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Abstract—Despite a growing body of work on leakage-abuse
attacks for encrypted databases, attacks on practical response-
hiding constructions are yet to appear. Response-hiding construc-
tions are superior in that they nullify access-pattern based attacks
by revealing only the search token and the result size of each
query. Response-hiding schemes are vulnerable to existing volume
attacks, which are, however, based on strong assumptions such as
the uniform query assumption or the dense database assumption.
More crucially, these attacks only apply to schemes that cannot be
deployed in practice (ones with quadratic storage and increased
leakage) while practical response-hiding schemes (Demertzis et
al. [SIGMOD’16] and Faber et al. [ESORICS’15]) have linear
storage and less leakage. Due to these shortcomings, the value of
existing volume attacks on response-hiding schemes is unclear.

In this work, we close the aforementioned gap by introducing
a parametrized leakage-abuse attack that applies to practical
response-hiding structured encryption schemes. The use of non-
parametric estimation techniques makes our attack agnostic to
both the data and the query distribution. At the very core
of our technique lies the newly defined concept of a counting
function with respect to a range scheme. We propose a two-
phase framework to approximate the counting function for any
range scheme. By simply switching one counting function for
another, i.e., the so-called “parameter” of our modular attack,
an adversary can attack different encrypted range schemes.
We propose a constrained optimization formulation for the
attack algorithm that is based on the counting functions. We
demonstrate the effectiveness of our leakage-abuse attack on
synthetic and real-world data under various scenarios.

I. INTRODUCTION

The notion of searchable encryption, introduced by Song-
Wagner-Perrig in [37], proposes cryptographic schemes in
which a client encrypts a privacy-sensitive data collection and
outsources this resulting encrypted database to a server that
efficiently answers search queries without ever decrypting the
database. Since then, there has been a surge of research on this
subject addressing issues such as improved definitions [9],
dynamic constructions [25], [38], forward and backward
privacy [4], [5], [7], [10], and locality of encrypted records [3],
[11], [14]. For an overview of the area, see the survey by
Fuller et al. [17]. In this work, we are interested in the general
definitional framework called Structured Encryption (STE)
introduced by Chase and Kamara [8] and, more specifically,
schemes that support encrypted range queries [6], [13], [15].

To balance efficiency and privacy, STE schemes reveal some
information about the query and its corresponding response.
This information is called leakage profile. These schemes
cryptographically guarantee that nothing more is revealed
beyond what the designer allowed via the leakage profile.

Several works analyze how an adversary can reconstruct the
plaintext data from this observed leakage. Based on the specific
information revealed to the adversary when a response is
returned to a database query, three main types of leakage
have been investigated: volumetric leakage reveals the size
(number of records) of the response; access-pattern leakage
reveals identifiers (typically ciphertexts) uniquely associated
with the records of the response; and search-pattern leakage
reveals an identifier (typically output by a keyed pseudo-random
function), called search token, uniquely associated with the
query. Correspondingly, there are three main categories of
leakage-abuse attacks: those based solely on access-pattern
leakage (see, e.g., [18], [26], [27], [30]), those based on both
access- and search-pattern leakage (see. e.g., [29], [33]), and
those based on volumetric leakage (see, e.g., [20], [21], [26]).

Recently proposed response-hiding schemes [2], [23], [24]
nullify all the access-pattern based attacks by precomputing
responses to a set of canonical queries and creating a fresh
copy of an encrypted record for every precomputed response
that returns it. The set of canonical queries is selected at setup
time in such a way that for any query q, there exists a canonical
query q′ such that the response to q is a subset of the response
to q′. In a response-hiding scheme, the adversary can not infer
whether two different responses have overlapping records, thus
making reconstruction harder. Therefore, the only hope for the
adversary to reconstruct the plaintext data of a response-hiding
scheme is to rely on volumetric leakage. However, even though
the proposed volume-based attacks [20], [21], [26] shed light
on how to exploit volume under specific setups, unfortunately
all of them have significant limitations which we detail below.

A. Limitations of Known Volumetric Attacks

Limitation I: Uniform Queries. The first volume-based
attack was presented by Kellaris-Kollios-Nissim-O’Neal [26]
and it assumes that the encrypted queries are issued uniformly
at random. As mentioned in previous works, the uniformity
assumption is unrealistic since it implies that the probability
that the client queries the entire domain of the database is the
same as the probability that the most popular record is queried.

Limitation II: Dense Databases. The work by Grubbs
et al. [20] is not based on the uniformity assumption but
it assumes that the database is dense, i.e., there is at least
one record for every possible value of the plaintext domain.
The density assumption can only capture heavily populated
databases with small domains. Also, even in the small domain



TABLE I
COMPARISON OF OUR ATTACK WITH PREVIOUS ATTACKS FOR RANGE QUERIES ON DATABASES ENCRYPTED WITH STRUCTURED ENCRYPTION SCHEMES

Value Reconstruction Applies to Applies to Assumptions Exploited Leakage

Attack Algorithms Response-Hiding non-Quadratic Query Dense Known Data Volume Access-Pattern Search-Pattern
Range Schemes Range Schemes Distribution Database Distribution Leakage Leakage Leakage

KKNO [26] ACCESSPATTERNBASED - - Uniform - - - • -
LMP [30] FULLRECONSTRUCTION - - Agnostic • - - • -
GLMP [18] GENERALIZEDKKNO - - Uniform - - - • -

GLMP [18] AOR to ADR - - Known - • - • -
KPT [29] AGNOSTICRECONSTRUCTION - - Agnostic - - - • •

KKNO [26] VOLUMEBASED • - Uniform - - • - -
GLMP [20] GETELEMVOLUMES • - Agnostic • - • - -
GJW [21] EXTENDLEFTRIGHT • - Agnostic • - • - -

This Work • • Agnostic - - • - •

of attribute “length of hospital stay” in an experiment from [20],
only 0.01% of the tested historical datasets satisfy the density
assumption. The work by Gui et al. [21] presents several
variations and improvements of the attack in [20] but all of
them depend on the density assumption as well. As enlightening
as the above techniques are, it is not possible to extend them
to non-dense databases1 without additional assumptions or rich
auxiliary information, e.g., known data distribution.

Limitation III: Multiple Reconstructions. Given a leakage
profile, there is a case that multiple plaintext databases explain
the observed leakage and it is impossible to distinguish which
one is the client’s plaintext. This phenomenon was first observed
by Kellaris et al. [26] and their proposal is to pick an arbitrary
reconstruction among the many. Other works propose to
produce all possible reconstructions [20], [21], or even abort
and fail, but this approach is hard to follow in practice because
as the size of the database grows the number of possible
reconstructions might grow exponentially. Even though there
is an indication that some real-world datasets have unique
reconstructions, e.g., see [21], this observation is 1) based
on a specific dataset and 2) based on the leakage analysis of
the quadratic scheme. Deployment of STE schemes with less
leakage [13], [15] does not reveal to the adversary enough
structure of the plaintext and as a result it always admits
multiple reconstructions that explain the observed leakage.

Limitation IV: Quadratic Storage. In addition to the
uniformity and density assumption, all attacks on encrypted
range queries have an even more crucial limitation: They only
apply to schemes unlikely to be deployed in practice, i.e., those
with quadratic overhead, the so-called quadratic schemes. At
a high-level, the quadratic scheme returns the exact response
for every encrypted query and as a result, the server needs
to store an encrypted multimap of quadratic size. Followup
works by Demertzis et al. [13] and Faber et al. [15] propose
practical encrypted range constructions with linear storage
overhead at the expense of introducing false positive responses.
A fortunate byproduct of this storage efficiency is that these
schemes allow only a restricted number of range queries and as
a result, they have significant less leakage than the quadratic

1Suppose that each value has an associated counter that counts the number
of records with this value, e.g., (1, 0, 4, 2, 0, . . . , 0) means that the there is
one record with the 1st value etc. The attacks [20], [21] reconstruct the relative
order of the non-zero counters, i.e., 1→ 4→ 2. They can not infer how long
are the “in-between zeros” and, therefore, can not recover non-dense DBs.

scheme. Neither the volumetric nor the access-pattern based
attacks can be applied to the above two practical schemes.

Problem Statement. Previous research, summarized in
Table I, left open the problem of whether state-of-the-art
response-hiding schemes are vulnerable to leakage-abuse
attacks. This work specifically addresses this open question:

“Can the adversary approximate the plaintext of a response-
hiding STE scheme without relying on unrealistic assumptions
such as uniform query distribution, database density, unique
database reconstruction, or scheme with quadratic overhead?”

We answer this question in the affirmative by proposing new
attacks on state-of-the-art response-hiding schemes from [13]
and [15] as well as proposing a parametrized leakage-abuse
attack framework that can be easily adjusted and applied to
a wide family of current and future encrypted range STE
schemes without any of the above limiting assumptions.

B. Our Contributions

Our work makes the following contributions:
1) We introduce two new notions so as to rigorously describe

the generality of our parametrized attack. The first notion
is a family of STE schemes that we call regular STE
schemes for range queries (Definition 1 in Section IV).
All the proposed STE schemes, such as the quadratic
scheme and practical schemes introduced in [13], [15],
can be reframed as regular STE schemes. The second
notion is a function that outputs the number of canonical
ranges that return a fixed response with respect to a regular
scheme, called query counting function (Definition 2 in
Section V). There is an intertwined connection between
leakage-abuse attacks and query counting functions as we
show in Section V. We propose a two-phase framework
to rigorously approximate the query counting function of
any regular scheme in Section VI.

2) We present in Section VII a parametrized leakage-abuse
attack for response-hiding range schemes. This is the first
attack that applies to practical schemes with non-quadratic
storage overhead. Our attack is based on search-pattern and
volume leakage, both of which are standard in response-
hiding schemes. Armed with the powerful abstraction of
counting functions, our technique can be easily adjusted
to attack any regular range scheme, including the schemes
from [13] and [15]. The parameter in our setup is the
closed-form expression of the counting function with



respect to the regular scheme under attack. Our attack is
also agnostic to the query and data distribution, a property
we achieve by using non-parametric estimation techniques.
Finally, our range attack is the first one that addresses the
phenomenon of multiple reconstructions by generating a
set of candidate reconstructions and choosing one that
minimizes the error on average.

3) We conduct an experimental evaluation to assess the
quality of our reconstruction attack under different setups.
We analyze the quality of the volumetric profile estimation
under several query distributions and domain densities. We
perform experiments to demonstrate how the quality of the
final reconstruction is affected by (i) the volumetric profile
estimation, (ii) the domain density, and (iii) the number of
candidate reconstructions. As shown in our experiments
in Section VIII, attacks that do not address the multiple
reconstruction phenomenon can output a reconstruction
with error that is up to 7× larger. We evaluate our
technique in both synthetic and real-world databases and
observe that in multiple setups, our technique outperforms
a powerful attacker that has access to the data distribution.

II. RELATED WORK

Attacks Based on Access-Pattern. Kellaris et al. [26] are
the first that introduce leakage-abuse attacks for geometric
queries. They exploit access-pattern leakage and assume
uniform query distribution. Lacharité et al. [30] explore the
case of a dense database and derive attacks requiring fewer
queries than [26]. Grubbs et al. [18] present several attack
scenarios that assume the query distribution is uniform or
known to the adversary. They also present the AOR attack
which achieves approximate order reconstruction, as opposed
to value reconstruction, without any strong assumptions. Work
by Markatou and Tamassia [33] assumes that the adversary
observes search pattern leakage from all possible queries
and presents an efficient value reconstruction method. The
first attack that overcomes both the uniformity and density
assumptions is the agnostic attack by Kornaropoulos et al. [29]
which relies on both search- and access-pattern leakage.
Kornaropoulos et al. [28] present a leakage-abuse attack on
k-NN queries, which is the first attack that rigorously formulate
and exploit the structure of the reconstruction space. Recent
work by Falzon et al. [16] presents the first leakage-abuse
attack on 2D range queries and proves inherent information
theoretic limitations to the reconstruction. None of the above
attacks apply to response-hiding range schemes.

Mitigations. Another interesting line of work [23], [36]
mitigates the volume leakage by always returning the maximum
number of records among all possible queries, denoted with l.
The goal of these techniques is optimizing the storage efficiency
while always returning the maximum number of records O(l).
Unfortunately, these mitigations are designed with the single-
keyword search in mind and can not be applied to range queries
due to the fact that the maximum number of records for the
case of range queries is the entire database. Thus, applying
them would incur O(n) communication complexity per query.

Several mitigation techniques for access pattern leakage from
range queries are used in [34], including batching queries and
issuing fictitious queries to introduce noise. Their mitigations
do not apply to response-hiding schemes which is the focus
of this paper. A recent defense method based on frequency-
smoothing [19] is designed for encrypted key-value stores
and does not address the mitigation of leakage attacks on
encrypted ranges, e.g. [26], [29]. In concurrent work, Demertzis
et al. [12] present SEAL, a framework for encrypted databases
with improved security via a light use of ORAM and padding.
It is open whether our attack applies in such modified settings.

ORAM. Other related work investigates the limits of the
efficiency of Oblivious RAM (ORAM) a much stronger
primitive than structured encryption STE. A series of strong
lower bounds for ORAM by Larsen et al. [32] as well as
Oblivious Data Structures by Jacob et al. [22] and Oblivious
k-NN by Larsen et al. [31] shows that it is not possible to
achieve stronger access-pattern privacy than STE with the
same efficiency. Recent work by Patel et al. [35] shows that
even hiding part of the search-pattern leakage of encrypted
multimaps incurs an Ω(log n) lower bound.

III. PRELIMINARIES

In the context of this paper, a database DB is a collection
of n records (idi, val(idi)), i ∈ [1, n], where idi is a unique
identifier and val(idi), or simply vi, is a value from the universe
[α, β] for given constants α and β. We assume that values
v1, . . . , vn are sorted in nondecreasing order, i.e., vi ≤ vi+1.
The term d(v, v′) = |v′ − v| denotes the distance between
two values. We assume integer values and denote with N =
β − α + 1 the size of the plaintext universe. We define the
length Li between two consecutive values as Li = d(vi−1, vi),
∀i ∈ [2, n]. For the two extreme cases we define L1, Ln+1 as
L1 = d(α − 1, v1) and Ln+1 = d(vn, β + 1). We define as
domain density of the database the percentage of unique values
from the universe that are assigned to records. A range query
consists of two values x ≤ y and its response is the set of
identifiers of DB with values within interval [x, y]. We define
as span of a query [x, y] the number of values covered by the
range, i.e., y−x+ 1. In a structured encryption scheme (STE)
for DB, we use the term query to refer to the plaintext query
and the term search token to refer to the encrypted object that
the client sends to the server to query the encrypted multimap
(EMM) of the STE scheme. We define access-pattern leakage
as the set of encrypted records that are retrieved as part of
the response to a token. We define search-pattern leakage the
server’s ability to observe whether two tokens were generated
from the same plaintext query. To the best of our knowledge,
all STE schemes leak the search-pattern [17].

The response-hiding design for an STE [2], [23], [24] hides
overlaps between different queries and reveals only the size
of the answer of each query, or an upper bound on the size.
At setup, a response-hiding scheme selects a set of canonical
queries, precomputes the corresponding responses, and freshly
encrypts the records in such responses. Given a client query,
a precomputed response for a canonical query whose range



includes that of the client query is returned, which may result in
false positives (records in the answer to the canonical query but
not to the client query) that must be filtered out by the client.
None of the published access-pattern based attacks (e.g., [18],
[26], [29], [30]) can be applied to response-hiding schemes.

In the selection of canonical queries for which responses
are precomputed, a response-hiding designer faces a trade-
off between two types of performance drawbacks: (1) space
overhead due to storing multiple encryptions of the same
record; and (2) communication overhead due to false positives.
The quadratic scheme selects all possible responses to queries
as canonical ones. Thus, it incurs O(n2) space overhead, which
is impractical, but no communication overhead. Conversely,
there are schemes that select O(n) canonical queries [13], [15]
and have O(n) space overhead at the expense of doubling the
span of the original query in the worst case.

Threat Model. In this work we consider the threat model
where the adversary is the honest-but-curious server that stores
the encrypted database and observes a series of encrypted range
queries issued by the client. In this setting the attacker has no
knowledge about the query distribution, data distribution, or
access to any auxiliary information about them. The attacker
can not issue any queries or inject/remove plaintext data. The
goal of the attacker is to reconstruct the plaintext values stored
in the database using the query leakage that stems from the
response-hiding structured encryption scheme for range queries.
We elaborate on the assumptions of our attack in the following.

Assumptions. Our assumptions are as follows:
• Static Database. No updates, i.e., addition, deletions, take

place once the database is encrypted.
• Fixed Query Distribution. We assume that the adversary

issues independent and identically distributed (i.i.d.) queries
with respect to a fixed query distribution. We emphasize that
our adversary does not know any information about the family
or the parameters of the query distribution.
• One-dimensional Data Values. We do not address encrypted

databases for high-dimensional data.
• Known Setup. We assume that the adversary knows the

number of encrypted values n, the size of the universe of
values N and the endpoints of the universe α, β.
• Response-Hiding Scheme. We assume that the client

deployed a response-hiding scheme so as to protect against
known access-pattern based leakage-abuse attacks.
• Practical Structured Encryption Scheme. We assume that

the client deployed a practical STE scheme, e.g., see [13],
[15], that does not impose a quadratic storage overhead. Our
attacks apply to any scheme that allows a restricted number of
range queries to be queried, we denote this family of schemes
as regular schemes and we formally define them in Section IV.

Roadmap. Our proposed leakage-abuse attack applies to an
entire family of range schemes inspired by the design of [13],
[15]. We introduce this family in Section IV under the name
regular range schemes. Section V sets the foundations of our
parameterized leakage-abuse attack by introducing a powerful
abstraction based on the new notion of counting functions.
Armed with the above abstraction, Section VI presents the

technical results for counting functions that allows us to simply
switch between different counting functions and apply the same
technique to any regular scheme. Finally, Section VII uses the
above results together with (A) a new application of non-
parametric estimators (Section VII-A) and (B) a constrained
optimization formulation (Section VII-B) to assemble the final
leakage-abuse attack.

IV. REGULAR RANGE SCHEMES

Our leakage analysis is motivated by the state-of-the-art
schemes for encrypted range queries BT (binary tree) by Faber
et al. [15] and ABT (augmented binary tree) by Demertzis et
al. [13]. The response-hiding adaptation of these two schemes
is not vulnerable to any leakage-abuse attack from the literature
and thus are considered to be secure. In this work, we do not
tailor our analysis to the specific leakage of these schemes but
rather introduce a general framework of leakage analysis for
all range schemes that follow the same design principles.

Scheme BT can be seen as a full binary tree over the domain
of plaintexts where every node represents a range query that
spans a consecutive subset of leaves. Figure 1 shows a binary
tree where each node of the tree is denoted with a gray interval.
Scheme ABT is a binary tree augmented with nodes that are
placed in-between two consecutive internal nodes, e.g., see the
red intervals in Figure 1 for the additional nodes.

Fig. 1. Canonical range queries for schemes BT (gray intervals) and ABT
(gray & red intervals) for N = 16. In both schemes, canonical ranges have
spans that are powers of two. Also shown is a DB with values, v1 = 3
and v2 = 6. In ABT, a client query for range [1, 5] returns response {v1, v2}
for canonical range [1, 8]. This response includes v2 as a false positive.

A common characteristic of the BT and ABT schemes is that
they do not store all possible range queries in the encrypted
multimap, i.e., EMM. Instead, at setup time, the scheme
generates a subset of range queries of span 2j for j ≤ log(N)
and stores their encrypted answers. Specifically, for a given
span, the EMM stores a “regular” progression of ranges spaced
from each other by an additive step. E.g., for span 22 and step
2 we have ranges [1, 4], [3, 6], [5, 8], . . .. The stored ranges and
their responses are later used to answer an arbitrary user query
by selecting a stored range whose span covers the span of the
user query and returning the answer to such a query. Note that
some instances of the scheme have an inherent communication
overhead as they may return additional elements not present in



the range queried by the user, i.e., false positives. Such extra
elements can be easily filtered out by the user. We capture and
generalize the “regularity” property of the above schemes with
the notion of a (T, f)-regular scheme in Definition 1.

Defining Regular Schemes. We consider a broad class of
STE schemes where the choice of stored ranges is deterministic
and data-independent. These schemes are parameterized by
(i) a sequence of spans and (ii) associated step values. The
scheme precomputes and stores in encrypted multimap EMM
the answers to a set of queries that depends only on the above
parameters and the size of the database universe, N .

Definition 1. A regular structured encryption scheme for
range queries over a database with universe size N comprises
the following components:
• A sequence T with N nonnegative integer entries, denoted

in vector notation as T = (T [1], T [2], . . . , T [N ]), where
T [s] denotes the step for ranges of span s.

• An encrypted multimap EMM precomputes and stores
responses to canonical queries with ranges

[k · T [s] + 1, k · T [s] + s]

for s = 1, . . . , N , T [s] > 0, and k = 0, . . . ,
⌊
N−s
T [s]

⌋
.

• A function f mapping an arbitrary database range query
to a canonical range stored in EMM.

Such a scheme is also referred to as (T, f)-regular or, when
function f is clear from the context, T -regular. We call weight
of T the number of positive entries denoted as weight(T ).

Schemes with sublinear weight are considered practical.
Typically, function f maps a client query q to the canonical
query of shortest length whose span covers q.

Remark 1. The quadratic scheme, QD, that stores all possible
ranges and the more efficient schemes BT [15] and ABT [13]
are examples of (T, f)-regular schemes:
• Scheme QD has T [s] = 1 for s = 1, . . . , N , hence
weight(T ) = N .

• Scheme BT has T [s] = s when s is a power of 2 and
T [s] = 0 otherwise, hence weight(T ) is O(logN).

• Scheme ABT has T [1] = 1, T [s] = s/2 when s is a power
of 2 and s > 1, and T [s] = 0 otherwise, hence weight(T )
is O(logN).

In all three schemes, f maps query [α, β] to the shortest stored
query covering interval [α, β].

An illustration of the canonical queries of schemes BT and
ABT is shown in Figure 1. We now introduce a new scheme
called BASE for range queries as an intermediate step for our
analysis of schemes BT [15] and ABT [13]. Like these two
schemes, BASE only considers spans that are powers of two
but it uses a step equal to one for all such spans.

Remark 2. BASE is a (T, f)-regular scheme such that
• T [s] = 1 when s is a power of 2 and T [s] = 0 otherwise,

hence weight(T ) is O(logN).
• f maps range [x, y] to the shortest canonical query range

covering [x, y]. In case of a tie, it maps to the range that
starts at x if it exists, else to the range that ends at y.

We note that in schemes BT and ABT, there is a unique
canonical range that covers a given range [α, β] and has the
shortest span, hence the simple definition of function f in
Remark 1. On the contrary, in scheme BASE, there can be
multiple canonical ranges with shortest span that cover [α, β],
hence the need for the tie-breaking rule in the definition of
function f in Remark 2.

V. LEAKAGE ATTACKS FROM COUNTING FUNCTIONS

In this section we formalize the notion of query counting
function, or, simply, counting function, and show how it
was used without being formalized in previous works to
develop reconstruction attacks against the quadratic scheme
QD [26], [29]. In our work, counting functions serve as a
powerful abstraction that enables a parametrized framework
for attacks by disentangling the derivation of counting functions
(Section VI) from the architecture of the attack that uses
counting functions as a blackbox (Section VII).

At a high-level, the counting function C(r, s) outputs the
number of canonical range queries of span s that return response
r, e.g., in Figure 1 we have CABT({v1}, 2) = 2 due to queries
[2, 3], [3, 4]. The global counting function G(r) outputs the
number of all canonical range queries that return response
r, e.g., in Figure 1 we have GABT({v1}) = 4 due to queries
[3, 3], [2, 3], [3, 4], [1, 4]. The outputs of the global counting
function for Figure 1 are GABT(∅) = 30, GABT({v1}) = 4,
GABT({v2}) = 5, and GABT({v1, v2}) = 3.

Definition 2. Let ANY be a regular structured encryption
scheme for range queries over a database with universe
size N . The query counting function of scheme ANY, denoted
CANY(r, s), takes as input a response r to a query on the
database (i.e., a sequence of consecutive values) and a span s,
and outputs the number of canonical queries of ANY of span
s whose response is r. The global query counting function
of scheme ANY, denoted GANY(r), takes as input a response
r and outputs the number of canonical queries of ANY (of
any span) whose response is r. We have:

GANY(r) =
∑N

s=1
CANY(r, s).

Note the in the above definition, the canonical queries
contributing to the count must have a response equal exactly
to r, i.e., yielding no false positives.

We start with the straightforward counting function of the
quadratic scheme QD which is the target of all previous leakage-
abuse attacks [18], [20], [26], [29], [30].

Counting for the Quadratic Scheme. The quadratic
response-hiding scheme QD has the largest storage overhead,
i.e., quadratic space, because the set of canonical range queries
comprises all possible

(
N
2

)
+N ranges. Since the scheme pre-

computes and stores the response for every possible client query,
the scheme returns no false positives and has no communication
overhead. Recalling the definition of length between two
consecutive database values, Li = d(vi−1, vi), an interesting
property of the quadratic scheme is that the number of queries
that return a specific response, e.g., r = {v2, v3, v4, v5},



depends only on the lengths between (1) the smallest value
of r and its previous value, e.g., L2 = d(v1, v2), and (2) the
largest value of r and its next value, e.g., L6 = d(v5, v6). More
formally, the global query counting function for QD is:

GQD ({vi, . . . , vi+k}) = Li · Li+k+1.

There are two main factors that make the quadratic scheme
QD a convenient option for leakage-abuse attacks. First, the
counting function is simple, it depends only on two lengths.
Second, overall QD leaks significantly more information, i.e.,
from O(N2) canonical ranges, than practical schemes [13],
[15], i.e., from O(N) canonical ranges. Thus, the leakage of
QD reveals more about the geometric structure of the plaintexts.

Abstraction of Attacks via Counting Functions. The
volumetric attack for QD [26] (unknowingly) uses the notion
of counting functions. Let θi be the number of all queries
of QD that return a response of volume i. We define as the
volumetric profile of QD the vector (θ0, . . . , θn). The notion of
volumetric profile can be extended to other schemes, e.g., BT
and ABT, where each entry θi counts the number of distinct
canonical queries with volume i. Kellaris et al. [26] define
and solve the system of equations on the left hand-side of the
next figure. We can abstract their approach by swapping each
product of lengths with the corresponding counting function.

EQUATIONS FROM [26]∑n

i=1
Li · Li+1 = θ1∑n−1

i=1
Li · Li+2 = θ2

...
L1 · Ln+1 = θn

COUNTING FUNCTION ABSTRACTION∑n

i=1
GQD ({vi}) = θ1∑n−1

i=1
GQD ({vi, vi+1}) = θ2

...
GQD ({v1, . . . , vn}) = θn

Given the above abstraction one can simply plug in the
counting function of a different regular scheme and derive
a reconstruction by solving the system of equations. Even
though this approach works in theory, in practice there are some
important challenges to overcome. In particular: (i) There is no
known closed-formula for the counting functions of practical
range schemes [13], [15]; (ii) It is not realistic to assume our
attacker has access to the exact values of θi; (iii) The counting
functions might have a cumbersome expression that does not
allow an analytical solution to the system of equations. We
address all of the above as follows: (i) We introduce counting
functions for [13], [15] in Section VI; (ii) We estimate θi based
on search-pattern leakage in Section VII-A; (iii) We introduce
an optimization formulation that can be used to approximate
the solution of the system in Section VII-B.

VI. COUNTING FOR PRACTICAL REGULAR SCHEMES

The next challenge for our leakage analysis is to answer the
following question about counting functions:

How many canonical range queries of a regular
scheme return a given response?

In order to perform a leakage analysis on the BT and ABT
schemes [13], [15] we develop new insights about the counting
functions of practical regular schemes. We present a general
approach in this section which, can be used to understand the
vulnerability of current and future regular range schemes.

A Two-Phase Framework for Leakage Analysis. We
follow a two-phase approach in our analysis. In the first
phase, in Section VI-A, we derive exact formulas for the
counting functions of T -regular schemes with a unit step in their
canonical ranges, i.e., T [s] ≤ 1 for each span s. Example of
such schemes are the QD and the BASE scheme. In the second
phase, in Section VI-B, we use the results of the first phase
to approximate the counting functions of T -regular schemes
where T [s] takes arbitrary nonzero values.

Specifically, the approximation of counting functions for a
general T -regular scheme, ANY, where not all the values of
TANY are 0 or 1, is obtained as follows. We build from ANY
a modified scheme, STEP1-ANY, by replacing each nonzero
step of TANY with step 1. Next, we derive closed-formulas for
the counting functions of STEP1-ANY and we approximate the
counting functions of ANY from the corresponding functions
of STEP1-ANY. Note that even though in this work we are
primarily interested in spans that are powers of two, as they
are used in practical response-hiding schemes [13], [15], one
can apply our two-phase framework to any regular scheme.

A. Exact Counting for Regular Schemes with Step One

The intuition of our approach is described using the BASE
scheme but the lemmas and theorems are written in their general
form, i.e., for any regular scheme STEP1-ANY with 0/1 entries
in T . It is clear that for r = {vi, . . . , vi+k} in case the span 2j

is smaller than the distance d(vi, vi+k) =
∑k
t=1 Li+t, then no

query of span 2j can return r. Similarly, the span must be less
than d(vi−1, vi+k+1). Thus, we only consider spans 2j s.t.:⌈

log

(
k∑
t=1

Li+t

)⌉
≤ j ≤

⌊
log

(
k+1∑
t=0

Li+t

)⌋
.

We illustrate the intuition with a running example where
r = {v2, v3} and s = 23, see Figure 2. Since we are interested
in counting how many ranges of span s return r, we can ignore
all ranges that touch locations before v1 and after v4. The goal,
in this toy example, is to count how many times an interval of
span s = 23 can be “displaced” in the area from v1 to v4 while
satisfying the requirement that it covers exactly r. Depending
on the instantiation of the underlying distances L2, L3, L4 we
have four distinct cases for the formula of the counting function
CBASE. The following lemmas provide a sufficient condition for
each of the four distinct formulas of the counting function. For
compactness of our formulas, we use the empty sum property
where for x > y we have

∑y
i=x f(i) = 0. The proofs can be

found in the Appendix.
Case-1: Iterating the Leftmost Length. The lower-boundary

of the range of fixed span iterates through all the possible
lower-boundary locations, e.g., locations of L2 in Figure 2-(A).

Lemma 1. Let STEP1-ANY be a T -regular scheme where the
entries of T are 0 or 1. Let s be a span such that T [s]=1 and
r = {vi, . . . , vi+k} be a response (i ∈ [1, n], k ∈ [0, n]). If :

k∑
t=0

Li+t ≤ s <
k+1∑
t=1

Li+t,

then the counting function of scheme STEP1-ANY for span s
and response r is CSTEP1-ANY (r, s) = Li.



(A) (B) (C) (D)
Fig. 2. Illustration of the four distinct cases for the counting function C with input the response r = {v2, v3} and the span s = 23. In case-1 the grey interval
of span s iterates through the entire leftmost length L2 of response r. In case-2 the interval iterates through the rightmost length L4. In case-3 the grey
interval is confined by the two neighboring values v1 and v4, i.e., the distance from v1 to v4 is not large enough to iterate through the neither the leftmost nor
the rightmost length. In case-4 the interval confined by the extreme values of r, i.e., the span is not large enough to iterate through neither L2 nor L4 length.

Case-2: Iterating the Rightmost Length. The upper-boundary
of the range iterates through all the possible upper-boundary
locations, e.g., locations of L4 in Figure 2-(B).

Lemma 2. Let STEP1-ANY be a T -regular scheme where the
entries of T are 0 or 1. Let s be a span such that T [s]=1 and
r = {vi, . . . , vi+k} be a response (i ∈ [1, n], k ∈ [0, n]). If :

k+1∑
t=1

Li+t ≤ s <
k∑
t=0

Li+t,

then the counting function of scheme STEP1-ANY for span s
and response r is CSTEP1-ANY (r, s) = Li+k+1.

Case-3: Confined by the Neighboring Values of r. The
boundaries can not iterate through either the leftmost or the
rightmost length because they “bump” on the neighboring
plaintexts that are not in r, e.g., see v1, v4 in Figure 2-(C).

Lemma 3. Let STEP1-ANY be a T -regular scheme where the
entries of T are 0 or 1. Let s be a span such that T [s]=1 and
r = {vi, . . . , vi+k} be a response (i ∈ [1, n], k ∈ [0, n]). If :

max

{
k∑
t=0

Li+t,
k+1∑
t=1

Li+t

}
≤ s <

k+1∑
t=0

Li+t,

then the counting function of scheme STEP1-ANY for span s
and response r is CSTEP1-ANY (r, s) =

∑k+1
t=0 Li+t − s.

Case-4: Confined by the Values of r. The boundaries of
the range can not iterate through either the leftmost or the
rightmost length because they “bump” on the extreme plaintext
values that define r, see v2, v3 in Figure 2-(D).

Lemma 4. Let STEP1-ANY be a T -regular scheme where the
entries of T are 0 or 1. Let s be a span such that T [s]=1 and
r = {vi, . . . , vi+k} be a response (i ∈ [1, n], k ∈ [0, n]). If :

k∑
t=1

Li+t < s < min

{
k∑
t=0

Li+t,
k+1∑
t=1

Li+t

}
,

then the counting function of scheme STEP1-ANY for span s
and response r is CSTEP1-ANY (r, s) = s−

∑k
t=1 Li+t.

How to Overcome Case Analysis. Given the above four
lemmas the attacker may want to check the relation between
the values of s and the corresponding lengths Li, . . . , Li+k+1

and decide which is the correct counting function among the
four cases. The problem is that the attacker does not know the
values of the lengths Li, . . . , Li+k+1 because they are derived
from the unknown plaintexts, therefore there is no way to

know which one of the four cases applies. The next theorem
overcomes the case analysis by presenting an expression that
provides the correct counting function regardless of the case.

Theorem 1. Let STEP1-ANY be a T -regular scheme where the
entries of T are 0 or 1. Let s be a span such that T [s] = 1 and
let r = {vi, . . . , vi+k} be a response (i ∈ [1, n], k ∈ [0, n]).
The counting function CSTEP1-ANY(r, s) is defined as

min

{
Li, Li+k+1,

k+1∑
t=0

Li+t − s, s−
k∑
t=1

Li+t

}
,

whenever
∑k
t=1 Li+t < s <

∑k+1
t=0 Li+t and is 0 otherwise.

The above two-case expression for CSTEP1-ANY(r, s) can be
reframed as a single closed-form expression:

max

{
0,min

{
Li, Li+k+1,

k+1∑
t=0

Li+t − s, s−
k∑
t=1

Li+t

}}
,

since whenever s /∈ (
∑k
t=1 Li+t,

∑k+1
t=0 Li+t) the min expres-

sion in the theorem is a negative number and therefore the new
max/min formula holds for arbitrary spans s.

Corollary 1. Let STEP1-ANY be a T -regular scheme where the
entries of T are 0 or 1. Let r be a response r = {vi, . . . , vi+k},
where i ∈ [1, n], k ∈ [0, n]. The global query counting function
GSTEP1-ANY(r) is given by

GSTEP1-ANY(r) =
∑N
s=1 CSTEP1-ANY(r, s).

Remark 3. Theorem 1 and Corollary 1 hold for scheme BASE.

B. Approximate Counting for All Regular Schemes

Having established the first phase of our framework, where
we derive exact formulas for counting functions of regular
schemes with step one, we now show how to use this result to
approximate the schemes with step values greater than one.

Let ANY be any TANY-regular scheme for which the entries
of TANY can have step values greater than 1. Let STEP1-
ANY be a TSTEP1-ANY-regular scheme for which TSTEP1-ANY

has value 1 in all positions that TANY has a nonzero step, and
step 0 elsewhere. Denoting with b·e the rounding operation,
we propose to approximate the counting functions as:

CANY(r, s) ≈ C̃ANY(r, s) =

⌊
CSTEP1-ANY(r, s)

TANY[s]

⌉
, (1)



for s ∈ {1, . . . , N}, TANY[s] > 0. Similarly, the global counting
function can be approximated as:

GANY(r) ≈ G̃ANY(r) =
∑

s∈{1,...,N}
TANY[s]>0

⌊
CSTEP1-ANY(r, s)

TANY[s]

⌉
.

(2)

The theorem below provides rigorous guarantees for the
approximations of the query counting functions given by
Equations 1–2 for a general regular scheme.

Theorem 2. Let ANY be a regular response-hiding structured
encryption scheme. The approximations of the counting func-
tions of ANY given by Equations 1–2 are bounded as follows:∣∣∣CANY(r, s)− C̃ANY(r, s)

∣∣∣ ≤ 1, for s ≥ 1, TANY[s] > 0∣∣∣GANY(r)− G̃ANY(r)
∣∣∣ ≤ weight(TANY).

The approximation guarantees of Theorem 2 hold for any
regular scheme. However, they are especially meaningful for
schemes like BT and ABT that achieve efficient storage
overhead by using a linear number of canonical ranges and
allowing for false positives in the query answers.

Corollary 2. Given a database with universe size N , Equa-
tions 1–2 yield approximations of the global query count-
ing functions for the response-hiding scheme BT [15] and
ABT [13] bounded by logN .

The above exposition focuses on non-empty responses. For
the case of empty responses, i.e., volume is equal to 0, the
formula is presented as the first term of the loss function in
Figure 3. On a high-level, for a fixed span s and the case
where the entries of T are 0 or 1 the counting function has
the form

∑n+1
i=1 Li − s. In case T has entries larger than 1 we

approximate by dividing with the corresponding additive step.

VII. PARAMETRIZED LEAKAGE-ABUSE ATTACKS

Overview of the Attack. The first building block of the
attack is presented in Section VII-A where we show how to
apply non-parametric estimation techniques, similar to [29], so
as to estimate the volumetric profile of practical response-hiding
schemes without knowledge of the query or data distributions.
The second building block is presented in Section VII-B
where we use the closed-formulas of counting functions
derived in Section VI, as well as the estimation results from
Section VII-A, to formulate an optimization problem that
outputs a reconstruction matching the estimated volumetric
profile. The next building block of our attack, presented in
Section VII-C, proposes a strategy to output a solution that
takes advantage of the structure of the reconstruction space. To
achieve this, we sample the reconstruction space by repeatedly
solving the proposed optimization problem and picking the
most “central” reconstruction among the observed ones. Finally,
Section VII-D combines the above components into our overall
attack method, which we call a “parametrized attack” because it
applies to any regular response-hiding STE scheme, where the
parameter is the counting function of the scheme. By simply
substituting one counting function for another, an adversary
can attack a variety of response-hiding STE schemes.

A. Estimating the Number of (Unseen) Queries of Fixed Volume

Our approach is inspired by the techniques introduced by
Kornaropoulos et al. [29]. Their attacks [29] are designed
for schemes where every query of the client reveals the pair
(x, r) where x is the search token and r is the response set
of identifiers. By defining random variable X whose values
are all possible tokens of the scheme and random variable R
whose values are all the possible responses of a range query
with respect to DB, the authors of [29] observe that the pair
(x, r) can be seen as a sample from the conditional probability
distribution pX|R(X = x|R = r). Given a multiset of token-
response pairs, the attack from [29] partitions the multiset with
respect to response r and applies a support-size estimation
technique on each partition set. The output of this process
is a collection of estimations, each of which estimates how
many tokens exist that return response r. The generality of the
approach by Kornaropoulos et al. [29] comes from the fact that
the estimation techniques are non-parametric and as a result
make no assumption about the query or data distribution.

In this work we put forth the application of support-size
estimation techniques for the estimation of the number of
unseen tokens that return a fixed volume. Let X be the random
variable whose possible values are the search tokens of a
response-hiding scheme and let Z be a random variable whose
values come from the set [0, . . . , n] and describe the volume
of an issued query. Then, the pair (x, z) can be seen as a
sample from the conditional probability distribution pX|Z(X =
x|Z = z). Therefore, the estimation of the support size of
pX|Z(X = x|Z = z) translates to an estimation of the total
number of queries θz with response of volume z.

Adjusting the Estimations. Our new technique outlined
above derives the estimation of the support-size of each
conditional probability distribution independently without con-
sidering the result of the other estimations. Let QANY(N)
denote the total number of distinct canonical queries for scheme
ANY. A desired property that is overlooked so far is that
the sum of all the estimated support-sizes must be equal to
the total number of canonical ranges of the scheme, i.e.,
QANY(N) =

∑n
i=0 θi. Notice that the total number of range

queries for a regular scheme can be computed from the vector
T and the size of the domain N . Let us assume for simplicity
that N is a power of two. For the three schemes we have:

QBASE(N) =
∑logN

i=0
(N − 2i + 1)

QABT(N) = 2(2N − 1)− logN −N, QBT(N) = 2N − 1.
(3)

In our experiments we observed that in a lot of cases the
output of the estimation is an underestimate of the true support-
size, i.e., QANY(N) >

∑n
i=0 θ̂i. Because of this, the overall

estimated volumetric profile (θ̂0, . . . , θ̂n) might be far from
the true volumetric profile. To deal with this we propose to
use a probabilistic approach to adjust each estimations so
as the sum of the adjusted estimations is equal to the total
number of queries QANY(N). Our strategy for the adjustment
is to respect the distribution of the derived estimations, and as
a result, estimations with larger θ̂v will increase with higher



Loss Functions for Attacks on Response-Hiding Range Schemes BASE, BT, ABT:

LOSSBASE

(
{Li}n+1

i=1

)
= w0

n+1∑
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+
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Fig. 3. The loss functions for attacking the response-hiding schemes BASE, ABT, and BT. The terms {θ̂i}ni=0, {wi}ni=0 are initialized in the volumetric
profile estimation phase of the attack and are considered constants when solving a minimization problem with one of the above loss functions.

probability. Specifically, we (probabilistically) generate a vector
of “synthetic” frequencies of volumes that is added to the
original vector of estimations (θ̂0, . . . , θ̂n) so that the resulting
entries sum to QANY(N). First, we define a discrete probability
distribution where the sample space is the set of possible
volumes and the probability of sampling volume v ∈ {0, . . . , n}
is (θ̂v + 1)/(n+ 1 +

∑n
i=0 θ̂i). Then, we generate QANY(N)−∑n

i=0 θ̂i samples and for every sampled volume we increment
the corresponding (θ̂0, . . . , θ̂n) position. Notice that we do
not give zero probability to unobserved volumes. A similar
technique can be applied in case the sum of the estimations is an
overestimate of the number of queries. In that case we subtract
the frequency of the sampled volumes from (θ̂0, . . . , θ̂n) and
verify that the adjusted estimation has nonnegative entries.

B. Reconstructions that Match The Volumetric Profile

We propose a process so as to generate a reconstruction that
matches the (estimated) volumetric profile as close as possible.

First Approach: System of Equations. Previous volumetric
attacks addressed the case of the quadratic scheme [20],
[26] under the uniform query distribution assumption and no
search-pattern leakage. As mentioned in Section V a natural
approach is to extend their technique to practical response-
hiding schemes [13], [15]. In this case the attacker can solve
a system of equations with unknowns L1, . . . , Ln+1 so as
to derive the distance between consecutive plaintexts. The
work by Kellaris et al. [26] proposed to solve the system for
QD by factoring polynomials with integer coefficients. Armed
with the closed-form expression of counting functions from
Section VI we attempt to swap one counting function for
another as proposed in the abstraction of Section V.

EQUATIONS BASE

n∑
i=1

blog(N)c∑
l=0

max

{
0,min

{
Li, Li+1,

1∑
t=0

Li+t − 2l, 2l

}}
= θ1

n−1∑
i=1

blog(N)c∑
l=0

max

{
0,min

{
Li, Li+2,

2∑
t=0

Li+t − 2l, 2l − Li+1

}}
= θ2

...
blog(N)c∑
l=0

max

{
0,min

{
L1, Ln+1,

n∑
t=0

L1+t − 2l, 2l −
n−1∑
t=1

L1+t

}}
= θn

Unfortunately, the complexity of the above system of
equations for the BASE scheme makes the previous approach
of factoring polynomials [26] not applicable to the more
sophisticated schemes. Therefore, it is clear that the techniques
proposed for exact reconstruction on volumetric attacks for
the QD scheme can not be extended and we need a different
approach to address practical schemes.

Proposed Approach: Constrained Optimization. To ad-
dress the roadblocks of the previous approach [26] we propose
a constrained optimization formulation. The intuition is that
we require the reconstruction to match as close as possible
the estimated volumetric profile. By applying the support-
size estimation techniques on the conditional probability
distributions pT|V we derive an estimation of the total number
of queries that return i records, i.e., {θ̂i}ni=0. We define as
unknown variables the lengths between n consecutive plaintexts
{Li}n+1

i=1 and the goal is to output lengths such that the counting
functions (which themselves take {Li}n+1

i=1 as input) result in
volumes that match the estimated volumetric profile {θ̂i}ni=0.
We define as hard constraints, conditions that must be satisfied,
i.e., the requirement that all lengths must be non-negative as
well as the hard constraint that their sum must be N . Since the
volumetric profile in hand is not exact, but rather an estimate,
we deal differently with the goal of finding lengths that give
responses with volume close to the estimated volumetric profile.
Specifically, we introduce soft constraints that appear in the
loss function so as to penalize the deviation from the estimated
profile θ̂i following a squared error formulation. Finally, since
the number of samples used to derive each estimate {θ̂i}ni=0

differs we weight the contribution of each error term in the
objective function with the multiplicative weights {wi}ni=0. For
our experiments we choose as weight wi of the error term for
θ̂i to be the normalized frequency of the queries that returned
volume i. The general formula for the loss function of scheme
ANY is given in the following:

LOSSANY , w0

(
GANY(∅)− θ̂0

)2
+

n∑
j=1

wj

(( ∑
∀r:|r|=j

GANY(r)

)
− θ̂j

)2

.

In case the scheme under attack has entries in TANY beyond 0/1
then we use the approximation for GANY(r) that is defined in
Equation 1–2. The analytical expressions of the loss function



for schemes BASE, ABT, and BT are depicted in Figure 3.

C. Dealing with Multiple Reconstructions

Depending on the leakage of the corresponding STE there
might be multiple plaintext reconstructions that result in the
same observed leakage. This is not a limitation of a specific
attack algorithm but rather an intrinsic characteristic of the
leakage from some STE constructions. This issue was first
discovered by Kellaris et al. [26] where the factorization
of polynomials for QD does not necessarily have a unique
factorization and has resurfaced in followup works [20], [28].
The set of all valid reconstructions that generate the observed
leakage is called reconstruction space and was first defined
by Kornaropoulos et al. [28] in the context of k-NN queries.
Unfortunately, none of the range attacks in the literature uses
insights about the reconstruction space and as a result these
techniques either arbitrarily pick one reconstruction or they
fail. We propose a technique to produce a reconstruction space
informed output, much like the paradigm of the attack in [28].

As a first step, we run the constrained optimization problem
m times with different starting points so as to generate multiple
reconstructions outi. These candidate reconstructions can be
seen as samples from the reconstruction space. Given that our
adversary has no prior knowledge about the data distribution,
the adversary treats all the members of the reconstruction space
as equally likely to be the plaintext DB under attack. Therefore,
our approach is to choose the reconstruction that is as close as
possible to the rest of the candidate reconstructions on average,
for a notion of “closeness”. Specifically, for each reconstruction
outi we compute the average MAE (mean absolute error)
between outi and all other outj , ∀j ∈ [1,m] such that j 6= i,
and we refer to this quantity as the score si of outi. The score
si serves as a measure of closeness between outi and the
rest of the candidate reconstructions. For the score we chose
the average MAE, as opposed to the maximum MAE, so as
to be more robust to outliers. Among the m reconstructions
we pick the reconstruction outk with the minimum score,
i.e., k = arg mini si. As we experimentally show in the next
section, the maximum MAE among the derived reconstruction
samples, which maps to the worst-case error by an “unlucky”
pick that may occur by the previous attacks [20], [26], might
be up to 7× larger than the MAE of our approach. Thus, a
reconstruction space informed output significantly improves
the quality of the output reconstruction.

D. The Attack Algorithm

Algorithm 1 combines the building blocks described in
Sections VII-A to VII-C. Lines 1-5 deploy a support size
estimators for each conditional probability distribution to derive
the estimated volumetric profile. If the sum of estimated
queries is smaller/larger than the total number of distinct
canonical range queries QANY(N), Lines 6-10 probabilistically
adjust the estimated frequencies. If the TANY-regular scheme
under attack has non 0/1 entries in TANY, then Lines 11-13
use an approximate counting function. Lines 14-17 solve the
constrained optimization problem using the counting functions

Algorithm 1: AGNOSTIC-PARAMETRIZED-ATTACK

Input: Parameter TANY for the regular STE scheme ANY; Multiset
D = {(t1, V1), . . . , (tz , Vz)} of observed search tokens and
corresponding volumes for scheme ANY; Endpoints α and β of
the domain universe with size N = β − α+ 1; Number m of
candidate reconstructions

Output: Approximate reconstruction of the database plaintext values
out∗ = (v̂1, . . . , v̂n)

// Estimate the Number of Queries per Volume
1 for i ∈ [0, n] do
2 Let Di be the mulitset of all pairs (tj , Vj) in D with

volume Vj = i;
3 Let weight wi = |Di|2;
4 Run Algorithm SUPPORT-SIZE-ESTIMATOR [29] on multiset Di of

search tokens to output the i-th entry of the volumetric profile θ̂i;
5 end

// Adjust the Estimations
6 if |QANY(N)−

∑n
i=0 θ̂i| > 0 then

7 Construct probability distribution pdf = (p0, . . . , pn) such that
pi = (θ̂i + 1)/(n+ 1 +

∑n
j=0 θ̂j) ;

8 Pick |QANY(N)−
∑n

i=0 θ̂i| samples from distribution pdf ;
9 Add/Subtract the number of occurrences of each sampled value to

(θ̂0, . . . , θ̂n) depending on the sign of QANY(N)−
∑n

i=0 θ̂i;
10 end

// Approximate Counting Functions if Needed
11 if not all entries of TANY are 0/1 then
12 Use the approximations presented in Equations 1–2 for the

formulation of the loss function LOSSANY ;
13 end

// Derive m Candidate Reconstructions
14 for j ∈ [1,m] do

// Compute Candidate Reconstruction outj
15 Pick a random initial point Linit = {L′i}

n+1
i=1 such that L′i ≥ 0

and
∑n+1

i=1 L
′
i = N ;

16 Solve the constrained optimization with initial point Linit :

L(j) = argmin
Li

LOSSANY

(
{Li}n+1

i=1

)
s.t. Li ≥ 0,∀i ∈ [1, n+ 1]∑n+1

i=1
Li = N

Define candidate reconstruction outj = (v̂1, . . . , v̂n), where
v̂i = α+

∑i
k=1 L

(j)
k ;

17 end
// Select among the Candidate Reconstructions

18 Define sj = 1
m−1

∑m
i=1

1
n
min{|outi − outj |, |outi − Flip(outj)|},

where j ∈ [1,m] and Flip(x) outputs the values of sequence x in
reverse order;

19 return out∗ = outk , where k = argminj sj ;

and the estimations for the regular scheme that is passed as
a parameter. Finally, Lines 18-19 return a reconstruction that
performs well on average with respect to the m derived samples
from the reconstruction space.

The approximation of the volumetric profile requires the
evaluation of closed-form polynomial formulas for the jackknife
estimators which can be found in the appendix of [29]. The
optimization component of our attack is more challenging to
analyze with traditional time complexity standards since it
is unclear how to theoretically analyze the convergence of
the iterative methods for the objective functions depicted in
Figure 3. In practice, all the experiments conducted in this
work terminated in less than a minute in a typical laptop setup.
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Fig. 4. Evaluation of the volumetric profile estimation. The Y -axis represents the Mean Absolute Error (MAE) between the estimated volumetric profile and
the original. The X-axis represents the number of queries used for the estimation. Plots on the same column are produced with the same query distribution,
whereas plots on the same row are produced with the same data density. Each experiment compares the accuracy of the estimation for the same set of queries
for three different practical response-hiding schemes, BASE, ABT, and BT.

VIII. EVALUATION

We have conducted experiments to assess the practical
performance of our attack based on the following factors:
• Quality of the Volumetric Profile Estimation. The first

step of the attack estimates the volumetric profile (Sec-
tion VII-A) and the rest of the attack crucially depends on
the quality of this estimation. Indeed, an inaccurate estimation
will lead to processing a reconstruction space that might be
vastly different from the true reconstruction space associated
with the original plaintext data.
• Quality of the Minimization Solution. The next phase of

the attack (Section VII-B) uses the estimated volumetric profile
to generate candidate reconstructions that match the volumetric
profile as close as possible. To achieve this task, the attacker
solves a constrained optimization problem. The quality of the
overall reconstruction depends on the ability of the solver
to minimize the objective function. Non-optimal solutions
imply that the output reconstruction may not approximate the
(estimated) volumetric profile to a satisfactory degree.
• Structure of the Reconstruction Space. The pairwise

relations between the candidate reconstructions that satisfy
the volumetric profile plays a significant role in the quality
of the final reconstruction. The structure of the reconstruction
space can be such, that all databases are “far” from each
other, which implies that it may be challenging to output a
reconstruction that is simultaneously close to all databases
from the reconstruction space.

We present experiments and metrics that shed light to the
above practical challenges. The evaluation in Section VIII-A
focuses exclusively on the quality of the estimation of the

volumetric profile. Section VIII-B presents an evaluation of the
minimization under exact and estimated volumetric profiles for
different data densities. Finally, Section VIII-C evaluates the
proposed attack on hospital data from the HCUP dataset [1].

A. Approximating the Volumetric Profile
In Figure 4 we evaluate the quality of the estimation of the

volumetric profile. We consider a domain of size N = 210

which is larger of the typical domain used in previous works,
i.e., in [20], [21], [26] the authors chose N = 365.

For the data generation we follow the approach from [29] and
deploy a PermutedBeta distribution. Specifically, the beta distri-
bution is defined under the continuous interval [0, 1], which we
discretized into N segments of equal length. The probability
mass of each segment is equal to the aggregate mass associated
with the segment. After the discretization step, we permute the
probability masses so as to minimize the predictability of the
probability mass given its location. For the shape parameters we
chose α = 1 and β = 5, i.e., PermutedBeta(1, 5). The rationale
behind this choice of parameters is to benchmark how the
estimation performs when there is controlled concentration, i.e.
through different β shape parameter, but no obvious structure
in the data/query probability distribution, i.e., achieved via
the permutation step. The generated data, which may include
multiple records with the same value, are sampled so as
to test three different data densities {5%, 25%, 50%}. We
deploy three query distributions that progress in ascending
order with respect to their concentration: PermutedBeta(1, 3),
PermutedBeta(1, 5), PermutedBeta(1, 7), see the Figure 7
in [29] for an illustration of the beta parametrizations. Note
that the estimators that construct the volumetric profile are



agnostic and they do not know anything about the above
query distributions. The number of sampled queries takes
value from the set {1024, 4096, 16384, 65536, 262144}. We
measure the quality of the estimation by computing the mean
absolute error (MAE) between the original volumetric profile
and the estimated volumetric profile. We test the quality of
the estimation for the practical response-hiding schemes BASE,
ABT, and BT. The number of canonical ranges is different
for each scheme, i.e., QBASE(210) = 9228, QABT(210) = 3060,
and QBT(210) = 2047 (see Equation 3).

As expected, the error of the estimation in Figure 4 decreases
significantly as the attacker observes more queries. In most
cases the MAE reduces by half between the smallest and the
largest number of tested queries. Interestingly, the volumetric
profile of schemes ABT and BT is estimated more accurately
than the profile of BASE. This phenomenon can be explained
by the fact that the overall number of canonical ranges in
ABT and BT is smaller than in BASE, which implies that the
frequency is concentrated in a smaller subset and as a result the
estimators provide more accurate results. Another interesting
observation is that the sparser the density of the database the
harder it is to approximate the volumetric profile.

B. Evaluation on Synthetic Data

In this experiment we measure the performance of all the
phases of the attack on synthetic data. For comparison we start
by presenting a benchmark attack, the so-called Oracle Attack,
which is based on oracle access to the data distribution that
is unrealistic to find in most scenarios. We emphasize here
that there is no other leakage abuse attack in the literature that
applies to ABT and BT. In Appendix X-A we evaluate the
quality of the approximation of the counting functions.

Oracle Attack: An Unfair Comparison. For comparison
purposes we define the following attack that is based on
unrealistic adversarial knowledge: we assume that the attacker
has oracle access to the exact data distribution of the plaintext.
Knowing the data distribution implies that the adversary knows
not only the attribute on which queries are executed (e.g.,
age), but also the context of the data. Context is important
because the same attribute can have different distributions in
different databases. E.g., attribute age is distributed differently
in the following databases: employees of a company, students
of a university, retirees of a state pension fund, and airline
passengers. The “Oracle Attack” derives n samples with respect
to the data distribution and outputs the result as a reconstruction.

Table II presents the MAE of the oracle attack (averaged over
1000 runs) on the same plaintext data. The oracle attack does
not use any query leakage and its reconstruction is performed
based solely on the oracle’s output. We emphasize that the
oracle attack is extremely accurate in the following scenarios:
(i) the probability mass is concentrated in a few values, not
necessarily neighboring (ii) the probability mass is accumulated
in neighboring values, in which case incorrect reconstruction is
still in a close proximity to the plaintext, and (iii) the database
contains a large number of records, in which case the oracle is
queried so much that its output captures accurately the shape of

the distribution and, consequently, the database. Overall, in this
(unfair) comparison, our approach has a major disadvantage
because it has no knowledge of the data distribution. Thus,
one would expect that our proposed attack is always inferior
to the powerful oracle attack that operates under different
assumptions. Nevertheless, our agnostic attack outperforms the
oracle attack in several of the tested setups.

Evaluation of the Leakage-Abuse Attack. For the main
experiment of this subsection, we evaluate the performance of
Algorithm 1 under a wide variety of setups and present the
results in Table II. The plaintext domain is N = 1024 and the
data is generated according to distribution PermutedBeta(1, 5).
We generate a single plaintext database with no multiplicities
for each of the three domain densities 1%, 5%, 10%. We study
two metrics to assess the quality of the reconstruction and test
whether it can perform as good as the benchmark attack. At a
high-level, the goals of this experiment are the following:
• Examine the variability of candidate reconstructions by

measuring the quality metric MAE MaxPair.
• Study whether an increase in the number of candidate

reconstructions returns a more “central” reconstruction and
therefore a more robust output.

• Compare the quality of the proposed attack with the (unre-
alistic) adversary of the Oracle Attack.
Quality Metrics. The first metric, denoted MAE Plaintext,

measures the mean absolute error between the reconstruction
and the plaintext database. We note here that given a plaintext
database DB we measure the MAE of reconstruction out∗ as
the minimum MAE among the pair of (DB, out∗) and the pair
(DB,Flip(out∗)), where the Flip(·) reverses the order of the
elements of the vector. This approach is common among attack
evaluations because even if the adversary recovers correctly
the pairwise distances between plaintexts it is not possible to
infer whether the correct ordering is out∗ or Flip(out∗). The
second metric, denoted MAE MaxPair, measures the maximum
MAE between pairs of candidate reconstructions. This metric
shows the structure of the reconstruction space, i.e., if the
MAE MaxPair is large then this indicates a “spread out”
reconstruction space. We emphasize that a large MAE MaxPair
is an intrinsic characteristic of the reconstruction space and
is not a flaw of the attack algorithm. To test the effect of
candidate reconstructions we deploy the attack algorithm for
{3, 10, 100, 500} candidate reconstructions and study its impact
to MAE Plaintext and MAE MaxPair.

Setup. For the constraint optimization problem we use
function fmincon from MATLAB that deploys an interior-point
algorithm. In the majority of our experiments, the loss function
was trapped in local minima. To deal with this phenomenon,
we perform 103 random restarts for the computation of each
candidate reconstruction and we choose as a candidate the
plaintext database that has the smallest observed loss.

To study the effect of the volumetric profile estimation in the
overall performance we present two variations of Algorithm 1:
The first follows the attack exactly as it is described in
Algorithm 1 and the volumetric profile is estimated based
on |Q| = 3072 queries generated with a (different from the



Scheme

Candidate Reconstr. = 3 Candidate Reconstr. = 10 Candidate Reconstr. = 100 Candidate Reconstr.= 500 Oracle
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MAE MAE MAE MAE MAE MAE MAE MAE Attack

Plaintext MaxPair Plaintext MaxPair Plaintext MaxPair Plaintext MaxPair MAE
Exc Est Exc Est Exc Est Exc Est Exc Est Exc Est Exc Est Exc Est Plaintext

1%
BASE 85.0 59.0 104.5 93.5 70.8 80.2 118.9 144.6 58.6 83.5 144.6 189.6 42.8 62.7 188.8 247.6

92.1ABT 113.9 73.1 101.4 96.5 100.9 78.3 133.2 174.5 96.3 72.9 213.7 223.2 91.1 68.1 225.6 248.4
BT 105.6 107.6 168.8 72.5 103.9 76.0 148.8 178.3 101.0 81.2 232.7 195.6 98.7 83.4 260.9 249.1

5%
BASE 26.2 19.3 30.9 14.4 29.9 24.7 48.2 46.8 29.9 26.8 69.0 56.0 24.8 27.9 78.4 61.4

42.4ABT 32.4 33.0 26.5 38.2 30.6 31.2 67.8 54.2 29.6 30.7 78.9 87.1 35.2 28.3 91.5 99.7
BT 33.7 27.6 26.9 31.4 26.0 29.3 48.2 31.3 27.1 27.9 82.1 57.1 30.5 30.6 92.1 61.3

10%
BASE 15.0 15.1 16.5 12.7 19.2 13.8 22.9 27.5 12.2 12.8 46.8 35.7 12.2 12.7 50.0 48.4

24.1ABT 15.7 14.0 33.6 42.7 15.6 12.9 35.4 32.0 12.8 14.1 54.1 54.3 15.3 15.0 66.5 62.3
BT 13.7 15.8 17.6 27.6 17.1 15.1 44.4 37.7 13.7 13.1 52.6 55.1 11.5 14.5 66.9 52.8

TABLE II
PERFORMANCE OF OUR ATTACK FOR VARIOUS DATA DENSITIES AND NUMBERS OF CANDIDATE RECONSTRUCTIONS. THE DOMAIN SIZE IS N = 1024.

TABLE ENTRIES SHOW THE MAE BETWEEN RECONSTRUCTED AND PLAINTEXT VALUES (MAE PLAINTEXT) AND THE MAXIMUM MAE BETWEEN PAIRS OF
CANDIDATE RECONSTRUCTIONS (MAE MAXPAIR). GRAY COLUMNS (EST) PRESENT THE OUTPUT OF ALGORITHM 1. TO UNDERSTAND THE ROLE OF THE

VOLUMETRIC PROFILE ESTIMATION, WE ALSO PRESENT IN WHITE COLUMNS ( EXC) THE SAME ATTACK BUT WITH THE EXACT VOLUMETRIC PROFILE.

plaintext) PermutedBeta(1, 5) distribution; while the second
variation skips Lines 1-10 and uses directly the exact volumetric
profile in the remaining Lines 11-19, i.e., no estimation takes
place. We note here that given the observed results of the
volumetric profile estimation from Section VIII-A, we expect
that different query distributions from the tested one, e.g.,
PermutedBeta(1, 7), would present almost identical behavior.
The case of exact volumetric profile is denoted with “Exc” and
the case of estimated profile with “Est” in Table II.

Results. First, notice that there is a discrepancy between
the two metrics. MAE MaxPair can be seen as a worst-
case performance, up to 4.5× larger than our attack. This
worst-case error is possible if the attacker picks an arbitrary
reconstruction among the many, much like previous approaches.
To better understand this discrepancy we have to analyze the
trends. The first interesting observation is that MAE MaxPair
increases significantly, up to 3.8×, as we generate more
candidate reconstructions. This fact holds across all domain
densities and all schemes. Thus, a larger number of candidate
reconstructions paints a more accurate picture of the structure
of the reconstruction space. Another interesting observation is
that MAE Plaintext decreases, in most cases, as we generate
more candidate reconstructions. This is because our strategy to
pick a “central” reconstruction performs better as we explore
the reconstruction space with multiple candidates. These
observations show the importance of designing reconstruction
space informed attacks. The case of exact volumetric profile is
presented to factor out one of the sources of error, i.e., the error
from the volume profile estimation, and thus shed light into
how the structure of the reconstruction space affects the quality
of the output of the attack. Interestingly, the more realistic case
of estimated volumetric profiles follows the behavior of the
exact profile case. We chose |Q| = 3072 number of queries to
show the performance of our attack. Table II shows that the
performance of the “Est” is relatively close to the ideal case
“Exc”. Finally, the MAE Plaintext is consistently smaller than
the Oracle Attack, in some cases it is as low as half the error.

C. Evaluation on Hospital Data

For this experiment we use real hospital datasets obtained
from the US government Healthcare Cost and Utilization
Project (HCUP) Nationwide Inpatient Sample (NIS) from

year 2009 [1]. This dataset is used in previous leakage-abuse
attacks [16], [20], [21], [26].

We chose the attributes with the largest domain size. Attribute
AGE records the age in years of each patient and has values
from 1 to 91. Attribute AGEDAY records the age in days
of infants and has values from 1 to 364. To estimate the
volumetric profile we issued 3 · 104 range queries with respect
to the PermutedBeta(1, 5) distribution over all range queries.
We considered 10 candidate reconstructions, each of which
minimized the objective function after 100 random restarts.

Toward testing the attack under a fixed domain density, we
randomly picked database records (with multiplicities) until we
reached a fixed domain density. Note that the resulting number
of records n depends on the data distribution. The resulting n
for attribute AGE was 5, 9, 28, 100 and for attribute AGEDAY
was 19, 38, 118, 310 for the domain densities 5%, 10%, 25%,
and 50%. To build the oracle for the “Oracle Attack” we applied
a kernel density estimator on all data of the attribute using
function fitdist from MATLAB, a non-parametric technique
for deriving the probability density function from data.

Scheme
Attribute AGE Attribute AGEDAY

Algo. 1 Oracle Algo. 1 Oracle
Attack Attack Attack Attack

D
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n
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ty

5%
BASE 2.8

12.4
28.0

43.1ABT 2.1 28.5
BT 3.6 26.5

10%
BASE 5.9

8.4
17.3

42.6ABT 6.0 17.9
BT 7.1 20.0

25%
BASE 7.9

4.8
48.4

20.1ABT 8.0 49.2
BT 7.8 47.0

50%
BASE 11.0

3.0
57.6

11.0ABT 11.1 42.0
BT 11.2 57.7

TABLE III
PERFORMANCE OF OUR ATTACK FOR VARIOUS DATA DENSITIES ON
ATTRIBUTES FROM HOSPITAL DATA OF HCUP [1]. THE QUALITY IS

MEASURED AS THE MEAN ABSOLUTE ERROR (MAE PLAINTEXT).

Table III presents a comparison between the proposed attack
from Algorithm 1 and the “Oracle Attack” with respect to
the MAE Plaintext quality measure. For domain densities 5%
and 10%, the proposed attack outperforms the oracle attack,
which operates under different and strong assumptions (access



to an oracle from the data distribution). As it is expected, as
the number of records increases in skewed distributions the
oracle attack converges to the plaintext database and therefore
outperforms Algorithm 1. Nevertheless, for the case of attribute
AGE, not as severely-skewed as AGEDAY, the proposed attack
has relatively small error even for domain density 25%, 50%.

IX. CONCLUSION

We present the first leakage-abuse attack on practical
response-hiding structured encryption schemes, i.e., those with
non-quadratic storage overhead. Our attack is parametrized in
the sense that it can be applied to a wide variety of encrypted
range schemes by simply switching the expression of the
so-called counting function which acts as a parameter. Our
technique allows us to reassess the security and even compare
different encrypted range schemes based on the output of our
parametrized attack. Overall, although response-hiding schemes
are more secure than standard structured encryption schemes,
our results show that they are still vulnerable to leakage-abuse
attacks based on search-pattern and volumetric leakage.
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X. APPENDIX

A. Counting Function Approximation Performance

In this experiment, we evaluate the quality of the approxi-
mation of the global counting function G̃ANY(r) presented in
Equation 2. In particular, we fix a database and we evaluate
the quality of the outputs of the counting functions introduced
in previous sections. We use the same plaintext data (database)
over domain N = 1024 as the data used for Table II. For
domain density 1%, 5%, and 10%, the number of possible
responses are 79, 1486, and 5996, respectively, as indicated in
Table IV. To assess the error we measure (i) the number of
responses for which the approximation of the counting function
is not equal to the exact counting, indicated as “# Errors” in
Table IV, as well as (ii) the maximum error among all the
responses, , indicated as “Max” in Table IV. Since the counting
function for scheme BASE is exact, see Remark 3, the output
has no errors. The quality of the approximation is similar for
schemes ABT and BT. The number of errors is relatively
low with respect to the growth of the number of possible
responses, i.e., less than 3.5% of the responses for 5996
responses. Another interesting observation is that the maximum
error among all responses is at most 3 which is relatively low
compared to the (pessimistic) upper bound for N = 1024
which is weight(TABT) = weight(TBT) = log(1024) = 10
according to Theorem 2.

Scheme
Volume Profile

via Counting Approx.
# Errors Max

D
om

ai
n

D
en

si
ty 1%

BASE 0/79 0
ABT 19/79 2
BT 17/79 2

5%
BASE 0/1486 0
ABT 82/1486 2
BT 73/1486 2

10%
BASE 0/5996 0
ABT 209/5996 3
BT 177/5996 3

TABLE IV
PERFORMANCE OF THE COUNTING FUNCTION APPROXIMATION, N = 1024

B. Proof of Lemma 1

The fact that s ≥
∑k
t=0 Li+t can be rehashed as s ≥

d(vi−1, vi+k). Therefore, if we fix the lower-boundary at the
leftmost possible location so as to return r, i.e., location vi−1+1,
then the span s is large enough to cover all the desired values
so as to return r. Notice that the BASIS scheme contains all
possible ranges of span s, see Remark 2. Thus, the question
boils down to how many times can we “advance” the leftmost
lower-boundary towards the right before we: (A) either reach
position vi with the lower-boundary, or (B) reach position
vi+k+1−1 with the upper-boundary, or (C) both reach position
vi− 1 with the lower and vi+k+1− 1 with the upper-boundary.
All of the above cases imply that we can not advance the
lower-boundary anymore, therefore, there are no more range
queries of span s to count. In case (A), one can increment the

lower-boundary until it reaches the rightmost possible lower-
boundary location, i.e. location vi, and there are still a few
positions in Li+k+1 that can not be considered as an upper-
boundary. Going back to the facts, we know that s is strictly
less than

∑k+1
t=1 Li+t which means that s < d(vi, vi+k+1).

Therefore, there is at least one location to the left of vi+k+1

that can not be claimed as an upper-boundary. This fact implies
case (A) therefore we can iterate through the entire Li and
CSTEP1-ANY (r, s) = Li. It is clear that cases (B) and (C) can not
hold since if they were true we would have s = d(vi, vi+k+1)
but we know from our facts that s < d(vi, vi+k+1).

C. Proof of Lemma 2

The fact that s ≥
∑k+1
t=1 Li+t can be rehashed as s ≥

d(vi, vi+k+1). Therefore, if we fix the upper-boundary at the
rightmost possible location so as to return r, i.e., location
vi+k+1 − 1, then the span s is large enough to cover all the
desired values so as to return r. The question boils down to how
many times can we “advance” the rightmost upper-boundary
towards the left before we: (A) either reach position vi+k with
the upper-boundary, or (B) reach position vi−1 − 1 with the
lower-boundary, or (C) both reach position vi+k with the upper
and vi−1 − 1 with the lower-boundary. All of the above cases
imply that we can not advance the upper-boundary anymore,
therefore, there are no more range queries of span s to count. In
case (A), one can decrease the upper-boundary until it reaches
the leftmost possible upper-boundary location, i.e. location
vi+k, and there are still a few positions in Li that can not be
considered as a lower-boundary. Going back to the facts, we
know that s is strictly less than

∑k
t=0 Li+t which means that

s < d(vi−1, vi+k). Therefore, there is at least one location to
the right of vi−1 that can not be claimed as a lower-boundary.
The assumption follows the condition of case (A) therefore we
can iterate through the entire Li+k+1 and CSTEP1-ANY(r, s) =
Li+k+1. It is clear that cases (B) and (C) can not hold since if
they were true we would have s = d(vi−1, vi+k) but we know
from our facts that s < d(vi−1, vi+k).

D. Proof of Lemma 3

Similarly to the proof of Lemma 1, the fact that s ≥∑k
t=0 Li+t can be rehashed as s ≥ d(vi−1, vi+k). Therefore,

if we fix the lower-boundary at the leftmost possible location
so as to return r, i.e., location vi−1 +1, then the span s is large
enough to cover all the desired values so as to return r. Thus,
the question boils down to how many times can we “advance”
the leftmost lower-boundary towards the right before one of
the following three cases happen: (A) either reach position vi
with the lower-boundary, (B) or reach position vi+k+1−1 with
the upper-boundary, (C) or both reach position vi − 1 with the
lower and vi+k+1 − 1 with the upper-boundary at the same
time. All of the above cases imply that we can not advance the
lower-boundary anymore, therefore, there are no more range
queries of span s to count. The proof differentiates from the
one of Lemma 1 in the remaining.

If case (A) is true then one can increment the lower-boundary
until it reaches the rightmost possible lower-boundary location,



i.e. location vi, and there is at least one empty position in
Li+k+1 that can not be considered as an upper-boundary. This
can not be true because it implies that s <

∑k+1
t=1 Li+t, i.e., s <

d(vi, vi+k+1), but from the facts we know that s ≥
∑k+1
t=1 Li+t

therefore case (A) contradicts the facts. This means that with
the current facts, the lower-boundary can not bump into vi first
before the upper-boundary bumps into vi+k+1.

Switching focus to case (B), in this case one can increment
the lower boundary until the corresponding upper-boundary
reaches the rightmost possible upper-boundary location, i.e.,
location vi+k+1 − 1. For this case to hold it must be
the case that s >

∑k+1
t=1 Li+t which can be rehashed as

s > d(vi, vi+k+1). From the facts of this lemma we know
that, s ≥ max

{∑k
t=0 Li+t,

∑k+1
t=1 Li+t

}
, which subsumes the

condition for (B) to hold. Thus, when s >
∑k+1
t=1 Li+t we are in

case (B) and we have CSTEP1-ANY (r, s) (r, s) =
∑k+1
t=0 Li+t−s.

Switching focus to case (C), if both events take place
simultaneously, i.e., lower-boundary bumps onto vi and upper-
boundary bumps onto vi+k+1, then we must have:

Li =

k+1∑
t=1

Li+t − s⇒ s =

k+1∑
t=1

Li+t − Li (4)

From the facts of this lemma we know that s ≥
max

{∑k
t=0 Li+t,

∑k+1
t=1 Li+t

}
which proves that equation (4)

can not be true. This means that with the current facts, we can
not have the case where the lower-boundary bumps into vi and
the upper-boundary bumps into vi+k+1 at the same time.

E. Proof of Lemma 4

If we place the upper-boundary of the range at its leftmost
possible upper-boundary location, i.e., vi+k, then the span s is
large enough to cover all the desired values so as to return s
since we know from the facts that s <

∑k
t=0 Li+t, which can

be rehashed as s < d(vi−1, vi+k), as well as
∑k
t=1 Li+t < s,

which can be rehashed as d(vi, vi+k) < s. Therefore, the
question boils down to how many times can we “advance” the
upper-boundary towards the right before one of the following
three cases happen: (A) either reach position vi with the lower-
boundary, (B) or reach position vi+k+1 − 1 with the upper-
boundary, (C) or both reach position vi− 1 with the lower and
vi+k+1 − 1 with the upper-boundary at the same time.

If case (A) is true then one can increment the lower-
boundary until it reaches the rightmost possible lower-boundary
location, i.e. location vi, and there is at least one empty
position in Li+k+1 that can not be considered as an upper-
boundary. For this to happen the following condition must
be true s <

∑k+1
t=1 Li+t. From the facts we know that

s < min
{∑k

t=0 Li+t,
∑k+1
t=1 Li+t

}
which subsumes the

condition s <
∑k+1
t=1 Li+t. Therefore case (A) is possible

given our facts, in which case the counting function is
CSTEP1-ANY (r, s) = s−

∑k
t=1 Li+t.

Moving on to case (B), in order for this even to take place
we must have

∑k+1
t=1 Li+t ≥ s but from the fact we know that

s <
∑k+1
t=1 Li+t. Therefore neither case (B) nor case (C) can

be true.

F. Proof of Theorem 1

Let X be X =
∑k
t=0 Li+t and Y be Y =

∑k+1
t=1 Li+t. It

is easy to see that if
∑k
t=1 Li+t < s <

∑k+1
t=0 Li+t then only

one of the following four cases is true:

1) X ≤ s < Y , in which case Lemma 1 holds,
2) Y ≤ s < X , in which case Lemma 2 holds,
3) max {X,Y } ≤ s, in which case Lemma 3 holds,
4) s < min {X,Y }, in which case Lemma 4 holds.

To prove the theorem it is enough to prove the following:

• If Case-1 is true, where X ≤ s < Y , then,

Li ≤ min

{
Li+k+1,

∑k+1

t=0
Li+t − s, s−

∑k

t=1
Li+t

}
,

• If Case-2 is true, where Y ≤ s < X , then,

Li+k+1 ≤ min

{
Li,
∑k+1

t=0
Li+t − s, s−

∑k

t=1
Li+t

}
,

• If Case-3 is true, where max {X,Y } ≤ s, then,∑k+1

t=0
Li+r − s ≤ min

{
Li, Li+k+1, s−

∑k

t=1
Li+t

}
,

• If Case-4 is true, where s < min {X,Y }, then,

s−
∑k

t=1
Li+t ≤ min

{
Li, Li+k+1,

∑k+1

t=0
Li+t − s

}
.

We proceed by proving the above four cases.

Analysis of Case X ≤ s < Y . From the assumptions:

X < Y ⇒
k∑
t=0

Li+t <

k+1∑
t=1

Li+t ⇒ Li < Li+k+1. (5)

Additionally, from the assumptions,

s < Y ⇒ s+ Li <

k+1∑
t=1

Li+t + Li ⇒ Li <

k+1∑
t=0

Li+t − s (6)

From the assumptions,

X ≤ s⇒ 0 ≤ s−
k∑
t=0

Li+t ⇒ Li ≤ s−
k∑
t=1

Li+t (7)

From Equations (5), (6), (7) we conclude that:

Li ≤ min

{
Li+k+1,

k+1∑
t=0

Li+t − s, s−
k∑
t=1

Li+t

}
.

Analysis of Case Y ≤ s < X . From the assumptions:

Y < X ⇒
k+1∑
t=1

Li+t <

k∑
t=0

Li+t ⇒ Li+k+1 < Li. (8)

Additionally, from the assumptions,

s < X ⇒ s+ Li+k+1 <

k+1∑
t=0

Li+t ⇒ Li+k+1 <

k+1∑
t=0

Li+t − s

(9)
From the assumptions,

Y ≤ s⇒ 0 ≤ s−
k+1∑
t=1

Li+t ⇒ Li+k+1 ≤ s−
k∑
t=1

Li+t (10)



From Equations (8), (9), (10) we conclude that:

Li+k+1 ≤ min

{
Li,

k+1∑
t=0

Li+t − s, s−
k∑
t=1

Li+t

}
.

Analysis of Case max {X,Y } ≤ s. From the assumptions:

Y ≤ s⇒
k+1∑
t=1

Li+t − s ≤ 0⇒
k+1∑
t=0

Li+t − s ≤ Li (11)

Additionally, from the assumptions,

X ≤ s⇒
k∑
t=0

Li+t − s ≤ 0⇒
k+1∑
t=0

Li+t − s ≤ Li+k+1 (12)

By summing equations (11), (12) we get:

2

(
k+1∑
t=0

Li+t − s

)
≤ Li + Li+k+1

⇒
k+1∑
t=0

Li+t − s ≤ Li + Li+k+1 −
k+1∑
t=0

Li+t + s

⇒
k+1∑
t=0

Li+t − s ≤ s−
k∑
t=1

Li+t (13)

From Equations (11), (12), (13) we conclude that:
k+1∑
t=0

Li+r − s ≤ min

{
Li, Li+k+1, s−

k∑
t=1

Li+t

}
.

Analysis of Case s < min {X,Y }. From the assumptions:

s < X ⇒ s−
k∑
t=0

Li+t < 0⇒ s−
k∑
t=1

Li+t < Li (14)

Additionally, from the assumptions,

s < Y ⇒ s−
k+1∑
t=1

Li+t < 0⇒ s−
k∑
t=1

Li+t < Li+k+1 (15)

By summing equations (14), (15) we get:

2

(
s−

k∑
t=1

Li+t

)
≤ Li + Li+k+1

⇒ s−
k∑
t=1

Li+t ≤ Li + Li+k+1 − s+

k∑
t=1

Li+t

⇒ s−
k∑
t=1

Li+t ≤
k+1∑
t=0

Li+t − s (16)

From Equations (14), (15), (16) we conclude that:

s−
k∑
t=1

Li+t ≤ min

{
Li, Li+k+1,

k+1∑
t=0

Li+t − s

}
.

For the last part of this proof we want to show that if s is
out of the limits imposed in Theorem 1, i.e.,

∑k
t=1 Li+t <

s <
∑k+1
t=0 Li+t,then the expression with the minimum value is

negative. In this case the corresponding span does not contribute
in the counting. It is enough to show that:

• if s <
∑k
t=1 Li+t then

min

{
Li, Li+k+1,

k+1∑
t=0

Li+t − s, s−
k∑
t=1

Li+t

}
< 0

• if
∑k+1
t=0 Li+t < s then

min

{
Li, Li+k+1,

k+1∑
t=0

Li+t − s, s−
k∑
t=1

Li+t

}
< 0

Starting with the first case, we have:

s <

k∑
t=1

Li+t ⇒ s−
k∑
t=1

Li+t < 0,

therefore we have that,

min

{
Li, Li+k+1,

k+1∑
t=0

Li+t − s, s−
k∑
t=1

Li+t

}
< 0

so the first item is proved.
For the second case, we have:

k+1∑
t=0

Li+t < s⇒
k+1∑
t=0

Li+t − s < 0,

therefore we have that,

min

{
Li, Li+k+1,

k+1∑
t=0

Li+t − s, s−
k∑
t=1

Li+t

}
< 0

so the second item is proved.

Fig. 5. An illustration of the structure of interval δ for the case of BASE
and ABT. Grey intervals represent the range queries of BASE that have span
s = 23 and response r = {v2}, while blue intervals represent the range
queries of ABT that have span s = 23 and response r = {v2}. Note that the
additive step for this span is TABT[2

3] = 22.

G. Proof of Theorem 2

Another way to express the output of CANY(r, s) is to define
an interval δ of all possible lower-boundaries of a range and
count the number of locations such that if one places a range
query of span s with a starting point among the locations of δ
then the response would be r. Without loss of generality we
proceed with the proof using the interval δ for our arguments.
Notice that not all of the location that are covered by interval
δ are lower-boundaries of a canonical range of span s from the
scheme ANY due to the fact that TANY[s] > 1. E.g., the lower-
boundaries that correspond to canonical ranges of scheme ANY
are marked with blue in Figure 5. We further partition δ into
three segments δL, δM , δR such that:
• δM : the interval with start-point the location that coincides

with the lower-boundary of the leftmost canonical range
of ANY within δ. The end-point of interval δM is the
location that coincides with the lower-boundary of the
rightmost canonical range of ANY within δ.

• δL: the interval with start-point the leftmost location of δ
that does not belong to δM . The end-point of interval δL
is the previous location from the starting point of δM .



• δR: the interval with start-point the leftmost location of
δ that does not belong to δM or δL. The end-point of
interval δL is the rightmost location of δ.

Let |δ| denote the width of the interval δ, then we have
CSTEP1-ANY(r, s) = |δL|+ |δM |+ |δR|. Notice that by construc-
tion the width |δM | is a multiple of TANY[s], i.e., let us define
|δM | = k · TANY[s] for an integer k. Additionally, for the other
two intervals of the partition we have |δL| < TANY[s] and
|δR| < TANY[s]. Therefore:
CSTEP1-ANY(r, s)

TANY[s]
=
|δL|+ |δM |+ |δR|

TANY[s]
= k+

|δL|
TANY[s]

+
|δR|

TANY[s]
Given that CANY(r, s) = k we proceed with case analysis

with respect to |δL| and |δR|:
• Case |δL| = 0, |δR| 6= 0: then⌊

CSTEP1-ANY(r, s)

TANY[s]

⌋
=

⌊
k +

|δR|
TANY[s]

⌋
= k = CANY(r, s)

(17)
• Case |δL| 6= 0, |δR| = 0: then⌊

CSTEP1-ANY(r, s)

TANY[s]

⌋
=

⌊
k +

|δL|
TANY[s]

⌋
= k = CANY(r, s)

(18)
• Case |δL| = 0, |δR| = 0: then⌊

CSTEP1-ANY(r, s)

TANY[s]

⌋
=
CSTEP1-ANY(r, s)

TANY[s]
= k = CANY(r, s)

(19)
• Case |δL| 6= 0, |δR| 6= 0: then⌊

CSTEP1-ANY(r, s)

TANY[s]

⌋
=

⌊
k +

|δL|
TANY[s]

+
|δR|

TANY[s]

⌋
(20)

if |δL|
TANY[s]

+ |δR|
TANY[s]

≥ TANY[s] then:

(20)⇒
⌊
k +

|δL|
TANY[s]

+
|δR|

TANY[s]

⌋
= k+1 = CANY(r, s)+1

(21)
if |δL|

TANY[s]
+ |δR|

TANY[s]
< TANY[s] then:

(20)⇒
⌊
k +

|δL|
TANY[s]

+
|δR|

TANY[s]

⌋
= k = CANY(r, s)

(22)
From equations (17),(18),(19),(21),(22) we get:∣∣∣∣CANY(r, s)−

⌊
CSTEP1-ANY(r, s)

TANY[s]

⌋∣∣∣∣ ≤ 1. (23)

Additionally the case analyzed in equation (21) proves that
the approximation is tight. For the last part of the proof we
will show that:∣∣∣∣∣GANY(r)−

N∑
s=1

max

{
0,

⌊
CSTEP1-ANY(r, s)

TANY[s]

⌋}∣∣∣∣∣ ≤ weight(TANY).

We start by analyzing the following term:
N∑
s=1

max

{
0,

⌊
CSTEP1-ANY(r, s)

TANY[s]

⌋}
Using the result derived from equation (23), let x be

the number of spans among the spans s = 0, . . . , N

such that
∣∣∣CANY(r, s)−

⌊
CSTEP1-ANY(r,s)

TANY[s]

⌋∣∣∣ = 1. Notice that

0 ≤ x ≤ weight(TANY). Due to equation (23) we
have weight(TANY) − x terms in the summation for which∣∣∣CANY(r, s)−

⌊
CSTEP1-ANY(r,s)

TANY[s]

⌋∣∣∣ = 0. Therefore
N∑
s=1

max

{
0,

⌊
CSTEP1-ANY(r, s)

TANY[s]

⌋}
=

N∑
s=1

(GANY(r, s)) + x

= GANY(r) + x.

So overall we have the following approximation:∣∣∣∣∣GANY(r)−
N∑
s=1

max

{
0,

⌊
CSTEP1-ANY(r, s)

TANY[s]

⌋}∣∣∣∣∣ ≤ x ≤ weight(TANY).


