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Abstract. Standard hybrid encryption schemes based on the KEM-
DEM framework are hard to implement efficiently in a distributed man-
ner whilst maintaining the CCA security property of the scheme. This
is because the DEM needs to be decrypted under the key encapsulated
by the KEM, before the whole ciphertext is declared valid. In this pa-
per we present a new variant of the KEM-DEM framework, closely re-
lated to Tag-KEMs, which sidesteps this issue. We then present a post-
quantum KEM for this framework based on Learning-with-Rounding,
which is designed specifically to have fast distributed decryption. Our
combined construction of a hybrid encryption scheme with Learning-
with-Rounding based KEM, called Gladius, is closely related to the NIST
Round 3 candidate called Saber. Finally, we give a prototype distributed
implementation that achieves a decapsulation time of 4.99 seconds for
three parties.

1 Introduction

The potential development of quantum computers means that we need to rethink
which algorithms are going to be used for public key encryption and signatures;
resulting in the subarea called post-quantum cryptography. The early days of
post-quantum cryptography looked at how to build basic primitives such as sim-
ple public key encryption or signatures. However, now we realise that our existing
(pre-quantum) public key algorithms often offer more than what is offered by
basic public key primitives. For example one may have group signatures, identity-
based encryption, or proofs-of-knowledge of the secret key, etc. In this work, we
look at distributed decryption for IND-CCA hybrid public key encryption.

Even in the context of pre-quantum cryptography, distributed decryption for
hybrid systems is problematic for many schemes, as to maintain security one
would need to apply a distributed decryption procedure to the symmetric com-
ponent, which is rather expensive. This problem, of the difficulty of constructing
threshold IND-CCA encryption/encapsulation schemes Πp, was first pointed out
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in [37] and then elaborated upon in [48,49]. The problem being that Πp would
seem to require a publicly checkable CCA test. For historical (i.e. impractical)
CCA secure public key encryption schemes such as Naor-Yung [41] and Dolev-
Dwork-Naor [25] the check is simply the verification of a zero-knowledge proof,
and is thus publicly verifiable.

However, for almost all practical encryption schemes the check is non-public
and thus requires often expensive machinery to deploy in a threshold manner.
In [48,49] Shoup and Gennaro present two schemes (called TDH1 and TDH2)
which are IND-CCA and are based on the discrete logarithm problem, for which
an efficient threshold decryption algorithm is possible. Both schemes bear a
strong resemblance to Cramer-Shoup encryption [17]. These two constructions
are however non-hybrid encryption mechanisms, but can be turned into hybrid
threshold schemes using the Tag-KEM framework [1].

Our first contribution is to provide two transforms (one secure in the ROM
and one secure in the QROM) which supports distributed decryption for hybrid
encryption schemes. Our transform is closely related to the previous REACT
[43] transform, the Tag-KEM framework [1], or the second hybrid-variant of the
Fujisaki-Okamoto transform [27]. The key take away from our (general) hybrid
construction is that the DEM component can be a generic one-time IND-CPA
encryption scheme, and the KEM component can be either a rigid4 deterministic
OW-CPA secure public key encryption scheme or (with a minor modification) a
rigid OW-PCA-secure5 probabilistic scheme. In the case of public-key encryption
schemes which are not perfectly correct, i.e. they exhibit decryption errors, we
require an additional hardness assumption.

As our second contribution, to utilize our hybrid construction in the post-
quantum setting we build a rigid deterministic encryption scheme which has a
relatively efficient distributed decryption procedure based on the standard (or
module) Learning-with-Rounding (LWR) problem. Our scheme is competitive
(in terms of execution time and parameters) with Saber, the Learning-with-
Rounding based submission in the third round of the NIST competition. Indeed
the module-LWR version of our scheme has almost exactly the same parameters
as Saber6, meaning that any run-times for Saber in hybrid encryption mode will
be similar to the run-times for our scheme.

Due to the similarity with Saber we name our constructions of a hybrid
encryption scheme, which has an efficient distributed decryption operation, based
on Learning-with-Rounding, after the Roman sword Gladius; which came in
four basic forms: A large one called Gladius–Hispaniensis, a smaller ‘standard’
one called Gladius–Pompeii, and two related ones called Gladius–Mainz and

4 A scheme is defined to be rigid if decryption of a ‘ciphertext’, which is not the output
of an encryption operation, always returns ⊥.

5 A scheme is said to be PCA (plain-check attack) secure if it is secure in the presence
of an oracle which allows the adversary to check whether a given ciphertext encrypts
a given plaintext.

6 Although there is an issue of having comparable security for these parameters, due
to our reliance on LWE in the key generation phase, see Table 1 for more details.
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Gladius–Fulham. In addition, we give in the full version a pre-quantum hybrid
scheme based on ElGamal encryption and the gap-Diffie–Hellman assumption,
along with a methodology to perform a distributed hybrid decryption.

Of the three lattice based finalists in Round 3 of the NIST competition two
of them, Crystals-Kyber [47], and Saber [22], all construct a hybrid encryption
scheme by first building an IND-CPA encryption scheme, and then creating an
IND-CCA hybrid scheme using the Fujisaki-Okamoto transform [26]. The prob-
lem with the Fujisaki-Okamoto design pattern is that the decryption procedure
needs to perform a hash to obtain the random coins used for encryption. In the
threshold setting this is a problem as one needs to hash both the DEM key k
and the DEM value itself (or the message) in the Fujisaki-Okamoto transform
to perform the re-encryption; and this must be done before one reveals k and m
to the decrypting parties. The hash function used for re-encryption also needs
to produce the random values used in encryption, which can be a complicated
process to perform in a threshold manner for the lattice based schemes; espe-
cially if this involves sampling discrete Gaussians or other distributions which
are not ‘native’ to whichever underlying methodology one is using to perform
the threshold decryption.

The other remaining lattice based finalist in Round 3, NTRU [54], also builds
a traditional KEM, with the difference that the KEM does not require re-
encryption. However, NTRU builds a traditional KEM, which requires the DEM
to be implemented in a threshold manner so as to maintain the CCA security.
Thus threshold variants of all the remaining Round 3 lattice based schemes will
be problematic if one wishes to maintain CCA security of the threshold variant.

Of the Round-2 lattice-based systems which did not progress to be final-
ists in Round-3, FrodoKEM [40], Round 5 [28], LAC [38], NewHope [45], and
ThreeBears [30], also follow the Fujisaki-Okamoto pattern, bar NTRUprime [10].
NTRUprime differs from the previous ones in that it is based on a rigid determin-
istic base encryption scheme which is then turned into a KEM using [24, Section
6]. However, the underlying rigid deterministic encryption scheme still requires
re-encryption to be secure, and as we remarked above this causes problems for
thresholdizing the scheme.

1.1 Prior Work and Our Contribution

Threshold Decryption: As stated at the beginning our main goal is to provide
an efficient threshold decryption procedure for a post-quantum hybrid encryp-
tion algorithm. We do this by providing an algorithm which is efficient, within
a generic MPC framework, to perform distributed decryption. Thus, on the as-
sumption the algorithm we implement is correct, the security of said algorithm
follows from the security of the base MPC framework.

In [8] a non-hybrid lattice based encryption scheme is given. But the security
of the underlying encryption scheme is only IND-CPA (although an actively se-
cure distributed decryption protocol for the IND-CPA scheme is given). In [13] a
generic procedure for obtaining an abitrary threshold variant of any functional-
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ity, however the construction makes use of Fully Homomorphic Encryption and
is not practical.

In an earlier work [35] on distributing the decryption for a Round-1 NIST
candidate which was based on Ring-LWE, namely LIMA, a distributed decryp-
tion operation was given for a basic (non-hybrid) encryption scheme. An outline
for the hybrid scheme was given, but the instantiation would not preserve the
CCA security guarantees of the hybrid construction, i.e. the method presented
was not secure.

From a performance perspective the problem with the distributed decryption
of LIMA was that it is a scheme based on the Fujisaki-Okamoto transform. As
mentioned above the secure evaluation of the hash function and re-encryption
operation is costly in the distributed setting. But this is not the only problem
with [35], the decryption procedure itself is rather complicated in that it re-
quires rounding of integers, for example. In [35] these two technical complexities
meant the protocol (to be fast) was only a 3-party protocol with one dishonest
party. The distributed decryption of a single non-hybrid LIMA encryption would
take 4.2 seconds, with a similar time for the insecure hybrid KEM distributed
decapsulation.

Traditionally, in the non-hybrid encryption setting, threshold decryption is
preferred using the least amount of interaction, for example see [36,48,49]. Our
threshold decryption procedure for our post-quantum hybrid scheme utilizes ex-
plicitly generic MPC techniques; thus it definitely does not minimize the level of
interaction between the parties needed. An open problem would be to develop a
methodology, or scheme, which can utilize the minimal amount of communica-
tion possible.

We note that there has been some work on threshold post-quantum signature
schemes, e.g. [15,16,23], but the techniques and issues are rather different from
those employed and discussed here.

Hybrid Encryption: Hybrid encryption is the standard method to encrypt large
message via a public key scheme. The actual message is encrypted via a standard
block cipher in a secure AEAD mode, such as AES-GCM. Then the one-time
symmetric key for this symmetric encryption scheme is transferred to the re-
cipient using a public key methodology. The traditional method of combining
the public key encryption scheme Πp = (Kp, Ep,Dp), with message space Mp,
and symmetric key encryption scheme Πs = (Ks, Es,Ds) into a hybrid scheme
Πh = (Kh, Eh,Dh) is called KEM-DEM [18]. Where K?, E? and D? are the vari-
ous schemes key-generation, encryption and decryption algorithms respectively.

The KEM-DEM method of [18] requires Πs to be a (one-time) IND-CCA
symmetric cipher7 and an IND-CCA KEM scheme Πp (a KEM is a public key
scheme designed to encrypt only symmetric keys). The scheme Πp encrypts the
key k for Πs, and then Πs is used to encrypt the message using the key k. In
particular the encryption algorithm, outputting (c1, c2) for Eh is along the lines

7 One time meaning that the attacker does not get access to an encryption oracle.
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of

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m).

However, there is a problem with this construction when one looks for a dis-
tributed variant of the decryption algorithm. Even if the decryption algorithm
of the KEM Πp has an efficient distributed decryption operation one cannot
derive an efficient distributed hybrid cipher as the decryption of the scheme
Πs needs to be executed also in a distributed manner. Executing Πs in a dis-
tributed manner for standard symmetric encryption scheme is possible, but very
inefficient for long messages.

One obvious way to get around this problem is for the distributed decryption
operation for the hybrid cipher Πh to output k in the clear after the Πp part has
been executed, enabling the decryption using Πs to be done in the clear. We call
such a hybrid scheme ‘leaky’, as the decryption algorithm leaks the underlying
symmetric key even if the symmetric component does not decrypt correctly.
This intuitively seems attractive, however it breaks the IND-CCA security of
the hybrid scheme Πh via a trivial attack.

The most popular generic transform to turn a public key encryption scheme
into a hybrid scheme in the KEM-DEM paradigm is the Fujisaki-Okamoto trans-
form [26,27]. This comes in two forms, either (from [26])

k ←Mp, k← H(k), c1 ← Ep(pk, k;G(k,m)), c2 ← Es(k,m),

or (from [27])

k ←Mp, k← H(k), c2 ← Es(k,m), c1 ← Ep(pk, k;G(k, c2)),

where G is a hash function which produces the random coins needed by the
encryption algorithm Ep. The authors of [26,27] show that this hybrid scheme,
assuming some (mild) technical conditions on the encryption algorithm, is IND-
CCA if Πp is OW-CPA and Πs is IND-CPA. Note, for the first variant one needs
to decyrpt c2 before one can verify the c1 component, as the decryption operation
Dp requires re-encryption to perform the necessary CCA checks. Because of this,
the first Fujisaki-Okamoto hybrid construction can never be securely “leaky”.

The second Fujisaki-Okamoto variant has been proved secure in the quantum
random-oracle model in [53], where the scheme Πp is assumed to be ‘well-spread’,
perfectly correct and OW-CPA secure. This second Fujisaki-Okamoto variant
can be considered as a variant of the Tag-KEM framework of [1]. The Tag-KEM
framework gives another hybrid construction, which works (roughly speaking in
the simplest instance) in the following manner

k← Ks, c2 ← Es(k,m), c1 ← Ep(pk, k‖G(c2))

where G is a hash function. This hybrid construction is secure if Πp is IND-CCA
secure and Πs is one-time IND-CPA secure.

Note in [31] a QROM proof of the non-hybrid encryption version of the
Fujisaki-Okamoto transform is given, that this is for the public key scheme given
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by c ← Ep(pk,m;G(m)). However, unlike in [53], the encryption scheme is not
assumed to be perfectly correct.

One of the applications of the Tag-KEM framework mentioned in [1] is that
of threshold hybrid public key encryption. Their argument is as follows. Since the
one-time-pad is one-time IND-CPA secure, outputting m already leaks k. Thus
revealing the value k before applying the decryption of c2 cannot break security,
as that would contradict their main theorem. Thus one can apply threshold
decryption to obtain the decryption of c1, leak the key k and then decrypt c2 in
the clear as long as Πs is the one-time-pad encryption scheme. Unfortunately,
the authors of [1] require an IND-CCA secure Πp.

The authors of [1] provide other constructions requiring weaker properties of
Πp, but each one adds its own complications. Indeed if one thinks of the hash
function G, in our construction below, applied to c1, c2 and k as a MAC function
applied to c1 and c2 with key k, then their ‘weak KEM+MAC’ construction is
identical to ours.

In [7] a construction of CCA secure Tag-based encryption which has threshold
decryption is discussed. Their generic methodology uses one-time signatures and
a concrete instantiation is given based on the decisional bilinear Diffie–Hellman
assumption in pairing groups. Another construction of a threshold tag-KEM in
the Random Oracle model based on the RSA problem is given in [32].

The solution we propose is to utilize the following modification to the Cramer-
Shoup basic construction. Our main construction, which we call Hybrid1, outputs
a ciphertext of the form (c1, c2, c3) where, for a hash function G modelled as a
random oracle,

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c1, c2, k).

The distributed decryption algorithm checks the c3 component and then ‘leaks’
the key k in the clear, enabling k to be produced and hence m decrypted from
the c2 component. We show that this scheme is IND-CCA secure, even with
this form of leaky decryption, if the scheme Πp is rigid, deterministic and OW-
CPA, or rigid, randomized and OW-PCA secure, and the scheme Πs is one-time
IND-CPA secure. If the scheme Πp is not perfectly correct then we require the
additional hardness assumption that it is hard for the adversary to construct a
message/ciphertext pair (m, c) such that c = Ep(pk,m), but Dp(sk, c) =⊥. We
also require in this case that the probability of the encryption scheme having
collisions, i.e. two messages which encrypt to the same ciphertext, is negligible
when this probability is computed over the space of all possible public/private
key pairs.

When Πp is randomized and OW-PCA, one needs to include c1 into the
hash function G so as to avoid attacks related to re-randomization of the output
of Ep. In this latter case, of randomized OW-PCA encryption scheme Πp, our
construction looks most closely related to the REACT transform, from [43],
which encrypts via

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(k,m, c1, c2).
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The authors of [43] show that REACT is secure assuming Πp OW-PCA secure
and the scheme Πs is IND-CPA secure. The REACT transform has a similar
problem with the standard KEM-DEM construction above in that it requires c2
to be decrypted before the check is applied, i.e. m is needed as an input to G.

In the case when Πp is rigid and deterministic one can drop the component
c1 from the input to G. So our hybrid construction simplifies to

k ←Mp, k← H(k), c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c2, k).

In this case one can think of our construction as precisely the second Fujisaki-
Okamoto construction utilizing the OW-CPA, ‘well-spread’ public key encryp-
tion scheme with encryption algorithm given by

E ′p(pk, k; r) = (Ep(pk, k), r).

Thus our construction in this case would be automatically secure in the QROM
if one considers only normal decryption oracle queries (i.e. ones which do not
leak the key k); assuming that the techniques used in [31] for dealing with non-
perfectly correct schemes could be extended to the proof in [53].

However, this hybrid construction seems hard to prove QROM secure when
one requires threshold decryption, unless one picks the DEM operation to be a
one-time pad encryption scheme. To obtain a full QROM secure efficient hybrid
construction with distributed decryption we present a second hybrid construction
which adds a ciphertext component, by hashing k with a second hash function H ′

which has domain and codomain equal to Mp, as well as hashing k via another
hash function H ′′, before passing the result into G; namely we compute

k ←Mp, k← H(k), µ← H ′(k),

c1 ← Ep(pk, k), c2 ← Es(k,m), c3 ← G(c2, µ), c4 ← H ′′(k).

This construction, which we call Hybrid2, is proved secure, in the QROM, using
the techniques of [51].

Most of our technical difficulties arise from the fact we want both efficient
distributed decryption and an efficient DEM operation. If we take an AES-based
DEM then the output of the hash function H will be a bit vector in {0, 1}|k|.
But the input k will be ‘native’ to the underlying public key scheme, and thus
in general an element of a set such as Fnp , for some modulus p. This means H
needs to map from one arithmetic domain to another. It is to avoid needing to
do this in a secure way during distributed decryption that we ‘leak’ the key k
and not the key k. This problem does not occur with the hash function G as we
are free to select the hash function so that it can be evaluated securely. In our
QROM construction using the c4 component we need to evaluate H ′ and H ′′

securely before releasing k, but this can be done as efficiently as evaluating G,
by selecting the hash functions H ′ and H ′′ in an appropriate way.

Learning-with-Rounding: After detailing our main hybrid constructions we go on
to discuss how one can instantiate a suitable KEM in the post-quantum setting.
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For this we utilize the Learning-With-Rounding (LWR) based deterministic en-
cryption algorithm first presented in [52], and then refined in [4]. This is itself
inspired by the trapdoor LWE key generation procedure introduced by Miccian-
cio and Peikert [39]. We present an explicit construction, including suggested
parameters sizes, and compare the resulting scheme with current NIST PQ-
candidates such as Saber [22]. Our basic construction utilizes the fact that LWR
encryption is deterministic in nature.

To prove our main hybrid constructions secure we need to assume, for our
most efficient construction, a new hard problem, which we dub the Large-Vector-
Problem (LVP) problem. Informally, this problem says that for a given LWE key
(A,A ·R1 +R2) with A ∈ Zn×nq uniformly randomly chosen and R1, R2 ∈ Zn×nq

but with ‘small’ entries, it is hard to find a small vector m such that R1 ·m is
‘relatively big’. This is needed to establish our scheme satisfies a property that
we call ⊥-Aware. The ⊥-Aware property captures the difficuly of an adversary A,
given the public key pk, to come up with a plaintext/ciphertext pair (m, c) such
that c = E(pk,m) but D(sk, c) =⊥; i.e. a ciphertext which is a valid encryption,
but which does not decrypt correctly.

The Gladius Family of Hybrid Ciphers: Combining our LWR-based rigid de-
terministic OW-PCA encryption scheme with our hybrid constructions we ob-
tain a post-quantum secure hybrid cipher, which supports efficient distributed
decryption. We can actually derive many variants depending on the choice of
Hybrid1 or Hybrid2, the choice of the DEM, and the choice of using plain LWR or
Module-LWR. We focus on four specific variants of this construction; Gladius–
Hispaniensis (based on Hybrid1 and plain LWR), Gladius–Pompeii and Gladius–
Mainz (based on Hybrid1 and Module-LWR), and Gladius–Fulham (based on
Hybrid2 and Module-LWR).

Gladius–Hispaniensis, Gladius–Pompeii and Gladius–Fulham all assume any
one-time IND-CPA secure DEM. For Gladius–Hispaniensis and Gladius–Pompeii
we obtain (expected) security in the QROM when the scheme is considered as a
standard hybrid encryption scheme, and security in the ROM when we consider
the scheme in the threshold setting (due to the additional leakage required).
The expected QROM security, which we denote by QROM?, comes from the
fact that Zhandry’s proof [53], for the second Fujisaki–Okamoto transform, only
applies to perfectly correct schemes. We also present a third variant Gladius–
Mainz (see the full version) which provides QROM? security in the threshold
setting, but this requires the DEM to be a one-time-pad (OTP), and requires a
more expensive distributed decryption algorithm. Our fourth variant, Gladius–
Fulham, utilizes the second hybrid transform mentioned above, but can achieve
full QROM security (including for non-perfectly correct schemes Πp) even when
one allows the leakage from the decryption oracle required in a distributed de-
cryption operation.

In summary the properties of our four schemes are given by the following
table, where 3? in the QROM column refers to the above QROM? caveat. We
also note in the table how many secure hash function operations need to be
executed by the distributed decryption algorithm.
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Standard Threshold Threshold No.
Hard QROM QROM ROM Secure

Problem Hybrid DEM Secure Secure Secure Hashes
Gladius–Hispaniensis LWR 1 Generic 3? 7 3 1
Gladius–Pompeii Module-LWR 1 Generic 3? 7 3 1
Gladius–Mainz Module-LWR 1 OTP 3? 3? 3 1
Gladius–Fulham Module-LWR 2 Generic 3 3 3 3

Open Questions: Our work leads to a number of new interesting areas of research.
On a theoretical level we leave open the problem of esablishing⊥ −Aware security
for our Gladius construction when q is a power of two (since we focus on q prime
for threshold reasons) and also on a theoretical level to prove our conjecture
related to the hardness of the LVP problem. On a practical level one could
examine other ways of using our Hybrid construction to build efficient threshold
post-quantum encryption schemes, or remove the need to use generic MPC;
which comes about mainly due to the need to execute a hash function for key
derivation and to perform the necessary rounding operations.

2 Preliminaries

Learning-with-Errors and Learning-with-Rounding: We let σ denote a standard
deviation, and we let Dσ denote a distribution which ‘looks like’ a discrete Gaus-
sian distribution with standard deviation σ. In practice this can be generated
by the NewHope methodology [3], namely if we have σ =

√
(B + 1)/2 then we

sample from Dσ by generating 2 ·B+ 2 random bits (bi, b
′
i) for i = 0, . . . , B, and

then generating a sample by computing
∑B
i=0(bi − b′i).

Given a secret vector s ∈ Zdq (for some integer q), then a Learning-with-Errors

(LWE) sample is a pair (A,A · s + e) where A ∈ Zm×dq is chosen uniformly at
random and e← Dσ. The decision LWE problem is to distinguish LWE samples
from uniformly random samples (A,u), for u← Zmq , we denote this problem by
LWEq,(m,d),σ. The search LWE problem is to recover the secret vector s from a
set of LWE samples. For suitable choices of the parameters both these problems
are known to be equivalent and assumed to be hard. Suitable parameters to
ensure hardness given known attack algorithms can be found using Albrecht’s
LWE-estimator tool8.

For integers p and q we define the following map

bxep :

{
Q −→ Zp
x 7−→ dx · p/qc (mod p)

where b·e is the round to nearest integer function, with rounding towards zero
in the case of values of the form i/2 for i an odd integer. If the input value
x ∈ (−q/2, . . . , q/2] ⊂ Z then the final reduction modulo p is only required
(if p does not divide q) when the rounding ends up being outside the interval
(−p/2, . . . , p/2], which happens with probability about 1/p, resulting in needing
a single addition of p to accomplish the reduction modulo p.

8 https://bitbucket.org/malb/lwe-estimator/src/master/

9

https://bitbucket.org/malb/lwe-estimator/src/master/


Given a secret vector s ∈ Zdq , then a Learning-with-Rounding (LWR) sample

is a pair (A, bA · sep) where A ∈ Zm×dq is chosen uniformly at random. The
decision LWR problem is to distinguish LWR samples from uniformly random
samples (A, buep), for u ← Zdq , we denote this problem by LWRq,p,(m,d). The
search problem is similarly defined as the problem of recovering s from a number
of LWR samples.

Relation between (Module-) LWE and (Module-) LWR: In the full version we
extend these notions to the case of Learning-with-Rounding over modules. The
search (Module-) LWE and (Module-) LWR problems are linked theoretically by
the following theorem [12, Theorem 1 and 2]9.

Theorem 2.1. Let p, q, n, d,m and B be integers such that q > 2 · p · B. For
every algorithm Learn there is an algorithm Learn′ such that

Pr
A,s,e

[Learn′(A,A · s + e) = s] ≥ Pr
A,s,e

[Learn(A, bA · s + eep) = s]

≥ PrA,s[Learn(A, bA · sep) = s]2

(1 + 2 · p ·B/q)n·m·d

where A← Rm×dq , the noise e is independent over all m coordinates, B-bounded

and balanced in each coordinate, and s = (si) ∈ Rdq is chosen from any distribu-
tion such that si ∈ R∗q for some i.

Note, the first inequality is not from [12] but it is immediate. To apply this
result, we would take B = c · σ, for some suitable constant c.

The fact that the square of the LWR advantage is bounded by the LWE
advantage implies that one will need larger parameters to bound the LWR ad-
vantage by a given value, than to bound the LWE advantage by the same value.
Thus using this theoretical reduction will result in very large parameters in-
deed. To avoid the problem with the above reduction submissions to the NIST
Post-Quantum cryptography competition based on LWR, such as Saber [21,22],
estimate their parameters by using the best attack scenario. In other words the
security is estimated using Albrecht’s LWE-estimator directly, or by assuming
the above theorem is an exact inequality between the various one-way advan-
tages.

This approach is examined in detail in [2], where to utilize Albrecht’s tool
the authors need to translate the LWR parameters into LWE parameters. In [2]
this is done by setting the LWE standard deviation to be

σ =

√
(q/p)2 − 1

12
.

9 The result in [12] is only given for normal and Ring LWE/LWR, but extending the
result to the module variants is immediate.
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Asymmetric and Symmetric Encryption: An asymmetric encryption scheme is a
triple of algorithms Π = (K, E ,D), all of which are probabilistic polynomial time
(PPT) algorithms. We let M denote the plaintext space of Π, C the ciphertext
space and R the space of random coins of Π. The key generation algorithm K
takes as input 1t, where t is a security parameter and outputs a public/private
key pair (pk, sk). A symmetric encryption scheme is one in which pk = sk. The
standard security definitions are given in the full version.

The algorithm E(pk,m; r) takes a message m ← M, a public key pk and
random coins r ← R and returns a ciphertext c. The decryption algorithm
D(sk, c) recovers the message m or returns the special symbol ⊥. For correctness
we require

Pr
[
D(sk, c) = m : (pk, sk)← K(1t), m←M, r ← R, c← E(pk,m; r)

]
= 1− δ,

where δ is an exponentially small probability of decryption failure. If δ = 0 we say
the scheme is perfectly correct. A public key scheme will be called deterministic
if R contains only the empty string (or equivalently one element), otherwise it
will be called randomized.

A scheme which is not perfectly correct can exhibit two forms of decryption
failures; either two messages could map under encryption to the same ciphertext
or a valid ciphertext could decrypt to ⊥. For the first case we say an encryption
scheme is δc-Collision Free if

Pr
(sk,pk)←K(1t)

[
∃ m1,m2 ∈M, ∃ r1, r2 ∈ R :

m1 6= m2, E(pk,m1; r1) = E(pk,m2; r2)
]

= δc.

A perfectly correct encryption scheme is 0-Collision Free.
For the second case of decryption failure we consider the following game,

which we call ⊥-Aware. The adversaryA is given the public key pk and is required
to come up with a plaintext/ciphertext pair (m, c) such that c = E(pk,m) but
D(sk, c) =⊥. We define

Adv⊥−AwareΠ,A (t) = Pr
[

(pk, sk)← K(1t), (m, c)← A(pk) :

c = E(pk,m), D(sk, c) =⊥
]

and say that Π is ⊥-Aware if Adv⊥−AwareΠ,A (t) is a negligible function of t for all

PPT A. Note, if Π is perfectly correct then Adv⊥−AwareΠ,A (t) = 0.
An asymmetric encryption scheme is said to be rigid, see [11] (where the

definition is given just for deterministic schemes, but the generalization to prob-
abilistic schemes is immediate) if

Pr
[

(pk, sk)← K(1t), c← C \ C⊥, ∃r ∈ R, : E(pk,D(sk, c); r) = c
]

= 1,
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where C⊥ ⊂ C is the set of all ciphertexts c ∈ C for which D(sk, c) =⊥. The
effect of rigidity is that unless c is the output of E(pk,m; r) for some m and
r, then decryption will always return ⊥. ElGamal is an example of a perfectly
correct, rigid probabilistic scheme as every ciphertext pair (c1 = gr, c2 = m ·hr)
corresponds to the encryption of some message.

If we let ‖X‖ be the infinity norm on the probability space X of a finite set S,
then the min-entropy of X is − log ‖X‖. A randomized asymmetric encryption
scheme is said to be γ-spread if

− log max
y∈{0,1}∗

Pr
[
r ← R : y = E(pk,m; r)

]
≥ γ

for all (pk, sk) output by K and all m ∈ M. A scheme is said to be well-spread
if γ = ω(log t). This basically means that the probability of a specific ciphertext
occurring is negligibly small.

Note, if the setR is suitably large then we can turn a deterministic scheme Πp

into a randomized well-spread scheme Π ′p by setting E ′p(pk, k; r) = (Ep(pk, k), r).
It is from this observation, the QROM? security in the standard hybrid (non-
leaky) encryption model for our construction based on deterministic public key
encryption, mentioned in the introduction, follows.

Encryption With Distributed Decryption: Given a set P = {P1, . . . ,Pn} of par-
ties, we consider access structures A consisting of a monotonically increasing
set of subsets of 2P . A set S is said to be qualified if S ∈ A, and unqualified
otherwise. Given an encryption scheme Π = (K, E ,D) we say that the scheme
admits a distributed decryption functionality for an access structure A, if there
are two n-party protocols ΠK and ΠD. The protocol ΠK produces some data
ski for each party, called the secret key shares. The protocol ΠD on input of an
agreed ciphertext c from all parties in S ∈ A, and the value ski from all parties
in S, will output the value m = D(sk, c).

The distributed decryption protocols are said to be secure (in the IND-ATK
sense) if an unqualified set of adversarial parties cannot, while interacting with a
qualified set of parties, break the IND-ATK security of the underlying encryption
scheme. This security definition can be made more formal by saying that the
distributed decryption protocol should act like an ideal decryption functionality.
See [48,49] for a specific instantiation.

We shall assume an actively secure MPC protocol for the access structure A,
and will then construct an algorithm which implements the algorithm D within
the MPC protocol. Thus it automatically becomes a distributed protocol ΠD
for the decryption functionality, and its security is inherited from the underlying
MPC protocol. The challenging part is to develop the encryption scheme and
the specific instantiation of D to enable the underlying MPC system to provide
an efficient distributed implementation.

By using a generic MPC functionality, as opposed to a specific protocol, we
restrict ourselves to the threshold case where all parties have to be involved in the
computation; but where security is maintained against an adversary controlling

12



a given threshold. This is in contrast to the models proposed in [48,49] which
allow for a subset of the key-share holding parties to participate.

KEM-DEM Philosophy: A central tenet when using public key encryption in
practice, is that one never encrypts a large message with a public key algorithm.
Instead one encrypts the actual message with a fast symmetric key algorithm,
such as AES-GCM, and then the symmetric key is transferred to the recipient
using a public key scheme. Thus producing a hybrid encryption scheme. In this
way the symmetric key is only used once in the symmetric cipher, and thus we
do not need a fully secure AEAD scheme but the weaker notion of a DEM, and
the public key scheme is only needed to transport a single random key (and not
a message) leading to the simpler public key construction of a KEM. See [18] for
an extensive discussion, with the standard definitions and proofs.

Kh(1t):

(pk, sk)← Kp(1t)
Return (pk, sk)

Eh(pk,m):

k ←Mp

r ←Rp, r′ ←Rs
k← H(k).
c1 ← Ep(pk, k; r)
c2 ← Es(k,m; r′)
Return (c1, c2)

Dh(sk, (c1, c2)):

k ← Dp(sk, c1)
If k =⊥ then return ⊥
k← H(k).
m← Ds(k, c2)
Return m

Fig. 1. The Standard KEM-DEM Construction

We let Πp = (Kp, Ep,Dp) denote an IND-CCA public key encryption scheme
with message spaceMp, ciphertext space Cp, and space of random coins Rp, and
let Πs = (Ks, Es,Ds) denote an IND-CCA symmetric key encryption scheme
(which recall for us is always one-time and hence a DEM) with message space
Ms = {0, 1}∗. From these two components one can construct a KEM-DEM
encryption scheme for arbitrary long messages as follows: We first define a hash
function H : Mp −→ Ks where by abuse of notation by Ks we mean the key
space of Πs. We can then define a hybrid encryption scheme Πh = (Kh, Eh,Dh)
in Figure 1.

Naive Threshold KEM-DEM: The goal of our work is to produce threshold
public key encryption for long messages; namely we would want to share the
decryption key amongst a set of entities so that a given subset needs to come
together to decrypt. Clearly we would not want the extra expense of the threshold
decryption to impact when encrypting very large messages. Thus we would want
to use something akin to the KEM-DEM philosophy, with the main message
being encrypted and decrypted via a fast cipher such as AES-GCM.

Finding KEM-like constructions which admit distributed decryption proto-
cols is relatively easy. However, whilst it is possible to execute AES in a threshold
manner, see e.g. [33,44], the performance for long messages is prohibitive. Thus
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distributed DEMs are much harder to obtain. For this reason we would like to
apply the decryption of the large message ‘in the clear’, but this implies that
the decryption algorithm will need to ‘leak’ the decryption key k of the DEM
component. In particular this key will leak irrespective of whether the DEM
decrypts correctly or not; since the decrypting parties need to obtain the DEM
key before it is known whether the key is valid for the DEM.

Dh(sk, (c1, c2)):

k ← Dp(sk, c1)
If k =⊥ then return (⊥,⊥)
k← H(k).
m← Ds(k, c2)
Return (k,m)

Fig. 2. Decryption Funtionality for Standard Distributed KEM-DEM

Our decryption algorithm functionality, and thus the functionality of any
decryption oracle given to an adversary, would therefore be of the form in Fig-
ure 2. This provides an immediate attack in the standard IND-CCA model on the
hybrid construction. An adversary takes the target ciphertext (c∗1, c

∗
2), submits

(c∗1, c2) to the decryption oracle for a random value c2. With high probability,
they will receive (k,⊥). Then, they can use k to obtain k and thus decrypt c∗2,
and so win the security game. It is to avoid this attack that we modify the
KEM-DEM framework in the next section.

Generic Multi-Party Computation: Our methodology uses a generic actively-
secure-with-abort MPC functionality defined via Linear Secret Sharing (LSS)
over a finite field Fq. Note, we could utilize in the case when q is not a prime in
our main Gladius construction a ring Zq, but for the purposes of this paper we
restrict to q being a prime in our used MPC methodology; see the full version.
for a discussion of the issues when q is a power of two. This means that inputs
of the parties remain private throughout the execution of the protocol, and
when a set of adversaries deviate from the protocol, honest parties will catch
this with overwhelming probability and then abort the protocol. This should be
compared to passively secure protocols which offer a much weaker guarantee that
security is only preserved if all parties follow the precise protocol steps correctly.
We present in Figure 3 the base MPC functionality. Despite using a generic
underlying protocol, our protocol ends up being surprisingly efficient. This is
because we carefully designed Gladius to be both efficient in a distributed and
a non-distributed manner.

To ease notation we denote a variable x ∈ Fq stored within the MPC func-
tionality via 〈x〉, and write addition and multiplication of shares as 〈x〉+〈y〉 and
〈x〉 · 〈y〉. We extend the notation to vectors and matrices in the obvious way via
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Operations for Secure Computation, FMPC.

The functionality runs with P = {P1, . . . ,Pn} and an ideal adversary A, that
statically corrupts a set A of parties. Given a set I of valid identifiers, all values are
stored in the form (varid , x), where varid ∈ I.

Initialize: On input (init , p) from all parties, the functionality stores (domain, p),
Input: On input (input ,Pi, varid , x) from Pi and (input ,Pi, varid , ?) from all other

parties, with varid a fresh identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x+ y).

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functionality re-
trieves (varid1, x), (varid2, y) and stores (varid3, x · y).

Output: On input (output , varid , i) from all honest parties (if varid is present in
memory), the functionality retrieves (varid , y) and outputs it to the environ-
ment. The functionality waits for an input from the environment. If this input
is Deliver then y is output to all players if i = 0, or y is output to player i if
i 6= 0. If the adversarial input is not equal to Deliver then all players abort.

Figure 3. Operations for Secure Computation, FMPC.

〈x〉 and 〈A〉. If 〈x〉 is a shared vector we let 〈xi〉 denote the shared entries, and
if 〈A〉 is a shared matrix we let 〈A(i,j)〉 denote the shared entries; with a similar
notation for vectors and matrices of non-shared values.

The cost model for LSS-based MPC protocols is such that addition of such
shared entities is ‘for free’, whereas multiplication consumes resources (typically
communication). Many MPC protocols in this setting, such as [9,20,34,50], work
in an offline/online manner. In this setting the multiplication not only consumes
communication resources in the online phase, but also consumes some corre-
lated randomness (so-called Beaver triples) from the offline phase. However, an
advantage of these offline/online models is that one can prepare other forms of
correlated randomness in the offline phase; such as shares of random bits 〈b〉 with
an unknown b ∈ {0, 1}. In our algorithms below we will write this as 〈b〉 ← Bits().
If we sample a shared random element in Fq, we will denote this by 〈x〉 ← Fq.
To open an element we will write x ← Output(〈x〉) when it is output to all
players.

MPC Friendly Hash Functions. Rescue: Our LWR-based construction of a hy-
brid cipher with efficient distributed decryption will make use of an MPC-friendly
hash function, such as those in [5,29]. These hash function constructions are
sponge-based, and there are two types; those suitable for MPC over characteris-
tic two fields (StarkAD and Vision) and those suitable for MPC over large prime
fields (Poseidon and Rescue). In this paper, we concentrate on the Rescue design
from [5], which seems more suited to our application.
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Rescue has a state of t = r + c finite field elements in Fq, for a prime q. The
initial state of the sponge is defined to be the vector of t zero elements. A message
is first mapped into n = d ·r elements in Fq, m0,m1, . . . ,mn−1. The elements are
absorbed into the sponge in d absorption phases, where r elements are absorbed
in each phase. At each phase a permutation f : Ftq −→ Ftq is applied resulting in a
state s0, . . . , st−1. At the end the absorption the r values sc, . . . , st−1 are output
from the state. This process can then be repeated, with more data absorbed and
then squeezed out. Thus we are defining a map H : Fnq −→ Frq.

Each primitive call f in the Rescue sponge is performed by executing a round
function rnds times. The round function is parametrized by a (small prime) value
α, an MDS matrix M ∈ Ft×tq and two step constants ki,k

′
i ∈ Ftq. The value α

is chosen to be the smallest prime such that gcd(q − 1, α) = 1. The round
function applies exponentiation by 1/α, followed by application of the MDS
matrix, followed by addition of the round constant ki, followed by exponentiation
by α, followed by a further application of the MDS matrix, followed by addition
of the round constant k′i. See [14] for a discussion of implementing Rescue in an
MPC system, albeit for a large prime characteristic q of more than 256-bits. In
our application q will be in the region of 21-bits.

3 Generic Hybrid Constructions

We let Πp = (Kp, Ep,Dp) denote a OW-CPA secure, rigid, deterministic (resp.
a OW-PCA secure, rigid and randomized) public key encryption scheme with
message space Mp and ciphertext space Cp which is OW-CPA secure. We let
Πs = (Ks, Es,Ds) denote a (one-time) IND-CPA symmetric key encryption
scheme with message space Ms = {0, 1}∗ and ciphertext space Cs ⊂ {0, 1}∗.
Again by abuse of notation we let Ks also denote the key space of Πs.

3.1 Hybrid1 Construction

For this construction we define two hash functions

H :Mp −→ Ks,

G :

{
{0, 1}∗ ×Mp −→ {0, 1}|G| If Πp is deterministic
Cp × {0, 1}∗ ×Mp −→ {0, 1}|G| If Πp is randomized

Note, G is defined to take elements in Mp as the last entry for efficiency
reasons (see below). We can then define our first hybrid encryption scheme
Πh = (Kh, Eh,Dh) in Figure 4. Notice how the decryption function ‘leaks’ the
key k which is encrypted by the deterministic function even when the decryption
function Ds fails. This will allow us, in our threshold decryption operation, to
also leak this key before the algorithm Ds is called, enabling Ds to be applied
in the clear. The only question though is whether leaking this key is secure. The
attack described from the last section does not apply, as the invalid ciphertext
is already rejected by the testing for the correct value of G, which does not leak
k if the test fails. In what follows we call this check the G-check.
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Kh(1t):

(pk, sk)← Kp(1t)
Return (pk, sk)

Eh(pk,m):

k ←Mp

k← H(k)
r ←Rs
c1 ← Ep(pk, k)
c2 ← Es(k,m; r)
c3 ← G(c2, k)

(resp. c3 ← G(c1, c2, k))
Return (c1, c2, c3)

Dh(sk, (c1, c2, c3)):

k ← Dp(sk, c1)
If k =⊥ then return (⊥,⊥).
t← G(c2, k)

(resp. t← G(c1, c2, k))
If t 6= c3 then return (⊥,⊥).
k← H(k).
m← Ds(k, c2)
Return (k,m).

Fig. 4. Hybrid1 Construction

As remarked in the introduction the variant of the hybrid construction which
utilizes a determinsitic Πp can be seen as a special form of the second Fujisaki-
Okamoto hybrid construction; assuming the space Mp is exponentially large
to ensure the resulting ‘randomized’ public key scheme is well-spread. Thus, the
above hybrid construction is secure not only in the ROM, but also in the QROM,
when we do not leak the secret key k during the decryption process and when
Πp is perfectly correct.

In the standard random oracle model, the following theorem (proved in the
full version) shows that first hybrid construction is secure in a model in which
the key k does leak during decryption as above, and where we combine it with
a generic one-time IND-CPA DEM.

Theorem 3.1. If H and G are modelled as random oracles then if A is an
IND-CCA adversary against Πh then there is an OW-CPA adversary (resp.
OW-PCA) adversary B against the deterministic (resp. randomized) rigid public
key scheme Πp, which is δc-Collision Free, a (one-time) IND-CPA adversary C
against Πs, and a ⊥ −Aware adversary D against Πp such that

Advind−ccaΠh,A (t) ≤ Advow−cpaΠp,B (t) + Advind−cpaΠs,C (t) + qd · Adv⊥−AwareΠp,D (t)

+
1

|Mp|
+

2 · qd + q2G
2|G|

+ δc

where qd (resp. qG) is an upper bound on the number of decryption oracle (resp.
G-oracle) queries and the decryption oracle queries made to the hybrid scheme
leak the key k as above.

3.2 Hybrid2 Construction

Our second hybrid construction focuses solely on the case of Πp being a rigid
deterministic OW-CPA public key encryption scheme, we show that the generic
hybrid transform, given in Figure 5, which uses the four hash functions,

H :Mp −→ Ks,
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H ′, H ′′ :Mp −→Mp

G : {0, 1}∗ ×Mp −→ {0, 1}|G|

is secure in the QROM. Namely we have the following theorem (proved in the
full version)

Theorem 3.2. If G, H, H ′ and H ′′ are modelled as quantum random oracles
then if A is an IND-CCA adversary against Πh then there is a (one-time) IND-
CPA adversary B against Πs, a ⊥-Aware adversary C against the deterministic
rigid public key scheme Πp – which is δc-Collision Free and δ being the proba-
bility of its decryption failure for a uniformly random message – and OW-CPA
adversaries D and E against Πp such that

Advind−ccaΠh,A (t) ≤ Advind−cpaΠs,B (t) + δ

+ 4q1

√
q3√
|Mp|

+
qd

2|G|
+ δ′ + Advow−cpaΠp,D (t) + 2q2

√
δ′ + Advow−cpaΠp,E (t)

for q1 = qH + qH′ + 2qd, q2 = qH′′ + qd, q3 = 2(qG + qd + 1) and

δ′ = δc + qd · Adv⊥−AwareΠp,C (t) +
1

|Mp|
,

where qd, qG, qH , qH′ and qH′′ are respective upper bounds on the number of
decryption oracle, G-oracle, H-oracle, H ′-oracle and H ′′-oracle queries and the
decryption oracle queries made to the hybrid scheme leak the key k as above.

Kh(1t):

(pk, sk)← Kp(1t)
Return (pk, sk)

Eh(pk,m):

k ←Mp

k← H(k)
µ← H ′(k)
r ←Rs
c1 ← Ep(pk, k)
c2 ← Es(k,m; r)
c3 ← G(c2, µ)
c4 ← H ′′(k)
Return (c1, c2, c3, c4)

Dh(sk, (c1, c2, c3, c4)):

k ← Dp(sk, c1)
If k =⊥ then return (⊥,⊥).
t← H ′′(k)
If t 6= c4 then return (⊥,⊥).
µ← H ′(k)
t′ ← G(c2, µ)
If t′ 6= c3 then return (⊥,⊥).
k← H(k).
m← Ds(k, c2)
Return (k,m).

Fig. 5. Hybrid2 Construction

3.3 Threshold Variant

Assuming there are protocols ΠKp and ΠDp which implement the base public
key encryption scheme in a threshold manner a threshold variant of our above
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constructions are therefore immediate. We simply apply the threshold decryption
operation to c∗1, keeping the result in a shared form. The parties then securely
evaluate G (or G, H ′ and H ′′ in our second hybrid construction). Our distributed
decryption operation for our Hybrid1 construction Πh would then consist of the
following steps, with a similar methodology for Hybrid2 (which would also require
a secure evaluation of H ′ and H ′′)

1. Absorb c2 (resp. c1 and c2) into G in the clear.
2. Apply ΠDp to obtain a distributed decryption operation, keeping the result
k in shared form.

3. Securely absorb these shares of k into the sponge G.
4. Securely evaluate the squeezing of G to obtain t in the clear.
5. Reject the ciphertext if c3 6= t.
6. Open k to all players.
7. Compute k = H(k) in the clear
8. Compute m = Ds(k, c2) in the clear and output it.

We notice that if we use a sponge-like function for G, such as Rescue [5] (see the
full version) or SHA-3, then in the clear we can insert the first arguments for G
(c1 and c2) during a distributed decryption, as they are public. Thus we only
need to execute a secure distributed version of G for the final absorbtion of k,
and then the squeezing phase to obtain c3.

4 The Large Vector Problem (LVP)

We also need to give a new hardness assumption, which we call LVP. This is
needed in order to establish the ⊥-Aware property of our encryption scheme;
namely that it is hard for an adversary A, given the public key pk, to come up
with a plaintext/ciphertext pair (m, c) such that c = E(pk,m) but D(sk, c) =⊥;
i.e. a ciphertext which is a valid encryption, but which does not decrypt correctly.

Consider the following experiment. The challenger constructs a matrix A1 ∈
Zn×nq uniformly at random, and then selects R1, R2 ∈ Zn×nq with entries selected
from the distribution Dσ. The challenger constructs A2 = A1 ·R1 +R2 and gives
the pair (A1, A2) to the adversary A. The adversary’s goal is to come up with a
vector m ∈ [−1/2, . . . , 1/2]n such that

‖R1 ·m‖∞ ≥ c · σ ·
√
n/2

for some constant c. We define the advantage of an adversary A against this
hard problem as

AdvLVPA (n, c, σ) = Pr
[
A1 ← Zn×nq , R1, R2 ← Dn×nσ , A2 = A1 ·R1 +R2,

m← A(A1, A2) : ‖R1 ·m‖∞ ≥ c · σ ·
√
n/2

]
.

We note that (see the full version for details) the probability that there are
no solutions at all to the above problem (when we sample over all secret keys
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R1 and R2) is 1−n · erfc(c). Thus the probability that there are ANY solutions
to this problem is already very small if c is large enough. Thus for randomly
chosen R1 and c large enough, the adversary already has an impossible task (i.e.
information theoretically impossible) in solving LVP. If we set c = 9.3 (resp.
13.2) this would give us a bound on the advantage of (approximately) 2−128

(resp. 2−256).
We note that if one can solve the search-LWE problem for the pair (A1, A2)

then finding such a m is potentially trivial (if such a m exists). In the ‘unlucky’
event that there is a solution, since R1 is hidden (due to search-LWE being
hard), the adversary is left with outputting a small vector and ‘hoping’ it works.

We would like to use a smaller constant than c = 9.3 (resp. 13.2). Assuming
a solution exists and sampling over all keys, the only plausible attack (due to
R1 being hidden by LWE) is for the adversary to select a message at random
and hope it solves the problem. Suppose the adversary selects a message with
entries in the range [−v/2 +u, . . . , u+v/2] for u ∈ [0, 1/2) and v < 1−2 ·u. The
n random variables given by the entries of R1 ·m will still have mean zero (as
the entries of R1 are pulled from a symmetric distribution of mean zero), but
they will have variance given by V = n ·σ2 ·

(
u2 + v2/12

)
. Thus with probability

erfc(c′) the adversary will obtain a value of size greater than c′
√
V . To win the

game (assuming a solution exists) thus requires

c′ ≥ c

2 ·
√
u2 + v2/12

.

The right hand side of this last equation is minimized when u = 1/2, v = 0 and
thus we have c′ > c. But this assumes a solution exists, thus our final probability
for the attack to work is given by n · erfc(c)2. If this was the best possible attack
then this would mean we would have AdvLVPA (n, c, σ) ≤ n · erfc(c)2. Indeed, we
conjecture that the hardness of this problem is indeed given by AdvLVPA (n, c, σ) ≤
n · erfc(c)2, and assuming this allows us to obtain smaller parameters for our
Gladius scheme.

Conjecture 4.1 (LVP Hardness Conjecture). We have AdvLVPA (n, c, σ) ≤ n·erfc(c)2.

5 Gladius–Hispaniensis: Plain LWR Based Encryption

According to Wikipedia the Gladius–Hispaniensis was the earliest and heaviest
of the different types of Gladii that we know about; it is thus fitting we reserve
this name for our encryption scheme based on standard LWR. The scheme is
defined in Figure 6 and is parametrized by values t, p, q, n, `, σ, ε. We define the
message space M to be the set Znt . From these parameters we define µ ∈ Z and
ψ ∈ (−1/2, 1/2] via

p · `
q

=
⌊p · `
q

⌉
+ ψ = µ+ ψ. (1)
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The Gladius–Hispaniensis Deterministic Encryption Scheme Πp.

Key Generation: Kp.
1. R1, R2 ← Dn×nσ , i.e. two n×n matrices with coefficients sampled from Dσ.
2. A1 ← Zn×nq

3. A2 ← A1 ·R1 +R2 +G, where G is the gadget matrix ` · In.
4. pk← (A1, A2).
5. sk← (pk, R1).
6. Return (pk, sk)).

Encryption: Ep(pk,m).
1. c1 ← bmT ·A1ep.
2. c2 ← bmT ·A2ep.
3. Return (c1, c2).

Decryption: Dp(sk, (c1, c2)).
1. wT ← c2 − c1 ·R1 (mod q)
2. eT ← wT (mod p).
3. vT ← eT (mod µ).
4. mT ← (eT − vT)/µ.
5. (c′1, c

′
2)← Ep(pk,m).

6. If c1 6= c′1 or c2 6= c′2 return ⊥.
7. Return mT.

Figure 6. The Gladius–Hispaniensis Deterministic Encryption Scheme Πp.

Note when µ and p are powers of two, say µ = 2ν and p = 2π, and t = 2 then lines

3 and 4 of the decryption procedure in Figure 6 becomes mi ← w
(ν)
i ⊕ w(ν+1)

i ,

where m = (mi) and w = (wi) and w
(j)
i is the j-th bit of wi. This is again a

useful simplification in our distributed decryption procedure, thus we will assume
that µ and p are powers of two.

See the full version, where we discuss the criteria which need to be satisfied
to ensure correctness of decryption, and security of this construction. We found
the parameters in Table 1 using this analysis. Note we are only able to establish
our ⊥-Aware property (assuming the LVP-problem is hard) when q is a prime,
an interesting open question would be to establish this for the parameter sets
where q is a power-of-two.

The above describes solely the KEM-like component Πp of our hybrid con-
struction from Section 3. The DEM-like component Πs can be any (one-time)
IND-CPA cipher; for example a one-time pad or AES in CTR-mode. The re-
maining item to define is the associated hash function G (and in the case of
using Hybrid2 the hash functions H ′ and H ′′). Recall G takes the ciphertext c2
output from the DEM, and the key k which the KEM encapsulates, and produces
the hash result G(c2, k). Here we focus solely on the case of prime q variants of
Gladius.

In our construction, to aid distributed decryption, we construct G as in Fig-
ure 7, assuming we take the message modulus t = 2 in our above construction.
Minor tweaks are needed in the case when t 6= 2. The construction makes use of
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LWE LWR Security ⊥ −Aware Security

n t q p ` σ µ Security Theoretical Best-Attack c′ Adv−1

prime q 971 2 221 − 9 29 219
√

1/2 128 2128.3 261.25 2465.7 5.673 289

1024 2 221 − 9 29 219
√

1/2 128 2135.7 264.78 2492.7 5.523 284

1982 2 223 − 15 210 221
√

1/2 256 2256.6 2125.3 2465.7 8.036 2183

2048 2 223 − 15 210 221
√

1/2 256 2266.0 2129.9 2975.5 7.906 2176

4096 2 226 − 5 211 221
√

1/2 512 2519.0 2256.2 22034 11.247 2361

prime q 4096 2 225 − 39 211 223
√

1/2 512 2537.0 2263.8 21951 N/A 2∞

8192 2 227 − 39 212 225
√

1/2 1024 21098.0 2542.4 23918 N/A 2∞

q = 2k 710 2 214 210 211
√

1/2 128 2128.9 2550.1 2187.6 - -

1024 2 214 210 212
√

1/2 256 2188.4 2792.1 2274.8 - -

1437 2 215 211 212
√

1/2 256 2256.6 21115. 2366.1 - -

2048 2 215 211 212
√

1/2 256 2376.6 21584. 2535.3 - -

Table 1. Gladius–Hispaniensis parameters (based on plain LWR), and the associated
LWE, LWR and ⊥ −Aware security. For the first five parameter sets with q prime we
establish ⊥ −Aware assuming Conjecture 4.1, for the second two ⊥ −Aware security is
established unconditionally since BV is always less than µ/2. For the q = 2k parameters
we cannot establish ⊥ −Aware security

Rescue with rate r satisfying r ≥ 2 · κ/blog2 qc, as well as SHA-3. The combined
hash function can clearly be treated as a random oracle if one assumes SHA-3
and Rescue are themselves random oracles. In the final distributed decryption
variant only lines 5 and 6 need to be performed in a secure manner (which are
based on Rescue, which is an MPC-friendly hash function). Thus irrespective of
how long the initial message is which is being encrypted, the number of appli-
cations of Rescue which need to be performed securely is given by dw/re+ 1. If
we take parameters κ = 128, n = 1024 and q = 221 − 9 then we have r = 13,
w = 52 and the number of secure rounds of Rescue is five in order to absorb the
key k and produce the output G(c2, k). For the case of Hybrid2 we select H ′ and
H ′′ based on Rescue as well.

For q a power-of-two a different methodology will be required. We know of
no MPC-friendly hash function defined over rings of the form Z2k . Thus for the
case of power-of-two values of q it would seem one would need to use a standard
sponge-based hash function (such as SHA-3), which would not be as amenable
to threshold implementation via a generic MPC methodology.

6 Distributed Decryption of Gladius

In this section we present how to perform distributed decryption of the hybrid
cipher obtained from our generic construction composed with Gladius. For ease
of implementation we select parameters for which q is prime, p = 2π and µ = 2ν

are powers of two, and the message space modulus is t = 2. Although this section
focuses on the simpler standard LWR variant (Gladius–Hispaniensis) and not on
the Ring-LWR variants (Gladius–Pompeii, Gladius–Mainz and Gladius–Fulham,
see the full version), the procedure is virtually identical in all cases.

We use an MPC system defined for the q prime case for our experiments,
as this is the only case for which we have both a full proof of security and a
suitable MPC-friendly hash function (Rescue). Selecting q prime also means we
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The Hash Function G(c2, k).

On input of c1, c2 and k ∈ {0, 1}n.

1. Apply the SHA-3 hash function to c2 to obtain a 2 · κ-bit string s.
2. Parse s into r bit-strings (s1, . . . , sr) each of length blog2 qc. This is possible

due to the choice of r.
3. Treat each si as an element of Fq and absorb the set (s1, . . . , sr) into a fresh

Rescue state. This requires one application of the Rescue absorption phase.
Note, this is done in the clear during threshold decryption as c1 and c2 are
public.

4. Take the bit string k ∈ {0, 1}n and parse again into bit-strings of length blog2 qc.
This will produce w = dn/blog2 qce bit-strings k1, . . . , kw, each of which we
think of as elements in Fq.

5. The w finite field elements k1, . . . , kw are absorbed into the Rescue state, this
will require dw/re executions of the Rescue function. Since during distributed
decryption k is not known at this stage, this needs to be carried out securely.

6. Finally the output is obtained by squeezing out r output field elements from
Rescue using a single application of the Rescue function.

Figure 7. The Hash Function G(c2, k).

can utilize an existing library such as SCALE-MAMBA [6], for not only the
underlying MPC system, but also many of the necessary sub-routines which our
distributed decryption method requires. In the full version we discuss changes
to the algorithms which would be needed if future work could establish a secure
variant in the case when q is a power of two (including a suitable MPC-friendly
hash function for this case).

We first present our distributed Key Generation protocol ΠKeyGen. Since the
key generation method is based on Learning-with-Errors, with the error distri-
bution coming from the NewHope distribution with σ = 1/

√
2, we can utilize

the simple method described in [35,46]. This is described in Figure 8.

Protocol for Distributed Key Generation ΠKeyGen.

1. For i, j ∈ [1, . . . , n]
- 〈b〉, 〈b′〉, 〈c〉, 〈c′〉 ← Bits().

- 〈R(i,j)
1 〉 ← 〈b〉 − 〈b′〉.

- 〈R(i,j)
2 〉 ← 〈c〉 − 〈c′〉.

- A
(i,j)
1 ← Fq.

2. 〈A2〉 ← A1 · 〈R1〉+ 〈R2〉+G.
3. A2 ← Output(〈A2〉).
4. pk← (A1, A2).
5. sk← (A1, A2, 〈R1〉).

Figure 8. Protocol for Distributed Key Generation ΠKeyGen.
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The distributed decryption procedure itself is more complex. It makes use of
the following protocols from other works, e.g. [19,42]. In each of these protocols
we can run the protocol with clear entries. For example BitDecomp(a) will form
the bit decomposition of an integer a, but here we also need to specify how
many bits we require. Since a may not necessarily be reduced in the range
(−q/2, . . . , q/2). Thus we would write BitDecomp(a, t) to obtain t bits.

- 〈a〉 ← BitDecomp(〈a〉): Given a secret shared value 〈a〉 with a ∈ Fq this
procedure produces a vector of shared bits 〈a〉 = (〈a0〉, . . . , 〈ablog2 qc〉) such
that a =

∑
i ai ·2i. Note this means a is in the non-centred interval [0, . . . , q).

The method we use is from [42], which is itself built upon the work in [19].

- 〈c〉 ← BitAdd(〈a〉, 〈b〉): Given shared bits 〈a〉 and 〈b〉 this executes a binary
adder to produce the vector of shared bits 〈c〉 such that

∑
i ci ·2i =

∑
i(ai+

bi) · 2i. This algorithm is also presented in [19]. Note this returns one bit
more than the maximum of the lengths of 〈a〉 and 〈b〉.

- 〈c〉 ← BitNeg(〈a〉): This performs the two-complement negative of the bit
vector 〈a〉. It flips the bits of 〈a〉 to produce 〈a〉, and then executes the
function BitAdd(〈a〉,1), where 1 = BitDecomp(1, |a|) is the bit-vector of the
correct length representing the integer one.

- 〈c〉 ← BitLT(〈a〉, 〈b〉): This computes the single bit output 〈c〉 of the com-
parison

∑
i ai · 2i <

∑
i bi · 2i. Again we use the method from [19].

When running BitDecomp(〈a〉) on a secret shared value the run time is not
deterministic, it needs to loop to produce a shared value which is uniformly
distributed modulo q. It does this by rejection sampling; where the probability
of rejecting a sample is given by

2dlog2 qe − q
2dlog2 qe

.

This is another reason to select q to be close to a power-of-two, as well as to
ensure µ is a power of two.

In Figure 10 we divide our distributed decryption procedure into four phases:
KEM Decapsulate, KEM Validity Check, the Hash-Check (for the checking of
the DEM component) and finally the Message Extraction. As we select µ and
p to be powers of two the first stage is relatively straightforward given we can
implement BitDecomp(〈a〉). There is a minor complication due to the need to
map the bit-decomposition into the centred interval but this is easily dealt with
using the sub-routine in Figure 9. The third stage complexity depends on the
choice of the underlying hash function G; our choice of G from Section 5 using
SHA-3 and Rescue combined was to ensure this step is as efficient as possible.
Due to our hybrid design the final step can be performed in the clear; which is
not possible for other hybrid schemes.

Thus, the main complexity of the decryption procedure is the second stage,
namely the KEM Validity Check, as for this we need to re-encrypt the message
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Subroutine Centre(〈x〉)

1. 〈b〉 ← BitDecomp(〈x〉); recall the bit-decomposition produces a value in the
non-centred interval.

2. 〈b′〉 ← BitAdd(〈b〉, q + 1); i.e. b′ = q − ui over the integers.
3. 〈b′′〉 ← BitNeg(〈b′〉); i.e. b′′ = −b′ (mod 2dlog2 qe − π) if we compute to
dlog2 qe − π bits.

4. 〈f〉 ← BitLT(〈b〉, q/2); i.e. is b < q/2?
5. 〈a〉 ← 〈f〉 · 〈b〉 + (1− 〈f〉) · 〈b′′〉. This is again done bitwise. This results in a

being the bit representation of the centred value of ui modulo q represented in
dlog2 qe bits.

6. Return 〈a〉.

Figure 9. Subroutine Centre(〈x〉)

and check the result is equal to the KEM ciphertext component. We need to
verify equations of the following form

c = b〈x〉ep =
⌊p
q
· 〈x〉

⌉
(mod p)

where c is publicly given, but the value 〈x〉 cannot be opened to the parties.
We write the equation, over the integers, as c = p

q · 〈x〉 + ε + p · v, where

ε ∈ (−1/2, 1/2], v ∈ {0, 1} and we think of the shared value 〈x〉 being in the
centred representation modulo q. The value v is equal to one only if the reduction
modulo p in the LWR equation needs to move the rounded value −p/2 to p/2.
This happens when

x ≤ q

p

(
1

2
− p

2

)
=
q · (1− p)

2 · p
.

This means we simply need to compute the bit representation 〈s〉 of the value
|q ·c−p ·〈x〉−p ·q ·〈v〉| over the integers and then check the result is less than q/2.
The last check can be performed using the BitLT(〈s〉, q/2) algorithm mentioned
above.

But to compute the bit representation of 〈s〉 we need the bit representation of
the modulo q centred value 〈x〉. However, the BitDecomp routine only produces
the bit-decomposition in the non-centred interval of a value modulo q. We could
use the method from the first stage and apply the Centre sub-routine. However,
this is inefficient as on its own it requires two calls to BitAdd (one explicitly to
BitAdd and one implicitly in the call to BitNeg). The procedure BitAdd is our
most expensive subroutine so we want to minimize the number of calls to this.

Thus instead we proceed as follows: If we think of the value 〈x〉 as the re-
duction in the centred interval, and 〈u〉 as the value in the non-centred interval
then we have x = u − b · q, where b is the bit given by b = 1 − (u ≤ q/2).
We write 〈u〉 for the corresponding shared bit decomposition of u. We can then
re-write the equation for determining v above in terms of u, as opposed to x, as

v = b ·
(
u ≤ q·(p+1)

(2·p)

)
. We note that v = 0 when b = 0, which is important in

what follows.
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Protocol for Distributed Decryption ΠDec.

Input: A ciphertext c1 = (c1, c2), c2, c3, the public key (A1, A2) and the secret key
in shared form 〈R1〉.

KEM Decapsulation:
1. 〈x〉 ← c2 − c1 · 〈R1〉.
2. For i ∈ [1, . . . , n]

- 〈w〉 ← Centre(〈xi〉).
- 〈ki〉 ← 〈w(ν)

i 〉 ⊕ 〈w
(ν+1)
i 〉 = 〈w(ν)

i 〉 + 〈w(ν+1)
i 〉 − 2 · 〈w(ν)

i 〉 · 〈w
(ν+1)
i 〉.

KEM Validity Check:
1. 〈y〉 ← 〈k〉 · (A1‖A2).
2. 〈z〉 ← 1.
3. For i ∈ [1, . . . , 2 · n]

- 〈u〉 ← BitDecomp(〈yi〉).
- 〈b〉 ← 1− BitLT(u, q/2).
- 〈v〉 ← 〈b〉 ·BitLT(〈u〉, q · (p+ 1)/(2 · p)). This computes the adjustment

bit for dealing with the wrap around modulo p. Note, this can only
apply when a < 0.

- 〈u′〉 ← 〈u〉 � π; i.e. shift left by π bits, where p = 2π. Hence u′ = p ·u
over the integers, represented in dlog2 qe+ π bits.

- 〈w〉 ← BitAdd(〈u′〉, 2dlog2 qe+π − ci · q). Here ci = c
(i)
1 if i ≤ n and

c
(i−n)
2 otherwise. This produces w = p ·u− ci · q over the integers with
dlog2 qe+ π bits.

- 〈f〉 ← BitAdd(〈w〉, (〈b〉 − 〈v〉) · (−p · q)). This applies the adjustment
when b = 1 and v = 0. We now have f = p · ui − (b− v) · p · q − ci · q
over the integers with dlog2 qe+ π bits.

- 〈f ′〉 ← BitNeg(〈f〉), hence f ′ = −f over the integers.
- 〈g〉 ← 〈fπ+dlog2 qe−1〉; i.e. the sign bit of f .
- 〈s〉 ← 〈g〉 · 〈f ′〉 + (1− 〈g〉) · 〈f〉. Again a bitwise operation computing
s = |f | as an integer.

- 〈j〉 ← BitLT(〈s〉, q/2); is one if this coefficient is OK.
- 〈z〉 ← 〈z〉 · 〈j〉; is one if the ciphertext is OK up to this point.

4. z ← Output(〈z〉)
5. If z 6= 1 then return ⊥.

Hash Check:
1. 〈t〉 ← G(c2, 〈k〉).
2. t← Output(〈t〉).
3. If t 6= c3 then return ⊥.

Message Extaction:
1. k ← Output(〈k〉).
2. k← H(k).
3. m← Ds(k, c2)
4. If m =⊥ then return ⊥.
5. Return m.

Figure 10. Protocol for Distributed Decryption ΠDec.
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We then rewrite the equation for 〈s〉 as

∣∣∣p · 〈u〉 − p · q · (〈b〉 − 〈v〉)− ci · q∣∣∣
The bit representation of p ·〈u〉 can be determined by simply shifting bits, as p is
a power-of-two. The bit representation of −p ·q · (〈b〉−〈v〉) can be determined by
bit-wise multiplications as b−v ∈ {0, 1} by construction. From these observations
we can produce a method for Stage 2 which requires three calls to BitAdd, as
opposed to the naive method which would go through Centre which would require
four calls to BitAdd.

Security Discussion and Implementation: As remarked previously the security
of our implementation follows from the security of the underlying MPC protocol.
By using SCALE-MAMBA [6] we can obtain active security, and the above sub-
procedures are all provided as built in functions. In addition, the large local only
operations in KEM Decapsulation (line 1) and KEM Validity Check (line 1) can
be carried out efficiently in C++ using the SCALE LOCAL_FUNCTION operation.
This enables one to perform complex local only operations, i.e. complex linear
functions, natively in C++ as opposed to needing them to be implemented with
the MPC system (which adds a lot of overhead).

We implemented our distributed decryption procedure in the case of Shamir
sharing within SCALE-MAMBA. This is because the Shamir implementation
module allows the MPC sub-system to be instantiated over any finite field Fq.
In using a full threshold access structure one would need (with SCALE-MAMBA
as currently implemented) to select a prime q which is FHE friendly; so as to
enable the SHE scheme at the basis of SPDZ [20] to be instantiated. None of the
q values in the various parameter sets for Gladius are FHE friendly; not even the
Gladius-Pompeii variants which have q − 1 divisible by a large power of two. In
our experiments, each party ran on a machine with a Intel(R) Core(TM) i9-9900
CPU at 3.10GHz and 128 GB of memory. The machines were connected in a
local network using a 10 gigabit switch.

For three parties, tolerating a threshold of one dishonest party, we obtained a
run time for the first three phases of 1.19, 3.62, and 0.18 seconds respectively; for
our parameter set of q = 221−9 and n = 1024 in the plain LWR setting. Making
a total decapsulation time of 4.99 seconds in 136491 rounds of communication.
Whilst this might at first sight seem slower than the 4.20 seconds reported for
LIMA in [35] the results are incomparable. Recall, the method in [35] to perform
distributed decapsulation is insecure, as indeed would be any distributed decap-
sulation of any algorithm making use of the traditional KEM-DEM construction.

In our second experiment, we used the parameter set of q = 223 − 15 and
n = 2048, which has a better ⊥ −Aware security of 2176. We obtained a run time
for three phases of 7.16, 19.1 and 0.99 seconds, respectively; which amounts to
a total of 27.3 seconds and 274157 rounds of communication.
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