proposed on this class of elliptic curves, each used under certain

conditions. The first decomposition uses the “restricted” endomorphism ψ coming from twists of degree

6 and satisfying the equation ψ4 − ψ2 + 1 = 0, the algorithm in [7] can be used to compute it. The

second 4-GLV decomposition uses the “restricted” endomorphism ψ satisfying ψ2 + 1 = 0, the twofold

Cornacchia-type algorithm in [5, 8] can be used to compute it. In both cases, we observe the existence

of an endomorphism φ satisfying φ2 + φ+ 1 = 0, thus Z[φ] = Z[ω] and our new twofold algorithm can

be used compute all 4-GLV decompositions on this class of curves simultaneously. The second class of

curves are hyperelliptic curves defined as C/Fp : y2 = x6 + ax3 + b, it has an endomorphism φ with

characteristic equation φ2 + φ + 1 = 0 (hence Z[φ] = Z[ω]), our algorithm can be used to compute

4-GLV decompositions on the Jacobians of this class of hyperelliptic curves. Meanwhile, after some

supplements to Smith’s method on high degree twisted curves, we can use ready-made short bases to

compute all 4-GLV decompositions on the first class of curves. However, we note that this method can

not be used to compute 4-GLV decompositions on Jacobians of the second class of curves.

This paper is organized as follows. In §2, we give an overview of previous work on the GLV de-

composition. In §3, we give supplements to Smith’s method on high degree twisted elliptic curves. §4

contains the main work of this paper, the construction of the new twofold Cornacchia-type algorithm.

In §5 we give applications of our new twofold Cornacchia-type algorithm. In §6, we give some examples

and experimental results. Finally, in §7 we make a conclusion.

2 An overview of previous work

2.1 The GLV elliptic curves

Let E be an elliptic curve defined over a finite field Fq with infinity point denoted by OE . Suppose n

is a large prime such that n‖#E(Fq) and so there is only one subgroup G ⊂ E(Fq) of order n. Assume

P ∈ G is a point of order n and ρ is a fast endomorphism of E defined over Fq with the characteristic

polynomial x2 +rx+s. By hypothesis ρ(P ) = [λ]P ∈ E(Fq)[n] and λ is a root of x2 +rx+s = 0 mod n.

For k ∈ [1, n− 1], the 2-GLV decomposition of [k]P is

[k]P = [k1]P + [k2]ρ(P ), (1)
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where k1 and k2 ∈ Z are bounded by c
√
n for some constant c > 0. To compute the coefficients k1 and

k2, Gallant et al. [1] constructed the reduction map

f : Z× Z→ Z/nZ, (i, j) 7→ i+ λj mod n.

Since f is of finite image, its kernel

K := {(i, j) | i+ λj = 0 mod n} (2)

is a sublattice of Z × Z of full rank. Gallant et al. exploited an efficient algorithm, the Cornacchia’s

algorithm, to compute a short basis of K. Assume that υ1, υ2 are two linearly independent vectors

of K satisfying max{|υ1|, |υ2|} < c
√
n for some positive constant c, where | · | denotes the maximum

norm. Express (k, 0) = β1υ1 + β2υ2 where βi ∈ Q and then round βi to the nearest integer bi. Then

(k1, k2) = (k, 0) − (b1, b2) satisfies the decomposition condition. By further analysis in [9], one can

choose the constant c =
√

1 + |r|+ s.

Remark 1. Gallant et al. provided examples of curves with a fast endomorphism φ given by complex

multiplication by
√
−1 (j = 1728), −1+

√
−3

2 (j = 0),
√
−2 (j = 8000),

√
−3 (j = 54000), 1+

√
−7

2 (j =

−3375) and 1+
√
−11
2 (j = −32768). In particular, the endomorphism ring of these curves is equal to

Z[φ], which is either the maximal order of its field of fractions, or (exceptionally) an order of index two

in the maximal order. These curves are called GLV curves.

2.2 The GLS elliptic curves

Galbraith, Lin and Scott [3] implemented the 2-GLV method by using an efficiently computable endo-

morphism on a large class of elliptic curves. Let E be an elliptic curve defined over Fp and E′/Fp2 be

a twist of E/Fp. By the definition of twist in [11], E and E′ are isomorphic over Fp2d with the degree

of twist d ∈ {2, 3, 4, 6}. Galbraith, Lin and Scott described how to obtain the 2-GLV decomposition on

E′(Fp2) for d = 2 and the 4-GLV decompositions on E′(Fp2) for d = 4 and 6.

Theorem 1 ([3]). Let p > 3 be a prime and E an elliptic curve defined over Fp. Let π0 be the p-power

Frobenius map on E and tπ0 the trace of π0. Let E′/Fp2 be the quadratic twist of E(Fp2) and τ : E → E′

be the twist isomorphism defined over Fp4 . Let n | #E′(Fp2) such that n > 2p and ψ = τπ0τ
−1. The

characteristic equation of ψ is ψ2 − tπ0
ψ + p = 0. ψ2(P ) + P = OE′ for P ∈ E′(Fp2). Moreover, for

P ∈ E′(Fp2)[n], we have ψ(P ) = [µ]P where µ ≡ t−1π0
(p− 1) mod n.

Consider the lattice K =
{

(i, j) ∈ Z2| i+ µj ≡ 0 mod n
}

. Galbraith et al. used the basis

{(tπ0 , p− 1), (1− p, tπ0)} of some lattice K′ ⊂ K to get the 2-dimensional decomposition, with each

coefficient bounded by (p+ 1)/
√

2.
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To construct a 4-GLV decomposition, it is necessary to use twists of degree 4 or 6. Hence the only

two examples of interest are y2 = x3 + b (having a sextic twist) and y2 = x3 + ax (having a quartic

twist) with a, b ∈ F∗p. Here we only recall the case of constructing a 4-GLV decomposition on the sextic

twist of a curve with j-invariant 0.

Theorem 2 ([3]). Let p ≡ 1 mod 6 and E : y2 = x3 + b (b ∈ F∗p). Choose ω ∈ F∗p12 such that ω6 ∈ Fp2

and set E′ : y2 = x3 + ω6b. Then E′/Fp2 is a sextic twist of E(Fp2) with the twist isomorphism

τ : E → E′, τ(x, y) = (ω2x, ω3y). Then ψ = τπ0τ
−1 is an endomorphism of E′ given by ψ(x, y) =

(ω2xp/ω2p, ω3yp/ω3p), which is defined over Fp2 . The characteristic equation of ψ is ψ2− tπ0ψ+p = 0.

For P ∈ E′(Fp2), we have ψ4(P )− ψ2(P ) + P = OE′ .

Hence, the 4-GLV decomposition can be efficiently applied to these curves. Let n > 2p be a prime

factor of #E′(Fp2). For P ∈ E′(Fp2)[n] and k ∈ [1, n− 1], [k]P can be decomposed as

[k]P = [k1]P + [k2]ψ(P ) + [k3]ψ2P + [k4]ψ3(P ). (3)

Hu et al. [7] described the complete implementation of the 4-GLV method on GLS curves with j-

invariant 0. They essentially exploited a specific way and led to an almost optimal upper bound of

coefficients 2
√

2p = O(2
√

2n1/4).

Remark 2. The characteristic equation of ψ is ψ2 − tπ0
ψ + p = 0, for any point Q ∈ E′(F̄p2), we

have ψ2(Q) − tπ0
ψ(Q) + [p]Q = OE′ . Furthermore, when ψ acts on points in E′(Fp2), it also satisfies

ψ2 + 1 = 0 or a quartic equation for the degree of twist 2 or 4,6. Here, we call the endomorphism

restricted to points in E′(Fp2) the “restricted” endomorphism. The curve E′/Fp2 which is a twist of

E(Fp2) is called the GLS curve and the 2-GLV decomposing method using the “restricted” endomorphism

ψ with ψ2 + 1 = 0 is called the GLS method.

2.3 Combining GLV and GLS (GLV+GLS)

Longa and Sica [5] showed how to get a 4-GLV decomposition for twists of any GLV curve over Fp2 . Let

E/Fp be a GLV curve. As in §2.2, let E′/Fp2 be a quadratic twist of E via the twist map τ : E → E′. Let

ρ be the GLV endomorphism coming with the definition of a GLV curve. Then ρ satisfies the equation

ρ2 + rρ+ s = 0. We thus get two endomorphisms φ = τρτ−1 and ψ = τπ0τ
−1 of E′, both defined over

Fp2 . For P ∈ E′(Fp2) of a large prime order n, then φ and ψ satisfy φ2(P ) + rφ(P ) + sP = OE′ and

ψ2(P ) + P = OE′ respectively. For any scalar k ∈ [1, n− 1], we obtain a 4-GLV decomposition

[k]P = [k1]P + [k2]φ(P ) + [k3]ψ(P ) + [k4]φψ(P ) with max
i

(|ki|) < 2Cn1/4 (4)

for some constant C.
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Similar to the 2-GLV method, we consider the 4-GLV reduction map F : Z4 → Z/nZ with respect

to {1, φ, ψ, φψ}. It is easy to know L := kerF is a full sublattice of Z4. To compute a short basis

of L, Longa and Sica proposed the twofold Cornacchia-type algorithm under the assumption that the

“restricted” endomorphisms φ and ψ are Z-linearly independent. Review the implementation of the

algorithm: the “restricted” endomorphism ψ satisfies ψ2 + 1 = 0, then Q(ψ) = Q(i) and Q(φ, i) is a

biquadratic (Galois of degree 4, with Galois group Z/2Z×Z/2Z) number field. They considered the ring

Z[φ, i] of Q(φ, i) to factor the reduction map F and constructed the twofold Cornacchia-type algorithm,

which is an easy-to-implement algorithm in two parts, the first part in Z and the second part in Z[i]. In

particular, for the case E/Fp with j-invariant 1728, this can be treated separately with a quartic twist

as described in [5, Appendix B].

The twofold algorithm is efficient, but more importantly, it gives a better and uniform upper bound

with constant C = 51.5
√

1 + |r|+ s. Recently, Yi et al. [8] obtained an improved twofold Cornacchia-

type algorithm and showed that it possesses a better theoretic bound of output Cn1/4 with C =

3.41
√

1 + |r|+ s. In particular, their proof is much simpler than Longa and Sica’s.

Remark 3. When E′ is ordinary, we always have Q(φ) = Q(ψ) for φ, ψ ∈ End(E′). Even so, Longa

and Sica’s algorithm can still be implemented on ordinary curves over Fp2 . Since they consider the

“restricted” endomorphisms φ and ψ acting on E′(Fp2), in this case, φ2 + rφ+ s = 0 and ψ2 + 1 = 0.

The assumption that the two “restricted” endomorphisms, when viewed as algebraic integers, generate

disjoint quadratic extensions of Q, holds on some ordinary curves, see examples in [5, §8].

2.4 Ready-Made short bases on GLV, GLS or GLV+GLS

Galbraith, Lin, and Scott [3] and Benjamin Smith [18] have already constructed families of endomor-

phisms equipped with a convenient ready-made basis. Then Smith [17] generalized these ready-made

bases to all of the other known efficient endomorphism constructions for elliptic curves and to real

multiplication techniques for genus 2 Jacobians.

First, we review some results in [17], from which we can see that to produce the ready-made basis

is mostly based on the simple order relations.

Lemma 1 ([17]). Let ζ and ζ ′ be endomorphisms of an abelian variety A/Fq such that Z[ζ] and Z[ζ ′]

are quadratic rings and Z[ζ] ⊆ Z[ζ ′], so ζ = cζ ′ + b for some integers b and c. Let G ⊂ A be a cyclic

subgroup of order n such that ζ(G) ⊆ G and ζ ′(G) ⊆ G, and let λ and λ′ be the eigenvalues in Z/nZ of

ζ and ζ ′ on G, respectively. Then

λ− cλ′ + b ≡ 0 mod n
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and

λλ′ − tζ′λ− bλ′ + cnζ′ + btζ′ ≡ 0 mod n,

where tζ′ is the trace of ζ ′ and nζ′ is the norm of ζ ′.

Following the Lemma, Smith gave general two-dimensional decompositions for elliptic curves.

Theorem 3 ([17]). Let E/Fq be an ordinary elliptic curve. If π is the q-power Frobenius endomorphism

on E and let φ be a non-integer endomorphism of E such that Z[π] ⊂ Z[φ], so π = cφ + b for some

integers c and b. The vectors

b1 = (b− 1, c) and b2 = (cdeg(φ) + (b− 1)tφ, 1− b)

generate a sublattice of K (see Equ. (2)) of determinant #E(Fq). If G = #E(Fq), then K = 〈b1,b2〉.

If E(Fq) ∼= G⊕ Z/2Z or G⊕ (Z/2Z)
2
, the following simple procedure produces a basis for K:

• If c is even, then K =<
1

2
b1,

1

2
b2 >.

• If c and b are odd and deg(φ) is even, then K =< b1,
1

2
b2 >.

• Otherwise, K =< b1,
1

2
(b1 + b2) >.

In this way, he constructed explicit short bases for the GLV [1], GLS [3], GLV+GLS [5], Guille-

vic–Ionica [6], and Q-curve reduction techniques [18], as well as for the Kohel–Smith [19] and Takashima

[20] methods for genus 2 Jacobians. Smith [17] can not pretend that the method is a significant opti-

mization for scalar decomposition methods, the construction of these “instant” bases turns out to be

an illuminating exercise.

In this paper, we only recall the four-dimensional decompositions for GLV+GLS in [17]. Let E/Fp be

an elliptic curve with a fast endomorphism ρ satisfying ρ2 +rρ+s = 0. Let π0 be the p-power Frobenius

on E and tπ0 be the trace of π0. Let E′/Fp2 be a quadratic twist of E(Fp2) and τ : E → E′ be the twist

isomorphism defined over Fp4 . Let φ = τρτ−1 and ψ = τπ0τ
−1. The characteristic equations of φ and

ψ are φ2 + rφ+ s = 0 and ψ2 − tπ0
ψ + p = 0 respectively. Moreover, the “restricted” endomorphism ψ

also satisfies ψ2 + 1 = 0. Let G ⊂ E′(Fp2) be a cyclic subgroup of large prime order n. Let λφ and λψ

be the eigenvalues of φ and ψ on G, respectively. Then λφ satisfies λ2φ+rλφ+s = 0 mod n, λψ satisfies

λ2ψ − tπ0
λψ + p = 0 mod n and λ2ψ + 1 = 0 mod n. Since φ is constructed by a GLV endomorphism,

Z[φ] is either the maximal order of the endomorphism algebra of E′, or very close to it—so it makes

sense to assume that Z[φ] contains Z[ψ], so that ψ = cφ+ b, where

b =
1

2
(tπ0 − ctφ) and c2 =

t2π0
− 4p

t2φ − 4nφ
. (5)
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Theorem 4 ([17]). With φ and ψ defined as above, suppose we can construct a 4-GLV decomposition

with (1, φ, ψ, φψ). The vectors

b1 = (1, 0, b, c), b2 = (0, 1,−cnφ, ctφ + b),

b3 = (−b,−c, 1, 0), b4 = (cnφ,−ctφ − b, 0, 1).

generate a sublattice of determinant #E′(Fp2) in L (see the difinition in §2.3). If G = E′(Fp2), then

L = 〈b1,b2,b3,b4〉.

Smith used relations between orders of quadratic fields to produce short lattice vectors. His method

is mainly adapt to ordinary curves. Due to the perception of the Menezes–Okamoto–Vanstone and

Frey–Rück reductions [25, 26] as “attacks,” supersingular curves are widely believed to be “weak”

curves and thus not desirable for cryptographic applications. Therefore, in practical applications,

ordinary curves are mainly used. In this paper, we mainly consider the implementation of our work on

ordinary curves.

3 Supplements to Smith’s method on 4-GLV decompositions

Smith’s method in §2.4 is only for quadratic twisted curves over Fp2 with the “restricted” endomorphism

ψ satisfing ψ2− tπ0
ψ+ p = 0 and ψ2 + 1 = 0. In this paper, we consider the case of twisted curves over

Fp2 of degree 4 or 6 and provide ready-made short bases for 4-GLV decompositions on these curves.

In the following, let E/Fp be a GLV curve with a fast endomorphism ρ, the j-invariant of E is 0 or

1728. Let π0 be the p-power Frobenius on E and tπ0
be the trace of π0. Let E′/Fp2 be a quartic or

sextic twist of E(Fp2) and τ : E → E′ be the twist isomorphism. Defining φ = τρτ−1 and ψ = τπ0τ
−1,

which are defined over Fp2 on E′. Let G ⊂ E′(Fp2) be a cyclic subgroup of large prime order n.

Since ρ is a GLV endomorphism, Z[φ] is the maximal order of the endomorphism algebra of E′ for

the case j-invariant 0 or 1728, it is therefore reasonable to assume Z[ψ] is contained in Z[φ]. Then

ψ = cφ+ b, where b, c can be computed as Eq. (5) by the characteristic equations of φ and ψ.

Now, we give ready-made short bases for 4-GLV decompositions on quartic or sextic twisted curves

over Fp2 .

Theorem 5. If E/Fp is an elliptic curve with j-invariant 1728, ρ satisfies ρ2 + 1 = 0. E′/Fp2 is

a quartic twist of E(Fp2) and τ : E → E′ is defined over Fp8 . With φ and ψ defined as above, the

characteristic equations of φ and ψ are φ2 + 1 = 0 and ψ2 − tπ0ψ + p = 0 respectively. Moreover,

the “restricted” endomorphism ψ also satisfies ψ4 + 1 = 0. With φ and ψ, we can construct a 4-GLV

9



decomposition with (1, φ, ψ, φψ). Then vectors

b1 = (1, 0,−c, b), b2 = (0, 1,−b,−c),

b3 = (−b,−c, 1, 0), b4 = (c,−b, 0, 1).

generate a sublattice of determinant #E′(Fp2) in L. If G = E′(Fp2), then L = 〈b1,b2,b3,b4〉.

Proof. For the case that E′/Fp2 is a quartic twisted curve of E, the proof is similar to that of Theorem

5. For the proof of the “restricted” endomorphism ψ satisfying ψ4 + 1 = 0, see [3, §3]. Let λφ and λψ

be the eigenvalues of φ and ψ on G, respectively. Applying Lemma 1 to the inclusion Z[ψ] ⊂ Z[φ] with

tφ = 0 and nφ = 1, we obtain relations

λψ − cλφ − b ≡ 0 mod n and λψλφ − bλφ + c ≡ 0 mod n,

corresponding to the vectors b3 and b4. Note that the “restricted” endomorphism ±ψ2 satisfies the

characteristic equation x2+1 = 0 and so acts as the same as φ on E′(Fp2). Changing ψ to−ψ if necessary,

here we identify φ with ψ2. Multiplying the relations above through by λψ, using λ2ψ = λψ2 = λφ mod n

and λ2φ = −1, we obtain new relations

λφ − cλφλψ − bλψ ≡ 0 mod n and − 1− bλφλψ + cλψ ≡ 0 mod n,

corresponding to the vectors b1 and b2.

The claim that det (< b1,b2,b3,b4 >) = #E′(Fp2) will be proved later.

Theorem 6. If E/Fp is an elliptic curve with j-invariant 0, ρ satisfies ρ2 + ρ + 1 = 0. E′/Fp2 is

a sextic twist of E(Fp2) and τ : E → E′ is defined over Fp12 . With φ and ψ defined as above, the

characteristic equations of φ and ψ are φ2 +φ+1 = 0 and ψ2− tπ0ψ+p = 0 respectively. Moreover, the

“restricted” endomorphism ψ also satisfies ψ4 − ψ2 + 1 = 0. With φ and ψ, we can construct a 4-GLV

decomposition with (1, φ, ψ, φψ). Then vectors

b1 = (1, 0, c− b,−b), b2 = (0, 1, b, c),

b3 = (−b,−c, 1, 0), b4 = (c, c− b, 0, 1).

generate a sublattice of determinant #E′(Fp2) in L. If G = E′(Fp2), then L = 〈b1,b2,b3,b4〉.

Proof. For the proof of the “restricted” endomorphism ψ satisfying ψ4 − ψ2 + 1 = 0, see [3, §3]. Note

that the “restricted” endomorphism −ψ2 satisfies the characteristic equation x2 +x+ 1 = 0 and so acts

as the same as φ on E′(Fp2). Similar to the proof of Theorem 5 with tφ = −1, nφ = 1, we can get the

short vectors immediately by λ2ψ = λψ2 = −λφ mod n and λ2φ = −λφ− 1 mod n. Also, the claim that

det (< b1,b2,b3,b4 >) = #E′(Fp2) will be proved later.
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The rest proof of Theorem 5 and 6. To verify det (< b1,b2,b3,b4 >) = #E′(Fp2) , we need

recall some results for the case q = p2 in [24, Proposition 2]. In the following, let tπ be the trace of

Frobenius endomorphism π ∈ End(E × Fp2), where E × Fp2 are the base extension of E to Fp2 .

Proposition 1 ([24]). Let E/Fp be an ordinary elliptic curve, then #E(Fp) = p+1−tπ0
and #E(Fp2) =

p2 + 1 − tπ, where tπ = t2π0
− 2p. E′/Fp2 is a d-th twist of E(Fp2), then the possible group orders of

E′(Fp2) are given by the following:

d = 4 : #E′(Fp2) = p2 + 1± f with t2π − 4p2 = −f2

d = 6 : #E′(Fp2) = p2 + 1− (tπ ± 3f)/2 with t2π − 4p2 = −3f2

Moreover, if we know p and tπ0
, we can get #E′(Fp2) = p2+1±tπ0

√
4p− t2π0

for d = 4 and #E′(Fp2) =

p2 + p+ 1− t2π0
±tπ0
√

3(4p−t2π0 )
2 for d = 6.

When E′/Fp2 is a quartic twist of E(Fp2), with b =
tπ0
2 and c2 =

4p−t2π0
4 , we have

det (< b1,b2,b3,b4 >) = (1− 2bc)2 + (c2 − b2)2 =

(
1±

tπ0

√
4p− t2π0

2

)2

+

(
2p− t2π0

2

)2

= p2 + 1± tπ0

√
4p− t2π0

= #E′(Fp2).

When E′/Fp2 is a sextic twist of E(Fp2), with b =
tπ0+c

2 and c2 =
4p−t2π0

3 , we have

det (< b1,b2,b3,b4 >) = (1 + 2bc− b2)(1 + 2bc− c2) + (c2 − b2)2

= p2 + p+ 1−
t2π0
± tπ0

√
3(4p− t2π0

)

2
= #E′(Fp2).

So far, we have completed the proof of Theorem 5 and 6.

Smith did not pretend that the ready-made short bases represents a significant optimization in scalar

multiplication, but it does give a better insight into the structure of scalar decompositions. It is always

more convenient to use a ready-made short basis than it is to compute a new one. Longa and Sina’s

algorithm [5] or an improved algorithm [8] is also an easy-to-implement and an evry efficient algorithm

with complexity O(log2(n)). Importantly, the output (i.e. short bases) of these algorithms have an

exact upper bound, such as 51.5(
√

1 + |r|+ s)n1/4 or 3.41(
√

1 + |r|+ s)n1/4. In practical applications,

users could choose which method to use according to their preferences. In this paper, we will focus on

exploring more potential of Longa and Sica’s algorithm and construct a new twofold Cornacchia-type

algorithm.
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4 A new twofold Cornacchia-type algorithm

4.1 Analysis of the new twofold algorithm

First, we consider a curve which has two fast endomorphisms φ, ψ with minimal polynomials x2 +x+ 1

and x2 + rx+ s respectively. Let λ and µ be the eigenvalues of φ and ψ on a cyclic subgroup of order n,

respectively, λ, µ ∈ [0, n− 1]. Viewing φ and ψ as algebraic integers, then Q(φ) = Q(
√
−3). Moreover,

Changing φ to −φ if necessary, then we may identify φ with ω = −1+
√
−3

2 . Assume Q(ψ) 6= Q(
√
−3),

then K = Q(φ, ψ) is a biquadratic number field. Let OK be its ring of integers.

The existence of λ and µ above means that n splits in Q(φ) and Q(ψ), thus n splits completely in K.

Hence there exists a prime ideal n of OK of norm n dividing nOK . Let n′ = n∩Z[φ, ψ] and n′′ = n∩Z[ω].

The inclusions Z ↪→ Z[ω] ↪→ Z[φ, ψ] ↪→ OK induce isomorphisms Z/nZ ∼= Z[ω]/n′′ ∼= Z[φ, ψ]/n′ ∼= OK/n.

In particular we can suppose φ ≡ λ mod n′ and ψ ≡ µ mod n′. Consider the map F :

F : Z4 → Z/nZ ∼= Z[φ, ψ]/n′, (x1, x2, x3, x4) 7→ x1 + x2λ+ x3µ+ x4λµ mod n. (6)

Then F is a surjective homomorphism and kerF = f−1(n′) is a full sublattice of Z4 of index n where

f is the isomorphism Z4 → Z[φ, ψ], (x1, x2, x3, x4) 7→ x1 + x2φ+ x3ψ + x4φψ.

We identify Z[φ, ψ] with the free Z[ω]-module of rank 2 with basis {e1, e2} = {1, ψ}. To find a

short Z-basis of n′, we first find out a generator ν = a+ bω of n′′ in the Euclidean domain Z[ω], which

is equivalent to finding a, b ∈ Z such that a2 − ab + b2 = n. This can be achieved by using the first

Cornacchia’s algorithm in Z (see §4.2 Algorithm 1). Then ν = νe1 and ψ − µ = −µe1 + e2 are both in

n′, and {νe1,−µe1 + e2} generates a sub-Z[ω]-module of Z[φ, ψ] of index n, so this submodule must be

n′, i.e.,

n′ = νZ[ω] + (ψ − µ)Z[ω]. (7)

We now use the second Cornacchia’s algorithm in Z[ω] to find a short Z[ω]-basis {υ1, υ2} of n′ (see

§4.2 Algorithm 2) with maxi(|υi|) ≤ Cn1/4 for some constant C > 0. Thus we get a short Z-basis

{υ1, υ1ω, υ2, υ2ω} of n′. Moreover, write υ1 = (a1+b1ω)+(c1+d1ω)ψ and υ2 = (a2+b2ω)+(c2+d2ω)ψ,

then

n′ = (a1 + b1ω + (c1 + d1ω)ψ)Z[ω] + (a2 + b2ω + (c2 + d2ω)ψ)Z[ω]. (8)

By kerF = f−1(n′), we get a short basis of kerF , which are the rows of the following matrix.


a1 b1 c1 d1

−b1 a1 − b1 −d1 c1 − d1
a2 b2 c2 d2

−b2 a2 − b2 −d2 c2 − d2

 . (9)
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Let {υ̃1, υ̃2, υ̃3, υ̃4} be the rows of the matrix (9) with maxi(|υ̃i|) ≤ Cn1/4. For any k ∈ [1, n − 1],

write (k, 0, 0, 0) =
4∑
j=0

βj υ̃j with βj ∈ Q. Then υ :=
4∑
j=0

bβjeυ̃j ∈ kerF . Let κ = (k1, k2, k3, k4) =

(k, 0, 0, 0)−υ. By the triangle inequality, |κ| = |
∑4
i=1(bβie−βi)υ̃i| ≤ 4× 1

2 maxi(|υ̃i|) ≤ 2Cn1/4. Then

[k]P = [k1]P + [k2]φ(P ) + [k3]ψ(P ) + [k4]φψ(P ) with max
i

(|ki|) ≤ 2Cn1/4.

Second, we consider a curve which has an endomorphism ψ satisfing ψ4 − ψ2 + 1 = 0. Hence the

4-GLV decomposition can be implemented on the curve as described as in (3). View ψ as an algebraic

integer satisfying x4 − x2 + 1 = 0. Let K = Q(ψ) be the quartic extension over Q and OK be the

ring of integers of K. Since ψ is a primitive 12-th root of unity, then K/Q is a Galois extension and

OK = Z[ψ]. Let µ be the eigenvalue of ψ on a cyclic subgroup of order n, then ±µ and ±µ−1 are the

roots of x4 − x2 + 1 = 0 in Fn, which means that n splits completely in OK . Denote by n′ the prime

ideal lying over n which contains n and ψ − µ. We also get a map

F : Z4 → Z/nZ ∼= OK/n
′, (x1, x2, x3, x4) 7→ x1 + x2µ+ x3µ

2 + x4µ
3 mod n. (10)

To compute a short basis of kerF is equivalent to computing a short basis of n′. Note that φ := −ψ2

satisfies x2 + x + 1 = 0, hence Z[φ] = Z[ω] ⊂ OK . Let λ := −µ2 mod n, using Algorithm 1 on input

n, λ, we can get a generator ν = a+ bω of n′ ∩ Z[ω]. Subsequently, n′ = νZ[ω] + (ψ − µ)Z[ω], then we

use Algorithm 2 on input ν, µ to find a short Z[ω]-basis {υ1, υ2} of n′. Moreover, in this case, the new

twofold Cornacchia-type algorithm can be used for scalar decomposition as well.

Remark 4. Our method is a variation of the method by Longa and Sica [5] and Yi et al. [8]. In the

second Cornacchia’s algorithm we use the extended Euclidean algorithm on the Euclidean domain Z[ω]

instead of Z[i]. See the following relationship diagram.

Z[φ, i] n′ Z[ψ, ω] n′

↑ ↑ ↑ ↑
Z[i] νZ[i] −−−−−−−−→ Z[ω] νZ[ω]

↑ ↑ ↑ ↑
Z n Z n

Method in [5, 8] Our method

Moreover, we observe that the second Cornacchia’s algorithm can also implemented on orders of imag-

inary quadratic fields which are Euclidean, for example, the orders Z[
√
−2], Z[ 1+

√
−7

2 ] and Z[ 1+
√
−11
2 ].

The analysis is similar to the analysis above and the corresponding algorithms are similar to the algo-

rithms below, just paying attention to the different norms when implementing the second Cornacchia’s

algorithm.
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4.2 Specific algorithm

We now describe our new twofold Cornacchia-type algorithm to compute 4-GLV decomposition coeffi-

cients. The first part is to find ν = a+ bω ∈ Z[ω] such that Norm(ν) = a2 − ab+ b2 = n. We can find

ν by Cornacchia’s algorithm in Z, which is a truncated form of the extended Euclidean algorithm.

Algorithm 1: The first part of the new algorithm

Input: n, 1 < λ < n such that λ2 + λ+ 1 ≡ 0 mod n, i.e, λ ≡ ω mod n.

Output: ν = a+ bω dividing n, such that νP = 0.

1. initialize

r0 ← n, r1 ← λ, r2 ← n,

t0 ← 0, t1 ← 1, t2 ← 0,

q ← 0.

2. main loop

while r22 ≥ n do

q ← br0/r1c,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,

t2 ← t0 − qt1, t0 ← t1, t1 ← t2.

return: ν = r1 − ωt1, a = r1, b = −t1

Lemma 2. Algorithm 1 is valid and the output ν = r1 − ωt1 is really lying over n, i.e., ν(P ) = 0.

Proof. Let λ ∈ [1, n− 1] such that λ ≡ ω mod n, with ω being defined by φ(P ) = ωP . To compute the

g.c.d of n and λ, the extended Euclidean algorithm produces three terminating sequences of integers

(rj)j≥0, (sj)j≥0 and (tj)j≥0 such that

(
rj+2 sj+2 tj+2

rj+1 sj+1 tj+1

)
=

(
−qj+1 1

1 0

)(
rj+1 sj+1 tj+1

rj sj tj

)
, (11)

for some integers qj+1 > 0 and the initial data

(
r1 s1 t1

r0 s0 t0

)
=

(
λ 0 1

n 1 0

)
. (12)

This means that at step j ≥ 0,

rj = qj+1rj+1 + rj+2, sj = qj+1sj+1 + sj+2, tj = qj+1tj+1 + tj+2.

The sequences (rj), (sj) and (tj) with qj+1 = brj/rj+1c satisfy the following properties, valid for all

j ≥ 0:
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P1 rj > rj+1 ≥ 0 and qj+1 ≥ 1,

P2 (−1)jsj ≥ 0 and |sj | < |sj+1| (this last inequality valid for j ≥ 1),

P3 (−1)j+1tj ≥ 0 and |tj | < |tj+1|,

P4 sj+1rj − sjrj+1 = (−1)j+1λ,

P5 tj+1rj − tjrj+1 = (−1)jn,

P6 nsj + λtj = rj .

P5 can be reformulated as

|sj+1rj |+ |sjrj+1| = λ and |tj+1rj |+ |tjrj+1| = n. (13)

The algorithm stops at m when rm ≥
√
n and rm+1 <

√
n. For j = m in (13), this yields |tm+1rm| < n

or |tm+1| <
√
n. Since by P6, we have rm+1 − λtm+1 = nsm+1 ≡ 0 mod n, we deduce that

r2m+1 + rm+1tm+1 + t2m+1 = (rm+1 − λtm+1)(rm+1 + λtm+1 + tm+1) ≡ 0 mod n.

Moreover, since tm+1 6= 0 by P3,

0 < r2m+1 + rm+1tm+1 + t2m+1 = (rm+1 +
1

2
tm+1)2 +

3

4
t2m+1 <

9

4
n+

3

4
n = 3n,

which implies that r2m+1 + rm+1tm+1 + t2m+1 = n or 2n. Since r2m+1 + rm+1tm+1 + t2m+1 6≡ 2 mod 4 but

2n ≡ 2 mod 4 (n is a prime), r2m+1 + rm+1tm+1 + t2m+1 6= 2n. Therefore r2m+1 + rm+1tm+1 + t2m+1 = n.

For ν = rm+1 − ωtm+1, νν = n. Since n splits in Z[ω], ν and ν are the two primes above n. Finally

νν(P ) = [n]P = 0 implies either ν(P ) = 0 or ν(P ) = 0.

We have seen how to construct ν by the Cornacchia’s algorithm in Z. From the analysis in §4.1,

n′ is the sub-Z[ω]-module of Z[φ, ψ] or Z[ψ] generated by (ν, 0) and (−µ, 1) under the basis {1, ψ} if

ψ2 + rψ + s = 0 or ψ4 − ψ2 + 1 = 0. Similar to the GLV original paper [1], we can use the extended

Euclidean algorithm to the pair (ν, µ) on Z[ω] to get a short basis of n′.

For the Cornacchia’s algorithm in Z[ω], we also have three such sequences. In the j-th step with

rj = qj+1rj+1 + rj+2, positive quotient qj+1 and nonnegative remainder rj+2 are not available in Z[ω].

We will choose qj+1 as the closest integer to rj/rj+1 denoted by brj/rj+1e (see the following Lemma

3). Let us note that P4-P6 of Lemma 2 still hold and P1 holds in modulus (in particular, the algorithm

terminates). Hence the (13), which plays a crucial role in the analysis of Cornacchia’s algorithm in Z,

becomes invalid in Z[ω]. For controlling {|sj |}, we give a neater and shorter argument (see the following

Lemma 4), which is similar to the improved analysis in [8, Lemma 1]. By some deduction we obtain an
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optimized terminal condition of the sequence {|rj |}, which is an absolute constant independent of the

curve.

We give the pseudo-code of Cornacchia’s Algorithm in Z[ω] in two forms, working with complex

numbers (see Algorithm 2) and separating real and imaginary parts (see Algorithm 3 in Appendix).

The outputs of Algorithm 3 are a short basis of kerF as the rows in matrix (9) in §4.1. Note that the

imaginary part in the Algorithm 3 denotes the coefficient of ω, i.e. the imaginary part of a + bω is b.

The running time of Algorithm 2, 3, similar to that of Cornacchia’s Algorithm in Z[i], that is O(log2 n).

One may refer to [5].

Algorithm 2: The second part of the new algorithm—compact form

Input: ν prime dividing n rational prime, 1 < µ < n such that µ2 + rµ+ s ≡ 0 mod n.

Output: Two vectors in Z[ω]2: υ1, υ2.

1. initialize:

r0 ← µ, r1 ← ν, r2 ← n,

s0 ← 1, s1 ← 0, s2 ← 0, q ← 0.

2. main loop:

while 2|r1|2 ≥ (3 +
√

3)n1/2 do

q ← br0/r1e,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,

s2 ← s0 − qs1, s0 ← s1, s1 ← s2.

3. compute:

q ← br0/r1e, r2 ← r0 − qr1, s2 ← s0 − qs1.

4. return: υ1 = (r1,−s1),

υ2 = (r0,−s0) if max {|r0|, |s0|} ≤ max {|r2|, |s2|}
= (r2,−s2) otherwise.

4.3 Proof of the upper bound

Theorem 7. The two vectors υ1, υ2 output by Algorithm 2 are Z[ω]-linearly independent. They belong

to n′ and satisfy |υ1|∞ ≤
√

3 +
√

3

2
n

1
4 , |υ2|∞ ≤

3 +
√

3

2
(
√

1 + |r|+ |s|)n 1
4 .

Before proving the Theorem 7, we need the following lemmas. Since in the Algorithm 2, qj+1 ∈ Z[ω]

is the closest integer to rj/rj+1. Here, we define a lattice diamond that a diamond of side length one

with vertices in Z[ω], also a fundamental regin of the lattice Z[ω]. We single out an lattice diamond with

a vertex of modulus 1 (such as, ±1 or ±ω) but not containing the origin as a vertex (since qj+1 6= 0).

First, we discuss a property of the closest point in the lattice Z[ω].
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Lemma 3. For any point P of a lattice diamond, different from the vertices, there exists a vertex V1

which is the closest vertex to P , and satisfy V1P ≤
√

3

2
.

Proof. This is one case where a picture is worth one thousand words. Refer to Fig. 1, we can easily give

an explanation of why the distance works. The dashed circle arcs are centered on the vertices and have

radius

√
3

2
. Since the dashed disks cover everything, for any point P , by choosing the closest vertex V1

to P , we have V1P ≤
√

3

2
.

Figure 1: An lattice diamond in Z[ω]

Let V1 := qj+1 corresponds to the vertice of the lattice diamond, which is the one closest to the

point P of affix rj/rj+1 lies in the lattice diamond. When applying Lemma 3, it is essential that we be

able to choose from the set of all vertices of the lattice diamond which one is the adequate V1. Since

qj 6= 0, it means that we must be careful to avoid all four diamonds which have the origin as a vertex.

So, at all steps j ≥ 0 we always have |rj/rj+1| ≥
√

3.

Lemma 4. If | sj
sj+1

| < 1, then we have

|sj+1rj | ≤
3 +
√

3

2
|ν|, |sjrj+1| ≤

5 +
√

3

2
|ν|.

Proof. First we have sj+1rj − sjrj+1 = (−1)j+1ν. If the condition | sj
sj+1

| < 1 holds, and noticing that

|rj/rj+1| ≥
√

3, then | sj
sj+1

· rj+1

rj
| < 1√

3
. We can get

∣∣∣∣1− sjrj+1

sj+1rj

∣∣∣∣ ≥ 1−
∣∣∣∣sjrj+1

sj+1rj

∣∣∣∣ ≥ 1− 1√
3
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Together with sj+1rj − sjrj+1 = (−1)j+1ν we have

|ν| = |sj+1rj − sjrj+1| >
(

1− 1√
3

)
|sj+1rj |,

which implies

|sj+1rj | ≤
1

1− 1√
3

|ν| = 3 +
√

3

2
|ν|.

By |sjrj+1| = |sj+1rj + (−1)jν|, then |sjrj+1| ≤
5 +
√

3

2
|ν|.

Lemma 5. For any nonzero (υ1, υ2) ∈ n′ ⊂ Z[ω]2, we have

max(|υ1|, |υ2|) ≥
√
|ν|√

1 + |r|+ |s|
.

Proof. If (0, 0) 6= (υ1, υ2) ∈ n′, then υ1 + µυ2 ≡ 0 mod ν. If µ′ is the other root of x2 + rx+ s mod n,

we get that

υ21 − rυ1υ2 + sυ22 ≡ (υ1 + µυ2)(υ1 + µ′υ2) ≡ 0 mod ν

Since x2+rx+s is irreducible in Q(ω) because the two quadratic fields are linearly disjoint, we therefore

have |υ21 − rυ1υ2 + sυ22 | ≥ |ν|. On the other hand, if

max(|υ1|, |υ2|) <
√
|ν|√

1 + |r|+ |s|
,

then

|υ21 − rυ1υ2 + sυ22 | ≤ |υ1|2 + |r||υ1||υ2|+ s|υ2|2| < |ν|,

a contradiction. This proof uses an argument already appearing in the proof of the original GLV

algorithm [9].

Proof. (Proof of Theorem 7). According to the property P4: sj+1rj − sjrj+1 = (−1)j+1ν and the

property P6: (rj ,−sj) = tj(ν, 0) + (−sj)(−µ, 1), the vectors υ1, υ2 belong to kerF .

We denote the output {r, s} of the j-th step in the loop of Algorithm 2 by {rj+1, sj+1}, and assume

Algorithm 2 stops at the m-th step. Then υ1 = (rm+1,−sm+1) and |rm| ≥
√

3+
√
3

2 n
1
4 and |rm+1| <√

3+
√
3

2 n
1
4 . We need to consider two cases. For brevity, we denote two constants

√
1 + |r|+ |s|,

√
3+
√
3

2

by c1, c2 respectively.
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Case 1:

∣∣∣∣ smsm+1

∣∣∣∣ < 1. Using Lemma 4 we have |sm+1| ≤ c2
√
|ν|, together with |rm+1| < c2

√
|ν| we

can easily deduce

|υ1|∞ ≤ c2n
1
4 .

Moreover, if |rm+1| <
√
|ν|
c1

, by Lemma 5 we have a lower bound |sm+1| ≥
√
|ν|
c1

which implies

|rm| ≤ c1
3+
√
3

2

√
|ν| using again Lemma 4. Together with the restricted condition |sm| < |sm+1| ≤

c2
√
|ν| < c1

3+
√
3

2

√
|ν| we can obtain

|(rm,−sm)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

If |rm+1| ≥
√
|ν|
c1

, when |sm+1| ≥ |sm+2| we have |sm+2| ≤ c2
√
|ν|, |rm+2| ≤ |rm+1| < c2

√
|ν|. When

|sm+1| < |sm+2|, by the Lemma 4 we can deduce |sm+2| ≤ c1 3+
√
3

2

√
|ν|. Hence in both cases we have

|(rm+2,−sm+2)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Finally by the definition of v2 we always have

|υ2|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Case 2:

∣∣∣∣ smsm+1

∣∣∣∣ ≥ 1. Let k ≤ m be the index satisfying

|sk| ≥ |sk+1| ≥ · · · ≥ |sm| ≥ |sm+1| and |sk−1| < |sk|.

Applying Lemma 4 to the (k − 1)-th step we have |skrk−1| ≤ 3+
√
3

2

√
|ν|. Since |rk−1| ≥ |rk| ≥ · · · ≥

|rm| ≥ c2
√
|ν| we can easily deduce |sk| ≤ c2

√
|ν| and then |sm+1| ≤ |sk| ≤ c2

√
|ν|. Together with

|rm+1| < c2
√
|ν| we obtain

|υ1|∞ ≤ c2n
1
4 .

Similarly, if |rm+1| <
√
|ν|
c1

we have |sm+1| ≥
√
|ν|
c1

by Lemma 5. which implies |sk| ≥
√
|ν|
c1

and then

|rk−1| ≤ c1
3+
√
3

2

√
|ν| by Lemma 4. Hence |rm| ≤ c1

3+
√
3

2

√
|ν|. Together with |sm| ≤ |sk| ≤ c2

√
|ν| <

c1
3+
√
3

2 n
1
4 we have

|(rm,−sm)|∞ ≤ c1
3 +
√

3

2
n

1
4 .
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On the other hand, if |rm+1| ≥
√
|ν|
c1

, following the same argument described in the case |sm| < |sm+1|

we also have

|(rm+2,−sm+2)|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Therefore,

|υ2|∞ ≤ c1
3 +
√

3

2
n

1
4 .

Following Theorem 7 and the argument in §4.1, we can easily obtain the conclusion.

Theorem 8. In the 4-dimensional GLV scalar multiplication using the combination of GLV and GLS,

the new twofold Cornacchia-type algorithm will result in a decomposition of any scalar k ∈ [1, n) into

integers k1, k2, k3, k4 such that

[k]P = [k1]P + [k2]φ(P ) + [k3]ψ(P ) + [k4]φψ(P ),

with ki ∈ Z bounded by 4.74(
√

1 + |r|+ |s|)n1/4.

Remark 5. Note that maxi(|ki|) was bound by the form 2C(
√

1 + |r|+ s)n1/4 in the original paper

[5, 8], since the endomorphism φ is always separable with s = deg(φ). However, in this paper, we use a

“restricted” endomorphism satisfying x2 + rx+ s = 0 with s may negative, see the example: the 4-GLV

decomposition (15) on Curve 4 in §6. This change doesn’t affect the proof. The new twofold Cornacchia-

type algorithm possesses a upper bound of decomposition coefficients 4.74(
√

1 + |r|+ |s|)n1/4, which is

very close to Hu et al.’s [7] and better than Longa and Sica’s [5] and Yi et al.’s [8].

5 Applications of the new twofold Cornacchia-type algorithm

5.1 Computing all 4-GLV decompositions on j-invariant 0 curves over Fp2

We consider the class of elliptic curves over Fp2 which are twists of j-invariant 0 curves over Fp. Recall

there are two 4-GLV decompositions on this class of curves. The first one is described as (3) with the

“restricted” endomorphism ψ1 satisfying ψ4
1−ψ2

1 +1 = 0 in §2.2, the second one is described as (4) with

the “restricted” endomorphisms φ, ψ2 satisfying φ2 +φ+ 1 = 0 and ψ2
2 + 1 = 0 in §2.3. So far, there are

three methods to compute them: Hu et al.’s method[7], Longa and Sica’s method[5] and Smith’s method

[17]. However, each method can only compute the 4-GLV decomposition under certain conditions. The

method in [7] is only applicable to curves which are twists of degree 6 with a “restricted” endomorphism
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ψ1 satisfying ψ4
1 − ψ2

1 + 1 = 0. The methods in [5] and [17] are only applicable to curves which are

twists of degree 2 with a “restricted” endomorphism ψ2 satisfying ψ2
2 + 1 = 0.

Note the “restricted” endomorphism −ψ2
1 satisfies the equation x2 + x + 1 = 0, as same as φ. Let

φ := −ψ2
1 in the first 4-GLV decomposition. Therefore, for each of the 4-GLV decompositions, we exploit

the facts that this class of curves must have an endomorphism φ with the ring Z[φ] = Z[ω]. Then, the

new twofold Cornacchia-type algorithm in §4.2 can be used to compute all 4-GLV decompositions on

curves over Fp2 with j-invariant 0. Different from previous algorithms, we propose a new and unified

algorithm to compute all 4-GLV decompositions on this class of curves.

Remark 6. For the class of quadratic twisted curves defined over Fp3 , based on the existence of ψ

satisfying ψ2−ψ+ 1 = 0 when restricted to points defined over Fp3 (see the case m = 3 in [3, Corollary

2]), again we have Z[ψ] = Z[ω] and our new twofold algorithm can be used to compute the 4-GLV

decomposition on this class of curves. However, curves defined over Fp3 are not really a good option in

cryptography, their order is never a prime. Therefore, we will not elaborate too much here.

5.2 Computing 4-GLV decompositions on Jacobians of a class of hyperellitic
curves

Now, we consider a class of hyperelliptic curves which is the form C : y2 = x6 + ax3 + b, a, b ∈ Fp. The

Jacobian of C is (2, 2)-isogenous to Ec×Ec, which Ec is defined as y2 = x3 + 3(2c− 5)x+ c2− 14c+ 22

with c ∈ Fp2/Fp, c2 ∈ Fp.

The Jacobian of C was proposed for use in cryptography by Freeman and Satoh [21], who showed

that it is isogenous over Fp to the Weil restriction of a curve of the form Ec. This property is exploited

to derive fast point counting algorithms and pairing-friendly constructions [21, 22]. Guillevic and Ionica

[6] investigated efficient scalar multiplication via the GLV technique on the Jacobian, they gave 4-GLV

decompositions on JC but didn’t give examples or algorithms to compute them. In this paper, we give

an example and use our algorithm to compute 4-GLV decompositions on JC .

Guillevic and Vergnaud [22, Theorem 2] showed that the complex multiplication discriminant −D

of Ec is of the form −D = −3D′, for some D′ ∈ N+. Let tp2 be the trace of Ec(Fp2). The equation

of the complex multiplication is then (tp2)2 − 4p2 = −3D′γ2, for some γ ∈ Z. Guillevic and Ionica [6]

proved that there is an endomorphism on Ec whose degree of separability D′, see the following.

Theorem 9. [6, Theorem 2] There are integers m and n such that if p ≡ 1 mod 3, then tp2+2p = D′m2

and tp2 − 2p = −3n2, and if p ≡ 2 mod 3, then tp2 + 2p = 3n2 and tp2 − 2p = −D′m2. Let Ec be

an elliptic curve defined as above. There is an endomorphism ψD′ of Ec with degree of separability D′.

The characteristic equation of this endomorphism is

ψ2
D′ +D′mψD′ +D′pId = 0.
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Now, reviewing the 4-GLV decomposition on JC in [6, §5]. The first endomorphism φ on JC is

induced by the curve automorphism (x, y)→ (ζ3x, y), where ζ is a 3-th root of unity. Its characteristic

equation is φ2 + φ+ 1 = 0. The second endomorphism is constructed as ψ = Î(ψD′ , ψD′)I, where ψD′

is the elliptic curve endomorphism constructed in Theorem 9 and the definition of I, Î can refer [6, §2].

In order to compute the characteristic equation for ψ, similar to Theorem 3 in [6], we reproduce the

result for JC .

Theorem 10. Let C : y2 = x6 + ax3 + b (with a, b 6= 0 ∈ Fp, b not a square in Fp) be a hyperelliptic

curve defined over Fp with ordinary Jacobian and let r a prime number such that r ‖ #JC(Fp). Let

I : JC → Ec×Ec the (2, 2)-isogeny and assume I is defined over an extension field of degree k > 1. We

define ψ = Î(ψD′ , ψD′)I, which is defined over Fp. Then

1. For D ∈ JC [r](Fp), we have ψ(D) = [µ]D, with µ ∈ Z.

2. The characteristic equation of ψ is ψ2 + 2D′mψ + 4D′p = 0.

Note that Z[φ] = Z[ω], we can use the new twofold algorithm described in §4.2 to compute the

4-GLV decompositions on Jacobians of this class of curves.

6 Experimental results

In the following, we mainly describe the implementation of our methods. By the way, we verify that

Smith’s method is also valid for 4-GLV decompositions on high degree twisted curves. The objective is to

verify that the new twofold Cornacchia-type algorithm can be used to compute all 4-GLV decompositions

on GLS curves with j-invariant 0 and on Jacobians of a family of hyperelliptic curves defined over Fp.

We describe an efficient parameter selection, carry out the corresponding operation count when

computing scalar multiplications at the 128-bit security level on representative x86-64 processors. If

computing endomorphisms is more expensive than point addition then we use precomputation. For the

remainder, we use M and S, to denote the cost of multiplication and squaring over field Fp2 , respectively,

and m and s represent the same operations over Fp. In order to give global estimates, we will assume

that m ∼ s and that M ∼ 3m and S ∼ 3s. For all implementations using the curves following, we just

apply the width-ω non-adjacent form (ω-NAF) method [15, Alg. 3.36] for the case ω = 2 to perform

the scalar multiplication with dimension 4.

Curve 1. E1/Fp21 : y2 = x3 + 6u4x, p1 = 2127 − 11791. #E1(Fp21) = 2n1, where n1 is a 253-bit

prime. We use Fp21 = Fp1 [X]/(X2 − 7) and u4 =
√

7 ∈ Fp21 . E1 is the quartic twist of the curve

y2 = x3 + 9. φ1(x, y) = [λ1]P = (−x, iy) and ψ1(x, y) = [µ1]P = (u2(1−p1)xp1 , u3(1−p1)yp1). We
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have that φ21 + 1 = 0 and ψ4
1 + 1 = 0.

n1 = 14474011154664524427946373126085986475592815359404689716718476228808135523297.

Curve 2. E2/Fp22 : y2 = x3 + 8u6, p2 = 2128− 40557. #E2(Fp22) = n2, where n2 is a 256-bit prime. We

use Fp22 = Fp2 [X]/(X2+1) and u6 = 3+
√
−1 ∈ Fp22 , u ∈ Fp122 . We have that p2 = a2+ab+b2, with

a = −532813233214206943 and b = 18707378648059847118, where a ≡ 2 mod 3, b ≡ 0 mod 3.

E2 is the sextic twist of the curve y2 = x3 + 8. ψ2(x, y) = [µ2]P = (u2(1−p2)xp2 , u3(1−p2)yp2). We

have that ψ4
2 − ψ2

2 + 1 = 0.

n2 = 115792089237316195423570985008687880252285787304655451067586303088174318594253.

Curve 3. E3/Fp23 : y2 = x3 + 9u6, p3 = 2127 − 58309. #E3(Fp23) = n3, where n3 is a 254-bit prime.

We use Fp23 = Fp3 [X]/(X2 + 1) and u6 = 1 +
√
−1 ∈ Fp23 . E3 is the quadratic twist of the

curve y2 = x3 + 9. φ3(x, y) = [λ3]P = (ξx, y) (ξ3 = 1 mod p3) and ψ3(x, y) = [µ3]P =

(u2(1−p3)xp3 , u3(1−p3)yp3). We have that φ23 + φ3 + 1 = 0 and ψ2
3 + 1 = 0.

n3 = 28948022309329048855892746252171957122115446880342562205022587026009317092613.

Curve 4. E4/Fp24 : y2 = x3 + 4u6, p4 = 2127 − 10711. #E4(Fp24) = n4, where n4 is a 254-bit prime.

We use Fp24 = Fp4 [X]/(X2 − 5) and u6 =
√

5 ∈ Fp24 , u ∈ Fp124 . E4 is the sextic twist of the

curve y2 = x3 + 4. φ4(x, y) = [λ4]P = (ξx, y) with ξ3 = 1 mod p4, ψ3(x, y) = [µ4]P =

(u2(1−p4)xp4 , u3(1−p4)yp4) and φ̃4(x, y) = [ν4]P =
(

1
3

(
xp4 + 16u6

x2p4

)
, y

p4

3
√
3

(
1 + 32u6

x3p4

))
for all points

in E4(Fp24). We have that φ24 + φ4 + 1 = 0, ψ4
4 − ψ2

4 + 1 = 0 and φ̃24 − 3 = 0.

n4 = 28948022309329048855892746252171973318400655407372347811649309465013411860897.

Hyperellitic Curve. C/Fp : y2 = x6 − 3x3 − 92 with b = −92 which is neither a square nor a cube,

p = 2127−1. Let Fp2 = Fp[x]/(x2+1) = Fp[i], c = a√
b
∈ Fp2/Fp and Ec/Fp2 : y2 = x3+3(2c−5)x+

c2 − 14c + 22. A few second computation gives us tp2 = 0x6089c0341e5414a24bef1a1a93c54fd2

and 2p − tp2 = 3n2 as expected with n = ±0x74a69cde5282dbb6 and 2p + tp2 = m2D′ with

m = 4, D′ = 0x16089c0341e5414a24bef1a1a93c54fd. Hence #JC(Fp) = p2+p+1+3n(p+1)+3n2.

Using few random points on the Jacobian, we find n < 0 and that #JC(Fp) has a 250-bit prime

factor: r = 0x25ed097b425ed0974c75619931ea7f1271757b237c3ff3c5c00a037e7906557.

Two endomorphisms φ and ψ on JC satisfy φ2 + φ+ 1 = 0 and ψ2 + 2D′mψ + 4D′p = 0.

Remark 7. The endomorphism φ̃4 satisfies φ̃4 = I3 ◦ πp, where I3 is an isogeny with degree 3 and

constructed by Vélu’s formula [13, 14] with kernel H = {O, (0, 2u3), (0,−2u3)}. More details can be

found in [6]. From the endomorphisms of curve E4, we can get [Q(ψ4) : Q] = [Q(φ̃4, φ4) : Q] = 4. For
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P ∈ E4(Fp24)[n4] and any integer k ∈ [1, n4 − 1], two 4-GLV decompositions are constructed as follows:

[k]P = [k1]P + [k2]ψ4(P ) + [k3]ψ2
4(P ) + [k4]ψ3

4(P ); (14)

= [k1]P + [k2]φ4(P ) + [k3]φ̃4(P ) + [k4]φ4φ̃4(P ). (15)

In Table 1, we give operation counts for 4-GLV decompositions on these curves. For the curves E1

with j-invariant 1728 we use projective coordinates, a doubling costs 4M + 3S and an addition costs

7M + 1S. For the curves E2, E3 and E4 with j-invariant 0 we use Jacobian coordinates. A state-of-the-

art formulas can be found in [16, formula (6.7)], which a doubling costs 3M + 4S and an addition costs

12M + 4S. For genus 2 arithmetic on curves of the form y2 = x6 + ax3 + b, we used formulæ given by

Costello and Lauter [23] in projective coordinates. An addition costs 43M + 4S and a doubling costs

30M + 9S.

Table 1. Total cost of scalar multiplication at a 128-bit security level.

Curve Method Operation counts Global estimation

E1(Fp21)
4-GLV(Algorithm in [5, 8])

Smith’s method (Theorem 5)
718M + 326S 3132m

E2(Fp22)

4-GLV(Algorithm in [7])

Smith’s method (Theorem 6)

4-GLV(Our algorithm)

816M + 548S 4092m

E3(Fp23)

4-GLV(Algorithm in [5, 8])

Smith’s method (Theorem 4)

4-GLV (Our algorithm)

885M + 580S 4395m

E4(Fp24)− (14)

4-GLV(Algorithm in [7])

Smith’s method (Theorem 6)

4-GLV (Our algorithm)

834M + 560S 4182m

E4(Fp24)− (15)
Smith’s method (Theorem 6 in [17])

4-GLV (Our algorithm)
834M + 556S 4170m

JC(Fp) 4-GLV(Our algorithm) 1623m+ 300s 1923m

For 4-GLV decompositions on these curve, we use all possible algorithms to compute them. From

the experimental results in Table 1, we first show that our method is valid by comparing with previous

methods on curves E2, E3 and E4. Now, we focus on 4-GLV decompositions on GLS curves with j-

invariant 0 and compare our method with two previous methods in [7, 5, 8]. We can see that the

two previous methods can only compute 4-GLV decompositions under specific conditions. Hu et al.’s

method [7] can only compute 4-GLV decomposition on GLS curves which are sextic twists, see curves

E2, Longa and Sica’s method is only applicable to those curves with the “restricted” endomorphism ψ

satisfying ψ2 +1 = 0, see curve E3. Also, for these two 4-GLV decompositions on curve E4, the method

24



in [7] can compute the decomposition (14) but not the decomposition (15), and the method in [5, 8] can

not compute the decompositions either. Our method can compute all 4-GLV decompositions on GLS

curves with j-invariant 0, it gives a new and unified method on this class of elliptic curves.

Secondly, we show that Smith’s method (Theorem 6,7) can be used to compute 4-GLV decomposi-

tions on high degree twisted elliptic curves, such as curves E1 and E2 which are quartic twist and sextic

twist, respectively. So, what we’ve done in §3 make Smith’s method to adapt to more elliptic curves over

Fp2 . However, we note that Smith’s method can not be used to calculate the 4-GLV decomposition on

JC(Fp). In Table 1, our method is the only one that can be used to calculate all 4-GLV decompositions

on these curves.

7 Conclusion

We have constructed a new twofold Cornacchia-type algorithm, the first part in Z and the second part

in the Euclidean domain Z[ω] (ω = −1+
√
−3

2 ), with a theoretic upper bound of output C · n1/4, where

C = 3+
√
3

2

√
1 + |r|+ |s| with r, s given by the curve. It is a variation of the twofold Cornacchia-type

algorithm [5, 8]. Moreover, we observe that the second Cornacchia’s algorithm can also implemented

on imaginary quadratic orders which are Euclidean. The new twofold Cornacchia-type algorithm can

compute the 4-GLV decompositions on two families of curves. It is a new and unified method to compute

all 4-GLV decompositions on the family of GLS curves over Fp2 with j-invariant 0 and it can compute

the 4-GLV decompositions on Jacobians of a family of hyperelliptic curves. The new twofold algorithm

is as efficient as the original twofold algorithm but has broader applications. We also give supplements

to Smith’s method for 4-GLV decompositions on twisted elliptic curves with degree of twists 4 or 6,

which make Smith’s method to adapt to more curves. In the future, we will explore more and more

applications about new twofold Cornacchia-type algorithms with the second Cornacchia’s algorithm

implemented on some orders of imaginary quadratic fields which are Euclidean except Z[i].
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Appendix

Algorithm 3: The second part of the new algorithm—real & imaginary parts

Input: ν prime dividing n rational prime, 1 < µ < n such that µ2 + rµ+ s ≡ 0 mod n.

Output: A short basis of kerF ⊂ Z4: υ̃1, υ̃2, υ̃3, υ̃4

1. initialize:

r0(R) ← µ, r0(I) ← 0, r1(R) ← a, r1(I) ← b, r2(R) ← n, r2(I) ← 0,

s0(R) ← 1, s0(I) ← 0, s1(R) ← 0, s1(I) ← 0, s2(R) ← 0, s2(I) ← 0, qR ← 0, qI ← 0.

2. main loop:

while 2(r21(R) − r1(R)r1(I) + r21(I)) ≥ (3 +
√

3)n1/2 do

qR ← d
r0(R)r1(R)−r0(R)r1(I)+r0(I)r1(I)

r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

qI ← d
r0(I)r1(R)−r0(R)r1(I)
r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

r2(R) ← r0(R) − (qRr1(I) − qIr1(I)),
r2(I) ← r0(I) − (qRr1(I) + qIr1(R) − qIr1(I)),
r0(R) ← r1(R), r0(I) ← r1(I), r1(R) ← r2(R), r1(I) ← r2(I),

s2(R) ← s0(R) − (qRs1(R) − qIs1(I)),
s2(I) ← s0(I) − (qRs1(I) + qIs1(R) − qIs1(I)),
s0(R) ← s1(R), s0(I) ← s1(I), s1(R) ← s2(R), s1(I) ← s2(I),

3. compute:

qR ← d
r0(R)r1(R)−r0(R)r1(I)+r0(I)r1(I)

r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

qI ← d
r0(I)r1(R)−r0(R)r1(I)
r2
1(R)
−r1(R)r1(I)+r

2
1(I)

c,

r2(R) ← r0(R) − (qRr1(I) − qIr1(I)), r2(I) ← r0(I) − (qRr1(I) + qIr1(R) − qIr1(I)),
s2(R) ← s0(R) − (qRs1(R) − qIs1(I)), s2(I) ← s0(I) − (qRs1(I) + qIs1(R) − qIs1(I)),

4. return:

υ̃1 = (r1(R), r1(I),−s1(R),−s1(I)), υ̃2 = (−r1(I), r1(R) − r1(I), s1(I), s1(I) − s1(R)),

a := max
{

(r20(R) − r0(R)r0(I) + r20(I)), (s
2
0(R) − s0(R)s0(I) + s20(I))

}
b := max

{
(r22(R) − r2(R)r2(I) + r22(I)), (s

2
2(R) − s2(R)s2(I) + s22(I))

}
If a ≤ b then

υ̃3 = (r0(R), r0(I),−s0(R),−s0(I)), υ̃4 = (−r0(I), r0(R) − r0(I), s0(I), s0(I) − s0(R)).

otherwise

υ̃3 = (r2(R), r2(I),−s2(R),−s2(I)), υ̃4 = (−r2(I), r2(R) − r2(I), s2(I), s2(I) − s2(R)).
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