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Abstract. The prefix-free security of a cascade function based on a c-bit
compression function f is reduced to the q-query PRF security of f with
a tightness gap `q where q represents the maximum number of queries to
the cascade and ` represents the length of the longest query. A two-stage
proof for this reduction was first given by Bellare et al. in FOCS-96 for
an adaptive distinguisher, and later a similar two-stage reduction was
proved in CRYPTO-14 by Gazi et al. for a non-adaptive distinguisher.

In this paper we prove a direct single-stage reduction with a tightness gap
of σ (the total length of all queries). This is an improvement over existing
reductions whenever the lengths of queries vary widely. In the case of
non-adaptive prefix-free security, we also show a reduction proof which
reduces PRF advantage of the cascade to two terms – (i) a q-query PRF
security of f with a tightness gap of q (without a factor of `) and (ii) a
single query PRF security of f with a tightness gap of σ. We further
extend to a more general finer reduction to multiple terms over different
limits on the queries to f . All these reductions can be easily extended
to a multiuser setup. In particular, we reduce multiuser prefix-free PRF
security of the cascade to a single user qmax-query PRF security of f with
a tightness gap σ (the total length of all queries to all users), where qmax

is the maximum number of queries allowed to any user. We have shown
similar improved bounds (with respect to query complexity) for non-
adaptive multiuser PRF security. In addition to immediate applications
to multiuser security of HMAC and NMAC, our improved analysis has
the following useful applications:

1. We show that the multiuser non-adaptive PRF security of the cas-
cade does not degrade even if f assures a weaker non-adaptive PRF
security advantage.

2. The PRF security of single-keyed NMAC and Envelope MAC can
be reduced to the non-adaptive multiuser prefix-free PRF security
of the cascade construction and hence all improved reductions are
applicable to these constructions. As a result, the constants ipad
and opad used in HMAC are redundant. Moreover, the existing PRB
assumption on f can be replaced by a simple regular property for
the constant-free HMAC.
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1 Introduction

Notations. For any two integers a < b, we write [a..b] (or simply [b]
when a = 1) to denote the set {a, a+1, . . . , b}. A q-tuple (x1, . . . , xq) and
((x1, y1), . . . , (xq, yq)) are denoted as xq and (xq, yq) respectively. In this
paper, we also view a q-tuple xq as a set {xi : i ∈ [q]} and so |xq| denotes
the number of distinct elements present in the tuple. We fix two positive
integers b and c and we write {0, 1}b as B (set of blocks). We also fix a
function f : {0, 1}c × B → {0, 1}c (e.g., compression function of SHA-1,
SHA-256/512 [9]).

For a reasonably large integer L (e.g., 2100), the set of all tuples (in-
cluding the empty tuple λ) with at most L blocks is denoted as B∗. We
write B+ := B∗ × B. For m := (m[0],m[1], . . . ,m[r]) ∈ I × B+ and
1 ≤ i ≤ j ≤ r, we write (i) the number of blocks ‖m‖ = r, (ii) sub-
tuple m[i..j] := (m[i], . . . ,m[j]), (iii) suffix m[i..] = m[i..r] and (iv) prefix
m[..j] = m[0..j]. For mq, we write ‖mq‖ =

∑
i ‖mi‖. For positive integers

q′, `, σ′, let

M(q′, `, σ′) = {mq : q ≤ q′, ‖mi‖ ≤ `,∀i ∈ [q], σ := ‖mq‖ ≤ σ′}.

be the set of all tuples of at most q′ messages so that the longest message
has at most ` blocks and the number of blocks in all messages is at most
σ′. For m = (x, y), we write m \ x = y and x � m (x is called a prefix of
m) or x ≺ m if z 6= λ. A q-tuple mq = (m1, . . . ,mq) is called prefix-free if
mi is not a prefix to mj for all i 6= j (and so they are necessarily distinct).

1.1 Cascade, HMAC, NMAC and Envelope MAC

The cascade function f∗ : {0, 1}c × B∗ → {0, 1}c is defined recursively as
follows: For all h ∈ {0, 1}c, f∗(h, λ) = h and for all m[..i] ∈ Bi, i ≥ 1,

f∗(h,m[..i]) = f∗
(
f(h,m[..i− 1]),m[i]

)
. (1)

One can further extend the domain of f∗ to the set of all arbitrary bit
strings by applying an appropriate padding rule as a preprocessor of the
iterated function. Let pad(·) be the length-encoded MD-strengthening
padding that maps m to m‖pad(|m|) ∈ B+ injectively. The Merkle-
Damg̊ard hash (or MD hash) output MDIV(m) based on the compression
function f for a message m is f∗(IV,m ‖ pad(|m|)) where IV ∈ {0, 1}c is
some fixed initial value specified in the description of the hash function.



For keys k, k1, k2 ∈ {0, 1}c, b-bit constants ipad, opad specified in [4] and
message m ∈ {0, 1}∗,

NMACk1,k2(m) = MDk2(MDk1(m)),

HMACk(m) = MD
(
k⊕opad ‖ MD(k⊕ipad‖m)

)
= NMACKDF(k)(m),

where k⊕α = (k‖0b−c) ⊕ α and KDF(k) =
(
k1 := f(IV, k⊕ipad), k2 :=

f(IV, k⊕opad)
)
. Here, we must assume that c ≤ b, which used to hold for

the earlier compression functions. 1
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Fig. 1: NMACk1,k2(m): The top layer represents the cascade output and the bottom
layer represents the finalization process applied on the output of the cascade.

Simplification. There is no loss in security if we assume message space
as B∗ and we ignore the padding rule. Throughout the paper, this con-
vention is applied for all constructions. A minor change can be applied in
the analysis of constructions with a more general message space.

Finally, we define another old cascade-based MAC construction, called
the Envelope MAC or EvMAC. Let pad map a k-bit string to B. For
example, if k ≤ b, we consider pad(K) = K‖0b−k. We define a dual
keyed function (interchanging the position of input and key) f↓(K,x) :=
f(x, pad(K)). For any m ∈ B+, K ∈ {0, 1}k, we define EvMAC(K,m) =
f∗(IV, (K ′,m,K ′)) where K ′ = pad(K) and IV ∈ {0, 1}c is a fixed con-
stant specified by the MD hash function based on f . Using the dual
function notation, we can equivalently write

EvMAC(K,m) = f↓
(
K, f∗(f↓(K, IV),m)

)
.

1 Later in RFC 2014 [21] and in the special publication FIPS PUB 198-1 [12] by NIST,
the MD hash was replaced by any recommended hash function H while defining
HMAC. Similar to the original definition of HMAC, the new definition assumed the
hash size to be less than the block size.



1.2 Existing Results on Cascade, NMAC, HMAC and EvMAC

PRF Advantage against a Keyed Function. For a function F , we
write FK(x) = F (K,x) and view F as a keyed function. A random func-
tion RF := RFX→Y ←$ Func(X ,Y) (the set of all functions from X to Y),
where s←$S denotes the uniform sampling of s from a finite set S. We
denote the PRF advantage of a distinguisher D against F as

Advprf
F (D) := ∆D(F ; RFX→{0,1}τ ) :=

∣∣Pr(DF → 1)− Pr(DRF → 1)
∣∣,

Advprf
F (q′, `, σ′, T ) := max

D
∆D(F ; RFX→{0,1}τ ),

where the maximum is taken over all q′-query distinguishers D running in
time T such that the query tuple belongs toM(q′, `, σ′). We use the super-
scripts (i) nprf, (ii) pf prf and (iii) pf nprf when we restrict to distinguish-
ers that are (i) non-adaptive (all queries are made before observing any
responses), (ii) prefix-free (query tuples are prefix-free) and (iii) prefix-
free non-adaptive, respectively. Given a function G : {0, 1}k → {0, 1}k′

and a distinguisher D, we define the PRBG advantage of D against G as

Advprbg
G (D) = |Pr(D(G(U)) = 1)− Pr(D(U′) = 1)|

where U←$ {0, 1}k, U′←$ {0, 1}k′ . If the PRBG advantage is small for all
efficient algorithms D, we call G a PRBG (pseudorandom bit generator).
When G is a regular function (or an almost regular function) then the
PRBG advantage for any distinguisher is zero (or negligible respectively).

Multiuser Keyed Functions. Let F : K×X → Y be a keyed function.
For any finite set I (called a user-index space), we define the I-folded
multiuser keyed function F⊗I(γ, x) := F (RF(γ), x). When the user-index
space is understood, we write F⊗. We can equivalently view this as an
independent collection of keyed functions F . We denote the multiuser
PRF advantage of a distinguisher D against F (with the user-index space
I) as

Advmu prf
F (u′, q′, qmax, `, σ

′, σmax, T ) := max
D

∆D(F⊗I ; RFX×I→Y),

where the maximum is taken over all q′-query u′-user distinguishers D
running in time T such that the query tuple to each user belongs to
M(qmax, `, σmax) and the total length of all queries to all users is at most
σ′. We also use the superscript mu nprf when we consider non-adaptive
distinguishers.

Notation. Throughout the paper, T ′ = T+O(σ′) and θ′ = (u′, q′, qmax, `, σ
′, σmax).

We write A \ x or A ∪ x to denote A \ {x} or A ∪ {x} respectively.



PRF Analysis on Cascade. The security of a fixed-length cascade
construction (a special case of a cascade with a prefix-free domain) was
first implicitly shown in 1984 [14] (and later published in 1986 [15]). The
authors have proved asymptotically that a c-bit to 2c-bit PRBG (pseudo-
random bit generator) can be extended to a fixed-length PRF. Note that
such a PRBG is equivalent to a PRF with a one-bit domain (i.e., b = 1).
The PRBG to PRF construction is exactly the cascade construction after
viewing the PRBG as a one-bit PRF. In 1996 [4], the GGM results were
extended for a general value of b and with an arbitrary prefix-free domain:

Advpf prf
f∗ (q′, `, σ′, T ) ≤ `q′ ·Advprf

f (q′, T ′).

In 2014 [13], Gazi et al. proved the above equation for non-adaptive PRF
advantage.

PRF Analysis on NMAC and HMAC. Bellare [1] proved that

Advprf

NMACf
(q′, `, σ′′, T ) ≤ `q′2 ·Advprf

f (2, O(`)) + Advprf
f (q′, T ′).

Bellare assumed that a good compression function f must satisfy Advprf
f (2, `)

≈ `/2c (presuming that key-guessing is the best strategy for distinguishing
f from a random function) and hence the security of NMAC is dominated
by the bound `2q′2/2c. Koblitz and Menezes observed that the reduction
used in the preceding proof is non-constructive or existential (see [26,19]
for details about different types of reductions). Moreover, the authors
showed that there exists a large class of functions f ′ : {0, 1}c×B→ {0, 1}
such that for all f ′ in the class, there exists a 1-query distinguisher A
running in O(1) time such that

Advprf
f ′ (A) ≥ 1

2c/2
. (2)

Later Bernstein and Lange [7] showed a distinguisher for which a simi-
lar result as 2 holds. This means that Bellare’s result cannot guarantee
security better than `q′2/2c/2. This violates the tightness claim of Bel-
lare (see [18] for a detailed discussion). Later in [2], the above tightness
claim was withdrawn and revised. In 2013, Koblitz-Menezes [18] also pro-
vided a constructive reduction and proved the following result (ignoring
a dominated term):

Advprf

NMACf
(q′, `, σ′, T ) ≤ `q′ ·Advprf

f (q′, T ′). (3)



One year later in 2014 [13], Gazi et al. proved the following security of
NMAC through a constructive reduction:

Advprf

NMACf
(q′, `, σ′, T ) ≤ Advnprf

f∗ (q′, `, σ′, T ′) + Advprf
f (q′, T ′) + q′2/2c.

(4)

≤ `q′ ·Advnprf
f (q′, T ′) + Advprf

f (q′, T ′) + q′2/2c.

From the definition of HMAC, one can easily establish the following rela-
tion between the PRF securities of HMAC and NMAC:

Advprf

HMACf
(q′, `, σ′, T ) ≤ Advprf

NMACf
(q′, `, σ′, T ) + Advprbg

KDF(T ). (5)

PRF Analysis on Envelope MAC. Yasuda proved PRF security of
Envelope MAC (also called “Sandwich MAC,” see [29]), along the lines
of Bellare’s NMAC security proof in [2]. Thus, the issues for NMAC are
also present in his analysis. Koblitz and Menezes [20] proved the following
constructive reduction of Envelope MAC

Advprf

NMACf
(q′, `, σ′, T ) ≤ `q′ ·Advprf

f (q′, T ′) + 2q′ ·Advprf
f↓

(q′, T ′) + ε,

(6)

where f↓ is the dual of f . The term ε represents some related-key dis-
tinguishing advantage for the pair of functions (f, f↓), which cannot be
derived from the PRF advantages of f and its dual.

1.3 Our Contributions

1. Multiuser PRF Security of Cascade. We provide two reductions
for the multiuser PRF security of the cascade construction:

Advmu pf prf
f∗ (θ′, T ) ≤ σ′ ·Advprf

f (qmax, T
′) (7)

Advmu pf nprf
f∗ (θ′, T ) ≤ σ′ ·Advnprf

f (1, T ′) + u ·Advnprf
f (qmax, T

′). (8)

2. Non-adaptive PRF security under weak f . Due to the key guess-
ing attack, the above bounds cannot guarantee a security better than
σ′T/2c. Suppose f is a keyed function with a higher non-adaptive PRF

advantage, such as Advnprf
f (D,T ) ≤ DT/2c. We still prove a similar ad-

vantage (up to a logarithmic factor) against a non-adaptive distinguisher:

Advmu pf nprf
f? (θ′, T ) ≤ (σ′T + σ′2) · log2 qmax

2c



Applications to HMAC and NMAC. The generic reduction from
NMAC to cascade (see Eq. 4) and HMAC to NMAC (see Eq. 5) can be
easily extended for a multiuser setup in the following way:

Advmu prf

NMACf
(θ′, T ) ≤ Advmu pf nprf

f∗ (θ′, T ′) + Advprf
f (q, T ′) +

q′2

2c
(9)

Advmu prf

HMACf
(θ′, T ) ≤ Advmu prf

NMACf
(θ′, T ) + Advprbg

KDF(T ′). (10)

Hence our results for non-adaptive PRF security of cascade can be directly
applied for multiuser security of HMAC and NMAC.

3. Security of Single Keyed NMAC, constant-free HMAC and
EvMAC. We prove the security of the single-keyed NMAC construction
1k NMACK = NMACK,K . This helps not only to eliminate the two con-
stants used in HMAC, but also to weaken the PRBG assumption on f .
We also prove multiuser PRF security of Envelope MAC without assum-
ing the related-key type assumption appearing in Eq. 6. In particular, we
show the following three results:

Advmu prf

1k NMACf
(θ′) ≤ Advmu pf nprf

f∗ (q′, q′, qmax, `+ 1, σ′, σmax, T
′)+

+ u′ ·Advprf
f (2qmax, T

′) +
2q′2

2c
,

Advmu prf
EvMAC(θ′) ≤ Advmu pf nprf

f∗ (q′, q′, qmax, `, σ
′, σmax, T

′)+

+ u′ ·Advprf
f (qmax + 1, T ′) +

q′2

2c
and

Advmu prf
HMAC′

(θ′) ≤ Advmu prf
1k NMAC(θ′),

where HMAC′ is same as HMAC when the two constants opad and ipad
are replaced by the zero bit string. Moreover, the security of the modified
HMAC does not require the PRBG property (it only needs the regular
property as KDF does not expand the output size in the modified defini-
tion, assuming key size to be as large as the chain size c).

Once again, all of our non-adaptive multiuser PRF securities for the
cascade construction are applicable to these variants. We finally note
that all reductions in our analysis are constructive and so the bounds are
applicable to a uniform setting when we naturally extend the result in an
asymptotic set-up.



1.4 Key Intuition in Our Proof

Reduction for Cascade Construction. Let us consider a single user
distinguisher of cascade which makes prefix-free queries m1, . . . ,mq. We
view a rooted directed tree T over all prefixes of the queries. We define a
directed edge (x, y) where x = chop(y) (removing the last block) and so λ
is the root and m1, . . . ,mq are all leaves (as queries are prefix-free). Now
we define a depth-first ordering ≤ on the set of all intermediate nodes V ′

(i.e., excluding leave nodes). This is a linear order and it orders first all
intermediate prefixes of m1 as λ < m1[1] < · · · < m1[1..`i − 1] where `i
denotes the number of blocks present in mi and mi[1..j] represents the j
blocks of mi. After ordering the first message we define the next element
as the shortest intermediate prefix of m2 which is not yet ordered. If
there is no such element we can move to the next message, otherwise,
starting from the shortest node for m2 we can order till m2[`2 − 1] (the
last intermediate node for m2). We continue this until we exhaust all
elements of V ′. Let v0 < v1 < · · · denote the complete ordering on V ′.

Now we define hybrid oracles Oh for all 0 ≤ h ≤ |V ′|. All these
hybrid oracles assign some random keys to some of the prefix-free nodes
so that for every message mi there is a prefix of mi where a random
key is assigned. From that node we can execute f∗ function to define the
output for mi. To do so, we apply the function f in a sequence while we
travel from that key node to mi. If λ is the node where the random key
is assigned then we actually compute f∗. On the other hand, if all leave
nodes assign random keys then it represents a random function. All other
key assigning will represent a hybrid oracle. We define O0 as f∗ oracle.
We now define O1 as the hybrid oracle where random keys are assigned
to all children of λ. Suppose we have defined Oh which assigns random
keys on the set of nodes Ch and the smallest element from Ch \mq is vh.
We define recursively Oh+1 where we assign random keys to all children
of vh instead of vh and the rest of keys are the same as Oh. It is easy to
see that O|V ′| will assign random keys to all the leave nodes.

After defining a set of hybrid oracles, we can simulate with the help
of an oracle O which is either f(K, ·) or Γ (random function). SimO(h)
assigns random keys to all nodes used for Oh except vh. For all messages
mi with vh as a prefix, Sim(h) calls O as if the key of the oracle is placed
on vh. So, when O = f(K, ·), the simulator actually simulates Oh. On
the other hand, when O = Γ, simulator evaluates random keys on the
children of vh through the oracle Γ. In other words, it simulates Oh+1.
This completes the hybrid argument. We obtain a tightness gap as the
maximum number of prefixes of all queries.



At a first glance, one may think that the above reduction is defined
for non-adaptive distinguisher only. However, the way we have defined
the depth-first ordering, the simulator can be defined for adaptive algo-
rithm too. Moreover, for non-adaptive distinguisher we actually have an
improved reduction. After observing all queries, we can identify the set of
h values for which the number of children of vh is one. By a simple argu-
ment, we can show that the number of nodes with at least two children
is at most q. Show we can reduce to two algorithms one makes only one
query and the other makes at most q queries with a tightness gap q. It
can be easily extended for multiple reduction with a fine tuned trade-off
between tightness gaps and query complexity.

Reduction for Single-keyed NMAC. We have proved PRF security
of single-keyed NMAC. Note that 1k NMACK(m) := g(f∗(g(m[1]),m[2..`]))
where g(x) = f(K,x) for a random key K. Due to standard hybrid argu-
ment, it is sufficient to analyze the hybrid construction Γ(f∗(Γ(m[1]),m[2..`])).
Let yi denote f∗(Γ(mi[1]),mi[2..`]) for the ith query mi. As long as there
is no collision in yi values and no collision between yi and mi[1] values,
Γ(yi) values behave perfectly random. Let us define the bad event bad
true whenever such collision happened. As the final output also hides the
messages by the Γ, we can reduce the PRF security to a non-adaptive
adversary which triggers the above bad event by its queries. The yi val-
ues can be viewed as a multiuser cascade output where the first block of
the message is the user index and the remaining message as an input. So,
our multiuser analysis of cascade can be applied provided the queries are
prefix-free. So we append one extra block, say x, to every message so that
the new messages are prefix-free. We can define a new bad event bad′ as
f(yi, x) = f(yj , x), i 6= j, or f(yi, x) = f(mj [1], x). Clearly, bad′ holds
whenever bad holds and we can bound the probability of bad′ using the
prefix-free multiuser PRF adversary of cascade construction.

2 Preliminaries

2.1 Distinguisher

Oracle Algorithm. An (X ,Y)-oracle O is an interactive probabilistic
algorithm that takes inputs from the set X and returns elements from
the set Y. A keyed function F : K×X → Y is viewed as an (X ,Y)-oracle
where the key K←$K, and then for each query x it returns FK(x). The
I-folded multiuser F can be similarly viewed as an (I × X ,Y)-oracle.
Conversely, any (I × X ,Y)-oracle F ′ such that F ′(γ, x) := F (RF(γ), x)
can be viewed as an I-folded multiuser oracle F .



Oracle. A q′-query t-time (X ,Y)-oracle algorithm A is an interactive
algorithm that can interact with any (X ,Y)-oracle O (also called a com-
patible oracle), that makes at most q′ queries to its oracle, runs for time t,
and finally returns some output (if the output is a single bit, we also call
it a distinguisher). We call A non-adaptive if the tuple of all queries xq

does not depend on its oracle or its responses. In other words, all queries
are computed before the interaction begins. We denote the oracle as [xq].
When O is a multiuser oracle, A is called a u′-user oracle algorithm if the
number of distinct user indices queried among all q′ queries is at most u′.
Let τ(AO) := (τquery(AO) := xq, τresp(AO) := yq) denote the pair of tu-
ples of queries and responses and call it the transcript. Here, q represents
the number of queries and so q ≤ q′. In the case of a u′-user, q′-query
oracle algorithm A and for a query transcript τquery(AO) := (γq, xq), we
have q ≤ q′, |γq| ≤ u′ (when γq is viewed as a set).

2.2 Complexity Notation for Distinguisher

A distinguisher D is called an (M, t)-complexity distinguisher if D runs for
time t and for all compatible oracles O, the transcript τquery(DO) ∈ M.
We call M the joint query space for D. A joint query space is called
prefix-closed if for all mq ∈M and for all i ∈ [q], mi ∈M.

Examples of Joint Query Space. We quickly recall thatM(q′, `′, σ′)
represents the set of all tuples of at most q′ messages so that the longest
message has at most `′ blocks and the number of blocks in all messages
is at most σ′. For any (γq,mq) ∈ Iq ×M(q′, `′, σ′) with distinct (γi,mi),
let γ′1, . . . , γ

′
u denote the distinct elements of γq (i.e., |γq| = u). Let Mi =

{mj : γj = γ′i}. We define σmax(γq,mq) = maxi
∑

j∈Mi
‖mj‖. Let

M(u′, q′, q′max, `
′, σ′, σ′max) = {(γq,mq) ∈M(u′, q′, `′, σ′) :

mcoll(γq) ≤ q′max, σmax(γq,mq) ≤ σ′max}.

When ` = 1 (e.g. X = B), we simply write the above sets asMmu(u′, q′, q′max).
For any joint query spaceM, we writeMpf =M∩P where P is the set
of all prefix-free block tuples.

Definition 1. Two oracles O and O′ are called equivalent on a joint
query space M, denoted as O ∼=M O′, if for all xq ∈ M, τresp([xq]O)
∼= τresp([xq]O

′
) (follow the same probability distribution).

Let D(M, t) (and Dna(M, t)) denote the set of all (M, t)-complexity
distinguishers (and non-adaptive distinguishers, respectively). If M(θ)



is determined by some complexity parameter θ, we also write the class
of distinguishers as D(θ, t) or Dna(θ, t). We also use superscript “mu”
to denote the multiuser distinguisher class to avoid any confusion. For
simplicity, the time parameter is sometimes ignored.

2.3 Distinguishing Security Notions

Definition 2 (distinguishing advantage). Let F and G be (X ,Y)-
oracles. We define the distinguishing advantage of a distinguisher D as
∆D(F ; G) :=

∣∣∆∗D(F ; G)
∣∣ where ∆∗D(F ; G) = Pr(DF = 1)− Pr(DG =

1). For a joint query space M(θ),

∆θ,t(F ; G) = max
D∈D(θ,t)

∆D(F ; G), ∆na
θ,t(F ; G) = max

D∈Dna(θ,t)
∆D(F ; G).

In the above definition when G is a random function, we call the dis-
tinguishing advantages the PRF-advantages of D against F . More pre-
cisely, the (multiuser) PRF-advantage of D against F are Advprf

F (D)

:= ∆D(F ; RFX→Y) and Advmu prf
F (D) := ∆D(F⊗ ; RF⊗X→Y). We de-

fine

Advprf
F (θ, t) = max

D∈D(θ,t)
Advprf

F (D), Advnprf
F (θ, t) = max

D∈Dna(θ,t)
Advprf

F (D).

We use the superscript mu prf and mu nprf when we consider multiuser
distinguishers against multiuser keyed functions. We sometimes write
Advnprf

F (·) when we consider only non-adaptive distinguishers.

2.4 Reduction Algorithm

A reduction algorithm Sim is a (two-sided) interactive algorithm that
can simultaneously interact with (i) an oracle algorithm A (with which
the reduction algorithm behaves like a compatible oracle) and (ii) a com-
patible oracle O. Thus SimO is an oracle for A, whereas A . Sim (the
combined algorithm) behaves like an oracle algorithm. We call the reduc-
tion algorithm (M, t)→ (M′, t′) if for every (M, t)-complexity algorithm
A, A . Sim is an (M′, t′)-complexity algorithm. Note that t′ = t + t′′,
where t′′ denotes the time taken by the reduction algorithm. So, we also
call it an M→M′ reduction.

(Randomized) Hybrid Reduction. The definition of a reduction algo-
rithm can be straightforwardly extended to one that has an initial input,
called a hybrid reduction. For any input a, Sim(a) would behave ex-
actly the same as a reduction algorithm. For a set I, Sim(h←$ I) works
as follows:



– h←$ I.
– If Sim(h) is not defined, abort.
– Else, run Sim(h).

Definition 3 (d-step reduction). A hybrid reduction algorithm Sim is
called a d-step oracle reduction from a pair of oracles (F ′, G′) to a pair of
oracles (F,G) on a joint query spaceM if there is a set I = {i1, . . . , id+1},
called hybrid-index set, and d+ 1 oracles Hi1 , . . . ,Hid+1

, called a hybrid
oracles with Hi1 ∼=M F ′, Hid+1

∼=M G′ such that for all h ∈ I,

– Sim(h)F ∼=M Hih and Sim(h)G ∼=M Hih+1
.

When G and G′ are random functions, we call Sim a d-step reduction
from F ′ to F .

Remark 1. Note that in the above definition, for any 1 ≤ h < h′ ≤ d+ 1,
(Hih ,Hih′ ) is reduced to (F,G) in (h′ − h) steps.

Lemma 1 (hybrid reduction). Let Sim be an M → M′ reduction
algorithm running for time tSim. Suppose it is a d-step oracle reduction
from (F ′, G′) to (F,G) on a query spaceM with hybrid-index set I. Then
for any (M, t)-complexity distinguisher D, we have an (M′, t + tSim)-
complexity distinguisher D′ := D . Sim(h←$ I) such that

∆D′(F ; G) =
1

d
·∆D(F ′ ; G′).

Lemma 2. Let I,X ,Y be finite sets. Let RF := RFX→Y and RF′ :=
RFX×I→Y . Suppose (RFi)i∈I is an independent collection of random func-
tions from X to Y. Then, for all iq ∈ Iq, xq ∈ X q,(

RFi1(x1), . . . ,RFiq(xq)
) ∼= (

RF′(i1, x1), . . . ,RF′(iq, xq)
)

(i.e., the the probability distributions of the above two random vectors are
the same).

The above result is a simple property of multiuser random functions which
is used in this paper. When all (ij , xj)’s are distinct both random vectors
have uniform distribution over Yq. This is obvious for the R.H.S. vector.
This can be also shown for the L.H.S. vector as random functions with
different user indices are independent.

3 A New Reduction for Cascade

In this section we provide a new reduction proof for cascade, both for
adaptive and non-adaptive distinguishers. Moreover, our reduction is a
straight reduction unlike the existing two-stage reduction.



3.1 Prefix-Tree

Let X = I × B+ and X ′ = I × B∗. Let us fix a parameter tuple θ′ =
(u′, q′, qmax, `, σ

′, σmax) and mq ∈ M(θ). For 1 ≤ i ≤ q ≤ q′, let mi =
mi[0..`i] ∈ X (i.e., ‖mi‖ = `i). Note, σ :=

∑
i `i ≤ σ′ and u = |mq[0]| ≤

u′ where u denotes the number of distinct mi[0] in mq. . Considering
elements of I as blocks, we can extend the notion of prefixes to X .

1. V = Prefix(mq) = {x : x � mi, i ∈ [q]} and
2. V ′ = Prefix′(mq) := {x : x ≺ mi, i ∈ [q]}.

We associate a directed tree (called prefix tree) Tm over the vertex set
V consisting of all directed edges of the form chop(y)→ y for y ∈ V \ λ.
It is a rooted tree with λ as the root (it is the only vertex with in-
degree zero). For every v ∈ V , we define the set of outwards nodes as
ch(v) = {u : v → u}. Let L denote the set of leaf nodes (having zero
out-degree). The set V ′ is the set of all non-leaf or intermediate nodes.
When mq is prefix-free, V ′ is disjoint with mq and L = mq. We denote
d := |V ′| − 1. It is easy to see that for prefix-free mq, d ≤ σ ≤ σ′.

Depth-First Ordering. Let mq be prefix-free. We define a bijective
function DF : V ′ → [0..d] and a sequence v0 = λ, v1, . . . , vd where DF(λ) =
0 and for all x ∈ V ′ \ λ we compute as follows.

1. Initialize ctr = 1
2. for i = 1 to q
3. for j = 1 to `i − 1

if DF(mi[..j]) is not defined then
DF(mi[..j]) = ctr, vctr = mi[..j] and ctr ← ctr + 1.

Note that vh = DF−1(h) for all h ≤ d. For all h > d, vh is undefined.
We note that the definition of vh depends on the choices of mq. We write
u <DF v (or u ≤DF v) if DF(u) < DF(v) (or DF(u) ≤ DF(v) respectively).
Note that for all x ≺ y, DF(x) < DF(y).

3.2 Adaptive Reduction of Multiuser Cascade

Root Assignment Function. Let chop(mi) := mi[..`i − 1]. For every
h ∈ [0..σ′], let cuth(mi) = mi if DF(chop(mi)) < h, otherwise it is defined
as the shortest prefix x of mi such that DF(x) ≥ h. Note that DF(x),
for all x � mi, depend only on mi and hence cuth(mi) can be computed
adaptively. We call cuth root assignment function. By definition of cuth,
for all mq ∈M, i ∈ [q], cuth(mi) ≺ mi. Let Ch := {cuth(mi) : i ∈ [q]}.



1. We observe that Ch is prefix-free. If not, then there would exist i 6= j
such that cuth(mi) ≺ cuth(mj). Hence, cuth(mj) would be a prefix
of mj with DF a value of at least h. This contradicts the fact that
cuth(mj) is the shortest such prefix.

2. Note that cut0(mi) = λ, cut1(mi) = mi[0]. Note that for all x ∈
Ch\mq, DF(x) ≥ h. So, cuth(mi) = mi for all i ∈ [q], h ≥ d. Moreover,
for all h ≤ |V ′|, vh ∈ Ch.

Lemma 3. For all h < d, Ch+1 = (Ch \ vh) ∪ ch(vh).

Proof. Clearly vh 6∈ Ch+1 as its DF value is less than h+ 1. Let j = ‖vh‖.
For every i with vh ≺ mi (equivalently, cuth(mi) = vh), by definition,
cuth+1(mi) = mi[0..j] ∈ ch(vh). This proves that ch(vh) ⊆ Ch+1. For all i
with cuth(mi) 6= vh, we have cuth+1(mi) = cuth(mi). This completes the
proof. ut

Let K be a finite set. Given a function K : Xλ → K, called key
assignment function, and a root assignment function cuth, we define an
oracle O(K, cuth) as follows. On ith query mi, for i ≥ 1:

1. ui = cuth(mi)
2. Ki = K(ui)
3. return zi = f∗(Ki,mi \ ui)

In this paper we mostly consider a random function as the key as-
signment function. In other words, K = RF := RFXλ→K. We write Oh to
denote O(RF, cuth). Let M :=M(θ′).

Lemma 4. (1) O1 ≡Mpf
f∗⊗ with I as user index space and B+ as input

space. (2) Oσ′ ≡Mpf
RF.

Proof. Note that cut1(m
i) = mi[0] for all i. So, O1,f∗(mi) = f∗(RF(mi[0]),mi[1..]).

This proves (1). To prove (2), we note that cutd(mi) = mi for all i. So,
Od(mi) = f∗(RF(mi[0..`i − 1]), λ) = RF(mi). ut
Reduction from f∗⊗ to f . We now define the σ′-stepMpf → B≤q

′
max

reduction SimO from f∗⊗ to f . It keeps its own random function, denoted
as RFSim. For every h ∈ [σ′], Sim(h) runs as follows, where j = ‖vh‖
whenever vh is defined: On ith query mi, for i ≥ 1:

1. ui = cuth(mi)
2. if vh is defined and ui = vh then return f∗(O(mi[j]),mi[j + 1..])
3. else return zi = f∗(RFSim(ui),mi \ ui)



Lemma 5. For all h < σ′, (1) SimfK (h) ∼=Mpf
Oh and (2) SimΓ(h) ∼=Mpf

Oh+1.

Proof. It is obvious that Sim makes at most q′max queries to its oracle
and hence it is an Mpf → M(q′max) reduction algorithm. We denote
ui = cuth(mi) for all i.

O = fK : For all query mi with cuth(mi) = vh, we define K(vh) = K and it
returns

zi = f∗(f(K,mi[j]),mi[j + 1..]) = f∗(K,mi \ ui)
= f∗(K(vh),mi \ ui).

Similarly when ui := cuth(mi) 6= vh, we define K(ui) = RFSim(ui) and
it returns zi = f∗(RFSim(ui),mi \ ui) = f∗(K(vh),mi \ ui). Note that
K behaves exactly like a random function (the key K is uniform and
independent to the random function RFSim). Combining both cases,
we have SimfK (h) ∼=Mpf

Oh.

O = Γ: For all mi with ui := cuth(mi) = vh, we have zi = f∗(Γ(mi[j]),mi[j+
1..]). Similarly when ui := cuth(mi) 6= vh: the final output zi =
f∗(RFSim(ui),mi \ ui). So we define K on Ch+1 as follows: For all
(vh, a) ∈ ch(vh), K(x) = Γ(a) and for all other x ∈ Ch+1, K(x) =
RFSim(x). Once again, K behaves like a random function defined over
Ch+1 (by Lemma 2) and so SimΓ(h) ∼=Mpf

O(K, cuth+1) ∼=Mpf
Oh+1.

ut

Example 1. In this example, we consider b = 1, q = 6, m1 = 000,m2 =
0010,m3 = 10,m4 = 1100,m5 = 1101,m6 = 111. The DF function over
all intermediate nodes is illustrated in Fig.2. For example, DF(1) = 4.
The figure (1) (and similarly (2)) describes how Sim(4)O (respectively
Sim(5)O) works. It uses oracle O for all queries where v4 = 1 (or v5 = 11
respectively) is a prefix. The figures (3) and (4) represent the oracles
O4 and O5. It is easy to see from the figure that Sim(4)RF(·) ≡ O5 ≡
Sim(5)f(K,·).

The following result follows from the hybrid reduction lemma.

Theorem 1. Every (θ′, T )-distinguisher D can be reduced to a (q′max, T
′)-

distinguisher D′ := D . Sim such that

Advpf prf
f∗⊗ (D) ≤ σ′ ·Advprf

f (D′). (11)

Hence, Advmu pf prf
f∗⊗ (θ′, T ) ≤ σ′ ·Advprf

f (q′max, T
′). Moreover, the reduc-

tion is non-adaptive whenever D is non-adaptive.
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Fig. 2: Fig (1) is Sim(4), Fig (2) is Sim(5), Fig( 3) is O4 and Fig (4) is O5.

3.3 Improved Bound for Non-Adaptive Distinguisher

In the last subsection, we have shown a multiplicative gap of σ′ for the
cascade, which is definitely an improvement over the previously known
bound of `′q′. Now we show that we can improve the query complexity in
case of the non-adaptive bound. In Theorem 1, we reduce to a qmax-query
algorithm. However, it is easy to see that the number of queries can be
much less (depending on the choice of h and mq). In fact, we show that
given mq, except about q choices, all other h-values reduce to a single-
query algorithm. To conclude this, we need the following simple result on
a rooted tree.

Lemma 6. Let V (T ) and L(T ) denote the set of nodes and the set of leaf
nodes of a rooted tree T respectively and V ′ = V \L. Then,

∑
v∈V ′(|ch(v)|−

1) = |L(T )| − 1. Hence, we have

(1) |{v : |ch(v)| > 1}| ≤ |L(T )| − 1, (2) |{v : |ch(v)| > i}| < |L(T )|/i.

Proof. The two equations (1) and (2) directly follow from the first part.
We prove the first part. Note that for every rooted tree, the sum of number
of all children is |V (T )| − 1 (all nodes except the root node are children).
As leaf nodes do not have any children it is equivalent to summing over



all vertices from V ′. So∑
v∈V ′

(|ch(v)| − 1) =
∑
v∈V
|ch(v)| − |V ′|

= |V | − 1− |V ′| = |L| − 1. ut

We now a define reduction for a non-adaptive algorithm that uses the
simulator Sim(h) defined as before for the adaptive distinguisher in the
previous subsection. For all h ≤ σ′, let q(h,mq) denote the number of
queries Sim(h) makes to its oracle whenever mq denotes all non-adaptive
queries. It is easy to see that q(h, xq) = |ch(vh)|, whenever vh is defined.
We have seen that for all h,mq, q(h,mq) ≤ qmax. Let

N[i..j](m
q) := {h ∈ [σ′] : i ≤ q(h,mq) ≤ j}

and N[i..j] denote the maximum size of the set N[i..j], varying over all mq ∈
Mpf . Note that |N[q′]| = σ′ for all random coins as q′ is the maximum
number of queries made by Sim. Now, we split the interval by setting
q0 = −1 ≤ q1 < · · · < qc = qmax. So, [0..qmax] is partitioned into intervals
(q0, q1], . . . , (qc−1, qc] where (a, b] represents the set [a+ 1..b]. The values
of qi will be determined later. We denote Ni := N(qi−1,qi]. Let ⊥i be a set
of size i so that for every h ∈ ⊥i, Sim(h) is not defined. We now define
Simi as

Sim(h←$N(qi−1,qi] ∪ ⊥δi),
where δi = Ni −Ni and |N(qi−1,qi]| = Ni. Now for any distinguisher D, let
Di = D . Simi and Ch = D . Sim(h). By definition, Di makes at most qi
queries and

∆∗Di(f ; Γ) =
1

Ni
·

∑
h∈N(qi−1,qi]

(Pr(Cfh = 1)− Pr(CΓ
h = 1)).

So,

∆∗D(f∗⊗ ; RF) = Pr(DSim(1) . f = 1)− Pr(DSim(d) . Γ = 1)

=

σ′∑
i=1

(
Pr(DSim(i) . f = 1)− Pr(DSim(i) . Γ = 1)

)
=

c∑
i=1

∑
h∈N (qi−1..qi]

∆∗Ch(f ; Γ)

=

c∑
i=1

Ni ·∆∗Di(f ; Γ).



So, we have proved following general reduction for a non-adaptive distin-
guisher:

Theorem 2. Following the notations as described above, let D be a q′-
query (Mpf(θ

′), t) non-adaptive distinguisher. Then,

∆D(f∗⊗ ; G′) ≤
c∑
i=1

N[qi−1+1..qi] ·∆Di(f ; Γ).

Now we consider two partitions of [0..qmax]. For each such choice, we
have the following immediate corollary: (1) N[2..q] = q′ − 1 and N1 ≤ σ′.
Corollary 1.

Advmu pf nprf
f∗⊗ (u′, q′, qmax, `, σ

′, σmax, T ) ≤ σ′ ·Advnprf
f (1, T ′) + q′ ·Advnprf

f (q′, T ′).

(12)

(2) We can also fine tune the above bound by splitting the interval [2..q′]
into smaller intervals like [1, 2], [3, 4], [5..8], . . . , [2p−1+1..q′], where 2p−1 <
q′ ≤ 2p. So, p < 1 + log2 q

′. Now by Lemma 6, we have Ni ≤ q′/2i−1. So,
we can apply the result once again with this choice of intervals to obtain
the following corollary.

Corollary 2. For any (q′, `′, σ′, t)-non-adaptive distinguisher D, we have
(2i−1 + 1)-query non-adaptive distinguisher Di for 1 ≤ i ≤ p−1 such that

Advmu pf nprf
f∗⊗ (D) ≤ σ′ ·Advnprf

f (D1) +

dlog2 q′e∑
i=1

q′

2i−1
·Advnprf

f (Di). (13)

Suppose f is a keyed function with a higher non-adaptive PRF ad-
vantage of Advnprf

f (D,T ) ≤ DT/2c. We still prove a similar advantage
(up to a logarithmic factor) against non-adaptive distinguisher:

Advmu pf nprf
f∗⊗ (θ′, T ) ≤ (σ′T + σ′2) · log2 qmax

2c
.

Applications to HMAC and NMAC. The generic reduction from
NMAC to cascade (see Eq. 4) and HMAC to NMAC (see Eq. 5) can be
easily extended for the multiuser setup in the following way:

Advmu prf

NMACf
(θ′, T ) ≤ Advmu pf nprf

f∗ (θ′, T ′) + Advprf
f (q, T ′) +

q′2

2c
, (14)

Advmu prf

HMACf
(θ′, T ) ≤ Advmu prf

NMACf
(θ′, T ) + Advprbg

KDF(T ′). (15)

Hence our results for non-adaptive PRF security of cascade can be directly
applied to the multiuser security of HMAC and NMAC.



4 Single Keyed NMAC and Constant-free HMAC

Now we show that the single keyed 1k NMACK := NMACK,K has almost
the same security as NMACK1,K2 . For any keyed function g, we write

NMACg∗(m) := g
(
f∗(g(m[1]),m[2..])

)
.

Note that NMACfK∗ is the same as the single-keyed NMAC or NMAC1k. We
write NMAC′ = NMACΓ

∗. For any multiuser distinguisher D ∈ Dpf(θ
′, T ),

∆∗D(1k NMAC⊗ ; RF) = ∆∗D(NMAC′⊗ ; RF) +∆∗D(1k NMAC⊗ ; NMAC′⊗)

= ∆∗D(NMAC′⊗ ; RF) +∆∗D(NMACfK ,⊗∗ ; NMACΓ,⊗
∗ )

= ∆∗D(NMAC′⊗ ; RF) +∆∗D0
(f⊗ ; RF),

where D0 = D . NMACO,⊗∗ . Note that D0 is a u′-user, 2qmax-query
distinguisher. So we have a single user 2qmax-query distinguisher D1 such
that ∆∗D0

(f⊗ ; RF) ≤ u′ · ∆∗D1
(f ; RF). So we focus on bounding the

first term of the last expression. The main intuition for the term is the
following: For any user-index γ and a message m, NMAC′⊗(γ,m) behaves
like RF′(f∗(RF(γ,m[1]),m[2..])) provided the lists mi[1] are different from
f∗(RF(γ,mi[1]),mi[2..]). Given that no such collision occurred between
these two lists and no collision occurred in the f∗(RF(γ,mi[1]),mi[2..])
values, NMAC′⊗ behaves perfectly random. Now, f∗(RF(γ,mi[1]),mi[2..])
is equivalent to the multiuser cascade with user index (γ,mi[1]). However,
our result cannot be applied as it requires a prefix-free distinguisher,
which need not be the case. To get rid of the prefix-free queries, we append
one block to every user so that queries become prefix-free. This can be
done as the outer random function hides the internal value, which helps in
reducing to a non-adaptive adversary for the internal cascade function. So,
the collision event can be redefined after adjoining a block and our non-
adaptive prefix-free PRF result for cascade can now be applied to bound
the revised event. We now give a formal proof. We define a distinguisher
D′O that works as follows:

– Run D. On ith query (γi,m
′
i) it returns a random c-bit string z′i. Let

m′1, . . . ,m
′
q be all queries. Find x ∈ B such that mq ∈ P (prefix-free)

where mi = (mi[0] := γi,m
′
i, x) for all i ∈ [q].

– Query O⊗((γ,mi[1]), mi[2..]) (with (γi,mi[1]) as a user-index) and
let zi be the response, for i ∈ [q].

– Return 1 if either of the following holds (which we call a bad event):

1. if zi = zj for some i 6= j,



2. zi = f(mj [1], x) for some i, j.

– Else return 0.

Lemma 7. ∆D(NMAC′⊗ ; RF) ≤ Pr(D′f
∗⊗

= 1), where D′ is defined as
above.

Proof. Let bad(mq[1], zq) = 1 if either zi = zj for some i 6= j, or zi =
f(mj [1], x) for some i, j. Here, mq[1] represents (m1[1], . . . ,mq[1]). Thus,
D′ returns 1 if and only if bad is true. Let yi = f∗⊗(RF(γi,mi[1]),mi[2..`i]).
So, zi = f(yi, x). We now define another bad event bad′ which holds if
either yi = yj for some i 6= j or yi = mj [1] for some i, j. Clearly, whenever

bad′ holds, bad holds and so Pr(bad′) ≤ Pr(D′f
∗⊗

= 1). Now, if bad′ does
not hold, then all outputs NMACΓ

∗(mi) are random (as the input of the
final Γ are fresh for all queries). So, we claim that ∆D(NMAC′ ; RF) ≤
Pr(bad′). So the result follows. ut

Clearly Pr(D′RF = 1) ≤ 1.5q2/2c as zi’s are uniform and indepen-
dent. So, Pr(D′f

∗⊗
= 1) ≤ ∆D′(f

∗⊗,RF) + 1.5q2/2c. Moreover, D′ is non-
adaptive and can make at most q′ user-index queries (note that the first
block of message is now a part of the user-index). This completes the
proof of the PRF security of the single-keyed NMAC.

Theorem 3.

Advmu prf

1k NMACf
(θ′) ≤ Advmu pf nprf

f∗ (q′, q′, qmax, `+ 1, σ′, σmax, T
′)+

+ u′Advprf
f (2qmax, T

′) + 2q′2/2c.

The previous result can be plugged into the above expression to get
the security of the constant-free variant of HMAC, denoted as HMAC′,
where

HMAC′(K,m) := 1k NMAC(KDF(K),m)

and KDF(K) = f(IV,K‖0∗). If f(IV, ·, 0∗) is (almost) regular then KDF(K)
is uniformly distributed and hence the security of the variant of HMAC’
is reduced to 1k NMAC. So the bound for the single-keyed NMAC can be
directly applied to the constant-free variant of HMAC.

5 Security Analysis of Enveloped MAC

We can similarly prove an improved analysis for Enveloped MAC (we get
a better tightness reduction as well as eliminate the related key advantage
in the existing analysis). For any keyed function g, we write

EvMACg∗(m) := g
(
f∗(g(IV ),m[1..])

)
.



Note that EvMAC
f↓K
∗ is the same as EvMAC. We write EvMAC′ = EvMACΓ

∗.
By using a reduction similar to 1k NMAC, we have

∆∗D(EvMAC⊗ ; RF) = ∆∗D(EvMAC′⊗ ; RF) +∆∗D0
(f↓⊗ ; Γ),

where DO
⊗

0 = D . EvMACO
⊗
∗ . So we focus on bounding the multiuser PRF

advantage of Γ
(
f∗(Γ(IV ),m[1..])

)
. Now we see that if we fix mi[1] = IV

in the proof of NMAC we actually reduce to EvMAC′. In other words, we
need to consider the following bad event (for some x to be adjoined at the
end as before to make prefix-free queries): Let bad(mq[1], zq) = 1 if either
zi = zj for some i 6= j, or f(zi, x) = f(IV, x) for some i, j. Following a
similar argument as 1k NMAC, we have our result.

Theorem 4.

Advmu prf
EvMAC(θ′) ≤ Advmu pf nprf

f∗ (q′, q′, qmax, `, σ
′, σmax, T

′)+

+ u′ ·Advprf
f (qmax + 1, T ′) +

q′2

2c
.

6 Final Remarks

6.1 Related Results

Verifying the integrity and authenticity of data is a prime necessity in
computer systems and networks. Two parties communicating over an in-
secure channel use a message authentication code or MAC (or a stronger
notion called a pseudorandom function or PRF) with which, the receiver
validates data as being sent by the sender. MACs and PRFs are com-
monly constructed out of block ciphers (e.g. CBC-MAC [6,5], PMAC [8],
the NIST-recommended CMAC etc. [16,11]). Popular hash functions were
earlier faster than block ciphers in software. Moreover, since hash func-
tions are not usually subject to the export restriction rules of the USA
and other countries, there has been a surge of interest in constructing
MACs from cryptographic hash functions. However, hash functions were
not originally designed for MACs or PRFs and do not accommodate a
secret key in a natural way. One of the earliest ideas for converting a
hash function (mainly the Merkle-Damg̊ard hash [23,10]) into a MAC
was simply to prepend the message with the secret key. However, it was
soon found that these hash functions suffer from a serious security flaw if
the key is prepended in this manner – the length extension attack (see Ex-
ample 9.64 of [22]). In CRYPTO 1996, authors of [4] proposed NMAC and
HMAC and proved them secure if the underlying compression function f
satisfies certain security requirements.



The Initial Results on EvMAC. Tsudik in [27] proposed envelope
MAC which originally requires two independent c-bit keys. Although the
author of [27] informally claimed the 2c-bit security of the MAC, Preneel
and van Oorschot [25] showed that the keys can be recovered in 2c+1

time if one knows approximately 2c/2 message-tag pairs. The subsequent
single-keyed variants due to Kaliski and Robshaw [17] and Piermont and
Simpson [24] also had security flaws. The attacks were possible only be-
cause of poor formatting of the key block processed at the end.

Multiuser analysis of AMAC. Recently, in Eurocrypt-16, AMAC
(or Augmented 2-tier cascade MAC) [3] has been analyzed. The authors
proved multiuser security to a leakage PRF security of f where a part of
the key is leaked. The stronger security requirement is needed as AMAC
does not use nested construction and applies to all messages where one
message can be prefix to others. Once again authors adapted two stage
reduction like cascade construction. Unfortunately our improved single
stage reduction of adaptive distinguisher does not work for AMAC. The
main reason of not working argument is the possibility of prefix queries.
We do not see any simple way out to handle the prefix queries. How-
ever, for non-adaptive adversary a similar (in fact the improved trade-off
between tightness gap and query complexity) works.

6.2 Some Remarks on Our Results

Single Stage Reduction. To quote the authors of [4]:

“A natural approach to such a proof is to reduce the security of f∗ to
that of f . However, we could not find a straightforward reduction.”

Their proof (and all subsequent analyses of single-keyed cascade-type con-
structions) is divided into two parts. In the first step, the prefix-free PRF
security of f∗ is reduced to a multiuser PRF security of f which, in the
second step, is then reduced to the single-user PRF (or simply the PRF
security) of f . In this paper, all proofs are based on direct reductions.

Best Known Bound in Terms of Data and Time Complexity:
Let ε(D,T ) := Advprf

f (D,T ). The dominating terms for the best known
bound for prefix-free PRF advantage against cascade, NMAC and HMAC
before this paper was `q · ε(q, T + σ). Let D denote the user limit of an
application before it re-keys. Some applications can accept a wide range
of message sizes (from a single block to very large messages), and hence
we must assume ` = q = σ = O(D) (similar guidelines are provided



by NIST for lightweight cipher standardization [28]). So the best known
bound in this set-up becomes D2 · ε(D,T + O(D)). We already know
that ε(D,T ) ≥ max{T/2c, 1/2c/2}. Both lower bounds weaken the PRF
security guarantee of the cascade (and hence of HMAC and NMAC). Our
result resolves these issues.

6.3 Open Problems

The following important open problems can be studies in future.

1. Similar to the reduction for non-adaptive distinguishers, can we have
an improved trade-off for adaptive reductions? This problem seems to
be challenging as the simulator needs to guess a bound on the number
of children of a node adaptively.

2. Having an improved reduction for adaptive PRF distinguisher of AMAC
is not yet solved. A different approach to handle prefix queries is
needed.

3. All known bounds for cascade construction can be at the best DT/2c.
However, there is no such generic matching attack (matching attacks
are applicable for some pathological examples). Understanding the
right PRF security bound when f behaves like a random function is
not yet known.
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