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Abstract. Standard hybrid encryption schemes based on the KEM-DEM framework are hard to im-
plement efficiently in a distributed manner whilst maintaining the CCA security property of the scheme.
This is because the DEM needs to be decrypted under the key encapsulated by the KEM, before the
whole ciphertext is declared valid. In this paper we present a new variant of the KEM-DEM framework,
closely related to Tag-KEMs, which sidesteps this issue. We then present a post-quantum KEM for this
framework based on Learning-with-Rounding, which is designed specifically to have fast distributed
decryption. Our combined construction of a hybrid encryption scheme with Learning-with-Rounding
based KEM, called Gladius, is closely related to the NIST Round 3 candidate called Saber. Finally,
we give a prototype distributed implementation that achieves a decapsulation time of 4.99 seconds for
three parties.

1 Introduction

The potential development of quantum computers means that we need to rethink which algorithms
are going to be used for public key encryption and signatures; resulting in the subarea called post-
quantum cryptography. The early days of post-quantum cryptography looked at how to build basic
primitives such as simple public key encryption or signatures. However, now we realise that our
existing (pre-quantum) public key algorithms often offer more than what is offered by basic public
key primitives. For example one may have group signatures, identity-based encryption, or proofs-
of-knowledge of the secret key, etc. In this work, we look at distributed decryption for IND-CCA
hybrid public key encryption.

Even in the context of pre-quantum cryptography, distributed decryption for hybrid systems
is problematic for many schemes, as to maintain security one would need to apply a distributed
decryption procedure to the symmetric component, which is rather expensive. This problem, of
the difficulty of constructing threshold IND-CCA encryption/encapsulation schemes Πp, was first
pointed out in [LL94] and then elaborated upon in [SG98,SG02]. The problem being that Πp would
seem to require a publicly checkable CCA test. For historical (i.e. impractical) CCA secure public
key encryption schemes such as Naor-Yung [NY90] and Dolev-Dwork-Naor [DDN91] the check is
simply the verification of a zero-knowledge proof, and is thus publicly verifiable.

However, for almost all practical encryption schemes the check is non-public and thus requires
often expensive machinery to deploy in a threshold manner. In [SG98,SG02] Shoup and Gennaro
present two schemes (called TDH1 and TDH2) which are IND-CCA and are based on the discrete
logarithm problem, for which an efficient threshold decryption algorithm is possible. Both schemes



bear a strong resemblance to Cramer-Shoup encryption [CS98]. These two constructions are however
non-hybrid encryption mechanisms, but can be turned into hybrid threshold schemes using the Tag-
KEM framework [AGK08].

Our first contribution is to provide two transforms (one secure in the ROM and one secure in
the QROM) which supports distributed decryption for hybrid encryption schemes. Our transform
is closely related to the previous REACT [OP01] transform, the Tag-KEM framework [AGK08],
or the second hybrid-variant of the Fujisaki-Okamoto transform [FO13]. The key take away from
our (general) hybrid construction is that the DEM component can be a generic one-time IND-CPA
encryption scheme, and the KEM component can be either a rigid4 deterministic OW-CPA secure
public key encryption scheme or (with a minor modification) a rigid OW-PCA-secure5 probabilistic
scheme. In the case of public-key encryption schemes which are not perfectly correct, i.e. they
exhibit decryption errors, we require an additional hardness assumption.

As our second contribution, to utilize our hybrid construction in the post-quantum setting we
build a rigid deterministic encryption scheme which has a relatively efficient distributed decryption
procedure based on the standard (or module) Learning-with-Rounding (LWR) problem. Our scheme
is competitive (in terms of execution time and parameters) with Saber, the Learning-with-Rounding
based submission in the third round of the NIST competition. Indeed the module-LWR version of
our scheme has almost exactly the same parameters as Saber6, meaning that any run-times for
Saber in hybrid encryption mode will be similar to the run-times for our scheme.

Due to the similarity with Saber we name our constructions of a hybrid encryption scheme,
which has an efficient distributed decryption operation, based on Learning-with-Rounding, after
the Roman sword Gladius; which came in four basic forms: A large one called Gladius–Hispaniensis,
a smaller ‘standard’ one called Gladius–Pompeii, and two related ones called Gladius–Mainz and
Gladius–Fulham. In addition, we give a pre-quantum hybrid scheme based on ElGamal encryption
and the gap-Diffie–Hellman assumption, along with a methodology to perform a distributed hybrid
decryption.

Of the three lattice based finalists in Round 3 of the NIST competition two of them, Crystals-
Kyber [SAB+19], and Saber [DKRV19], all construct a hybrid encryption scheme by first building
an IND-CPA encryption scheme, and then creating an IND-CCA hybrid scheme using the Fujisaki-
Okamoto transform [FO99]. The problem with the Fujisaki-Okamoto design pattern is that the
decryption procedure needs to perform a hash to obtain the random coins. In the threshold setting
this is a problem as one needs to hash both the DEM key k and the DEM value itself (or the
message) in the Fujisaki-Okamoto transform to perform the re-encryption; and this must be done
before one reveals k and m to the decrypting parties. The hash function used for re-encryption
also needs to produce the random values used in encryption, which can be a complicated process
to perform in a threshold manner; especially if this involves sampling discrete Gaussians or other
distributions which are not ‘native’ to whichever underlying methodology one is using to perform
the threshold decryption.

The other remaining lattice based finalist in Round 3, NTRU [ZCH+19], also builds a traditional
KEM, with the difference that the KEM does not require re-encryption. However, NTRU builds

4 A scheme is defined to be rigid if decryption of a ‘ciphertext’, which is not the output of an encryption operation,
always returns ⊥.

5 A scheme is said to be PCA (plain-check attack) secure if it is secure in the presence of an oracle which allows the
adversary to check whether a given ciphertext encrypts a given plaintext.

6 Although there is an issue of having comparable security for these parameters, due to our reliance on LWE in the
key generation phase, see later for more details.
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a traditional KEM, which requires the DEM to be implemented in a threshold manner so as to
maintain the CCA security. Thus threshold variants of all the remaining Round 3 lattice based
schemes will be problematic if one wishes to maintain CCA security of the threshold variant.

Of the Round-2 lattice-based systems which did not progress to be finalists in Round-3, FrodoKEM
[NAB+19], Round 5 [GZB+19], LAC [LLJ+19], NewHope [PAA+19], and ThreeBears [Ham19], also
follow the Fujisaki-Okamoto pattern, bar NTRUprime [BCLv19]. NTRUprime differs from the pre-
vious ones in that it is based on a rigid deterministic base encryption scheme which is then turned
into a KEM using [Den03, Section 6]. However, the underlying rigid deterministic encryption scheme
still requires re-encryption to be secure.

1.1 Prior Work and Our Contribution

Threshold Decryption: As stated at the beginning our main goal is to provide an efficient threshold
decryption procedure for a post-quantum hybrid encryption algorithm. We do this by providing an
algorithm which is efficient, within a generic MPC framework, to perform distributed decryption.
Thus, on the assumption the algorithm we implement is correct, the security of said algorithm
follows from the security of the base MPC framework.

In an earlier work [KLO+19] on distributing the decryption for a Round-1 NIST candidate
which was based on Ring-LWE, namely LIMA, a distributed decryption operation was given for
a basic (non-hybrid) encryption scheme. An outline for the hybrid scheme was given, but the
instantiation would not preserve the CCA security guarantees of the hybrid construction, i.e. the
method presented was not secure.

From a performance perspective the problem with the distributed decryption of LIMA was that
it is a scheme based on the Fujisaki-Okamoto transform. As mentioned above the secure evaluation
of the hash function and re-encryption operation is costly in the distributed setting. But this is
not the only problem with [KLO+19], the decryption procedure itself is rather complicated in that
it requires rounding of integers, for example. In [KLO+19] these two technical complexities meant
the protocol (to be fast) was only a 3-party protocol with one dishonest party. The distributed
decryption of a single non-hybrid LIMA encryption would take 4.2 seconds, with a similar time for
the insecure hybrid KEM distributed decapsulation.

Traditionally, in the non-hybrid encryption setting, threshold decryption is preferred using the
least amount of interaction, for example see [LY12,SG98,SG02]. Our threshold decryption procedure
for our post-quantum hybrid scheme utilizes explicitly generic MPC techniques; thus it definitely
does not minimize the level of interaction between the parties needed. An open problem would
be to develop a methodology, or scheme, which can utilize the minimal amount of communication
possible.

We note that there has been some work on threshold post-quantum signature schemes, e.g.
[CS19,CS20,DM20], but the techniques and issues are rather different from those employed and
discussed here.

Hybrid Encryption: Hybrid encryption is the standard method to encrypt large message via a
public key scheme. The actual message is encrypted via a standard block cipher in a secure AEAD
mode, such as AES-GCM. Then the one-time symmetric key for this symmetric encryption scheme
is transferred to the recipient using a public key methodology. The traditional method of combining
the public key encryption scheme Πp = (Kp, Ep,Dp), with message space Mp, and symmetric key
encryption scheme Πs = (Ks, Es,Ds) into a hybrid scheme Πh = (Kh, Eh,Dh) is called KEM-DEM
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[CS03]. Where K?, E? and D? are the various schemes key-generation, encryption and decryption
algorithms respectively.

The KEM-DEM method of [CS03] requires Πs to be a (one-time) IND-CCA symmetric cipher7

and an IND-CCA KEM scheme Πp (a KEM is a public key scheme designed to encrypt only
symmetric keys). The scheme Πp encrypts the key k for Πs, and then Πs is used to encrypt the
message using the key k. In particular the encryption algorithm, outputting (c1, c2) for Eh is along
the lines of

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m).

However, there is a problem with this construction when one looks for a distributed variant of the
decryption algorithm. Even if the decryption algorithm of the KEM Πp has an efficient distributed
decryption operation one cannot derive an efficient distributed hybrid cipher as the decryption of
the scheme Πs needs to be executed also in a distributed manner. Executing Πs in a distributed
manner for standard symmetric encryption scheme is possible, but very inefficient for long messages.

One obvious way to get around this problem is for the distributed decryption operation for
the hybrid cipher Πh to output k in the clear after the Πp part has been executed, enabling the
decryption using Πs to be done in the clear. We call such a hybrid scheme ‘leaky’, as the decryption
algorithm leaks the underlying symmetric key even if the symmetric component does not decrypt
correctly. This intuitively seems attractive, however it breaks the IND-CCA security of the hybrid
scheme Πh via a trivial attack.

The most popular generic transform to turn a public key encryption scheme into a hybrid
scheme in the KEM-DEM paradigm is the Fujisaki-Okamoto transform [FO99,FO13]. This comes
in two forms, either (from [FO99])

k ←Mp, k← H(k), c1 ← Ep(pk, k;G(k,m)), c2 ← Es(k,m),

or (from [FO13])

k ←Mp, k← H(k), c2 ← Es(k,m), c1 ← Ep(pk, k;G(k, c2)),

where G is a hash function which produces the random coins needed by the encryption algorithm
Ep. The authors of [FO99,FO13] show that this hybrid scheme, assuming some (mild) technical
conditions on the encryption algorithm, is IND-CCA if Πp is OW-CPA and Πs is IND-CPA. Note,
for the first variant one needs to decyrpt c2 before one can verify the c1 component, as the decryption
operation Dp requires re-encryption to perform the necessary CCA checks. Because of this, the first
Fujisaki-Okamoto hybrid construction can never be securely “leaky”.

The second Fujisaki-Okamoto variant has been proved secure in the quantum random-oracle
model in [Zha19], where the scheme Πp is assumed to be ‘well-spread’, perfectly correct and OW-
CPA secure. This second Fujisaki-Okamoto variant can be considered as a variant of the Tag-KEM
framework of [AGK08]. The Tag-KEM framework gives another hybrid construction, which works
(roughly speaking in the simplest instance) in the following manner

k← Ks, c2 ← Es(k,m), c1 ← Ep(pk, k‖G(c2))

where G is a hash function. This hybrid construction is secure if Πp is IND-CCA secure and Πs is
one-time IND-CPA secure.

7 One time meaning that the attacker does not get access to an encryption oracle.
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Note in [HHK17] a QROM proof of the Fujisaki-Okamoto transform is given, but this is for the
related non-hybrid public key scheme given by c ← Ep(pk,m;G(m)). However, unlike in [Zha19],
the encryption scheme is not assumed to be perfectly correct.

One of the applications of the Tag-KEM framework mentioned in [AGK08] is that of threshold
hybrid public key encryption. Their argument is as follows. Since the one-time-pad is one-time
IND-CPA secure, outputting m already leaks k. Thus revealing the value k before applying the
decryption of c2 cannot break security, as that would contradict their main theorem. Thus one can
apply threshold decryption to obtain the decryption of c1, leak the key k and then decrypt c2 in the
clear as long as Πs is the one-time-pad encryption scheme. Unfortunately, the authors of [AGK08]
require an IND-CCA secure Πp.

The authors of [AGK08] provide other constructions requiring weaker properties of Πp, but each
one adds its own complications. Indeed if one thinks of the hash function G, in our construction
below, applied to c1, c2 and k as a MAC function applied to c1 and c2 with key k, then their ‘weak
KEM+MAC’ construction is identical to ours.

In [AT09] a construction of CCA secure Tag-based encryption which has threshold decryption is
discussed. Their generic methodology uses one-time signatures and a concrete instantiation is given
based on the decisional bilinear Diffie–Hellman assumption in pairing groups. Another construction
of a threshold tag-KEM in the Random Oracle model based on the RSA problem is given in
[IAHS07].

The solution we propose is to utilize the following modification to the Cramer-Shoup basic con-
struction. Our main construction, which we call Hybrid1, outputs a ciphertext of the form (c1, c2, c3)
where, for a hash function G modelled as a random oracle,

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c1, c2, k).

The distributed decryption algorithm checks the c3 component and then ‘leaks’ the key k in the
clear, enabling k to be produced and hence m decrypted from the c2 component. We show that
this scheme is IND-CCA secure, even with this form of leaky decryption, if the scheme Πp is rigid,
deterministic and OW-CPA, or rigid, randomized and OW-PCA secure, and the scheme Πs is one-
time IND-CPA secure. If the scheme Πp is not perfectly correct then we require the additional
hardness assumption that it is hard for the adversary to construct a message/ciphertext pair (m, c)
such that c = Ep(pk,m), but Dp(sk, c) =⊥. We also require in this case that the probability of
the encryption scheme having collisions, i.e. two messages which encrypt to the same ciphertext, is
negligible when this probability is computed over the space of all possible public/private key pairs.

When Πp is randomized and OW-PCA, one needs to include c1 into the hash function G so as to
avoid attacks related to re-randomization of the output of Ep. In this latter case, of randomized OW-
PCA encryption scheme Πp, our construction looks most closely related to the REACT transform,
from [OP01], which encrypts via

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(k,m, c1, c2).

The authors of [OP01] show that REACT is secure assuming Πp OW-PCA secure and the scheme
Πs is IND-CPA secure. The REACT transform has a similar problem with the standard KEM-
DEM construction above in that it requires c2 to be decrypted before the check is applied, i.e. m
is needed as an input to G.
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In the case when Πp is rigid and deterministic one can drop the component c1 from the input
to G. So our hybrid construction simplifies to

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c2, k).

In this case one can think of our construction as precisely the second Fujisaki-Okamoto construction
utilizing the OW-CPA, ‘well-spread’ public key encryption scheme with encryption algorithm given
by

E ′p(pk, k; r) = (Ep(pk, k), r).

Thus our construction in this case would be automatically secure in the QROM if one considers
only normal decryption oracle queries (i.e. ones which do not leak the key k); assuming that the
techniques used in [HHK17] for dealing with non-perfectly correct schemes could be extended to
the proof in [Zha19].

However, this hybrid construction seems hard to prove QROM secure when one requires thresh-
old decryption, unless one picks the DEM operation to be a one-time pad encryption scheme. To
obtain a full QROM secure efficient hybrid construction with distributed decryption we present a
second hybrid construction which adds a ciphertext component, by hashing k with a second hash
function H ′ which has domain and codomain equal to Mp, as well as hashing k via another hash
function H ′′, before passing the result into G; namely we compute

k ←Mp, k← H(k), µ← H ′(k),

c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c2, µ), c4 ← H ′′(k).

This construction, which we call Hybrid2, is proved secure, in the QROM, using the techniques of
[TU16].

Most of our technical difficulties arise from the fact we want both efficient distributed decryption
and an efficient DEM operation. If we take an AES-based DEM then the output of the hash function
H will be a bit vector in {0, 1}|k|. But the input k will be ‘native’ to the underlying public key
scheme, and thus in general an element of a set such as Fnp , for some modulus p. This means H
needs to map from one arithmetic domain to another. It is to avoid needing to do this in a secure
way during distributed decryption that we ‘leak’ the key k and not the key k. This problem does
not occur with the hash function G as we are free to select the hash function so that it can be
evaluated securely. In our QROM construction using the c4 component we need to evaluate H ′ and
H ′′ securely before releasing k, but this can be done as efficiently as evaluating G, by selecting the
hash functions H ′ and H ′′ in an appropriate way.

Learning-with-Rounding: After detailing our main hybrid constructions we go on to discuss how
one can instantiate a suitable KEM in the post-quantum setting. For this we utilize the Learning-
With-Rounding (LWR) based deterministic encryption algorithm first presented in [XXZ12], and
then refined in [AKPW13]. This is itself inspired by the trapdoor LWE key generation procedure
introduced by Micciancio and Peikert [MP12]. We present an explicit construction, including sug-
gested parameters sizes, and compare the resulting scheme with current NIST PQ-candidates such
as Saber [DKRV19]. Our basic construction utilizes the fact that LWR encryption is deterministic
in nature.

To prove our main hybrid constructions secure we need to assume a new hard problem, which
we dub the Large-Vector-Problem (LVP) problem. Informally, this problem says that for a given
LWE key (A,A ·R1 +R2) with A ∈ Fn×nq uniformly randomly chosen and R1, R2 ∈ Fn×snq but with
‘small’ entries, it is hard to find a small vector m such that R1 ·m is ‘relatively big’.
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The Gladius Family of Hybrid Ciphers: Combining our LWR-based rigid deterministic OW-PCA
encryption scheme with our hybrid constructions we obtain a post-quantum secure hybrid cipher,
which supports efficient distributed decryption. We can actually derive many variants depending
on the choice of Hybrid1 or Hybrid2, the choice of the DEM, and the choice of using plain LWR or
Module-LWR. We focus on four specific variants of this construction; Gladius–Hispaniensis (based
on Hybrid1 and plain LWR), Gladius–Pompeii and Gladius–Mainz (based on Hybrid1 and Module-
LWR), and and Gladius–Fulham (based on Hybrid2 and Module-LWR).

Gladius–Hispaniensis, Gladius–Pompeii and Gladius–Fulham all assume any one-time IND-CPA
secure DEM. For Gladius–Hispaniensis and Gladius–Pompeii we obtain (expected) security in the
QROM when the scheme is considered as a standard hybrid encryption scheme, and security in
the ROM when we consider the scheme in the threshold setting (due to the additional leakage
required). The expected QROM security, which we denote by QROM?, comes from the fact that
Zhandry’s proof [Zha19], for the second Fujisaki–Okamoto transform, only applies to perfectly
correct schemes. We also present a third variant Gladius–Mainz which provides QROM? security
in the threshold setting. but this requires the DEM to be a one-time-pad (OTP), and requires
a more expensive distributed decryption algorithm. Our fourth variant, Gladius–Fulham, utilizes
the second hybrid transform mentioned above, but can achieve full QROM security (including for
non-perfectly correct schemes Πp) even when one allows the leakage from the decryption oracle
required in a distributed decryption operation.

In summary the properties of our four schemes are given by the following table, where 3? in
the QROM column refers to the above QROM? caveat. We also note in the table how many secure
hash function operations need to be executed by the distributed decryption algorithm.

Standard Threshold Threshold No.
Hard QROM QROM ROM Secure

Problem Hybrid DEM Secure Secure Secure Hashes
Gladius–Hispaniensis LWR 1 Generic 3? 7 3 1
Gladius–Pompeii Module-LWR 1 Generic 3? 7 3 1
Gladius–Mainz Module-LWR 1 OTP 3? 3? 3 1
Gladius–Fulham Module-LWR 2 Generic 3 3 3 3

2 Preliminaries

Notation: By way of notation we let a ← A denote randomly assigning a value a from a set A,
where we assume a uniform distribution on A. If A is an algorithm, we let a← A denote assignment
of the output, where the probability distribution is over the random coins of A; we also let a ← b
be a shorthand for a← {b}, i.e. to denote normal variable assignment. All functions, distributions
on single values are extended to vectors and matrices component-wise without mention.

When performing reduction modulo p (or for any other modulus) this is performed so that the
result is in the centred interval, i.e. (−p/2, . . . , p/2], unless explicitly stated otherwise. Vectors will
be column vectors. We let ‖x‖∞ denote the max-norm on a vector x.

Probabilities and Norms: All our ciphertexts are deterministic encryptions of a message. Thus to
work out decryption failure probability we need to measure this over the space of all messages; as
there are no other random coins. We want the probability of a decryption failure to be bounded by
2−ε. From ε we define c such that erfc(c) ≈ 2−ε. For example, if ε = 128 then we define c = 9.3.

Let Xi denote a set of random variables, for i = 1, . . . , t, each with variance Vi and each with
mean zero. The variance of the random variable obtained by taking the product of t values xi,
where xi is sampled from Xi, is given by Vt =

∏
Vi.
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If we then take a sum of n such products, then by the Central Limit Theorem, the resulting sum
will, for large n, behave as a normal distribution with mean zero and variance n · Vt. This means
that with probability 1−2−ε the value of such a sum of n such products will be less than c ·

√
n · Vt.

Note, one could replace the constant c here by a constant ct defined such that erfc(ct)
t ≈ 2−ε, but

ct ≤ c for all t.
If we let M ∈ Zn×n denote a matrix whose entries have been sampled from Dσ, then with

probability 1− 2−ε each entry of M is bounded by c · σ, and so with very high probability we have
that ‖M‖∞ ≤ c · n · σ. But using this directly to measure decryption failures results in far too
pessimistic bounds, thus instead we aim to bound ‖x ·M‖∞ for different distributions of the vector
x in our analysis.

Let x denote a vector sampled in Zn from a distribution with mean zero and variance V . Then
the entries of xT ·M are a sampled from a distribution which is the sum of n variables, each of
which is a product of a quantity sampled from a distribution of variance V and a quantity sampled
from a distribution of variance σ2. Thus the entries of xT ·M act like they come from a normal
distribution of mean zero and variance n ·V ·σ2. Thus in particular we have with probability at least
1− 2−ε that each entry of xT ·M is bounded by c2 ·

√
n · V · σ. So with probability approximately

1− n · 2−ε we have ‖xT ·M‖∞ ≤ c2 ·
√
n · V · σ ≤ c ·

√
n · V · σ.

Learning-with-Errors and Learning-with-Rounding: We let σ denote a standard deviation, and
we let Dσ denote a distribution which ‘looks like’ a discrete Gaussian distribution with standard
deviation σ. In practice this can be generated by the NewHope methodology [ADPS16], namely if
we have σ =

√
(B + 1)/2 then we sample from Dσ by generating 2 · B + 2 random bits (bi, b

′
i) for

i = 0, . . . , B, and then generating a sample by computing
∑B

i=0(bi − b′i).
Given a secret vector s ∈ Fnq , then a Learning-with-Errors (LWE) sample is a pair (A,A · s + e)

where A ∈ Fm×nq is chosen uniformly at random and e ← Dσ. The decision LWE problem is to
distinguish LWE samples from uniformly random samples (A,u), for u ← Fmq , we denote this
problem by LWEq,(m,n),σ. The search LWE problem is to recover the secret vector s from a set
of LWE samples. For suitable choices of the parameters both these problems are known to be
equivalent and assumed to be hard. Suitable parameters to ensure hardness given known attack
algorithms can be found using Albrecht’s LWE-estimator tool8.

For integers p and q we define the following map

bxep :

{
Zq −→ Zp
x 7−→ dx · p/qc (mod p)

where b·e is the round to nearest integer function, with rounding towards zero in the case of values
of the form i/2 for i an odd integer. If the input value x ∈ (−q/2, . . . , q/2] then the final reduction
modulo p is only required (if p does not divide q) when the rounding ends up being outside the
interval (−p/2, . . . , p/2], which happens with probability about 1/p, resulting in needing a single
addition of p to accomplish the reduction modulo p.

Given a secret vector s ∈ Fnq , then a Learning-with-Rounding (LWR) sample is a pair (A, bA · sep)
where A ∈ Fm×nq is chosen uniformly at random. The decision LWR problem is to distinguish LWR
samples from uniformly random samples (A,u), for u← Fnp , we denote this problem by LWRq,p,(m,n).
The search problem is similarly defined as the problem of recovering s from a number of LWR sam-
ples.

8 https://bitbucket.org/malb/lwe-estimator/src/master/
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Module Learning-with-Errors and Learning-with-Rounding: The extension of the plain-LWE and
LWR settings to module variants is standard. Here we define the notation we shall use. We will
utilize the 2-power cyclotomic ring R = Z[X]/Φ2·n(X) for n = 2N , hence Φ2n(X) = Xn + 1. For
an integer q ≥ 2 we then obtain the ring Rq by setting Rq = R/qR. We let Dσ(Rq) denote the
distribution obtained by sampling an element from Rq with coefficients drawn from Dσ.

As a norm on elements in R we will use the infinity norm of the polynomial embedding, namely
for a ∈ R we write a =

∑n−1
i=0 ai ·Xi then we set ‖a‖∞ := maxi=1,...,l ‖ai‖∞. It is well known that

for this norm, and this ring, we have for a, b ∈ R that ‖a · b‖∞ ≤ n · ‖a‖∞ · ‖b‖∞. However, just
as before if we consider the case when the coefficients of a are samples according to a distribution
with zero mean and variance V , and the coefficients of b are samples according to the distribution
Dσ(Rq) then with probability 1− n · 2−ε we have ‖a · b‖∞ ≤ c ·

√
n · V · σ. To see this, simply look

at the matrix representation of the ring. In a similar manner we have that if a,b ∈ Rd with the
coefficients of the entries of a sampled according to a distribution with zero mean and variance V ,
and the vector b is sampled according to Dσ(Rq)d then with probability 1 − n · d · 2−ε we have
‖a · b‖∞ ≤ c ·

√
n · d · V · σ.

Given the ring Rq one can define the Rq-module Rdq , for any integer d ≥ 1 in the standard
manner. A module variant of the decision LWE problem can be given as follows:

Definition 2.1 (Decision Module-LWE Problem (D-MLWE)). The D-MLWE problem is
parametrized by integers q, d, n,m ≥ 1 and a standard deviation σ. Given a fixed secret vector
s← Rdq , a random a← Rdq and m samples of either the form (a,a ·s+e) ∈ Rdq×Rp or of the form

(a,u) ∈ Rdq ×Rp, where u is a uniformly random element in Rq and e is drawn from Dσ(Rq), the
problem is to decide which is the case with non-negligible advantage.

We denote this problem by Module-LWEq,(m,n,d),σ, again when d = 1 we obtain the decision-Ring-
LWE problem Ring-LWEq,(m,n),σ, and when n = 1 we obtain the plain-LWE problem in dimension
d, i.e. Module-LWEq,(m,1,d),σ = LWEq,(m,d),σ. The equivalent search problem can be defined in the
normal way.

The LWR function bxep can be extended to the polynomial embedding of R and thus we obtain
a map bxep : Rq −→ Rp. From this we can derive the following module variant of the decision
LWR problem:

Definition 2.2 (Decision Module-LWR Problem (D-MLWR)). The D-MLWR problem is
parametrized by integers q, p, d, n,m ≥ 1. Given a fixed secret vector s← Rdq , a random a← Rdq and

m samples of either the form (a, ba · sep) ∈ Rdq ×Rp or of the form (a, buep) ∈ Rdq ×Rp, where u
is a uniformly random element in Rq, the problem is to decide which is the case with non-negligible
advantage.

We denote this problem by Module-LWRq,p,(m,n,d), when d = 1 we obtain the decision-Ring-LWR
problem Ring-LWRq,p,(m,n), and when n = 1 we obtain the plain-LWR problem in dimension d, i.e.
Module-LWRq,p,(m,1,d) = LWRq,p,(m,d). The equivalent search problem can be defined in the normal
way.

Relation between (Module-) LWE and (Module-) LWR: The search (Module-) LWE and (Module-)
LWR problems are linked theoretically by the following theorem [BGM+16, Theorem 1 and 2]9.

9 The result in [BGM+16] is only given for normal and Ring LWE/LWR, but extending the result to the module
variants is immediate.
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Theorem 2.1. Let p, q, n, d,m and B be integers such that q > 2 ·p ·B. For every algorithm Learn′

there is an algorithm Learn such that

Pr
A,s,e

[Learn′(A,A · s + e) = s] ≥ Pr
A,s,e

[Learn(A, bA · s + eep) = s]

≥
PrA,s[Learn(A, bA · sep) = s]2

(1 + 2 · p ·B/q)n·m·d

where A ← Rm×dq , the noise e is independent over all m coordinates, B-bounded and balanced in

each coordinate, and s = (si) ∈ Rdq is chosen with any distribution supported such that si ∈ R∗q for
some i.

Note, the first inequality is not from [BGM+16] but it is immediate. To apply this result, we would
take B = c · σ, for some suitable constant c.

The fact that square of the LWR advantage is bounded by the LWE advantage implies that
one will need larger parameters to bound the LWR advantage by a given value, than to bound the
LWE advantage by the same value. Thus using this theoretical reduction will result in very large
parameters indeed. To avoid the problem with the above reduction submissions to the NIST Post-
Quantum cryptography competition based on LWR, such as Saber [DKRV18,DKRV19], estimate
their parameters by using the best attack scenario. In other words the security is estimated using
Albrecht’s LWE-estimator directly, or by assuming the above theorem is an exact inequality between
the various one-way advantages.

This approach is examined in detail in [ACD+18], where to utilize Albrecht’s tool the authors
need to translate the LWR parameters into LWE parameters. In [ACD+18] this is done by setting
the LWE standard deviation to be

σ =

√
(q/p)2 − 1

12
.

The Large Vector Problem: We also need to give a new hardness assumption, which we call LVP.
Consider the following experiment. The challenger constructs a matrix A1 ∈ Fn×nq uniformly at
random, and then selects R1, R2 ∈ Fn×nq with entries selected from the distribution Dσ. The chal-
lenger constructs A2 = A1 ·R1+R2 and gives the pair (A1, A2) to the adversary A. The adversary’s
goal is to come up with a vector x ∈ [−1/2, . . . , 1/2]n such that

‖R1 · x‖∞ ≥ c · σ ·
√
n/2

for some constant c.

We note that the probability that there are no solutions at all to the above problem (when we
sample over all keys) is 1− erfc(c). The probability that there are ANY solutions to this problem
is already very small if c is large enough. Thus for randomly chosen R1 and c large enough, the
adversary already has an impossible task (i.e. information theoretically impossible) in solving LVP.

We also note that if one can solve the search-LWE problem for the pair (A1, A2) then finding
such a m is potentially trivial (if such a m exists). In the ‘unlucky’ event that there is a solution,
since R1 is hidden (due to search-LWE being hard), the adversary is left with outputting a small
vector and ‘hoping’ it works. Sampling over all keys and messages we have with probability erfc(c′)2

that

‖R1 ·m‖∞ ≥ c′ · σ ·
√
n/12.
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The right-hand-side here will be bigger than our desired bound of c · σ ·
√
n/2 when c′ > c ·

√
12/2.

Thus the probability of a random vector satisfying the bound is erfc(c ·
√

12/2)2. This will be less
than 2−128 when c > 3.8 and will be less than 2−256 when c > 5.4.

The adversary can obviously select a different small set than we suggest, but this would simply
changes the bound from

√
n/12 ∗ σ to c′ ∗

√
n ∗ σ for another constant c′. The final effect is

marginal, since by increasing c we could remove this possible, but highly unlikely, attack entirely.
Thus selecting a c which does not eliminate this attack is purely an “optimization” to squeeze a
little extra from the concrete parameters. Concretely it allows us to select a smaller c, in particular
3.8 instead of 9.3, or 5.4 instead of 13.2. This equates to similar size saving in the final parameters.

Thus we define the advantage of an adversary A against this hard problem as

AdvLVPA (n, c, σ) = Pr
[
A1 ← Fn×nq , R1, R2 ← Dn×nσ , A2 = A1 ·R1 +R2,

m← A(A1, A2) : ‖R1 ·m‖∞ ≥ c · σ ·
√
n/2

]
.

Asymmetric and Symmetric Encryption: An asymmetric encryption scheme is a triple of algorithms
Π = (K, E ,D), all of which are probabilistic polynomial time (PPT) algorithms. We let M denote
the plaintext space of Π, C the ciphertext space and R the space of random coins of Π. The
key generation algorithm K takes as input 1t, where t is a security parameter and outputs a
public/private key pair (pk, sk). A symmetric encryption scheme is one in which pk = sk.

The algorithm E(pk,m; r) takes a message m ←M, a public key pk and random coins r ← R
and returns a ciphertext c. The decryption algorithm D(sk, c) recovers the message m or returns
the special symbol ⊥. For correctness we require

Pr
[
D(sk, c) = m : (pk, sk)← K(1t), m←M, r ← R, c← E(pk,m; r)

]
= 1− δ,

where δ is an exponentially small probability of decryption failure. If δ = 0 we say the scheme is
perfectly correct. A public key scheme will be called deterministic if R contains only the empty
string (or equivalently one element), otherwise it will be called randomized.

A scheme which is not perfectly correct can exhibit two forms of decryption failures; either two
messages could map under encryption to the same ciphertext or a valid ciphertext could decrypt
to ⊥. For the first case we say an encryption scheme is δc-Collision Free if

Pr
(sk,pk)←K(1t)

[
∃ m1,m2 ∈M, ∃ r1, r2 ∈ R :

m1 6= m2, E(pk,m1; r1) = E(pk,m2; r2)
]

= δc.

A perfectly correct encryption scheme is 0-Collision Free.
For the second case of decryption failure we consider the following game, which we call ⊥-Aware.

The adversary A is given the public key pk and is required to come up with a plaintext/ciphertext
pair (m, c) such that c = E(pk,m) but D(sk, c) =⊥. We define

Adv⊥−AwareΠ,A (t) = Pr
[

(pk, sk)← K(1t), (m, c)← A(pk) :

c = E(pk,m), D(sk, c) =⊥
]
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and say that Π is ⊥-Aware if Adv⊥−AwareΠ,A (t) is a negligible function of t for all PPT A. Note, if Π

is perfectly correct then Adv⊥−AwareΠ,A (t) = 0.

An asymmetric encryption scheme is said to be rigid, see [BP18] (where the definition is given
just for deterministic schemes, but the generalization to probabilistic schemes is immediate) if

Pr
[

(pk, sk)← K(1t), c← C \ C⊥, ∃r ∈ R, : E(pk,D(sk, c); r) = c
]

= 1,

where C⊥ ⊂ C is the set of all ciphertexts c ∈ C for which D(sk, c) =⊥. The effect of rigidity is
that unless c is the output of E(pk,m; r) for some m and r, then decryption will always return ⊥.
ElGamal is an example of a perfectly correct, rigid probabilistic scheme as every ciphertext pair
(c1 = gr, c2 = m · hr) corresponds to the encryption of some message.

If we let ‖X‖ be the infinity norm on the probability space X of a finite set S, then the min-
entropy of X is − log ‖X‖. A randomized asymmetric encryption scheme is said to be γ-spread
if

max
y∈{0,1}∗

Pr
[
r ← R : y = E(pk,m; r)

]
≥ γ

for all (pk, sk) output by K and all m ∈M. A scheme is said to be well-spread if γ = ω(log t). This
basically means that the probability of a specific ciphertext occurring is negligibly small.

Note, if the set R is suitably large then we can turn a deterministic scheme Πp into a random-
ized well-spread scheme Π ′p by setting E ′p(pk, k; r) = (Ep(pk, k), r). It is from this observation, the
QROM? security in the standard hybrid (non-leaky) encryption model for our construction based
on deterministic public key encryption, mentioned in the introduction, follows.

IND-CPA, IND-CCA and IND-PCA Security: Let Π = (K, E ,D) denote a randomized encryption
scheme (either symmetric or asymmetric) as above, and let A denote an adversary. We associate
to Π,A the following experiments.

Experiment Expind−atk−0Π,A (t)

(pk, sk)← K(1t)
(m0,m1, state)← A1(pk)
r ← R
c∗ ← E(pk,m0; r)
b← A2(c

∗, state)
If b = 0 then return one
Else return zero.

Experiment Expind−atk−1Π,A (t)

(pk, sk)← K(1t)
(m0,m1, state)← A1(pk)
r ← R
c∗ ← E(pk,m1; r)
b← A2(c

∗, state)
If b = 0 then return one
Else return zero.

We require that the adversary’s messages m0 and m1 have the same length length, so as to avoid
trivial distinguishing attacks. This setup defines three games. The first is where atk = cpa in which
the adversary A is given no additional helper oracles. Note, in the symmetric case the above security
notion is that of one-time encryption, i.e. the adversary only ever sees the encryption of a single
message under the key10. The second is where atk = cca in which the adversary is given a decryption
oracle which on input of c 6= c∗ will return D(sk, c) and the third is where atk = pca in which the
adversary is given a so-called plaintext checking oracle which on input of (m, c) checks whether c is

10 As we are dealing with one-time security one should in the symmetric case call this atk = pass, i.e. passive security.
But to maintain consistency with much of the literature we call this one-time IND-CPA security.
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a valid encryption of m. We define the advantage of the adversary A against Π in these games as

Advind−atkΠ,A (t) =
∣∣∣Pr
[
Expind−atk−0Π,A (t) = 1

]
− Pr

[
Expind−atk−1Π,A (t) = 1

]∣∣∣ .
We say that the scheme Π is IND-CPA (resp. IND-CCA or IND-PCA) secure if Advind−cpaΠ,A (t) (resp.

Advind−ccaΠ,A (t) or Advind−pcaΠ,A (t)) is negligible for every PPT A.

OW-CPA, OW-CCA and OW-PCA Security: Let Π = (K, E ,D) denote a randomized encryption
scheme (either symmetric or asymmetric) as above, and let A denote an adversary. We associate
to Π,A the following experiment

Experiment Expow−atk−0Π,A (t)

(pk, sk)← K(1t)
m←M
r ← R
c∗ ← E(pk,m0; r)
m′ ← A(pk, c∗)
If m = m′ then return one
Else return zero.

Again this setup defines three games; one where atk = cpa in which the adversary A is given no
additional helper oracles, one where atk = cca in which the adversary is given a decryption oracle
which on input of c 6= c∗ will return D(sk, c) and one where atk = pca in which the adversary
is given a so-called plaintext checking oracle which on input of (m, c) checks whether c is a valid
encryption of m. We define the advantage of the adversary A against Π in these games as

Advow−atkΠ,A (t) =

∣∣∣∣Pr
[
Expow−atk−0Π,A (t) = 1

]
− 1

|M|

∣∣∣∣ .
We say that Π is OW-CPA (resp. OW-CCA or OW-PCA) secure if Advow−cpaΠ,A (t) (resp. Advow−ccaΠ,A (k)

or Advow−pcaΠ,A (t)) is negligible for every PPT A.

De-randomizing IND-CPA Ciphers: Most post-quantum hybrid constructions go via a step of de-
randomization of an IND-CPA cipher to obtain a rigid deterministic PRIV-CCA encryption scheme,
see below. This is then combined with the Fujisaki-Okamoto transform to obtain the final hybrid
cipher. However, the problem with this approach is that the de-randomization is a costly operation
to perform in a threshold manner. Therefore our goal is to have a hybrid method which does
not use this de-randomization. Nevertheless, one can use our hybrid construction with such de-
randomizations if desired.

The de-randommization is via a process called by Bellare, Boldyreva and O’Neill [BBO07],
Encrypt-with-Hash, which produces a rigid deterministic encryption scheme. Note, in [HHK17,JZC+18,JZM19]
the authors reinvent the IND-CPA to OW-PCA transform called Encrypt-with-Hash from ten
year earlier, in the context of deriving a post-quantum KEM-DEM construction via the Fujisaki-
Okamoto transform in the QROM.
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PRIV-CPA and PRIV-CCA Security For Deterministic Encryption: In [BBO07] security notions
are presented for deterministic asymmetric encryption schemes. We simplify somewhat their defi-
nition for our purposes, in particular our PRIV adversaries will utilize only one challenge message
and not a vector of messages. In what follows we let Π = (DK,DE ,DD) denote a deterministic
public key encryption scheme with message space DM.

An adversary A = (Am,Ag) is a pair of PPT algorithms where Am has single input 1t and Ag
has input (1t, c, pk); and no other inputs. The goal of Am is to generate a message m ∈ DM and
some side information s, whereas the goal of Ag is to take c (the encryption of m) and determine
the side information. The algorithm Am is the message generator and Ag is the information guesser.
The adversary A is said to have min-entropy µ(t) if for all x ∈ DM

Pr
[
m = x : (m, s)← Am(1t)

]
≤ 2−µ(t).

We say A has high min-entropy if µ(t) ∈ ω(log(t)).
To formalize the attack notion we define the following experiments. Again we define two games;

one where atk = cpa in which the adversary A is given no additional helper oracles, and one where
atk = cca in which the adversary Ag (but not Am) is given a decryption oracle which on input of
c 6= c∗ will return DD(sk, c).

Experiment Exppriv−atk−0Π,A (t)

(pk, sk)← DK(1t)
(m0, s0)← Am(1t)
r ← R
c∗ ← DE(pk,m0; r)
g ← Ag(1t, c∗, pk)
If g = s0 then return one
Else return zero

Experiment Exppriv−atk−1Π,A (t)

(pk, sk)← DK(1t)
(m0, s0)← Am(1t)
(m1, s1)← Am(1t)
r ← R
c∗ ← DE(pk,m0; r)
g ← Ag(1t, c∗, pk)
If g = s1 then return one
Else return zero

We define the advantage of the adversary A against Π in this game as

Advpriv−atkΠ,A (t) =
∣∣∣Pr
[
Exppriv−atk−0Π,A (t) = 1

]
− Pr

[
Exppriv−atk−1Π,A (t) = 1

]∣∣∣ .
We say that Π is PRIV-CPA (resp. PRIV-CCA) secure if Advpriv−cpaΠ,A (t) (resp. Advpriv−ccaΠ,A (t)) is
negligible for every PPT A. Note that PRIV-CPA (resp. PRIV-CCA) implies OW-CPA (resp.
OW-CCA) since the adversary Am can output (m,m).

Encrypt-with-Hash: The paper [BBO07] as well as providing the above security definition for de-
terministic public key encryption also gives the following construction, called Encrypt-with-Hash.
The construction takes a randomized public key encryption scheme Π = (K, E ,D) with space of
random coins R, a hash function G with codomain R, and constructs a deterministic encryption
scheme Π ′ = (DK,DE ,DD) as follows:

DK(1t):

(pk, sk)← K(1t)
Return (pk, (sk, pk))

DE(pk,m):

r ← G(pk‖m)
c← E(pk,m; r)
Return c

DD(sk, c):

m← D(sk, c)
r ← G(pk‖m)
If E(pk,m; r) = c then

return m
Else return ⊥

14



If we define the max public-key probability mpk(t) of Π as

mpk(t) = max
w

(
Pr
[
pk = w : (pk, sk)← K(1t)

])
.

We also define the max ciphertext probability mc(t) of Π as

mc(t) = max
m∈M

(
Pr
[
c1 = c2 : (pk, sk)← K(1t), r1, r2 ← R,

c1 ← E(pk,m; r1), c2 ← E(pk,m; r2)
])
.

Then we have the following result, from [BBO07],

Theorem 2.2. Suppose there is a A = (Am,Ag) PRIV-CCA adversary against Π ′ with minen-
tropy µ making at most qh queries to its hash oracle and qd queries to its decryption oracle. Then
there is an IND-CPA adversary B against Π such that

Advpriv−ccaΠ′,A ≤ Advind−cpaΠ,B +
2 · qh

2µ
+ 2 · qh ·mpk + 2 · qd ·mc.

Note, even the PRIV-CCA security of Π ′ rests solely on the IND-CPA security of Π. We obtain
the result for PRIV-CPA by taking qd = 0 in the above theorem.

Encryption With Distributed Decryption: Given a set P = {P1, . . . ,Pn} of parties, we consider
access structures A consisting of a monotonically increasing set of subsets of 2P . A set S is said to
be qualified if S ∈ A, and unqualified otherwise. Given an encryption scheme Π = (K, E ,D) we say
that the scheme admits a distributed decryption functionality for an access structure A, if there
are two n-party protocols ΠK and ΠD. The protocol ΠK produces some data ski for each party,
called the secret key shares. The protocol ΠD on input of an agreed ciphertext c from all parties
in S ∈ A, and the value ski from all parties in S, will output the value m = D(sk, c).

The distributed decryption protocols are said to be secure (in the IND-ATK sense) if an un-
qualified set of adversarial parties cannot, while interacting with a qualified set of parties, break
the IND-ATK security of the underlying encryption scheme. This security definition can be made
more formal by saying that the distributed decryption protocol should act like an ideal decryption
functionality. See [SG98,SG02] for a specific instantiation.

We shall assume an actively secure MPC protocol for the access structure A, and will then
construct an algorithm which implements the algorithm D within the MPC protocol. Thus it
automatically becomes a distributed protocol ΠD for the decryption functionality, and its security
is inherited from the underlying MPC protocol. The challenging part is to develop the encryption
scheme and the specific instantiation of D to enable the underlying MPC system to provide an
efficient distributed implementation.

By using a generic MPC functionality, as opposed to a specific protocol, we restrict ourselves
to the threshold case where all parties have to be involved in the computation; but where security
is maintained against an adversary controlling a given threshold. This is in contrast to the models
proposed in [SG98,SG02] which allow for a subset of the key-share holding parties to participate.

KEM-DEM Philosophy: A central tenant when using public key encryption in practice, is that
one never encrypts a large message with a public key algorithm. Instead one encrypts the actual
message with a fast symmetric key algorithm, such as AES-GCM, and then the symmetric key is
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transferred to the recipient using a public key scheme. Thus producing a hybrid encryption scheme.
In this way the symmetric key is only used once in the symmetric cipher, and thus we do not need
a fully secure AEAD scheme but the weaker notion of a DEM, and the public key scheme is only
needed to transport a single random key (and not a message) leading to the simpler public key
construction of a KEM. See [CS03] for an extensive discussion, with the standard definitions and
proofs.

We let Πp = (Kp, Ep,Dp) denote an IND-CCA public key encryption scheme with message
spaceMp, ciphertext space Cp, and space of random coins Rp, and let Πs = (Ks, Es,Ds) denote an
IND-CCA symmetric key encryption scheme (which recall for us is always one-time and hence a
DEM) with message space Ms = {0, 1}∗. From these two components one can construct a KEM-
DEM encryption scheme for arbitrary long messages as follows: We first define a hash function
H :Mp −→ Ks where by abuse of notation by Ks we mean the key space of Πs. We can then define
a hybrid encryption scheme Πh = (Kh, Eh,Dh) as follows

Kh(1t):

(pk, sk)← Kp(1t)
Return (pk, sk)

Eh(pk,m):

k ←Mp

r ← Rp, r′ ← Rs
k← H(k).
c1 ← Ep(pk, k; r)
c2 ← Es(k,m; r′)
Return (c1, c2)

Dh(sk, (c1, c2)):

k ← Dp(sk, c1)
If k =⊥ then return ⊥
k← H(k).
m← Ds(k, c2)
Return m

Naive Threshold KEM-DEM: The goal of our work is to produce threshold public key encryption
for long messages; namely we would want to share the decryption key amongst a set of entities so
that a given subset needs to come together to decrypt. Clearly we would not want the extra expense
of the threshold decryption to impact when encrypting very large messages. Thus we would want
to use something akin to the KEM-DEM philosophy, with the main message being encrypted and
decrypted via a fast cipher such as AES-GCM.

Finding KEM-like constructions which admit distributed decryption protocols is relatively easy.
However, whilst it is possible to execute AES in a threshold manner, see e.g. [KOR+17,PSSW09],
the performance for long messages is prohibitive. Thus distributed DEMs are much harder to
obtain. For this reason we would like to apply the decryption of the large message ‘in the clear’,
but this implies that the decryption algorithm will need to ‘leak’ the decryption key k of the DEM
component. In particular this key will leak irrespective of whether the DEM decrypts correctly or
not; since the decrypting parties need to obtain the DEM key before it is known whether the key
is valid for the DEM.

Our decryption algorithm functionality, and thus the functionality of any decryption oracle
given to an adversary, would therefore be of the form

Dh(sk, (c1, c2)):

k ← Dp(sk, c1)
If k =⊥ then return (⊥,⊥)
k← H(k).
m← Ds(k, c2)
Return (k,m)

This provides an immediate attack in the standard IND-CCA model on the hybrid construction.
An adversary takes the target ciphertext (c∗1, c

∗
2), submits (c∗1, c2) to the decryption oracle for a
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random value c2. With high probability, they will receive (k,⊥). Then, they can use k to obtain k
and thus decrypt c∗2, and so win the security game. It is to avoid this attack that we modify the
KEM-DEM framework in the next section.

Generic Multi-Party Computation Our methodology uses a generic actively-secure-with-abort MPC
functionality defined via Linear Secret Sharing over the field Fq. This means that inputs of the
parties remain private throughout the execution of the protocol, and when a set of adversaries
deviate from the protocol, honest parties will catch this with overwhelming probability and then
abort from the protocol. This should be compared to passively secure protocols which offer a much
weaker guarantee that security is only preserved if all parties follow the precise protocol steps
correctly. We present in Figure 1 the base MPC functionality. Despite using a generic underlying
protocol, our protocol ends up being surprisingly efficient. This is because we carefully designed
Gladius to be both efficient in a distributed and a non-distributed manner.

Operations for Secure Computation, FMPC.

The functionality runs with P = {P1, . . . ,Pn} and an ideal adversary A, that statically corrupts a set A of
parties. Given a set I of valid identifiers, all values are stored in the form (varid , x), where varid ∈ I.

Initialize: On input (init , p) from all parties, the functionality stores (domain, p),
Input: On input (input ,Pi, varid , x) from Pi and (input ,Pi, varid , ?) from all other parties, with varid a fresh

identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and

varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y).
Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory

and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).
Output: On input (output , varid , i) from all honest parties (if varid is present in memory), the functionality

retrieves (varid , y) and outputs it to the environment. The functionality waits for an input from the envi-
ronment. If this input is Deliver then y is output to all players if i = 0, or y is output to player i if i 6= 0. If
the adversarial input is not equal to Deliver then all player abort.

Figure 1. Operations for Secure Computation, FMPC.

To ease notation we denote a variable x ∈ Fq stored within the MPC functionality via 〈x〉, and
write addition and multiplication of shares as 〈x〉 + 〈y〉 and 〈x〉 · 〈y〉. We extend the notation to
vectors and matrices in the obvious way via 〈x〉 and 〈A〉. If 〈x〉 is a shared vector we let 〈xi〉 denote
the shared entries, and if 〈A〉 is a shared matrix we let 〈A(i,j)〉 denote the shared entries; with a
similar notation for vectors and matrices of non-shared values.

The cost model for LSSS-based MPC protocols is such that addition of such shared entities is
‘for free’, whereas multiplication consumes resources (typically communication). Many MPC proto-
cols in this setting, such as [BDOZ11,DPSZ12,KOS16,SW19], work in an offline/online manner. In
this setting the multiplication not only consumes communication resources in the online phase, but
also consumes some correlated randomness (so-called Beaver triples) from the offline phase. How-
ever, an advantage of these offline/online models is that one can prepare other forms of correlated
randomness in the offline phase; such as shares of random bits 〈b〉 with an unknown b ∈ {0, 1}. In
our algorithms below we will write this as 〈b〉 ← Bits(). If we sample a shared random element in
Fq, we will denote this by 〈x〉 ← Fq. To open an element we will write x ← Output(〈x〉) when it
is output to all players.
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MPC Friendly Hash Functions: Rescue: Our LWR-based construction of a hybrid cipher with
efficient distributed decryption will make use of an MPC-friendly hash function, such as those in
[AAB+19,GKK+19]. These hash function constructions are sponge-based, and there are two types;
those suitable for MPC over characteristic two fields (StarkAD and Vision) and those suitable for
MPC over large prime fields (Poseidon and Rescue). In this paper, we concentrate on the Rescue
design from [AAB+19], which seems more suited to our application.

Rescue has a state of t = r + c finite field elements in Fq. The initial state of the sponge is
defined to be the vector of t zero elements. A message is first mapped into n = d · r elements in
Fq, m0,m1, . . . ,mn−1. The elements are absorbed into the sponge in d absorption phases, where r
elements are absorbed in each phase. At each phase a permutation f : Ftq −→ Ftq is applied resulting
in a state s0, . . . , st−1. At the end the absorption the r values sc, . . . , st−1 are output from the state.
This process can then be repeated, with more data absorbed and then squeezed out. Thus we are
defining a map H : Fnq −→ Frq.

Each primitive call f in the Rescue sponge is performed by executing a round function rnds times.
The round function is parametrized by a (small prime) value α, an MDS matrix M ∈ Ft×tq and two
step constants ki,k

′
i ∈ Ftq. The value α is chosen to be the smallest prime such that gcd(q−1, α) = 1.

The round function is consists in apply exponentiation by 1/α, followed by application of the MDS
matrix, followed by addition of the round constant ki, followed by exponentiation by α, followed by
a further application of the MDS matrix, followed by addition of the round constant k′i. To obtain
security of the entire construction we require that

`0 =
⌈ 2 · κ

log2(q
t+1)− log2((α− 1)t+1)

⌉
,

`1 =


⌈
κ+2
4·t

⌉
α = 3,⌈

κ+3
5.5·t

⌉
α ≥ 5,

rnds = 2 ·max( `0 , `1 , 5 ),

min(r, c) ≥ 2 · κ/ log2 q

where κ is the desired security parameter. See [BST19] for a discussion of implementing Rescue in
an MPC system; albeit for a large prime characteristic q of more than 256-bits. In our application
q will be in the region of 21-bits.

3 Generic Hybrid Constructions

We let Πp = (Kp, Ep,Dp) denote a OW-CPA secure, rigid, deterministic (resp. a OW-PCA secure,
rigid and randomized) public key encryption scheme with message space Mp and ciphertext space
Cp which is OW-CPA secure, We let Πs = (Ks, Es,Ds) denote a (one-time) IND-CPA symmetric
key encryption scheme with message space Ms = {0, 1}∗ and ciphertext space Cs ⊂ {0, 1}∗. Again
by abuse of notation we let Ks also denote the key space of Πs.

3.1 Hybrid1 Construction

For this construction we define two hash functions

H :Mp −→ Ks,
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G :

{
{0, 1}∗ ×Mp −→ {0, 1}|G| If Πp is deterministic

Cp × {0, 1}∗ ×Mp −→ {0, 1}|G| If Πp is randomized

Note, G is defined to take elements in Mp as the last entry for efficiency reasons (see below). We
can then define our first hybrid encryption scheme Πh = (Kh, Eh,Dh) as follows

Kh(1t):

(pk, sk)← Kp(1t)
Return (pk, sk)

Eh(pk,m):

k ←Mp

k← H(k)
r ← Rs
c1 ← Ep(pk, k)
c2 ← Es(k,m; r)
c3 ← G(c2, k)

(resp. c3 ← G(c1, c2, k))
Return (c1, c2, c3)

Dh(sk, (c1, c2, c3)):

k ← Dp(sk, c1)
If k =⊥ then return (⊥,⊥).
t← G(c2, k)

(resp. t← G(c1, c2, k))
If t 6= c3 then return (⊥,⊥).
k← H(k).
m← Ds(k, c2)
Return (k,m).

Notice how the decryption function ‘leaks’ the key k which is encrypted by the deterministic
function even when the decryption function Ds fails. This will allow us, in our threshold decryption
operation, to also leak this key before the algorithm Ds is called, enabling Ds to be applied in the
clear. The only question though is whether leaking this key is secure. The attack described from
the last section does not apply, as the invalid ciphertext is already rejected by the testing for the
correct value of G, which does not leak k if the test fails. In what follows we call this check the
G-check.

As remarked in the introduction the variant of the hybrid construction which utilizes a deter-
minsitic Πp can be seen as a special form of the second Fujisaki-Okamoto hybrid construction;
assuming the space Mp is exponentially large to ensure the resulting ‘randomized’ public key
scheme is well-spread. Thus, the above hybrid construction is secure not only in the ROM, but also
in the QROM, when we do not leak the secret key k during the decryption process and when Πp

is perfectly correct.
In the standard random oracle model, the following theorem shows that first hybrid construction

is secure in a model in which the key k does leak during decryption as above, and where we combine
it with a generic one-time IND-CPA DEM.

Theorem 3.1. If H and G are modelled as random oracles then if A is an IND-CCA adversary
against Πh then there is an OW-CPA adversary (resp. OW-PCA) adversary B against the deter-
ministic (resp. randomized) rigid public key scheme Πp, which is δc-Collision Free, a (one-time)
IND-CPA adversary C against Πs, and a δ − Aware adversary D against Πp such that

Advind−ccaΠh,A (t) ≤ Advow−cpaΠp,B (t) + Advind−cpaΠs,C (t) + qd · Adv⊥−AwareΠp,D (t)

+
1

|Mp|
+

2 · qd + q2G
2|G|

+ δc

where qd (resp. qG) is an upper bound on the number of decryption oracle (resp. G-oracle) queries
and the decryption oracle queries made to the hybrid scheme leak the key k as above.

Proof. Let A be an adversary against the scheme Πh above in the IND-CCA sense. Recall A runs
in two phases: In phase one A1 has input the public key pk and it returns two messages m0 and
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m1, of equal length, plus some state information state. The target ciphertext, which in Expind−cca−bΠh,A
encrypts the message mb, we will denote by c∗ = (c∗1, c

∗
2, c
∗
3). This is constructed as follows:

k∗ ←Mp

k∗ ← H(k∗)

r∗ ← Rs

c∗1 ←
{
Ep(pk, k∗) If Πp is deterministic
Ep(pk, k∗; r′) For r′ ← Rp if Πp is randomized

c∗2 ← Es(k∗,mb; r
∗)

c∗3 ←
{
G(c∗2, k

∗) If Πp is deterministic
G(c∗1, c

∗
2, k
∗) If Πp is randomized

We define three bad events:

- Let bad1 denote the event that the adversary makes a query to its decryption oracle for a
ciphertext (c1, c2, c3) such that c1 is a ciphertext for which there are two messages which map
to it.

- Let bad2 denote the event that the adversary queries the decryption oracle for a ciphertext
(c1, c2, c3) such that c1 = Ep(pk, k) with Dp(sk, c) =⊥ and in addition queries G on an input
(c′2, k) (resp. (c′1, c

′
2, k)) for the same value of k (but possibly different c′1 and c′2).

- Let bad3 denote the event that A calls the random oracle H on input k∗ or A calls the random
oracle G on input (c2, k

∗) (resp. (c1, c2, k
∗)) for an arbitrary value c2 (resp. two arbitrary values

c1 and c2).

We thus have, setting bad = bad1 ∨ bad2 ∨ bad3,∣∣∣Pr
[
Expind−cca−0Πh,A (t) = 1

]
− Pr

[
Expind−cca−1Πh,A (t) = 1

]∣∣∣
≤ Pr[ bad ] +

∣∣∣Pr
[
Expind−cca−0Πh,A (t) = 1 | ¬bad

]
− Pr

[
Expind−cca−1Πh,A (t) = 1 | ¬bad

]∣∣∣
To bound the second term in this inequality we define two new experiments Expind

′−cca−b
Πh,A for

b ∈ {0, 1} where we replace the above construction of the challenge ciphertext by the following
construction, where the key k∗ is now sampled at random and has nothing to do with k∗

k∗ ←Mp

k∗ ← Ks
r∗ ← Rs

c∗1 ←
{
Ep(pk, k∗) If Πp is deterministic
Ep(pk, k∗; r′) For r′ ← Rp if Πp is randomized

c∗2 ← Es(k∗,mb; r
∗)

c∗3 ←
{
G(c∗2, k

∗) If Πp is deterministic
G(c∗1, c

∗
2, k
∗) If Πp is randomized
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It is clear that we have∣∣∣Pr
[
Expind−cca−0Πh,A (t) = 1 | ¬bad

]
− Pr

[
Expind−cca−1Πh,A (t) = 1 | ¬bad

]∣∣∣
=
∣∣∣Pr

[
Expind

′−cca−0
Πh,A (t) = 1 | ¬bad

]
− Pr

[
Expind

′−cca−1
Πh,A (t) = 1 | ¬bad

]∣∣∣.
We aim to show that given an adversary A which tries to distinguish between Expind

′−cca−0
Πh,A and

Expind
′−cca−1

Πh,A (assuming ¬bad) we can construct an adversary C which tries to distinguish between

Expind−cpa−0Πs,C and Expind−cpa−1Πs,C . In other words∣∣∣Pr
[
Expind

′−cca−0
Πh,A (t) = 1 | ¬bad

]
− Pr

[
Expind

′−cca−1
Πh,A (t) = 1 | ¬bad

]∣∣∣
≤ Advind−cpaΠs,C (t) +

qd
2|G|

. (1)

Algorithm C1 is constructed as follows. It generates a public/private key pair (pk, sk) ← Kp and
passed pk to algorithm A1. When A1 returns with the tuple (m0,m1, state), Algorithm C1 returns
(m0,m1, (pk, sk, state)) to its environment. Algorithm C2 is then called with input (c∗, (pk, sk, state)).
At this point C2 needs to create a ciphertext to pass to algorithm A2; which it does as follows: It
generates a k∗ ←Mp and computes c∗1 = Ep(pk, k∗), and sets c∗2 ← c∗ and c∗3 at random from the
codomain of G. The tuple ((c∗1, c

∗
2, c
∗
3), state) is returned to algorithm A2. Eventually algorithm A2

returns a bit b which algorithm C2 returns to its environment.
The oracle calls of A1 and A2 are handled as follows:

- G(c2, k) (resp. G(c1, c2, k)): This is processed in the standard way, and since event bad does not
happen it never has to answer any query on k∗.

- H(k): This is processed in the standard way. Again as event bad does not happen it never has
to respond with H(k∗).

- ODh(c1, c2, c3): Decryption oracle queries are handled as follows:
- If c1 6= c∗1 then decrypt c1 using Dp(sk, c1) and proceed as for normal decryption.
- If c1 = c∗1 and c2 = c∗2 then output (⊥,⊥). Since either c3 = c∗3 in which case this call is

invalid, or c3 6= c∗3 in which case the valid decryption oracle will reject this ciphertext via
the G-check.

- If c1 = c∗1 and c2 6= c∗2 then since bad does not happen we know the adversary has not called
G on input (c2, k

∗) (resp. (c∗1, c2, k
∗)) (and never will do) thus we can output (⊥,⊥). This

will be the correct response unless the oracle G would respond with c3, which happens with
probability 1/2|G|. This corresponds to the qd/2

|G| term in equation (1).

It is easy to see that this simulation is perfect on the assumption that event bad does not happen.

We now turn to bounding Pr[ bad ] = Pr[bad1 ∨ bad2 ∨ bad3]. By assumption Pr[bad1] ≤ δc, thus
we have

Pr[ bad ] ≤ δc + Pr[¬bad1 ∧ ( bad2 ∨ bad3 )].

To bound the last term we simulate the hash and decryption oracles as follows (the hash oracle
queries are handled as standard random oracle queries):

- We search for (k, h) on the H-List, if such an entry exists it returns h, otherwise it generates h
at random, adds (k, h) to the H-List and returns h.
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- When G(c2, k) (resp. G(c1, c2, k)) is called we searches for ((c2, k), g) (resp. ((c1, c2, k), g)) on the
G-List, if such an entry exists it returns g, otherwise it generates g at random, adds ((c2, k), g)
(resp. ((c1, c2, k), g)) to the G-List and returns g. If ever a collision in output values of the G
oracle occurs then abort; which happens with probability roughly q2g/2

|G|.

- When A1 makes a decryption oracle query (c1, c2, c3) in the case of Πp being deterministic,
the simulator check whether there is an entry ((c′2, k), g′) on the G-List such that c1 is an
encryption of k (using the fact that Πp is deterministic encryption). Since Πp is rigid if c1
decrypts to anything then then that something must encrypt to c1. If there is no such entry
then B returns (⊥,⊥), which will be an invalid response with probability 1/2|G| as the probability
of G returning c3 is 1/2|G|. This accounts for a qd/2

|G| term in the theorem.

Since event bad1 does not happen the ciphertext c1 cannot be the encryption of any other value
other than k. We proceed assuming that c1 encrypts k, but does not decrypt to ⊥.

Note that ((c′2, k), g′) is on the G-List, but not necessarily ((c2, k), g) at this point. Thus if there
is no entry of the form ((c2, k), g) on the G-List we can simulate the query using the simulation
above. We can thus assume that ((c2, k), g) lies in the G-List for some g. If g 6= c3 then B returns
(⊥,⊥), since such a decryption query will result in the G-check failing.

At this point we know the G-Check will pass and so we can simulate a call k = H(k) as above,
and proceeds to attempt to decrypt c2 using k, obtaining either r =⊥ or r = m, a valid message.
In both cases algorithm B replies with (k, r).

- When A1 makes a decryption oracle query (c1, c2, c3) in the case of Πp being randomized, we
check whether there is an entry ((c′1, c

′
2, k), g′) on the G-List such that c1 is an encryption of k,

(this is done using the PCA oracle provided in this case). Again since Πp is rigid we know that
if c1 decrypts to k, then there is a randomness choice in encryption so that k encrypts to c1. If
there is no such entry then B returns (⊥,⊥), which will be an invalid response with probability
1/2|G| as the probability of G returning c3 is 1/2|G|. This accounts for a qd/2

|G| term in the
theorem.

As before we now know there is an entry of the form ((c′1, c
′
2, k), g′) on the G-List such that k

encrypts to c1, and that c1 decrypts to k.

For this value of k if there is no entry of the form ((c1, c2, k), g) on the G-List then B simulates
the query using the simulation above, we can thus assume that ((c1, c2, k), g) lies in the G-List
for some g. If g 6= c3 then B returns (⊥,⊥), since such a decryption query will result in the
G-check failing.

At this point we know the G-Check will pass and so algorithm B simulates a call k = H(k) as
above, and proceeds to attempt to decrypt c2 using k, obtaining either r =⊥ or r = m, a valid
message. In both cases algorithm B replies with (k, r).

This simulation will be perfect unless event bad2 happens. In that case we can use the simulation
to construct an algorithm D which runs the above simulation and simply return a pair (k, c1) for
a c1 which was passed to the decryption oracle which it decrypted to k. With probability 1/qd this
will correspond to the bad2 event and will be a solution to the ⊥-Aware problem. Thus we have

Pr[ bad ] ≤ δc + Pr[¬bad1 ∧ ( bad2 ∨ bad3 )]

≤ δc + Pr[¬bad1 ∧ bad2] + Pr[¬bad1 ∧ ¬bad2 ∧ bad3]

≤ δc +
qd + q2g

2|G|
+ qd · Adv⊥−AwareΠp,D (t) + Pr[¬bad1 ∧ ¬bad2 ∧ bad3].
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The main part of the proof is to show that

Pr[¬bad1 ∧ ¬bad2 ∧ bad3]] ≤ Advow−cpaΠp,B (t) +
1

|Mp|
for some adversary B. Adversary B has as input a public key pk and a target ciphertext c∗ for the
public key scheme (Kp, Ep,Dp). Algorithm B calls algorithm A1, responding to the oracle queries
as above, but with the following important modifications:

- When H(k) is called algorithm B checks whether c∗ is an encryption of k under pk. It can do
this since Ep is deterministic (alternatively by using the PCA oracle in the case when Ep is not
deterministic). If c∗ is an encryption of k then B terminates and outputs k.

- When G(c2, k) (resp. G(c1, c2, k)) is called algorithm B checks whether c∗ is an encryption of k
under pk, as above. If c∗ is an encryption of k then B terminates and outputs k.

At some point A1 returns two messages m0 and m1. Algorithm B forms an encryption of mb by
setting c∗1 = c∗, generating k∗ at random, computing c∗2 = Es(k∗,mb), and finally generating c∗3
at random. Thus we have implicitly defined H(k∗) = k∗ and G(c∗1, c

∗
2, k
∗) = c∗3, for the unknown

value k∗ which is encrypted by c∗1. The ciphertext (c∗1, c
∗
2, c
∗
3) is now returned to algorithm A2.

Algorithm A2 proceeds, with the oracle queries being answered by B as above. We need to modify
the decryption oracle in the following order of conditionals:

- The query (c∗1, c
∗
2, c
∗
3) is not allowed.

- The query (c∗1, c
∗
2, c3) will result in (⊥,⊥) since the G-Check will fail in both instances.

- The query (c∗1, c2, c
∗
3) will result in (⊥,⊥) being output, as the only way this could be a valid

query is if a collision in G was found.
- The query (c∗1, c2, c3) is processed as before which will either lead to algorithm A terminating

by outputting the key k∗ or the output of (⊥,⊥).
- The query (c1, c

∗
2, c
∗
3) in the case of a deterministic Πp can only be valid if a collision in G is

found. Since c1 will decrypt to k 6= k∗ and we would have G(c∗2, k) = G(c∗2, k
∗) = c∗3. The same

is true for the case of the randomized scheme, but only because we included c1 into the domain
of G in this case, since in this case c1 could decrypt to k∗.

- The query (c1, c
∗
2, c3) for c3 6= c∗3 is processed as before.

- The query (c1, c2, c
∗
3) will result in (⊥,⊥) being output, as the only way this could be a valid

query is if a collision in G was found.
- In all other cases it is processed as before.

If we assume event bad3 happens then algorithm B will terminate and output the valid message k∗

for which c∗ is an encrypton. In which case this is a valid solution to the OW-CPA problem. ut

3.2 Hybrid2 Construction

Our second hybrid construction focuses solely on the case of Πp being a rigid deterministic OW-
CPA public key encryption scheme, we show that the generic hybrid transform, which uses the four
hash functions,

H :Mp −→ Ks,
H ′, H ′′ :Mp −→Mp

G : {0, 1}∗ ×Mp −→ {0, 1}|G|

given by

23



Kh(1t):

(pk, sk)← Kp(1t)
Return (pk, sk)

Eh(pk,m):

k ←Mp

k← H(k)
µ← H ′(k)
r ← Rs
c1 ← Ep(pk, k)
c2 ← Es(k,m; r)
c3 ← G(c2, µ)
c4 ← H ′′(k)
Return (c1, c2, c3, c4)

Dh(sk, (c1, c2, c3, c4)):

k ← Dp(sk, c1)
If k =⊥ then return (⊥,⊥).
t← H ′′(k)
If t 6= c4 then return (⊥,⊥).
µ← H ′(k)
t′ ← G(c2, µ)
If t′ 6= c3 then return (⊥,⊥).
k← H(k).
m← Ds(k, c2)
Return (k,m).

is secure in the QROM. Namely we have the following theorem

Theorem 3.2. If G, H, H ′ and H ′′ are modelled as quantum random oracles then if A is an
IND-CCA adversary against Πh then there is a (one-time) IND-CPA adversary B against Πs, a
⊥-Aware adversary C against the deterministic rigid public key scheme Πp – which is δc-Collision
Free and δ being the probability of its decryption failure for a uniformly random message – and
OW-CPA adversaries D and E against Πp such that

Advind−ccaΠh,A (t) ≤ Advind−cpaΠs,B (t) + δ

+ 4q1

√
q3√
|Mp|

+
qd

2|G|
+ δ′ + Advow−cpaΠp,D (t) + 2q2

√
δ′ + Advow−cpaΠp,E (t)

for q1 = qH + qH′ + 2qd, q2 = qH′′ + qd, q3 = 2(qG + qd + 1) and

δ′ = δc + qd · Adv⊥−AwareΠp,C (t) +
1

|Mp|
,

where qd, qG, qH , qH′ and qH′′ are respective upper bounds on the number of decryption oracle,
G-oracle, H-oracle, H ′-oracle and H ′′-oracle queries and the decryption oracle queries made to the
hybrid scheme leak the key k as above.

First, we introduce some lemmas in the QROM that will be used to prove this theorem. The
following lemma allows a perfect simulation of a quantum random oracle against an adversary.

Lemma 3.1 (Simulating a QRO [Zha12]). Let H(.) be an oracle drawn from the set of 2q-wise
independent functions uniformly at random. Then the advantage any quantum algorithm making at
most q quantum queries to H(.) has in distinguishing H(.) from a truly random oracle is identically
zero.

The second lemma intuitively states that a quantum random oracle can be used as a quantum-
accessible pseudo-random function, even if the distinguisher is given full access to the quantum
random oracle in addition to the PRF oracle.

Lemma 3.2 (PRF based on a QRO). Let ΩH be the set of all functions H : K × X → Y and

ΩR be the set of all functions R : X → Y. Let H
$← ΩH , k

$← K and R
$← ΩR. Define the oracles

F0 = H(k, .) and F1 = R(.). Consider an oracle algorithm/distinguisher AH,Fi that makes at most
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q queries to H and Fi (i ∈ {0, 1}). If (“the PRF key”) k is chosen independently from AH,Fi’s view,
then we have

|Pr[1← AH,F0 ]− Pr[1← AH,F1 ]| ≤ 2q√
|K|

The third lemma provides a generic reduction from a hiding-style property (indistinguishability)
to a one-wayness-style property (unpredictability) in the QROM.

Lemma 3.3 (One-Way to Hiding (OW2H) [Unr14]). Let ΩH be the set of all functions

H : X → Y and let H
$← ΩH be a quantum random oracle. Consider an oracle algorithm AH that

makes at most q queries to H. Let BH be an oracle algorithm that on input x does the following:

picks i
$← {1, . . . , q} and y

$← Y, runs AH(x, y) until (just before) the i-th query, measures the
argument of the query in the computational basis and outputs the measurement outcome (if A
makes less than i queries, B outputs ⊥/∈ X ). Let,

P 1
A = Pr[b′ = 1 : H

$← ΩH , x
$← X , b′ ← AH(x,H(x))]

P 2
A = Pr[b′ = 1 : H

$← ΩH , x
$← X , y $← Y, b′ ← AH(x, y)]

PB = Pr[x′ = x : H
$← ΩH , x

$← X , x′ ← CH(x, i)]

Then, we have |P 1
A − P 2

A| ≤ 2q
√
PB.

Proof (of Theorem 3.2). Let A be an adversary against the scheme Πh above in the IND-CCA
sense in the quantum random oracle model. Suppose A issues at most qG, qH , qH′ and qH′′ quantum
queries to the random oracles G, H, H ′ and H ′′ respectively and at most qd classical decryption
queries. Let ΩG, ΩH , ΩH′ and ΩH′′ be the set of all functions G : {0, 1}∗ ×Mp → {0, 1}|G|, H :
Mp → Ks and H ′, H ′′ :Mp →Mp respectively.

The game G0 (see Fig. 2) is the IND-CCA security experiment associated to Πh and A. Hence,
we have Advind−ccaΠh,A (t) = |2 Pr[G0 = 1] − 1|. Now to bound the success probability of A in G0, we
introduce a sequence of hybrid games. Figure 2 describes games G0 – G3.

In game G1, we introduce some “cosmetic” changes to the setup. Namely, we generate the values
k∗, k∗, µ∗ and c∗1 before A outputs the pair of challenge messages (m0,m1). This does not affect
A’s view in any way when it queries the oracles G,H,H ′, H ′′ and Dh in phase one (i.e., before A
returns (m0,m1)). Hence, Pr[G1 = 1] = Pr[G0 = 1].

In game G2, we modify the decryption oracle Dh as follows: if c1 = c∗1, then we replace the
hash evaluation “µ ← H ′(k)” with “µ ← µ∗”. (We also make another “cosmetic change” to Dh
where, if k =⊥, we make a classical H ′′-query on a uniformly random k′

$←Mp. This change will
become apparent later on when we make further modifications to Dh that allows us to decrypt
any ciphertext without using sk.) Note that the games G1 and G2 are equivalent unless there is
a decryption failure w.r.t. the ciphertext c∗1. Since c∗1 is the encryption of a random message –

i.e., c∗1 ← Ep(pk, k∗), for k∗
$← Mp – we can bound the probability of such a failure event by δ.

Therefore, |Pr[G1 = 1]− Pr[G2 = 1]| ≤ δ.
In the setup of game G3, we replace the hash evaluations “k∗ ← H(k∗)” and µ∗ ← H ′(k∗)”

with “k∗
$← Ks” and “µ∗

$←Mp” respectively. That is, k∗ and µ∗ are now uniformly random values
that are generated independently of the (quantum) random oracles H and H ′ respectively. We first
bound the success probability of A in G3 via a reduction to the one-time IND-CPA security of Πs.
Let B be a one-time IND-CPA adversary against Πs that, given an input 1t, works as follows:
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Games G0 - G3

1 : G
$← ΩG, H

$← ΩH

2 : H ′
$← ΩH′ , H ′′

$← ΩH′′

3 : (pk, sk)← Kp(1t)

4 : k∗
$←Mp// G1–G3

5 : k∗ ← H(k∗), µ∗ ← H ′(k∗)// G1–G2

6 : k∗
$← Ks, µ∗

$←Mp// G3

7 : c∗1 ← Ep(pk, k∗)// G1–G3

8 : (m0,m1)← AG,H,H
′,H′′,Dh(pk)

9 : b
$← {0, 1}

10 : k∗
$←Mp// G0

11 : k∗ ← H(k∗), µ∗ ← H ′(k∗)// G0

12 : r
$← Rs

13 : c∗1 ← Ep(pk, k∗)// G0

14 : c∗2 ← Es(k∗,mb; r)

15 : c∗3 ← G(c∗2, µ
∗)

16 : c∗4 ← H ′′(k∗)

17 : b′ ← AG,H,H
′,H′′,Dh(c∗1, c

∗
2, c
∗
3, c
∗
4)

18 : return (b′ = b)

Dh(sk, (c1, c2, c3, c4))

1 : k ← Dp(sk, c1)

2 : if k =⊥ then

3 : k′
$←Mp, query H ′′(k′)// G2–G3

4 : return (⊥,⊥)

5 : t← H ′′(k)

6 : if t 6= c4 then return (⊥,⊥)

7 : if c1 = c∗1 then // G2–G3

8 : µ← µ∗, t′ ← G(c2, µ
∗)// G2–G3

9 : else µ← H ′(k), t′ ← G(c2, µ)

10 : if t′ 6= c3 then return (⊥,⊥)

11 : k← H(k), m← Ds(k, c2)

12 : return (k,m)

Fig. 2. Games G0 – G3 for the proof of Theorem 3.2.
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- Runs Kh(1t) to obtain (pk, sk).

- Generates k∗
$←Mp, µ

∗ $←Mp and computes c∗1 ← Ep(pk, k∗).
- Uses a 2(qG + qd + 1)-wise independent function, 2(qH + qd + 1)-wise independent function,

2(qH′ + qd + 1)-wise independent function and 2(qH′′ + qd + 1)-wise independent function to
simulate the quantum random oracles G, H, H ′ and H ′′ respectively, as noted in Lemma 3.1.
(Considering the oracle G for example, the total number of times G is queried throughout the
security experiment G3 via the setup query “c∗3 ← G(c∗2, µ

∗)”, A’s G-queries and decryption
queries is at most qG + qd + 1.)

- Runs AG,H,H′,H′′,Dh(pk) by answering the quantum random oracle queries and classical decryp-
tion queries as in G3, and finally obtains (m0,m1).

- Forwards (m0,m1) to its one-time IND-CPA challenger and gets the ciphertext c∗2 in return.

Note that the uniform secret key k∗ is generated implicitly by the challenger (i.e., k∗
$← Ks) as

well as the bit b (
$← {0, 1}) and randomness r (

$← Rs). Thus, we have c∗2 ← Es(k∗,mb; r).
- Computes c∗3 ← G(c∗2, µ

∗) and c∗4 ← H ′′(k∗).
- Runs AG,H,H′,H′′,Dh(c∗1, c

∗
2, c
∗
3, c
∗
4) by answering the random oracle queries and decryption queries

as in G3, and finally obtains a bit b′.
- Forwards bit b′ to its (one-time) IND-CPA challenger as the final message.

AH×H
′
(k∗, (k∗, µ∗))

1 : G
$← ΩG, H

′′ $← ΩH′′

2 : (pk, sk)← Kp(1t)
3 : c∗1 ← Ep(pk, k∗)

4 : (m0,m1)← AG,H,H
′,H′′,Dh(pk)

5 : b
$← {0, 1}, r $←Rs

6 : c∗2 ← Es(k∗,mb; r)

7 : c∗3 ← G(c∗2, µ
∗)

8 : c∗4 ← H ′′(k∗)

9 : b′ ← AG,H,H
′,H′′,Dh(c∗1, c

∗
2, c
∗
3, c
∗
4)

10 : return (b′ = b)

Dh(sk, (c1, c2, c3, c4))

1 : k ← Dp(sk, c1)

2 : if k =⊥ then

3 : k′
$←Mp, query H ′′(k′)

4 : return (⊥,⊥)

5 : t← H ′′(k)

6 : if t 6= c4 then return (⊥,⊥)

7 : if c1 = c∗1 then

8 : µ← µ∗, t′ ← G(c2, µ
∗)

9 : else µ← H ′(k), t′ ← G(c2, µ)

10 : if t′ 6= c3 then return (⊥,⊥)

11 : k← H(k), m← Ds(k, c2)

12 : return (k,m)

Fig. 3. Algorithm AH×H
′

for the proof of Theorem 3.2.

It is easy to see that Advind−cpaΠs,B (t) = |2 Pr[G3 = 1] − 1|. Now using Lemma 3.3, we bound
the difference between the success probabilities of A in G2 and G3. Let A be an algorithm that
has quantum access to the random oracle H ×H ′, where (H ×H ′)(k) = (H(k), H ′(k)). Figure 3
describes AH×H

′
’s operation on input (k∗, (k∗, µ∗)). Note that the algorithm AH×H

′
makes at most

qH + qH′ + 2qd number of queries to the random oracle H ×H ′ to respond to A’s oracle queries11.

11 For example, if AH×H
′

wants to respond to A’s H-query, then AH×H
′

prepares a uniform superposition of all
states in the output register corresponding to H ′ (see [TU16] for particulars of this “trick”).
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Games G4 - G7, G9, G11

1 : G
$← ΩG, H

$← ΩH , H
′ $← ΩH′

2 : H ′′
$← ΩH′′// G4 – G7

3 : H ′′
$← Ωpoly// G9, G11

4 : R
$← ΩR // G5

5 : (pk, sk)← Kp(1t)

6 : k∗
$←Mp, k

∗ $← Ks, µ∗
$←Mp

7 : c∗1 ← Ep(pk, k∗)

8 : i
$← {1, . . . , q1}

9 : run until i-th query to oracle H ×H ′

10 : (m0,m1)← AG,H,H
′,H′′,Dh(pk)

11 : b
$← {0, 1}, r $←Rs

12 : c∗2 ← Es(k∗,mb; r)

13 : c∗3 ← G(c∗2, µ
∗)// G4

14 : c∗3 ← R(c∗2) // G5

15 : c∗3
$← {0, 1}|G| // G6–G7, G9, G11

16 : c∗4 ← H ′′(k∗) // G4–G6

17 : c∗4
$←Mp // G7, G9, G11

18 : b′ ← AG,H,H
′,H′′,Dh(c∗1, c

∗
2, c
∗
3, c
∗
4)

19 : measure the argument k̂ of the

i-th query to oracle H ×H ′

20 : return (k̂ = k∗)

Dh(sk, (c1, c2, c3, c4)) // G4 - G7, G9

1 : if c1 = c∗1 then

2 : return (⊥,⊥)// G6–G7, G9

3 : k ← Dp(sk, c1)

4 : if k =⊥ then

5 : k′
$←Mp, query H ′′(k′)

6 : return (⊥,⊥)

7 : t← H ′′(k)

8 : if t 6= c4 then return (⊥,⊥)

9 : if c1 = c∗1 then // G4–G5

10 : µ← µ∗, t′ ← G(c2, µ
∗)// G4

11 : t′ ← R(c2)// G5

12 : else µ← H ′(k), t′ ← G(c2, µ)

13 : if t′ 6= c3 then return (⊥,⊥)

14 : k← H(k), m← Ds(k, c2)

15 : return (k,m)

Dh(sk, (c1, c2, c3, c4)) // G11

1 : if c1 = c∗1 then

2 : return (⊥,⊥)

3 : Compute set of roots S

4 : of polynomial H ′′(x)− c4
5 : if ∃k ∈ S s.t. Ep(pk, k) = c1

6 : then

7 : query H ′′(k)

8 : µ← H ′(k), t′ ← G(c2, µ)

9 : if t′ 6= c3 then

10 : return (⊥,⊥)

11 : else k← H(k), m← Ds(k, c2)

12 : return (k,m)

13 : else k′
$←Mp, query H ′′(k′)

14 : return (⊥,⊥)

Fig. 4. Games G4 – G7, G9, G11 for the proof of Theorem 3.2.
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Let q1 = qH + qH′ + 2qd and let B be an oracle algorithm that on input k∗ does the following:

picks i
$← {1, . . . , q1}, generates k∗

$← Ks and µ∗
$← Mp, runs AH×H

′
(k∗, (k∗, µ∗)) until the i-th

query, measures the argument of the (H ×H ′)-query in the computational basis and outputs the
measurement outcome (if AH×H

′
makes less than i queries, B outputs ⊥). With this construction

of A, note that P 1
A = Pr[G2 = 1] and P 2

A = Pr[G3 = 1], where P 1
A and P 2

A are as defined in
Lemma 3.3 w.r.t. the algorithm AH×H

′
. Therefore, we now define game G4 (see Fig. 4) such that

PB = Pr[G4 = 1], where PB is as defined in Lemma 3.3 w.r.t. the algorithm BH×H′ . From Lemma
3.3, we thus have

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 2(qH + qH′ + 2qd)
√

Pr[G4 = 1]

Now Figure 4 describes games G4 – G7, G9 and G11. From Lemma 3.2, in game G5, we replace
the (quantum-accessible) “pseudorandom function” G(. , µ∗) with a (quantum) “truly” random

oracle R(.). Specifically, let ΩR be the set of all functions R : {0, 1}∗ → {0, 1}|G|. Then R(
$← ΩR) is

an internal oracle that is not directly accessible by A. We justify this replacement using Lemma 3.2

w.r.t. a distinguisher CG,Fj (j ∈ {0, 1}) described in Figure 5. Here F0(.) = G(. , µ∗) for µ∗
$←Mp,

and F1(.) = R(.). It is not hard to see that CG,F0 (respectively, CG,F1) perfectly simulates G4

(respectively, G5) towards A. Since the uniform secret “PRF key” µ∗ is generated independently
from CG,Fj ’s view, we use Lemma 3.2 to obtain the following (note that C makes at most qG+qd+1
queries to the oracles G and Fj)

|Pr[G4 = 1]− Pr[G5 = 1]| ≤ 2(qG + qd + 1)√
|Mp|

In game G6, we modify the decryption oracle as follows: if c1 = c∗1, return (⊥,⊥). (We also

make a “cosmetic” change where we replace “c∗3 ← R(c∗2)” with “c∗3
$← {0, 1}|G|”, since the random

function R(.) would have only been used on c∗2 throughout G6 and no other c2-values.) Note that
the only way the execution of games G5 and G6 would differ is if A made decryption queries of the
form (c∗1, c2, c3, c

∗
4) where c2 6= c∗2 and R(c2) = c3; also in such an event, the number of H-queries

with argument k∗ in G5 and G6 will go “out of sync” resulting in a difference in A’s respective
success probabilities. Since R is an internal random function not directly accessible by A, we can
bound the probability of the event “R(c2) = c3” w.r.t. a single decryption query (c∗1, c2, c3, c

∗
4) by

1/2|G|. Using a union bound, we conclude that

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ qd
2|G|

In the setup of game G7, we replace the computation “c∗4 ← H ′′(k∗)” with “c∗4
$← Mp”. That

is, c∗4 is now a uniformly random value that is generated independently of k∗ and the (quantum)
random oracle H ′′. Using Lemma 3.3, we bound the difference between the success probabilities of
A in G6 and G7. Let Â be an algorithm that has quantum access to the random oracle H ′′. Figure
6 describes ÂH

′′
’s operation on input (k∗, c∗4). Note that the algorithm ÂH

′′
makes at most qH′′+qd

queries to the random oracle H ′′ to respond to A’s oracle queries.
Let q2 = qH′′ + qd and let B̂ be an oracle algorithm that on input k∗ does the following: picks

j
$← {1, . . . , q2}, generates c∗4

$←Mp, runs ÂH
′′
(k∗, c∗4) until the j-th query, measures the argument

of the H ′′-query in the computational basis and outputs the measurement outcome (if ÂH
′′

makes
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CG,Fj

1 : H
$← ΩH , H

′ $← ΩH′ , H ′′
$← ΩH′′

2 : (pk, sk)← Kp(1t)

3 : k∗
$←Mp, k

∗ $←Mp

4 : c∗1 ← Ep(pk, k∗)

5 : i
$← {1, . . . , q1}

6 : run until i-th query to oracle H ×H ′

7 : (m0,m1)← AG,H,H
′,H′′,Dh(pk)

8 : b
$← {0, 1}, r $← Rs

9 : c∗2 ← Es(k∗,mb; r)

10 : c∗3 ← Fj(c
∗
2)

11 : c∗4 ← H ′′(k∗)

12 : b′ ← AG,H,H
′,H′′,Dh(c∗1, c

∗
2, c
∗
3, c
∗
4)

13 : measure the argument k̂ of the

i-th query to oracle H ×H ′

14 : return (k̂ = k∗)

Dh(sk, (c1, c2, c3, c4))

1 : k ← Dp(sk, c1)

2 : if k =⊥ then

3 : k′
$←Mp, query H ′′(k′)

4 : return (⊥,⊥)

5 : t← H ′′(k)

6 : if t 6= c4 then return (⊥,⊥)

7 : if c1 = c∗1 then t′ ← Fj(c2)

8 : else µ← H ′(k), t′ ← G(c2, µ)

9 : if t′ 6= c3 then return (⊥,⊥)

10 : k← H(k), m← Ds(k, c2)

11 : return (k,m)

Fig. 5. Algorithm CG,Fi for the proof of Theorem 3.2.

ÂH
′′

(k∗, c∗4)

1 : G
$← ΩG, H

$← ΩH , H
′ $← ΩH′

2 : (pk, sk)← Kp(1t)

3 : k∗
$←Mp

4 : c∗1 ← Ep(pk, k∗)

5 : i
$← {1, . . . , q1}

6 : run until i-th query to oracle H ×H ′

7 : (m0,m1)← AG,H,H
′,H′′,Dh(pk)

8 : b
$← {0, 1}, r $← Rs

9 : c∗2 ← Es(k∗,mb; r)

10 : c∗3
$← {0, 1}|G|

11 : b′ ← AG,H,H
′,H′′,Dh(c∗1, c

∗
2, c
∗
3, c
∗
4)

12 : measure the argument k̂ of the

i-th query to oracle H ×H ′

13 : return (k̂ = k∗)

Dh(sk, (c1, c2, c3, c4))

1 : if c1 = c∗1 then return (⊥,⊥)

2 : k ← Dp(sk, c1)

3 : if k =⊥ then

4 : k′
$←Mp, query H ′′(k′)

5 : return (⊥,⊥)

6 : t← H ′′(k)

7 : if t 6= c4 then return (⊥,⊥)

8 : µ← H ′(k), t′ ← G(c2, µ)

9 : if t′ 6= c3 then return (⊥,⊥)

10 : k← H(k), m← Ds(k, c2)

11 : return (k,m)

Fig. 6. Algorithm ÂH
′′

for the proof of Theorem 3.2.
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Games G8 and G10

1 : G
$← ΩG, H

$← ΩH , H
′ $← ΩH′

2 : H ′′
$← ΩH′′// G8

3 : H ′′
$← Ωpoly// G10, G12

4 : (pk, sk)← Kp(1t)

5 : k∗
$←Mp, k

∗ $← Ks, µ∗
$←Mp

6 : c∗1 ← Ep(pk, k∗)

7 : j
$← {1, . . . , q2}

8 : run until j-th query to oracle H ′′

9 : i
$← {1, . . . , q1}

10 : run until i-th query to oracle H ×H ′

11 : (m0,m1)← AG,H,H
′,H′′,Dh(pk)

12 : b
$← {0, 1}, r $←Rs

13 : c∗2 ← Es(k∗,mb; r)

14 : c∗3
$← {0, 1}|G|

15 : c∗4
$←Mp

16 : b′ ← AG,H,H
′,H′′,Dh(c∗1, c

∗
2, c
∗
3, c
∗
4)

17 : measure the argument k̂ of the

i-th query to oracle H ×H ′

18 : measure the argument k̃ of the

j-th query to oracle H ′′

19 : return (k̃ = k∗)

Dh(sk, (c1, c2, c3, c4)) // G8, G10

1 : if c1 = c∗1 then

2 : return (⊥,⊥)

3 : k ← Dp(sk, c1)

4 : if k =⊥ then

5 : k′
$←Mp, query H ′′(k′)

6 : return (⊥,⊥)

7 : t← H ′′(k)

8 : if t 6= c4 then return (⊥,⊥)

9 : else µ← H ′(k), t′ ← G(c2, µ)

10 : if t′ 6= c3 then return (⊥,⊥)

11 : k← H(k), m← Ds(k, c2)

12 : return (k,m)

Dh(sk, (c1, c2, c3, c4)) // G12

1 : if c1 = c∗1 then

2 : return (⊥,⊥)

3 : Compute set of roots S

4 : of polynomial H ′′(x)− c4
5 : if ∃k ∈ S s.t. Ep(pk, k) = c1

6 : then

7 : query H ′′(k)

8 : µ← H ′(k), t′ ← G(c2, µ)

9 : if t′ 6= c3 then

10 : return (⊥,⊥)

11 : else k← H(k), m← Ds(k, c2)

12 : return (k,m)

13 : else k′
$←Mp, query H ′′(k′)

14 : return (⊥,⊥)

Fig. 7. Games G8, G10 and G12 for the proof of Theorem 3.2.
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less than j queries, B̂ outputs ⊥). With this construction of Â, note that P 1
Â

= Pr[G6 = 1] and

P 2
Â

= Pr[G7 = 1], where P 1
Â

and P 2
Â

are as defined in Lemma 3.3 w.r.t. the algorithm ÂH
′′
.

Therefore, we now define game G8 (see Figure 7 which describes games G8, G10 and G12) such that
PB̂ = Pr[G8 = 1], where PB̂ is as defined in Lemma 3.3 w.r.t. the algorithm B̂H′′ . From Lemma
3.3, we thus have

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 2(qH′′ + qd)
√

Pr[G8 = 1]

In games G9 and G10, we replace the random oracle H ′′ with a 2(qH′′+qd+1)-wise independent
function, following Lemma 3.1. Random polynomials of degree 2(qH′′ + qd + 1) − 1 over the finite
field representation of Mp are 2(qH′′ + qd + 1)-wise independent. Let Ωpoly be the set of all such

polynomials. Then specifically, we are replacing the step “H ′′
$← ΩH′′” with “H ′′

$← Ωpoly” in both
games. From Lemma 3.1, as this change is indistinguishable when the oracle H ′′ is queried at most
qH′′ + qd + 1 times, we have G7 and G9 (respectively, G8 and G10) to be equivalent. Therefore,
Pr[G7 = 1] = Pr[G9 = 1] and Pr[G8 = 1] = Pr[G10 = 1].

In G11 and G12, we modify the decryption oracle – the same way in both games (Fig. 4 describes
G11 and Fig. 7 describes G12, respectively) – such that the secret key sk is not used to decrypt a
ciphertext (c1, c2, c3, c4). To analyze this change to Dh, we define two “bad” events in games G9 –
G12:

- Let bad1 denote the event that A asks for the decryption of (c1, c2, c3, c4) such that c1 is a
ciphertext for which there are two distinct messages k, k′ that encrypt to it – i.e., Ep(pk, k) =
Ep(pk, k′) = c1.

- Let bad2 denote the event thatA asks for the decryption of (c1, c2, c3, c4) such that Dp(sk, c1) =⊥
and there exists a root k′ of the polynomial H ′′(x) − c4 (recall that H ′′ in now a random
polynomial of degree (2qH′′ + qd + 1)− 1) which satisfies Ep(pk, k′) = c1.

Setting bad = bad1 ∨ bad2, we have the following w.r.t. games G9 and G10:

Pr[G9 = 1] ≤ Pr[bad] + Pr[¬bad] Pr[G9 = 1 | ¬bad]

Pr[G10 = 1] ≤ Pr[bad] + Pr[¬bad] Pr[G10 = 1 | ¬bad]

Now to show Pr[G9 = 1|¬bad] ≤ Pr[G11 = 1|¬bad] and Pr[G10 = 1|¬bad] ≤ Pr[G12 = 1|¬bad],
it is sufficient to show that, assuming the event ¬bad occurs: (1) the new decryption oracle returns
the same output as the previous oracle when queried on any ciphertext, (2) the queries submitted
to the random oracles H, H ′ and H ′′ remain “in sync” after this modification to Dh (e.g., the j-th
query to H ′′ at a particular stage in G10 corresponds to the j-th query to H ′′ in the same stage of
G12), and (3) upon measuring the argument of the i-th query to oracle (H × H ′) in G9 and G11

(resp., the j-th query to oracle H ′′ in G10 and G12), the probability of the outcome being k∗ in G11

(resp., G12) is greater than or equal to that in G9 (resp., G10).
Suppose A asks for the decryption of (c1, c2, c3, c4). Let k = Dp(sk, c1). Consider the following

cases while assuming the event ¬bad occurs::

1. If c1 = c∗1, then the Dh oracle in G9, G10, G11 and G12 returns (⊥,⊥). At the same time, no
queries are made to H, H ′ and H ′′ at this stage (in particular, no query on k∗).

2. If c1 6= c∗1 and k =⊥, then the oracle Dh in G9 and G10 returns (⊥,⊥). Since the event ¬bad
(and hence, ¬bad2) happens, the oracle Dh in G11 and G12 returns (⊥,⊥) as well, as there does
not exist a root k′ ∈ S such that Ep(pk, k′) = c1.
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No queries are made to H and H ′ in this case. On the other hand, a single classical query is
made to H ′′ on a uniformly random value in Mp in games G9 – G12. Hence in particular, the
probability of the query being k∗ is equal in G10 and G12.

3. If c1 6= c∗1, k 6=⊥ and H ′′(k) 6= c4, then Dh in G9 and G10 returns (⊥,⊥). Since the event
¬bad (and hence, ¬bad1) happens, Dh in G11 and G12 returns (⊥,⊥) as well, as there does
not exist a root k′ ∈ S such that Ep(pk, k′) = c1; otherwise, from the rigidity of Πp, we have
Ep(pk, k) = c1 = Ep(pk, k′) with k 6= k′ (since H ′′(k) 6= c4 = H ′′(k′)), contradicting the event
¬bad1 happening.

No queries are made to H and H ′ in this case. In games G9, G10, a classical query is made to
H ′′ on k, to do the check “(H ′′(k) = c4)”. As Πp is rigid, we have Ep(pk, k) = c1 6= c∗1. Since
Πp is also deterministic, it must be the case that k 6= k∗. In G11 and G12, as there does not
exist a root k′ ∈ S such that Ep(pk, k′) = c1, we make a classical H ′′-query on a uniformly
random value from Mp. This step essentially keeps the H ′′-oracle calls “in sync” across both
decryption oracles. Now it is not hard to see that if the j-th query to oracle H ′′ – where

j
$← {1, . . . , q2} was sampled at the beginning of G10 and G12 – is at this stage, namely when

A made this particular decryption query, then the probability of the measurement outcome
w.r.t. this classical H ′′-query being k∗ is 0 in G10 and 1/|Mp| in G12.

4. If c1 6= c∗1, k 6=⊥, H ′′(k) = c4 and G(c2, H
′(k)) 6= c3, then Dh in G9 and G10 returns (⊥,⊥).

Dh in G11 and G12 also returns (⊥,⊥), as now we have k ∈ S (since H ′′(k) − c4 = 0) such
that Ep(pk, k) = c1, which follows from Πp’s rigidity. At the same time, as the event ¬bad (and
hence, ¬bad1) happens, there must not exist a different root k′ ∈ S such that Ep(pk, k′) = c1.
Since the G-check fails w.r.t. k in this new decryption oracle as well, i.e., G(c2, H

′(k)) 6= c3,
(⊥,⊥) is returned.

No query is made to H in this case. But a classical query is made to H ′ and H ′′ on the value k
at this stage in G9 – G12. Thus, all oracles call are “in sync” across both versions of Dh, and the
probability of the measurement outcome w.r.t. this classical (H ×H ′)-query (resp., H ′′-query)
in G9 and G11 (resp., G10 and G12) being k∗ is 0.

5. If c1 6= c∗1, k 6=⊥, H ′′(k) = c4 and G(c2, H
′(k)) = c3, then Dh in G9 and G10 returns

(k,Ds(H(k), c2)). Dh in G11 and G12 also returns (k,Ds(H(k), c2)) following a similar anal-
ysis above, the only difference being that now the (sole) root in S, namely k, also satisfies the
G-check: G(c2, H

′(k)) = c3.

In this case, a classical query is made to H, H ′ and H ′′ on k in G9 – G12. Again, all oracles
call are “in sync” across both versions of Dh, and the probability of the measurement outcome
w.r.t. any of the two classical (H × H ′)-queries, corresponding to the H(k) and H ′(k) calls
respectively, in G9 and G11 (resp., the single H ′′-query, corresponding to the H ′′(k) call, in G10

and G12) being k∗ is 0.

Thus, we have Pr[G9 = 1|¬bad] ≤ Pr[G11 = 1|¬bad] and Pr[G10 = 1|¬bad] ≤ Pr[G12 = 1|¬bad].
At the same time, it is not hard to see that the probability Pr[¬bad] (and hence, Pr[bad]) should
be the same in games G9 and G11 (resp., G10 and G12). This is because, the event ¬bad depends
on A’s queries to the Dh oracle. In the above analysis, since we showed that – assuming the event
¬bad occurs – the Dh oracles have the same input-output behavior in G9 – G12, A’s view (and
hence, execution) in G9 and G11 (resp., G10 and G12) should be identical until the first Dh-query
that violates ¬bad; this means the probability that a given Dh-query made by A satisfies the event
¬bad remains the same in G9 and G11 (resp., G10 and G12) while conditioning on the event that
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all of A’s previous Dh-queries are consistent with ¬bad. So we first have the following:

Pr[G9 = 1] ≤ Pr[bad] + Pr[¬bad ∧G11 = 1] ≤ Pr[bad] + Pr[G11 = 1]

Pr[G10 = 1] ≤ Pr[bad] + Pr[¬bad ∧G12 = 1] ≤ Pr[bad] + Pr[G12 = 1]

Now we bound Pr[bad] by analyzing the event “bad” in games G11 and G12. Recall that bad =
bad1 ∨ bad2, and hence by a union bound, we have Pr[bad] ≤ Pr[bad1] + Pr[bad2]. Since Πp is δc-
Collision Free, we have Pr[bad1] ≤ δc. We bound the term Pr[bad2] via a reduction to the ⊥-Aware
security of Πp. Let C be a ⊥-Aware adversary against Πp that, given an input pk, works as follows:

- Generates k∗
$←Mp, k

∗ $← Ks, µ∗
$←Mp and sets c∗1 ← Ep(pk, k∗).

- Uses a 2(qG + qd + 1)-wise independent function, 2(qH + qd + 1)-wise independent function,
2(qH′ + qd + 1)-wise independent function and 2(qH′′ + qd + 1)-wise independent polynomial to
simulate the quantum random oracles G, H, H ′ and H ′′ respectively, as noted in Lemma 3.1.

- Initializes an empty list L.
- Runs AG,H,H′,H′′,Dh(pk) by answering the quantum random oracle queries and classical decryp-

tion queries as in G11, and finally obtains (m0,m1). At the same time, stores each of A’s classical
decryption queries in L.
(Note that C can simulate Dh of G11 without having access to the decryption oracle Dp(sk, .).)

- Samples a bit b
$← {0, 1} and the random coins r ∈ Rs for the symmetric Πs-encryption to

compute c∗2 = Es(k∗,mb; r). Generates the rest of the ciphertext components as c∗3
$← {0, 1}|G|

and c∗4
$←Mp.

- Runs AG,H,H′,H′′,Dh(c∗1, c
∗
2, c
∗
3, c
∗
4) by answering the quantum random oracle queries and classical

decryption queries as in G11, and finally obtains a bit b′. Again stores each of A’s classical
decryption queries in L.

- Selects a ciphertext (c1, c2, c3, c4) uniformly at random from the list L and does the following:
• Computes set of roots S of polynomial H ′′(x)−c4 and checks if there exists a root k′ ∈ S such

that Ep(pk, k′) = c1. (Note that finding roots of polynomial H ′′(x) − c4 is polynomial-time
computable.)
• If there exists such a root k′ ∈ S, returns the pair (k′, c1) to its ⊥-Aware challenger and

halts. Otherwise, returns the pair (⊥,⊥) to its ⊥-Aware challenger and halts.

It is easy to see that if the event bad2 occurs in game G11, then with probability at least 1/qd, C
will select the right ciphertext (c1, c2, c3, c4) from the list L that results in a ⊥-Aware game-winning
pair (k′, c1). Thus, we have Pr[bad2] ≤ qd · Adv⊥−AwareΠp,C (t). A similar analysis will also hold for G12,

where Pr[bad1] ≤ δc and Pr[bad2] ≤ qd ·Adv⊥−AwareΠp,C (t) for the same reduction to ⊥-Aware security of
Πp as in G11 – the reason being that the Dh oracles are the same in games G11 and G12. Therefore,
we get

Pr[G9 = 1] ≤ δc + qd · Adv⊥−AwareΠp,C (t) + Pr[G11 = 1]

Pr[G10 = 1] ≤ δc + qd · Adv⊥−AwareΠp,C (t) + Pr[G12 = 1]

Now since the Dh oracle in games G11 and G12 does not use the secret key sk to decrypt any
ciphertext, we can bound the success probability of A in G11 and G12 via reductions to the OW-
CPA security of Πp. Let D (resp., E) be an OW-CPA adversary against Πp that, given an input
(1t, pk, c∗), works as follows:
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- Generates k∗
$← Ks, µ∗

$←Mp and sets c∗1 ← c∗. Note that the uniform message k∗ is generated
implicitly by the OW-CPA challenger (along with the public key pk) such that Ep(pk, k∗) = c∗1
(= c∗).

- Uses a 2(qG + qd + 1)-wise independent function, 2(qH + qd + 1)-wise independent function,
2(qH′ + qd + 1)-wise independent function and 2(qH′′ + qd + 1)-wise independent polynomial to
simulate the quantum random oracles G, H, H ′ and H ′′ respectively, as noted in Lemma 3.1.

- Selects i
$← {1, . . . , q1} (resp., j

$← {1, . . . , q2}).
- Until the i-th (resp., j-th) query to the oracle H ×H ′ (resp., H ′′) is made, does the following:
• Runs AG,H,H′,H′′,Dh(pk) by answering the quantum random oracle queries and classical

decryption queries as in G11 (resp., G12), and finally obtains (m0,m1).
(Note that the OW-CPA adversaries D and E can simulate the decryption oracle Dh without
possessing the secret key sk.)

• Samples a bit b
$← {0, 1} and the random coins r ∈ Rs for the symmetric Πs-encryption to

compute c∗2 = Es(k∗,mb; r). Generates the rest of the ciphertext components as c∗3
$← {0, 1}|G|

and c∗4
$←Mp.

• Runs AG,H,H′,H′′,Dh(c∗1, c
∗
2, c
∗
3, c
∗
4) by answering the quantum random oracle queries and clas-

sical decryption queries as in G11 (resp., G12), and obtains a bit b′.
- Measures the argument k̂ of the i-th (resp., j-th) query to the oracle H ×H ′ (resp., H ′′) and

outputs k̂; if A makes less than i (resp., j) queries, output ⊥.

From the above construction of adversaries D and E , it is easy to see that Pr[G11 = 1] ≤
1
|Mp| + Advow−cpaΠp,D (t) and Pr[G12 = 1] ≤ 1

|Mp| + Advow−cpaΠp,E (t).

Setting q3 = 2(qG + qd + 1) and δ′ = δc + qd · Adv⊥−AwareΠp,C (t) + 1/|Mp|, by combining all the
above bounds w.r.t. the success probabilities of A in each of the games G0 – G12, we get

Advind−ccaΠh,A (t) ≤ Advind−cpaΠs,B (t) + δ

+ 4q1

√
q3√
|Mp|

+
qd

2|G|
+ δ′ + Advow−cpaΠp,D (t) + 2q2

√
δ′ + Advow−cpaΠp,E (t)

3.3 Threshold Variant

Assuming there are protocols ΠKp and ΠDp which implement the base public key encryption scheme
in a threshold manner a threshold variant of our above constructions are therefore immediate.
We simply apply the threshold decryption operation to c∗1, keeping the result in a shared form.
The parties then securely evaluate G (or G, H ′ and H ′′ in our second hybrid construction). Our
distributed decryption operation for our Hybrid1 construction Πh would then consist of the following
steps, with a similar methodology for Hybrid2 (which would also require a secure evaluation of H ′

and H ′′)

1. Absorb c2 (resp. c1 and c2) into G in the clear.
2. Apply ΠDp to obtain a distributed decryption operation, keeping the result k in shared form.
3. Securely absorb these shares of k into the sponge G.
4. Securely evaluate the squeezing of G to obtain c′3 in the clear.
5. Reject the ciphertext if c3 6= c′3.
6. Open k to all players.
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7. Compute k = H(k) in the clear

8. Compute m = Ds(k, c2) in the clear and output it.

We notice that if we use a sponge-like function for G, such as Rescue [AAB+19] or SHA-3, then
in the clear we can insert the first arguments for G (c1 and c2) during a distributed decryption,
as they are public. Thus we only need to execute a secure distributed version of G for the final
absorbtion of k, and then the squeezing phase to obtain c3.

4 Pre-Quantum Instantiation

We provide a pre-quantum instantiation of our modified KEM-DEM construction which enables
one to produce threshold public key encryption for long messages. The key trick is to use an MPC-
friendly hash function for the function G above; for example Rescue [AAB+19]. Here we focus on
a discrete logarithm based construction. One methodology for discrete logarithms, as explained in
the introduction, would be to adopt the TDH1 or TDH2 construction from [SG98,SG02] into a
Tag-KEM system. This is simply done by interpreting the ‘label’ in TDH1 and TDH2 as the ‘tag’
(the hash of the DEM ciphertext) from the Tag-KEM framework.

Another variant, which uses our explicit hybrid construction, is to take the text-book ElGamal
cryptosystem

( C1 = [r]P, C2 = M + [k]Q )

over an elliptic curve E(Fp) with base-point P of prime order q and for public key Q = [d]P . This
is because text-book ElGamal is an OW-PCA encryption scheme under the Gap-Diffie-Hellman
assumption, and thus we can apply our hybrid construction. Focusing on full threshold for simplicity,
one can split the decryption key d into d = d1 + . . . + dn (mod q). A passively secure distributed
decryption for Πp is then for each party to output Mi ← [di]C1 and then compute M ← C2−M1−
. . .−Mn. This can be made actively secure using standard zero-knowledge proofs, if one wanted a
stand alone actively secure variant of Πp.

If we take an instantiation of Rescue modulo p for the function G then a distributed decryption
operation for Πh would then consist of the following steps, assuming an MPC system which works
modulo p. Note, we need to pass c1 into the sponge G as a Πp is a randomized IND-PCA encryption
scheme and not deterministic in this case.

1. Absorb c1 and c2 into G in the clear using some mapping of bit strings into elements modulo p
for the absorbtion of c2.

2. Locally compute Mi = (Xi, Yi)← [di]C1 in a passive manner.

3. Enter Mi = (Xi, Yi) ∈ F2
p into the MPC engine as 〈Mi〉.

4. Compute securely 〈M〉 ← C2 − 〈M1〉 − . . .− 〈Mn〉.
5. Securely absorb 〈M〉 into the sponge G.

6. Securely evaluate the squeezing of G to obtain g in the clear.

7. Reject the ciphertext if c3 6= g.

8. Open k = M to all players.

9. Compute k← H(k) in the clear

10. Compute m← Ds(k, c2) in the clear and output it.

Note here we can get an actively secure distributed decryption operation without needing zero-
knowledge proofs to imply the correctness of the values Mi. To see this, notice that the values Mi
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are only ever input into the MPC engine, they are never transmitted to the decrypting parties.
Upon entry into the MPC system, assuming it is actively secure, the simulator can extract the
values Mi enterred by the adversary and hence perfectly simulate the honest players interaction to
the adversary. We leave the details to the reader. This is unlikely to be more efficient than using
TDH1 or TDH2, however, the general principle here will serve as a motivation for our post-quantum
construction later.

The Gladius–Hispaniensis Deterministic Encryption Scheme Πp.

Key Generation: Kp.
1. R1, R2 ← Dn×nσ , i.e. two n× n matrices with coefficients samples from Dσ.
2. A1 ← Zn×nq

3. A2 ← A1 ·R1 +R2 +G, where G is the gadget matrix ` · In.
4. pk← (A1, A2).
5. sk← (pk, R1).
6. Return (pk, sk)).

Encryption: Ep(pk,m).
1. c1 ← bmT ·A1ep.
2. c2 ← bmT ·A2ep.
3. Return (c1, c2).

Decryption: Dp(sk, (c1, c2)).
1. wT ← c2 − c1 ·R1 (mod q)
2. eT ← wT (mod p).
3. vT ← eT (mod µ).
4. mT ← (eT − vT)/µ.
5. (c′1, c

′
2)← Ep(pk,m).

6. If c1 6= c′1 or c2 6= c′2 return ⊥.
7. Return mT.

Figure 8. The Gladius–Hispaniensis Deterministic Encryption Scheme Πp.

5 Gladius–Hispaniensis: Plain LWR Based Encryption

According to Wikipedia the Gladius–Hispaniensis was the earliest and heaviest of the different
types of Gladii that we know about; it is thus fitting we reserve this name for our encryption
scheme based on standard LWR. The scheme is defined in Figure 8 and is parametrized by values
t, p, q, n, `, σ, ε. We define the message space M to be the set Znt . From these parameters we define
µ ∈ Z and ψ ∈ (−1/2, 1/2] via

p · `
q

=
⌊p · `
q

⌉
+ ψ = µ+ ψ. (2)

Note when µ and p are powers of two, say µ = 2ν and p = 2π, and t = 2 then lines 3 and 4 of

the decryption procedure in Figure 8 becomes mi ← w
(ν)
i ⊕w

(ν+1)
i , where m = (mi) and w = (wi)

and w
(j)
i is the j-th bit of wi. This is again a useful simplification in our distribtued decryption

procedure, thus we will assume that µ and p are powers of two.

Correctness: To provide conditions which need to be satisfied in order to ensure correct decryption,
we compute the probability of a decryption failure as we vary over the entire message space, i.e.
our probability space is the set of all m modelled as vectors chosen uniformly at random.
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We express the ciphertext components as equations over the rationals as, where ei ∈ Rm with
‖ei‖∞ ≤ 1/2 and vi ∈ {0, 1}m,

c1 =
p

q
·
(
mT ·A1 (mod q)

)
+ eT1 + p · vT

1 ,

c2 =
p

q
·
(
mT ·A2 (mod q)

)
+ eT2 + p · vT

2

=
p

q
·
((

mT ·A1 (mod q)
)
·R1 + mT · (R2 +G) + q · rT

)
+ eT2 + p · vT

2 .

Note, that if we consider the distribution of ei then it acts as an independent random variable
with entries chosen with mean zero and variance bounded by 1/12. The entries of vi are zero with
probability 1− 1/p, so we estimate the variance of the entries of vi as (1− 1/p)/p. We also see that
the entries of m have mean zero and variance ((t + 1)2 − 1)/12. The vector r will have variance
around n2 · σ2 · ((t+ 1)2 − 1)/144. Note, when q is a power-of-two, since p|q, the vector r plays no
role in decryption and thus in this case we have a simpler analysis to perform. For this reason, we
set cq = 1 when q is not a power-of-two.

These estimates of variances imply, given our earlier discussion on probabilities, that we have
with probability approximately 1− 4 · n · 2−ε that all the following four inequalities are satisfied

‖mT ·R2‖∞ ≤ c · σ ·
√
n · ((t+ 1)2 − 1)/12,

‖eT1 ·R1‖∞ ≤ c · σ ·
√
n/12,

‖vT
1 ·R1‖∞ ≤ c · σ ·

√
(1− 1/p) · n

p
= c · σ

p
·
√

(p− 1) · n,

‖rT‖∞ ≤ c · n · σ ·
√

(t+ 1)2 − 1/12

where we take the probability space over all possible public keys and (uniformly random) messages.

To simplify the analysis we will write

vT =
p

q
·mT ·R2 + ψ ·mT + eT2 − eT1 ·R1,

uT = vT
2 − vT

1 ·R1 + cq · rT.

We can then write the first part of the decryption procedure as

wT = c2 − c1 ·R1 (mod q)

=
p

q
·
((

mT ·A1 (mod q)
)
·R1 + mT · (R2 +G) + cq · q · rT

)
+ eT2 + p · vT

2

− p

q
·
(
mT ·A1 (mod q)

)
·R1 − eT1 ·R1 − p · vT

1 ·R1 (mod q)

=
p

q
·mT ·R2 +

p

q
·mT ·G + eT2 − eT1 ·R1

+ p · ( vT
2 − vT

1 ·R1 + cq · rT ) (mod q)

=
p

q
·mT ·R2 + µ ·mT + ψ ·mT + eT2 − eT1 ·R1
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+ p · ( vT
2 − vT

1 ·R1 + cq · rT ) (mod q)

= vT + µ ·mT + p · uT (mod q)

In this equation v is the only part of the equation which consists of non-integral values, but since
the whole equation is integral we know this part evaluates to an integer vector. By above, with
probability 1− 4 · n · 2−ε, we know that we have

‖vT‖∞ ≤ BV =
p

q
· c ·

√
n · ((t+ 1)2 − 1)/12 · σ +

t

4
+

1

2
+ c ·

√
n/12 · σ

=
t+ 2

4
+ c · σ ·

√
n ·
(
p

q
·
√

((t+ 1)2 − 1)/12 +
√

1/12

)
.

‖uT‖∞ ≤ BU = 1 + c ·
√

(p− 1) · n · σ
p

+ cq · c · n · σ ·
√

(t+ 1)2 − 1/12

= 1 + c · σ ·

(√
(p− 1) · n

p
+ cq · n ·

√
(t+ 1)2 − 1/12

)

Our first requirement is that ‖vT + µ ·mT + p · uT‖∞ is less than q/2, so there is no wrap-around
modulo q when computing wT in this way. Remember we use the centred distribution always so, for
example, we have ‖mT‖∞ ≤ t/2. Thus to ensure this happens we can, with probability 1−4 ·n ·2−ε,
ensure that

‖ vT + µ ·mT + p · uT ‖∞ ≤ BW = BV +
t

2
· µ+ p ·BU ≤ q/2. (3)

For our second requirement, we require that the third part of the decryption procedure also does
not result in a wrap around. Thus we need the infinity norm of vT to be bounded by

BV < µ/2. (4)

As our final requirement we need that the second part of the decryption procedure also does not
result in a wrap around. Hence, we require

‖eT‖∞ = ‖vT + µ ·mT‖∞ ≤ BE = BV + µ · t
2
< p/2. (5)

Due to equation (3) we can write the decryption equation over the integers, and not modulo q, as

wT = vT + µ ·mT + p · uT.

Then, due to equation (5), we have that wT (mod p), when we take the centred reduction modulo
p is exactly equal to eT = vT + µ ·mT over the integers. Finally, due to equation (4), if we take
eT (mod µ), again using the centered reduction, we obtain exactly vT over the integers. Thus the
decryption procedure exactly recovers vT and eT, and hence mT.

Summing up if equations (3), (4) and (5) hold then the probability of decryption error is
approximately 4 · n · 2−ε. Setting ε = 128 will produce an error small enough for all practical
purposes, for all values of n we will be considering. As remarked earlier, with ε = 128 we need to
select c = 9.3.
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OW-CPA Security: OW-CPA security of the constructions rests on two computational assumptions.
The first is that the public keys (A1, A2) are indistinguishable from uniformly random matrices.
This will follow from the standard LWE assumption LWEq,n,σ, for which we can derive constraints
on the parameters using the previously mentioned LWE-estimator. The second assumption is that
the ciphertexts are also one-way; note we will not require indistinguishability in our application,
which is the standard one-way LWR problem. OW-CPA security then follows immediately from
these assumptions.

Parameters: Combining the correctness requirements, with the security requirement that the
scheme is OW-CPA can be done in two different ways. Either we can use the theoretical reduction
from one-way LWR to one-way LWE, given in Theorem 2.1, or we can estimate the parameters
using the best-attack scenario. The former is better in theory, whilst the latter is better in practice.
Indeed the latter is what is done for the estimation of parameters for the NIST Post-Quantum
candidates based on LWR.

To select parameters we need to define the required search space to ensure both security and
correctness. Recall we need to select parameters t, p, q, n, `, σ, ε. As mentioned earlier we select
ε = 128 and so c = 9.3 in our earlier correctness equations. We select σ =

√
1/2 as this provides

the simplest and cheapest parameters for deriving the secret key via the NewHope approximation
to a discrete Gaussian. We select t = 2, so that we encrypt messages which are bit vectors, and
select p and ` to be powers to two to enable more efficient modular reduction. As remarked earlier
the value q is then (preferably) chosen so that µ in equation (2) is also a power-of-two. The value
q is selected either to be a power-of-two, which gives performance advantages (since cq = 0 in this
case) when threshold variants are not of interest, or q is selected to be prime. We also look at two
power values of n and general values of n.

Suppose n is fixed, then the search space is not big. When q is a power of 2, this is obvious.
When q is a prime, we are only interested in, in fact, primes that are “close” to a power-of-two for
efficiency reasons during distributed decryption explained later in Section 8, so the search space is
also small and we can iterate over all the possibilities.

Then we use the bisection algorithm to iteratively find the smallest n that gives us enough
security, assuming our correctness equations are satisfied. This works for a general n as well as a
power-of-two value of n. To check security using Albrecht’s tool, we use σ =

√
1/2 for the LWE

security parameters that correspond to the public key. Due to Theorem 2.1 we use B = c · σ for

the case when we measure LWR security via the security reduction. Finally, we use σ′ =

√
(q/p)2−1

12
when checking security for the LWR case in the ‘best-attack’ estimation using Albrecht’s tool.

We use the the minimum between the LWE security estimate and the LWR ‘best-attack’ security
estimate (like the NIST Post-Quantum candidates) as the overall security. Concretely, the primal
attack (uSVP version) is used as the reduction cost model in Albrecht’s tool. From the security
estimates found in [ACD+18], this model appears to be the more pessimistic choice when comparing
with the dual attack. Table 1 shows parameter choices for the two types of q, being a prime and
being a power of 2, and two security targets, namely 128 and 256-bit security, and a choice of n a
power-of-two, and one where n can be any value. Note, the theoretical hardness for the q = 2k case
is very low due to the denominator in Theorem 2.1 being so large in this case, as the ratio p/q is
much larger. This gives us the parameters in the following table.

δc-Collision Freeness: We note that whilst Gladius is not perfectly correct, it is collision free
with very high probability. For a fixed public/private key pair (pk, sk) we can upper bound the
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LWE LWR Security
n t q p ` σ µ Security Theoretical Best-Attack

prime q 971 2 221 − 9 29 219
√

1/2 128 2128.3 261.25 2465.7

1024 2 221 − 9 29 219
√

1/2 128 2135.7 264.78 2492.7

1982 2 223 − 15 210 221
√

1/2 256 2256.6 2125.3 2465.7

2048 2 223 − 15 210 221
√

1/2 256 2266.0 2129.9 2975.5

q = 2k 710 2 214 210 211
√

1/2 128 2128.9 2−550.1 2187.6

1024 2 214 210 212
√

1/2 256 2188.4 2−792.1 2274.8

1437 2 215 211 212
√

1/2 256 2256.6 2−1115. 2366.1

2048 2 215 211 212
√

1/2 256 2376.6 2−1584. 2535.3

Table 1. Gladius–Hispaniensis parameters (based on plain LWR)

probability of any collision existing as follows. The encryption scheme is a mapping from M = Znt
to the set Z2n

p . Indeed under the decision-LWR assumption this map is indistinguishable from a
random mapping. Thus to estimate δc we need to estimate the probability that this specific random
mapping (defined by the public/private key pair) has any collisions at all.

We can then consider the δc-Collision Freeness as being given by the probability that one obtains
a collision when sampling tn values randomly from a set of size p2n. The standard analysis of the
birthday-paradox estimates this probability as

δc = 1− exp
(
−t · (t− 1)/(2 · p2n)

)
≈ 1− exp

(
−(t/p)2n/2

)
.

For our specimen parameters this value is less than 2−15000.

⊥-Aware Hardness: Recall ⊥-Aware security is also related to the correctness of the scheme, it
requires that it is hard for an adversary to write down a message/ciphertext pair (m, c) such that
c is an encryption of m, but c decrypts to ⊥. To understand ⊥-Aware security of our scheme we
focus on the specific parameter sets given above (again a similar analysis also applies in the case of
the Module-LWR parameters given later).

If instead of averaging over all public keys and messages to obtain our initial four bounds, we
average over all public keys and the worst case for messages, we obtain the following bounds,

‖mT ·R2‖∞ ≤ c · σ ·
√
n · t

2
,

‖eT1 ·R1‖∞ ≤ c · σ ·
√
n · 1

2
,

‖vT
1 ·R1‖∞ ≤ c · σ ·

√
n,

‖rT‖∞ ≤ c2 · n · σ ·
t

2 ·
√

12

with probability 1− 4 · n · 2−ε, where c and c2 are such that erfc(c) ≈ erfc(c2)
2 ≈ 2−ε. Passing these

new bounds through the previous analysis we obtain

‖vT‖∞ ≤ BV =
p

q
· c · σ ·

√
n · t

2
+

t

4
+

1

2
+ c ·

√
n · σ · 1

2

=
t+ 2

4
+ c · σ ·

√
n · p · t+ q

2 · q
.
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‖uT‖∞ ≤ BU = 1 + c · σ ·
√
n + cq · c2 · n · σ ·

t

2 ·
√

12

= 1 + σ ·
(
c ·
√
n + cq · c2 · n ·

t

2 ·
√

12

)
.

The three final bounds being the same, namely

BW = BV +
t

2
· µ+ p ·BU ≤ q/2,

BV < µ/2,

BE = BV + µ · t
2
< p/2

If we substitute our various parameter sets into these equations we find, assuming ε = 128, that in
the case of prime q the only inequality which is not satisfied is BV < µ/2, and for q a power-of-two
we can have BW < q/2 not satisfied or BV < µ/2 not satisfied.

Further analysis reveals that (in all cases when q is prime) the bound of BV < µ/2 would be
satisfied if we had

‖eT1 ·R1‖∞ ≤ c′ · σ ·
√
n/2

for c′ = 5.565 at the 128-bit security level and c′ = 7.935 at the 256-bit security level (including the
module-LWR based parameters given later). Thus any pair (m, c) for which c decrypts to ⊥, must
violate this bound.

We have the following theorem, which establishes (using the above constants c′ and our conjec-
tured hardness of the Large Vector Problem), that the Gladius scheme is ⊥-Aware for the parameter
sets of interest.

Theorem 5.1. For the Gladius parameter sets when q is prime if there is an adversary A against
⊥-Aware then there is an adversary B against LVP such that

Adv⊥−AwareΠp,A (t) = AdvLVPB (n, c′, σ)

for the above values of c′.

Proof. The adversary B takes as input (A1, A2) which we pass on as the public key to adversary
A. Adversary A returns with a message/ciphertext (m, c) from which one can extract the vector
e1. The only way the pair (m, c) can satisfy the constraints c = Ep(pk,m) and ⊥= Dp(sk, c) is if
this value of e1 satisfies

‖eT1 ·R1‖∞ ≤ c′ · σ ·
√
n/2.

Thus e1 will be a solution to the Large Vector Problem.

We end this section by noting the methodology here. We used a relatively loose noise analysis
so as to obtain a sufficient search space for both correctness and LWE/LWR security. Then we
re-examined the correctness equations in more detail, for these specific parameter sets, so as to
establish the required hardness of the ⊥-Aware problem, and an estimate for the δc value.

The above describes solely the KEM-like component Πp of our hybrid construction from Section
3. The DEM-like component Πs can be any (one-time) IND-CPA cipher; for example a one-time
pad or AES in CTR-mode. The remaining item to define is the associated hash function G (and in
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the case of using Hybrid2 the hash functions H ′ and H ′′). Recall G takes the ciphertext c2 output
from the DEM, and the key k which the KEM encapsulates, and produces the hash result G(c2, k).
Here we focus solely on the case of prime q variants of Gladius.

In our construction, to aid distributed decryption, we construct G as in Figure 9, assuming we
take the message modulus t = 2 in our above construction. Minor tweaks are needed in the case
when t 6= 2. The construction makes use of Rescue with rate r satisfying r ≥ 2 · κ/blog2 qc, as well
as SHA-3. The combined hash function can clearly be treated as a random oracle if one assumes
SHA-3 and Rescue are themselves random oracles. In the final distributed decryption variant only
lines 5 and 6 need to be performed in a secure manner (which are based on Rescue, which is an
MPC-friendly hash function). Thus irrespective of how long the initial message is which is being
encrypted, the number of applications of Rescue which need to be performed securely is given by
dw/re+ 1. If we take parameters κ = 128, n = 1024 and q = 221 − 9 then we have r = 13, w = 52
and the number of secure rounds of Rescue is five in order to absorb the key k and produce the
output G(c2, k). For the case of Hybrid2 we select H ′ and H ′′ based on Rescue as well.

The Hash Function G(c2, k).

On input of c1, c2 and k ∈ {0, 1}n.
1. Apply the SHA-3 hash function to c2 to obtain a 2 · κ-bit string s.
2. Parse s into r bit-strings (s1, . . . , sr) each of length blog2 qc. This is possible due to the choice of r.
3. Treat each si as an element of Fq and absorb the set (s1, . . . , sr) into a fresh Rescue state. This requires

one application of the Rescue absorption phase. Note, this can all be done in the clear during threshold
decryption as c1 and c2 are public.

4. Take the bit string k ∈ {0, 1}n and parse again into bit-strings of length blog2 qc. This will produce
w = dn/blog2 qce bit-strings k1, . . . , kw, each of which we think of as elements in Fq.

5. The w finite field elements k1, . . . , kw are absorbed into the Rescue state, this will require dw/re exe-
cutions of the Rescue function. Since during distributed decryption k is not known at this stage, this
absorption needs to be carried out securely.

6. Finally the output is obtained by squeezing our r output field elements from Rescue using a single
application of the Rescue function.

Figure 9. The Hash Function G(c2, k).

For q a power-of-two a different methodology will be required. We know of no MPC-friendly
hash function defined over rings of the form Z2k . Thus for the case of power-of-two values of q it
would seem one would need to use a standard sponge-based hash function (such as SHA-3), which
would not be as amenable to threshold implementation via a generic MPC methodology.

6 Gladius–Pompeii: Module LWR Based Encryption

According to Wikipedia the Gladius–Pompeii was the most popular and smallest of the different
types of Gladii; it is thus appropriate we reserve this name for our encryption scheme based on
module-LWR; as module-LWR provides a smaller construction than standard LWR. The construc-
tion is very much the same as for the standard LWR variant, and it is given in Figure 10. It is
parametrized by values t, p, q, n, d, `, σ, ε. From which we define µ as before by equation (2). Again
for simplicity we select µ and p to be pwoers of two. We define the message space M to be the set
Rdt .
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The Gladius–Pompeii Deterministic Encryption Scheme Πp.

Key Generation: Mod-Kp.
1. R1, R2 ← Dσ(Rq)d×d, i.e. two n× n matrices with coefficients samples from Dσ.
2. A1 ←Rd×dq

3. A2 ← A1 ·R1 +R2 +G, where G is the gadget matrix ` · Id.
4. pk← (A1, A2).
5. sk← (pk, R1).
6. Return (pk, sk)).

Encryption: Mod-Ep(pk,m).
1. c1 ← bmT ·A1ep.
2. c2 ← bmT ·A2ep.
3. Return (c1, c2).

Decryption: Mod-Dp(sk, (c1, c2)).
1. wT ← c2 − c1 ·R1 (mod q)
2. eT ← wT (mod p).
3. vT ← eT (mod µ).
4. mT ← (eT − vT)/µ.
5. (c′1, c

′
2)← Mod-Ep(pk,m).

6. If c1 6= c′1 or c2 6= c′2 return ⊥.
7. Return mT.

Figure 10. The Gladius–Pompeii Deterministic Encryption Scheme Πp.

The noise analysis proceeds as before: We can express the ciphertext components over R⊗ Q
as

c1 =
p

q
·
(
mT ·A1 (mod q)

)
+ eT1 + p · vT

1 ,

c2 =
p

q
·
(
mT ·A2 (mod q)

)
+ eT2 + p · vT

2

=
p

q
·
((

mT ·A1 (mod q)
)
·R1 + mT · (R2 +G) + q · rT

)
+ eT2 + p · vT

2 .

where ei ∈ (R ⊗ Q)d ⊂ Rn·d and ‖ei‖∞ ≤ 1/2, and vi ∈ {0, 1}n·d. We then set, as before,
wT = vT + µ ·mT + p · uT (mod q), where

vT =
p

q
·mT ·R2 + ψ ·mT + eT2 − eT1 ·R1,

uT = vT
2 − vT

1 ·R1 + cq · ·rT.

The previous analysis can then be applied, but we need to replace the value n from before with
n · d now. In particular with probability 1− 4 · n · d · 2−ε we have the following bounds

‖vT‖∞ ≤ BV =
t+ 2

4
+ c · σ ·

√
n · d ·

(
p

q
·
√

((t+ 1)2 − 1)/12 +
√

1/12

)
,

‖uT‖∞ ≤ BU = 1 + c · σ ·

(√
(p− 1) · n · d

p
+ cq · n · d ·

√
(t+ 1)2 − 1/12

)
,

‖eT‖∞ ≤ BE = BV + µ · t
2
,

‖wT‖∞ ≤ BW = BE + p ·BU
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As before we require BW < q/2, BV < µ/2 and BE < p/2.
For security we again examine only the best attack case, where following the approach in

[ACD+18] we approximate the hardness of solving module LWR and LWE for modules of rank d
over rings of dimension d, as the same as the difficulty of solving normal LWR and LWE in dimension
d · n. Thus we seem to have the same bounds as we had for Gladius–Hispaniensis. However, with
module LWR/LWE we can be more nuanced with the selection of d and n. We require n to be a
power-of-two for the above noise analysis to work. We also require µ to be a power-of-two, which
implies that q should be close to a power-of-two. To enable efficient arithmetic in the case when
q is a prime we also require q ≡ 1 (mod 2 · n), which will enable the ring arithmetic in Rq to be
performed using a FFT representation. The extra flexibility though is that we have another free
variable of d in the module setting. This leads us to the parameter sets in Table 2.

LWE LWR Security
n d t q p ` σ µ Security Theoretical Best-Attack

prime q 256 4 2 2101249 29 219
√

1/2 128 2135.7 263.10 2492.7

256 8 2 8380417 210 221
√

1/2 256 2266.0 2128.3 2975.5

q = 2k 256 3 2 214 210 211
√

1/2 128 2139.8 2−594.8 2203.4

256 6 2 215 211 212
√

1/2 256 2275.7 2−1192. 2393.0

Table 2. Gladius–Pompeii parameters (based on module LWR)

We note that for the case of prime q the values are vary similar to those in the standard LWR
based variant given earlier. When q is a power-of-two the parameters are much better than those in
the equivalent standard LWR case. The parameter set (q, n, d, p) = (214, 256, 3, 210) looks very close
to the Saber parameter set (q, n, d, p) = (213, 256, 3, 210). Thus run times for our entire construction
for encryption and for (in the clear) decryption, will be comparable to those of Saber. However,
the parameter set for Saber gives 256-bit security, whereas ours only gives 128-bit security due to
the reliance on LWE for the key generation.

7 Gladius–Mainz: Potentially Easier Threshold Security in the QROM via a
OTP

Our third Gladius variant provides (potentially) full threshold security in the QROM, at the expense
of requiring a specific one-time IND-CPA DEM, which requires a distributed decryption procedure
whose complexity is linear in the length of the message m. Thus it will not be truly efficient for long
messages m. We dub this variant Gladius–Mainz, which is the name of a famous specific Gladius,
sometimes called the ‘Sword of Tiberius’, to be found in the British Museum.

Recall our main hybrid construction Hybrid1, in the case where Πp, is a deterministic scheme can
be considered as exactly the second Fujisaki–Okamoto transform when applied to the randomized
encryption scheme

E ′p(pk, k; r) = (Ep(pk, k), r).

Note, here we think of Fujisaki–Okamoto as utilizing the randomization of a deterministic en-
cryption scheme as opposed to the traditional way of thinking as it de-randomizing a randomized
encryption scheme. Our encryption scheme of

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c2, k).
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for a deterministic OW-CPA secure Πp is the Fujisaki–Okamoto transform; and thus by the result
of Zhandry [Zha19] it is secure in the QROM when considered as a standard (non-threshold)
encryption algorithm. But this result only holds when Πp is perfectly secure. If we assume that
this result can be extended to the case when Πp has an exponential probability of decryption error
then we can potentially obtain a simpler QROM secure construction.

We would like a QROM result, equivalent to the result of Theorem 3.1, for the threshold variant.
As we do not want to evaluate the DEM in the secure domain, due to computational expense, we
need to leak information. In our previous two constructions we leaked the key k from which the
DEM key k was derived via application of H. Our first modification is to leak k instead of k. This
we replace the leaking decryption oracle on the left with the one on the right

Dh(sk, (c1, c2, c3)):

k ← Dp(sk, c1)
If k =⊥ then return (⊥,⊥).
t← G(c2, k)
If t 6= c3 then return (⊥,⊥).
k← H(k).
m← Ds(k, c2)
Return (k,m).

Dh(sk, (c1, c2, c3)):

k ← Dp(sk, c1)
If k =⊥ then return (⊥,⊥).
t← G(c2, k)
If t 6= c3 then return (⊥,⊥).
k← H(k).
m← Ds(k, c2)
Return (k,m).

Our distributed decryption operation for Πh would then consist of the following steps:

1. Absorb c2 (resp. c1 and c2) into G in the clear.
2. Apply ΠDp to obtain a distributed decryption operation, keeping the result k in shared form.
3. Securely absorb these shares of k into the sponge G.
4. Securely evaluate the squeezing of G to obtain g in the clear.
5. Reject the ciphertext if c3 6= g.
6. Securely evaluate k = H(k).
7. Open k to all players.
8. Compute m = Ds(k, c2) in the clear and output it.

Thus we need to now evaluate the hash function H in the encrypted domain. This is not that much
extra work for a choice of H similar to the choice of G, as long as the amount of data we need to
squeeze from H is limited.

However, to show that the above construction is secure as a threshold scheme in the QROM we
have to show that the information leaked by the threshold decryption is the same as is leaked by a
normal decryption scheme. However, for general one-time IND-CPA schemes Πs this is not going
to be true. Since it implies that the key k can be derived from the plaintext-ciphertext pair (m, c2).

We shall say the symmetric encryption scheme Πs has a key-recovery algorithm (which we shall
denote by J ) if J is a probabilistic polynomial time algorithm (measured in the length of k and/or
m) such that

Pr[ J (m, c) = k : k← Ks, m← {0, 1}∗, r ← R, c← Es(k,m; r) ] = 1.

So to obtain full QROM security we need to utilize a DEM with a key-recovery algorithm. But
such a algorithm being available implies that an adversary can trivially break the IND-CPA game,
unless the encryption scheme is the one-time-pad.

Thus the scheme will only be secure if a one-time-pad is used for Πs, which implies that the
hash function H needs to be securely evaluated to produce a key k as long as the message m. This
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generic hybrid construction is QROM secure when we instantiate it with a scheme Πp which is
perfectly correct, by the result of Zhandry [Zha19].

However, when we instantiate Πp with our LWR based deterministic encryption scheme we only
obtain what we called QROM? security in the introduction; i.e. it is QROM secure assuming the
proof of Zhandry can be extended to cope with non-perfectly correct schemes. We call Gladius–
Pompeii when used in this manner Gladius–Mainz; it is clearly not as efficient when utilized in this
specific threshold manner for long messages.

8 Distributed Decryption of Gladius

In this section we present how to perform distributed decryption of the hybrid cipher obtained from
our generic construction composed with Gladius. For ease of implementation we select parameters
for which q is prime, p = 2π and µ = 2ν are powers of two, and the message space modulus is
t = 2. Although this section focuses on the simpler standard LWR variant (Gladius–Hispaniensis)
and not on the Ring-LWR variants (Gladius–Pompeii, Gladius–Mainz and Gladius–Fulham), the
procedure is virtually identical in all cases.

We use an MPC system defined for the q prime case for our experiments, as this is the only case
for which we have both a full proof of security and a suitable MPC-friendly hash function (Rescue).
Selecting q prime also means we can utilize an existing library such as SCALE-MAMBA [ACK+20],
for not only the underlying MPC system, but also many of the necessary sub-routines which our
distributed decryption method requires. At the end of this section, we discuss the changes that
would be required when q is a power-of-two.

We first present our distributed Key Generation protocol ΠKeyGen. Since the key generation
method is based on Learning-with-Errors, with the error distribution coming from the NewHope
distribution with σ = 1/

√
2, we can utilize the simple method described in [KLO+19,RST+19].

This is described in Figure 11.

Protocol for Distributed Key Generation ΠKeyGen.

1. For i, j ∈ [1, . . . , n]
- 〈b〉, 〈b′〉, 〈c〉, 〈c′〉 ← Bits().

- 〈R(i,j)
1 〉 ← 〈b〉 − 〈b′〉.

- 〈R(i,j)
2 〉 ← 〈c〉 − 〈c′〉.

- A
(i,j)
1 ← Fq.

2. 〈A2〉 ← A1 · 〈R1〉+ 〈R2〉+G.
3. A2 ← Output(〈A2〉).
4. pk← (A1, A2).
5. sk← (A1, A2, 〈R1〉).

Figure 11. Protocol for Distributed Key Generation ΠKeyGen.

The distributed decryption procedure itself is more complex. It makes use of the following
protocols from other works, e.g. [DFK+06,NO07]. In each of these protocols we can run the protocol
with clear entries. For example BitDecomp(a) will form the bit decomposition of an integer a, but
here we also need to specify how many bits we require. Since a may not necessarily be reduced in
the range (−q/2, . . . , q/2). Thus we would write BitDecomp(a, t) to obtain t bits.
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- 〈a〉 ← BitDecomp(〈a〉): Given a secret shared value 〈a〉 with a ∈ Fq this procedure produces a
vector of shared bits 〈a〉 = (〈a0〉, . . . , 〈ablog2 qc〉) such that a =

∑
i ai · 2i. Note this means a is

in the non-centred interval [0, . . . , q). The method we use is from [NO07], which is itself built
upon the work in [DFK+06].

- 〈c〉 ← BitAdd(〈a〉, 〈b〉): Given shared bits 〈a〉 and 〈b〉 this executes a binary adder to produce
the vector of shared bits 〈c〉 such that

∑
i ci ·2i =

∑
i(ai+bi)·2i. This algorithm is also presented

in [DFK+06]. Note this returns one bit more than the maximum of the lengths of 〈a〉 and 〈b〉.
- 〈c〉 ← BitNeg(〈a〉): This performs the two-complement negative of the bit vector 〈a〉. It flips

the bits of 〈a〉 to produce 〈a〉, and then executes the function BitAdd(〈a〉,1), where 1 =
BitDecomp(1, |a|) is the bit-vector of the correct length representing the integer one.

- 〈c〉 ← BitLT(〈a〉, 〈b〉): This computes the single bit output 〈c〉 of the comparison
∑

i ai ·
2i <

∑
i bi · 2i. Again we use the method from [DFK+06].

When running BitDecomp(〈a〉) on a secret shared value the run time is not deterministic, it needs
to loop to produce a shared value which is uniformly distributed modulo q. It does this by rejection
sampling; where the probability of rejecting a sample is given by

2dlog2 qe − q
2dlog2 qe

.

This is another reason to select q to be close to a power-of-two, as well as to ensure µ is a power of
two.

In Figure 13 we divide our distributed decryption procedure into four phases: KEM Decapsu-
late, KEM Validity Check, the Hash-Check (for the checking of the DEM component) and finally
the Message Extraction. As we select µ and p to be powers of two the first stage is relatively
straightforward given we can implement BitDecomp(〈a〉). There is a minor complication due to the
need to map the bit-decomposition into the centred interval but this is easily dealt with using the
sub-routine in Figure 12. The third stage complexity depends on the choice of the underlying hash
function G; our choice of G from Section 5 using SHA-3 and Rescue combined was to ensure this
step is as efficient as possible. Due to our hybrid design the final step can be performed in the clear;
which is not possible for other hybrid schemes.

Thus, the main complexity of the decryption procedure is the second stage, namely the KEM
Validity Check, as for this we need to re-encrypt the message and check the result is equal to the
KEM ciphertext component. We need to verify equations of the following form

c = b〈x〉ep =
⌊p
q
· 〈x〉

⌉
(mod p)

where c is publicly given, but the value 〈x〉 cannot be opened to the parties. We write the equation,
over the integers, as

c =
p

q
· 〈x〉 + ε + p · v

where ε ∈ (−1/2, 1/2], v ∈ {0, 1} and we think of the shared value 〈x〉 being in the centred
representation modulo q. The value v is equal to one only if the reduction modulo p in the LWR
equation needs to move the rounded value −p/2 to p/2. This happens when

x ≤ q

p

(
1

2
− p

2

)
=
q · (1− p)

2 · p
.
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This means we simply need to compute the bit representation 〈s〉 of the value |q ·c−p ·〈x〉−p ·q ·〈v〉|
over the integers and then check the result is less than q/2. The last check can be performed using
the BitLT(〈s〉, q/2) algorithm mentioned above.

But to compute the bit representation of 〈s〉 we need the bit representation of the modulo
q centred value 〈x〉. However, the BitDecomp routine only produces the bit-decomposition in the
non-centred interval of a value modulo q. We could use the method from the first stage and apply
the Centre sub-routine. However, this is inefficient as on its own it requires two calls to BitAdd (one
explicitly to BitAdd and one implicitly in the call to BitNeg). The procedure BitAdd is our most
expensive subroutine so we want to minimize the number of calls to this.

Thus instead we proceed as follows: If we think of the value 〈x〉 as the reduction in the centred
interval, and 〈u〉 as the value in the non-centred interval then we have x = u− b · q, where b is the
bit given by b = 1 − (u ≤ q/2). We write 〈u〉 for the corresponding shared bit decomposition of
u. We can then re-write the equation for determining v above in terms of u, as opposed to x, as

v = b ·
(
u ≤ q·(p+1)

(2·p)

)
. We note that v = 0 when b = 0, which is important in what follows.

We then rewrite the equation for 〈s〉 as∣∣∣p · 〈u〉 − p · q · (〈b〉 − 〈v〉)− ci · q∣∣∣
The bit representation of p · 〈u〉 can be determined by simply shifting bits, as p is a power-of-
two. The bit representation of −p · q · (〈b〉 − 〈v〉) can be determined by bit-wise multiplications as
b−v ∈ {0, 1} by construction. From these observations we can produce a method for Stage 2 which
requires three calls to BitAdd, as opposed to the naive method which would go through Centre
which would require four calls to BitAdd.

Subroutine Centre(〈x〉)

1. 〈b〉 ← BitDecomp(〈x〉); recall the bit-decomposition produces a value in the non-centred interval.
2. 〈b′〉 ← BitAdd(〈b〉, q + 1); i.e. b′ = q − ui over the integers.
3. 〈b′′〉 ← BitNeg(〈b′〉); i.e. b′′ = −b′ (mod 2dlog2 qe − π) if we compute to dlog2 qe − π bits.
4. 〈f〉 ← BitLT(〈b〉, q/2); i.e. is b < q/2?
5. 〈a〉 ← 〈f〉 · 〈b〉 + (1− 〈f〉) · 〈b′′〉. This is again done bitwise. This results in a being the bit representation

of the centred value of ui modulo q represented in dlog2 qe bits.
6. Return 〈a〉.

Figure 12. Subroutine Centre(〈x〉)

Security Discussion and Implementation: As remarked previously the security of our implemen-
tation follows from the security of the underlying MPC protocol. By using SCALE-MAMBA
[ACK+20] we can obtain active security, and the above sub-procedures are all provided as built in
functions. In addition, the large local only operations in KEM Decapsulation (line 1) and KEM
Validity Check (line 1) can be carried out efficiently in C++ using the SCALE LOCAL_FUNCTION

operation. This enables one to perform complex local only operations, i.e. complex linear functions,
natively in C++ as opposed to needing them to be implemented with the MPC system (which adds
a lot of overhead).

49



Protocol for Distributed Decryption ΠDec.

Input: A ciphertext c1 = (c1, c2), c2, c3, the public key (A1, A2) and the secret key in shared form 〈R1〉.

KEM Decapsulation:
1. 〈x〉 ← c2 − c1 · 〈R1〉.
2. For i ∈ [1, . . . , n]

- 〈w〉 ← Centre(〈xi〉).
- 〈ki〉 ← 〈w(ν)

i 〉 ⊕ 〈w
(ν+1)
i 〉 = 〈w(ν)

i 〉 + 〈w(ν+1)
i 〉 − 2 · 〈w(ν)

i 〉 · 〈w
(ν+1)
i 〉.

KEM Validity Check:
1. 〈y〉 ← 〈k〉 · (A1‖A2).
2. 〈z〉 ← 1.
3. For i ∈ [1, . . . , 2 · n]

- 〈u〉 ← BitDecomp(〈yi〉).
- 〈b〉 ← 1− BitLT(u, q/2).
- 〈v〉 ← 〈b〉 ·BitLT(〈u〉, q · (p+ 1)/(2 · p)). This computes the adjustment bit for dealing with the wrap

around modulo p. Note, this can only apply when a < 0.
- 〈u′〉 ← 〈u〉 � π; i.e. shift left by π bits, where p = 2π. Hence u′ = p ·u over the integers, represented

in dlog2 qe+ π bits.

- 〈w〉 ← BitAdd(〈u′〉, 2dlog2 qe+π − ci · q). Here ci = c
(i)
1 if i ≤ n and c

(i−n)
2 otherwise. This produces

w = p · u− ci · q over the integers with dlog2 qe+ π bits.
- 〈f〉 ← BitAdd(〈w〉, (〈b〉− 〈v〉) · (−p · q)). This applies the adjustment when b = 1 and v = 0. We now

have f = p · ui − (b− v) · p · q − ci · q over the integers with dlog2 qe+ π bits.
- 〈f ′〉 ← BitNeg(〈f〉), hence f ′ = −f over the integers.
- 〈g〉 ← 〈fπ+dlog2 qe−1〉; i.e. the sign bit of f .
- 〈s〉 ← 〈g〉 · 〈f ′〉 + (1− 〈g〉) · 〈f〉. Again a bitwise operation computing s = |f | as an integer.
- 〈j〉 ← BitLT(〈s〉, q/2); is one if this coefficient is OK.
- 〈z〉 ← 〈z〉 · 〈j〉; is one if the ciphertext is OK up to this point.

4. z ← Output(〈z〉)
5. If z 6= 1 then return ⊥.

Hash Check:
1. 〈t〉 ← G(c2, 〈k〉).
2. t← Output(〈t〉).
3. If t 6= c3 then return ⊥.

Message Extaction:
1. k ← Output(〈k〉).
2. k← H(k).
3. m← Ds(k, c2)
4. If m =⊥ then return ⊥.
5. Return m.

Figure 13. Protocol for Distributed Decryption ΠDec.
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We implemented our distributed decryption procedure in the case of Shamir sharing within
SCALE-MAMBA. This is because the Shamir implementation module allows the MPC sub-system
to be instantiated over any finite field Fq. In using a full threshold access structure one would need
(with SCALE-MAMBA as currently implemented) to select a prime q which is FHE friendly; so as
to enable the SHE scheme at the basis of SPDZ [DPSZ12] to be instantiated. None of the q values
in the various parameter sets for Gladius are FHE friendly; not even the Gladius-Pompeii variants
which have q − 1 divisible by a large power of two.

For three parties, tolerating a threshold of one dishonest party, we obtained a run time for the
first three phases of 1.19, 3.62, and 0.18 seconds respectively; for our parameter set of q = 221 − 9
and n = 1024 in the plain LWR setting. Making a total decapsulation time of 4.99 seconds. Whilst
this might at first sight seem slower than the 4.20 seconds reported for LIMA in [KLO+19] the
results are incomparable. Recall, the method in [KLO+19] to perform distributed decapsulation
is insecure, as indeed would be any distributed decapsulation of any algorithm making use of the
traditional KEM-DEM construction.

Modifications When q is a Power-of-Two: Recall, we do not fully prove security of Gladius for
the case when q is a power-of-two, since we cannot establish our ⊥-Aware property in this case.
Nevertheless, one can discuss how distributed decryption would be modified when q is a power-of-
two. In this case, one could utilize (in the full threshold case) the SPDZ2k protocol of [CDE+18].
When in the non-full threshold case one could implement an MPC system using replicated secret
sharing to work modulo q a power-of-two, much like the Sharemind system [BLW08]. Active security
could be obtained for such a replicated secret sharing based protocol using the techniques in [SW19].
Both replicated sharing in this case, and the SPDZ2k protocol, are implemented in the library MP-
SPDZ [Kel20].

One immediate problem is how to implement the algorithm BitDecomp. Recall in our method
above for the case of prime q we used bit-decomposition techniques which are secure absolutely (i.e.
without any statistical security gap between the value being decomposed and the modulus q), these
are more expensive but enable one to work in the MPC system natively modulo q. The techniques
from [DFK+06,NO07] are not known (by the authors) to have been generalized, or implemented,
for the case of a general MPC system with q a power-of-two (using for example Replicated secret
sharing). Thus techniques based on [Cd10], which uses a statistical security parameter, need to be
adopted.

For the SPDZ2k full-threshold implementation in MP-SPDZ a method for performing bit-
decomposition is provided in [DEF+19]. This is itself based on the work in [Cd10], but unlike
the latter it does not require a statistical security gap between the value being represented and the
underlying modulus q. This is because SPDZ2k already has the statistical security ‘gap’ built into
its computations.

Another advantage of using Z2k arithmetic is that we can work with a value of k large enough
to cope with our integer arithmetic in the decryption test; thus we select k with 2k > q. For our q
of 214 one can select k = 24. Using MP-SPDZ for three parties, with the SPDZ2k protocol in the
case of full-threshold adversaries and the ‘Brain/Rep3/PS’ method for replicated secret sharing in
the honest majority case, we implemented the equivalent of the inner loop of line 3 of the Validity
Check. We did not implement the full algorithm as MP-SPDZ does not have the LOCAL_FUNCTION

ability which SCALE-MAMBA does; thus making implementation of line 1 less efficient than it
could be.
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Line 3 of the KEM Validity check for our Gladius-Hispaniensis parameters of q = 214, p = 210,
µ = 128, ` = 211 using MP-SPDZ takes 0.272 seconds in the full threshold case, and 0.099 seconds
in the replicated secret sharing case. For Gladius-Pompeii the time is 0.204 and 0.074 respectively,
due to the reduced dimensions in the Module-LWR case. To this time would need to be added the
time needed to compute line 1, which can be done relatively fast if performed in C++ directly.
Recall the Validity Check step took 3.62 using SCALE-MAMBA for the case when q is a prime.
Thus using q a power of two seems to give a roughly thirty-five fold performance improvement in
the distributed decryption.

However, the major (implementation) problem for the case of q a power-of-two, is that we
selected the hash function Rescue as it is MPC-friendly when q is prime. There has been no research
work on designing MPC-friendly hash functions over rings of the form Z2k , to our knowledge. Thus
selection of the underlying hash function G in our construction could be a little more problematic.
The obvious solution would be to utilize a standard hash function like SHA-3, but then one would
need to pass from the secret sharing based MPC over Zq to a garbled-circuit based MPC (such as
HSS [HSS17]) in order to evaluate the SHA-3 operation efficiently. Whilst this is possible it would
involve a considerable extra cost in terms of protocol complexity and execution time.

Thus, there are a number of interesting research challenges for implementing both a standard
Gladius, and a distributed decryption procedure for Gladius, in the case when q is a power-of-two.
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LY12. Benôıt Libert and Moti Yung. Non-interactive CCA-secure threshold cryptosystems with adaptive secu-
rity: New framework and constructions. In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptogra-
phy Conference, volume 7194 of Lecture Notes in Computer Science, pages 75–93, Taormina, Sicily, Italy,
March 19–21, 2012. Springer, Heidelberg, Germany.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 700–718, Cambridge, UK, April 15–19, 2012. Springer,
Heidelberg, Germany.
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