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Abstract. The prefix-free PRF (pseudorandom function) security of a
cascade function based on a compression function f against a q-query
distinguisher is reduced to a q-query PRF security of f with a tightness
gap `q where ` represents the length of the longest query among all q
queries. In this paper, we have shown a reduction which is also applica-
ble to multiuser setup and improves the tightness gap for both adaptive
and non-adaptive distinguishers. As an immediate application of our re-
sult, we have shown multiuser security of NMAC, HMAC and many other
MACs for the first time. Moreover, the tightness gap is improved in com-
parison with known single-user analysis. We also have shown a similar
tightness gap for single-keyed NMAC. As a result, the constants ipad and
opad used in HMAC and existing PRB (pseudorandom bit) assumption
on the underlying compression function become redundant.
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1 Introduction

Brief History of Hash-based MAC. Verifying the integrity and authenticity
of data is a prime necessity in computer systems and networks. Two parties
communicating over an insecure channel use a message authentication code or
MAC (or a stronger notion called a pseudorandom function or PRF) with which,
the receiver validates data as being sent by the sender. MACs and PRFs are
commonly constructed out of block ciphers (e.g. CBC-MAC [6,5], PMAC [9],
the NIST-recommended CMAC etc. [18,12]). Popular hash functions were earlier
faster than block ciphers in software. Moreover, since hash functions are not
usually subject to the export restriction rules of the USA and other countries,
there had been a surge of interest in constructing MACs from cryptographic
hash functions. However, hash functions were not originally designed for MACs
or PRFs and do not accommodate a secret key naturally.

One of the earliest ideas for converting a hash function (mainly the Merkle-
Damg̊ard hash [27,11]) into a MAC was simply to prepend the message with
the secret key. However, it was soon found that those hash functions suffer from
the length extension attack (see Example 9.64 of [26]) However, it can be shown
to be secure for prefix-free message spaces (no two messages are prefix to each
other) as shown in [4] for the cascade construction.

Envelope MAC, HMAC and NMAC. Tsudik in [32] proposed the enve-
lope MAC where was shown to be insecure (even for other variants [19,28]) by



Preneel and van Oorschot [29]. The attacks were possible only because of poor
formatting of the key block processed at the end. Later Yasuda [35] and Koblitz
and Menezes [22] proved the PRF security of Envelope MAC when appropriate
formatting of message is applied. In CRYPTO 1996, authors of [3] proposed
NMAC and HMAC and proved them secure under certain assumptions on the
underlying compression function.

1.1 Definitions of Cascade, HMAC, NMAC and Envelope MAC

Notations. In this paper, we fix two positive integers b and c and we write
{0, 1}b and {0, 1}c as B (called set of blocks) and C respectively. We also fix a
function Let λ denote the empty string and B∗ (or B+) denote the set of all
block tuples (or block tuples with at least one block respectively). For m :=
(m[1], . . . ,m[r]) ∈ B+ and 1 ≤ i ≤ j ≤ r, we write (i) the number of blocks
‖m‖ = r, (ii) sub-tuple m[i..j] := (m[i], . . . ,m[j]), (iii) suffix m[i..] = m[i..r] and
(iv) prefix m[..j] = m[1..j]. We follow the same conventions when the index of m
starts with 0 (i.e. m = (m[0],m[1], . . . ,m[r])). For a function f : C× B→ C, we
define the cascade function f∗h(m[..i]) := f∗(h,m[..i]) = f∗

(
f(h,m[..i−1]),m[i]

)
and f∗(h, λ) = h for all h ∈ C,m[..i] ∈ B+. One can further extend the domain
of f∗ to the set of all arbitrary bit strings by applying an appropriate injective
padding rule as a preprocessor of the above cascade function. As there is no loss
in security we, throughout the paper, assume message space as B∗. .
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Fig. 1: NMACk1,k2(m): The top layer represents the cascade output and the bottom
layer represents the finalization process applied to the output of the cascade.

NMAC and HMAC. For keys k, k1, k2 ∈ {0, 1}c, b-bit constants ipad, opad
specified in [3], a c-bit initial value IV and message m ∈ B∗

NMACk1,k2(m) = fk2(f∗k1(m)‖0b−c),
HMACk(m) = NMACKDF(k)(m),

where KDF(k) =
(
k1 := f(IV, k⊕ipad), k2 := f(IV, k⊕opad)

)
and k⊕α = (k‖0b−c)⊕

α. Here, we must assume that c ≤ b, which used to hold for the earlier compres-
sion functions. 1

1 Later in RFC 2014 [23] and the special publication FIPS PUB 198-1 [13] by NIST,
the MD hash was replaced by any recommended hash function H while defining



Envelope MAC. Finally, we define another old cascade-based MAC construc-
tion, called the Envelope MAC or EvMAC. Let pad map a k-bit string to B.
For example, if k ≤ b, we consider pad(K) = K‖0b−k. We define a dual keyed
function (interchanging the position of the input and key)

f↓K(x) := f↓(K,x) := f(x, pad(K)).

For any m ∈ B+, K ∈ {0, 1}k, we define EvMAC(K,m) = f∗(IV, (K ′,m,K ′))
where K ′ = pad(K) and IV ∈ {0, 1}c is a fixed constant specified by the MD
hash function based on f . Using the dual function notation, we can equivalently
write

EvMAC(K,m) = f↓K
(
f∗K′(m)

)
where K ′ = f↓K(IV).
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Fig. 2: EvMACk(m): Envelope MAC or Sandwiched MAC.

1.2 Known Results of Hash-based MAC

For a keyed function F , we denote the maximum PRF advantage of F as
Advprf

F (q, `, σ, T ) where the maximum is taken over all q-query distinguishers D
running in time T such that the total number of blocks and maximum size of the
query is at most σ and ` respectively. We use the superscripts (i) nprf, (ii) pf prf
and (iii) pf nprf when we restrict to distinguishers that are (i) non-adaptive (all
queries are made before observing any responses), (ii) prefix-free (query tuples
are prefix-free) and (iii) prefix-free non-adaptive, respectively. The multiuser ad-

vantage for at most u users is similarly denoted as Advmu prf
F (u, q, qmax, `, σ, T )

where qmax denotes the maximum number of queries for all users. So, we use mu
to denote multiuser distinguisher. When F = f (so ` = 1, σ = q) we ignore the
parameters ` and σ. We use the notation θ to denote the tuple (u, q, qmax, `, σ).

PRF Analysis on Cascade. The security of a fixed-length cascade construc-
tion (a special case of a cascade with a prefix-free domain, known as GGM
construction) was first implicitly shown in 1984 [15] (and later published in
1986 [16]). The authors have proved asymptotically that a c-bit to 2c-bit PRBG

HMAC. Similar to the original definition of HMAC, the new definition assumed the
hash size to be less than the block size.



(pseudorandom bit generator) can be extended to a fixed-length PRF. Note
that such a PRBG is equivalent to a PRF with a one-bit domain (i.e., b = 1).
In 1996 [4], the GGM results were extended for a general value of b and with an
arbitrary prefix-free domain and showed the following:

Advpf prf
f∗ (q, `, σ, T ) ≤ `q ·Advprf

f (q, T ′)

where T ′ := T + O(σ) (throughout the paper we use this notation). The GGM
construction is exactly the fixed-length domain cascade construction after view-
ing the PRBG as a one-bit PRF. In 2014 [14], Gazi et al. proved the above
reduction for non-adaptive PRF security.

PRF Analysis on NMAC and HMAC. Bellare [1] proved that

Advprf

NMACf
(q, `, σ, T ) ≤ `q2 ·Advprf

f (2, O(`)) + Advprf
f (q, T ′).

Bellare assumed that a good compression function f must satisfy Advprf
f (2, `)

≈ `/2c (presuming that key-guessing is the best strategy for distinguishing f
from a random function) and hence the security of NMAC is dominated by the
bound `2q2/2c. Koblitz and Menezes (KM) observed that the reduction used in
the preceding proof is non-constructive or existential (see [30,21] for details about
different types of reductions). KM and later Bernstein and Lange [8] showed
that for almost all functions f ′ : {0, 1}c × B → {0, 1}, there exists a 1-query
distinguisher A running in O(1) time such that

Advprf
f ′ (A) ≥ 1

2c/2
. (1)

This means that Bellare’s result cannot guarantee security better than `q2/2c/2.
This violates the tightness claim of Bellare (see [20] for a detailed discussion).
Later in [2], the above tightness claim was withdrawn and revised. In 2013,
Koblitz-Menezes [20] also provided a constructive reduction and proved the fol-
lowing result (ignoring a dominated term):

Advprf

NMACf
(q, `, σ, T ) ≤ `q ·Advprf

f (q, T ′). (2)

One year later in 2014 [14], Gazi et al. proved the following security of NMAC
through a constructive reduction:

Advprf

NMACf
(q, `, σ, T ) ≤ `q ·Advnprf

f (q, T ′) + Advprf
f (q, T ′) + q2/2c. (3)

From the definition of HMAC, one can easily see that PRF security of HMAC
can be reduced to PRF security of HMAC and PRBG security of KDF.

1.3 Our Contributions

1. multiuser PRF Security of Cascade. In this paper, we provide two
reductions for the multiuser PRF security of the cascade construction:

Advmu pf prf
f∗ (θ, T ) ≤ σ ·Advprf

f (qmax, T
′) (4)

Advmu pf nprf
f∗ (θ, T ) ≤ σ ·Advnprf

f (1, T ′) + u ·Advnprf
f (qmax, T

′). (5)



The first reduction improves the tightness gap from `q to σ. The second reduction
further improves the query complexity by bringing down it to 1.

2. Non-adaptive PRF security under weak f . Due to the key guessing
attack, the above bounds cannot guarantee a security better than σT/2c for
any function f . Suppose f is a keyed function with a higher non-adaptive PRF
advantage, such as Advnprf

f (D,T ) ≈ DT/2c + 2−c/2. We still prove a similar
advantage (up to a logarithmic factor) against a non-adaptive distinguisher:

Advmu pf nprf
f? (θ, T ) ≤ (σ′T + σ′2) · log2 qmax

2c

Applications to HMAC NMAC and others. It can be shown that the
generic reduction from NMAC to cascade (see Eq. 3) and HMAC to NMAC can
be extended for a multiuser set-up. Hence, our results for non-adaptive PRF
security of cascade can be directly applied for multiuser security of HMAC and
NMAC. Following similar approach, simpler and improved analysis for boosted
MD (Asiacrypt 2007 [34]) and MDP (JoC 2007 [17]) are given.

3. Security of Single Keyed NMAC, constant-free HMAC and EvMAC.
We prove the security of the single-keyed NMAC construction 1k NMACK =
NMACK,K . This helps not only to eliminate the two constants used in HMACbut
also to weaken the PRBG assumption on f . To prove this, we first establish a
reduction for single-keyed composition. This single-keyed composition also helps
us to prove the multiuser PRF security of Envelope MAC. Our result on Envelope
MAC does not require any related-key type assumption appearing in [22].2 In
particular, we show the following three results:

Advmu prf

1k NMACf
(θ′) ≤ Advmu pf nprf

f∗ (q′, q′, qmax, `+ 1, σ′, σmax, T
′)+

+ u′ ·Advprf
f (2qmax, T

′) +
2q′2

2c
,

Advmu prf
EvMAC(θ′) ≤ Advmu pf nprf

f∗ (q′, q′, qmax, `, σ
′, σmax, T

′)+

+ u′ ·Advprf
f (qmax + 1, T ′) +

q′2

2c
and

Advmu prf
HMAC′ (θ

′) ≤ Advmu prf
1k NMAC(θ′),

where HMAC′ is the same as HMAC when the two constants opad and ipad are
replaced by the zero-bit string. Moreover, the security of the modified HMAC
does not require the PRBG property (it only needs the regular property as KDF
does not expand the output size in the modified definition, assuming key size to
be as large as the chain size c).

2 Yasuda proved PRF security of Envelope MAC (also called “Sandwich MAC,”
see [35]), along the lines of Bellare’s NMAC security proof in [2]. Thus, the issues
for NMAC are also present in his analysis. Koblitz and Menezes [22] proved the
constructive reduction, but relies on some related-key security.



We note that all of our non-adaptive multiuser PRF securities for the cascade
construction are applicable to these variants. We finally note that all reductions
in our analysis are constructive and so the bounds apply to a uniform setting
when we naturally extend the result in an asymptotic set-up.

2 Preliminaries

Notations. We follow the notation as described in Sect. 1.1. We write xq to
denote a q tuple (x1, . . . , xq). For the sake of notational simplicity we write a
tuple of q pairs ((x1, y1), . . . , (xq, yq)) as (xq, yq) (and similarly for more than two
tuples). When x is chosen uniformly from S and independent with all random
variables defined so far, we simply denote it as x←$S. We write B+

mu = I × B+

and B∗mu = I × B∗ for some set I (representing user index space).

Prefix-Free. For a ≤ b, we call m[..a] a prefix of m[..b] and denote it as
m[..a] � m[..b]. If m[..a] 6= m[..b] then we also denote it as m[..a] ≺ m[..b]. In
this case, we write m[..b] \m[..a] = m[a+ 1..b]. A tuple of messages mq is called
prefix-free if for all i 6= j, mi 6� mj .

Joint Query Space Let Q(u, q, qmax, `, σ), called join query space, represent
the set of all q tuples mq of messages of at most ` blocks with altogether at most
σ blocks such that

– the number of distinct elements present in m1[0], . . . ,mq[0] is at most u and
– for all γ ∈ I, the set Qγ := {i : mi[0] = γ} has at most qmax elements,

When ` = 1 or u = 1 (single user) we simply write the set as Qmu(u, q, qmax) or
Qsu(q, `, σ) respectively. When u = 1, we simply skip the user index space and
consider mq with mi ∈ B∗.

For any joint query space Q, we write Qpf = Q ∩ P where P is the set of
tuples of prefix-free messages.

2.1 Prefix-Tree

Let us fix a parameter tuple θ = (u, q, qmax, `, σ) and mq ∈ Qpf(θ). We now
associate the tuple mq with a tree Tmq , called prefix tree, over the vertex set
V ∪ {λ} where

V = Prefix(mq) = {x ∈ B∗mu : x � mi, i ∈ [q]}.

It consists of all directed edges of the form chop(y)→ y for y ∈ V where chop(y)
represents the tuple after removing the last block from y. It is a rooted tree with
λ as the root (it is the only vertex with in-degree zero). For every v ∈ V ∪ {λ},
we define the set of outwards nodes, or children nodes, as ch(v) = {u : v → u}.
For a set ch(S) = ∪v∈Sch(v). Let L denote the set of leaf nodes (having zero
out-degree) which is same as the set {m1, . . . ,mq} (as mq is a prefix-free). Let
Prefix′(mq) := V \L be the set of all intermediate nodes. We denote d := |V \L|−1
and so d ≤ σ′ := σ − q.



Definition 1 (leave-cut). A subset U ⊆ V is called leave-cut if it is prefix-free
and for every leaf mi in the prefix tree Tmq there exists exactly one node u ∈ U
such that u � mi.

It is easy to see that whenever U is a leave-cut and S ⊆ U \ L then U ′ =
(U \ S) ∪ ch(S) is also a leave-cut as we cut all leaf nodes mi with a member of
S as a prefix by one of its children nodes.

2.2 Distinguisher and Distinguishing Advantage

Oracle and Keyed Function. An (X ,Y)-oracle O is an interactive proba-
bilistic algorithm that takes inputs from the set X and returns elements from
the set Y. A random function RFX→Y is a (X ,Y)-oracle which returns RF(x)
on an input x ∈ X , where RF←$ Func(X ,Y), the set of all functions from X to
Y. We write RF∗→Y to denote a random function from some domain X to Y. A
keyed function F : K×X → Y can be viewed as an (X ,Y)-oracle where the key
K ←$K (key space), and then for every query x it returns FK(x) := F (K,x).
Note that the key is sampled once and is used for every query. We also call it
(X ,Y) keyed function (with a key space K). A random function RFX→Y is an
example of (X ,Y) keyed function.

Definition 2 (multiuser keyed function). Let F : K × X → Y be a keyed
function. An I-folded multiuser F⊗I (or simply F⊗) is an (I × X ,Y) keyed
function which returns

F⊗(γ ; x) := F (RFI→K(γ), x)

on an input (γ, x).

In other words, a multiuser keyed function samples keys independently for
all user index γ from the user index space I (i.e. Kγ ←$K for all γ ∈ I) and
then it behaves as the original keyed function FKγ for any query with the user
input γ.

Oracle Algorithm. A q-query t-time (X ,Y)-oracle algorithm A is an inter-
active algorithm that can interact with any (X ,Y)-oracle O (called a compatible
oracle with A), that makes at most q queries to its oracle, runs for time t, and
finally returns some output z, denoted as AO → z, (if z ∈ {0, 1}, we also call
it a distinguisher). When O is a multiuser oracle, A is called a u-user oracle
algorithm if the number of distinct user indices queried is at most u.

Transcript. The transcript of interaction between A and O is denoted as

τ(AO) := (τquery(AO) := xq
′
, τresp(AO) := yq

′
)

where xi denotes the ith query (which includes the user index in case of multiuser
oracle algorithm) and yi denotes the response of the query, 1 ≤ i ≤ q′.



Definition 3. A distinguisher D is called a (θ, t)-complexity distinguisher (or
prefix-free distinguisher) if D runs for time t and for all compatible oracles O,
the transcript τquery(DO) ∈ Q(θ) (or τquery(DO) ∈ Qpf(θ) respectively).

We sometimes ignore the time parameter t. Sometimes, we adjoin a post-
processing oracle Opp (may be an internal state shared oracle with O) which
returns an additional response S after all queries have been made. In this case,
we write the response transcript as τresp(AO,Opp) := (yq

′
, S).

Non-adaptive Oracle Algorithm. We call A non-adaptive if the number of
queries and all the queries do not depend on responses. We denote a deterministic
non-adaptive oracle as Dxq which makes x1, . . . , xq as all queries.

Definition 4 (distinguishing advantage). Let F and G be (X ,Y)-oracles.
We define the distinguishing advantage of a distinguisher D as ∆D(F ; G) :=∣∣∆∗D(F ; G)

∣∣ where ∆∗D(F ; G) = Pr(DF = 1) − Pr(DG = 1) is called signed
distinguishing advantage.

In the above definition when G is a random function, we call the distin-
guishing advantages the PRF-advantages of D against F . More precisely, the
(multiuser) PRF-advantage of D against F are Advprf

F (D) := ∆D(F ; RFX→Y)

and Advmu prf
F (D) := ∆D(F⊗ ; RF⊗X→Y). We use the superscript nprf or mu nprf

when we consider non-adaptive or multiuser non-adaptive distinguishers respec-
tively. When distinguishers make only prefix-free queries only, we use super-
script pf nprf or pf mu nprf. For any one of the superscripts xxx, we now de-
fine Advxxx

F (θ, t) = maxD Advprf
F (D) where the maximum is taken over (θ, t)-

distinguishers corresponding to xxx security notion.

2.3 Tools for Security Proofs

Convention. Without loss of generality, we can assume that any q-query oracle
makes exactly q queries (since otherwise, some dummy queries can be added
with no loss in distinguishing advantage).

Definition 5. Two (X ,Y)-oracles O and O′ are called equivalent on T ⊆ X q×
Yq, denoted as O ∼=T O′, if for all (xq, yq) ∈ T

Pr(τresp(DOxq ) = yq) = Pr(τresp(DO
′

xq ) = yq)

When T = Q × Yq we simply write O ∼=Q O′ and we call O and O′ are
equivalent on a joint query space Q.

For T ⊆ X q × Yq × S, we say that (O,Opp) ∼=T (O′,O′pp) if for all
(xq, yq, S) ∈ T

Pr(τresp(D
O,Opp

xq ) = (yq, S)) = Pr(τresp(D
O′,O′pp
xq ) = (yq, S))

Observation. When the user index is also considered as a part of the input,
the two random functions RF⊗IX→Y and RFI×X→Y are equivalent and so we use
the notations interchangeably in the paper.



Lemma 1 (identical until bad). (1) Let O ∼=T O′ for a collection of tran-
script T then for any distinguisher D,

∆D(O ; O′) ≤ Pr(τ(DO) 6∈ T ).

(2) Suppose (O,Opp) ∼=T (O′,O′pp) for a collection of transcript T then for

any distinguisher D, ∆D(O;O′) ≤ Pr(τ(DO,Opp) 6∈ T ).

This is a classical result that is widely used in game-playing technique proofs [7,31].
The proof simply follows from the definition of distinguishing advantage and
equivalence of oracles.

For the sake of simplified presentation, we also denote a transcript in a differ-
ent order namely (xq, S, yq). A similar statement of the following lemma can be
found in [24] in the language of a random system. This says that under certain
assumptions probability of realizing a collection of transcripts

Lemma 2 (adaptive to non-adaptive). Suppose O and Opp use independent
random coins. Let T = T ′×Yq for some T ′ ⊆ X q×S. Then, for every adaptive
distinguisher D there is a non-adaptive distinguisher D0 such that

Pr(τ(D
O,Opp

0 ) 6∈ T ) = Pr(τ(D
O,Opp

0 ) 6∈ T ).

Proof. The non-adaptive distinguisher runs D and samples a random coin R for
O. Thus, all queries made by D is simulated by D0 using its random coin. Let xq

be all queries of D and yq be responses of D0 of these queries. Then, D0 returns
all queries to its oracle O and obtain responses (zq, S) where zq is the responses
of O but using another independent random coin and Opp → S. Now

Pr(τ(D
O,Opp

0 ) 6∈ T ) = Pr((xq, S, zq) 6∈ T )

= Pr((xq, S, yq) 6∈ T ) = Pr(τ(DO,Opp) 6∈ T ). ut

3 Formalizing Hybrid Reduction Proof

A reduction algorithm is an essential object in every reduction proof. We now
formalize the notion of reduction algorithm and hybrid reduction algorithm.

Definition 6. A reduction algorithm or simulator Sim is an interactive
algorithm such that

– for any compatible oracle O, SimO behaves as an oracle and
– for any oracle algorithm A (so that SimO is a compatible oracle of A), ASim

behaves as an oracle algorithm.

The joint interaction among all three is denoted as

ASimO .

If for every θ-complexity algorithm A, ASim is an θ′-complexity algorithm, we
write θSim = θ′. Note that the run time for ASim is tSim + tA where tX represents
the time for algorithm X.



Note that a reduction algorithm is neither an oracle nor an oracle algorithm.
However, it can be placed in between an oracle algorithm A and an oracle O.
Moreover, ASim is an oracle algorithm and SimO is an oracle.

A set I is called hybrid-index space of Sim if the random coin C = I × C′
for some C′. So for every h ∈ I, Sim(h) represents a reduction algorithm with
coin space C′ which behaves like Sim conditioned on the hybrid index h. Let
I ⊆ J be a set and ⊥ represents an arbitrary but a fixed deterministic oracle.
Given a reduction algorithm Sim with coin space I×C, we consider the following
reduction algorithm (abusing notation, we also write Sim to denote it) with the
coin space J × C′:

– h←$ J .
– If h 6∈ I then it behaves as ⊥ (irrespective of its oracle).
– else, runs Sim(h).

Substitution Reduction. In many proofs, we simply substitute one oracle
with another (e.g., a PRF by a random function and a pseudorandom permu-
tation or PRP by a random permutation). This substitution reduction can be
described formally as follows.

Definition 7 (substitution reduction). Let F,G, F ′, G′ be four oracles. A
simulator Sim is called an 1-step reduction (or a substitution reduction) from the
pair of oracles (F ′, G′) to the pair (F,G) on a joint query space Q, if SimF ∼=Q F ′
and SimG ∼=Q G′.

We simply denote the above 1-step reduction as F ′
SimF/G−→ G′. In this case for

any Q-query distinguisher D,

∆∗D(F ′;G′) = ∆∗D0
(F ;G), ∆D(F ′;G′) = ∆D0

(F ;G)

where D0 := DSim. The reason we call it substitution reduction as follows. Let
C be a construction which uses a primitive F (or G) as an oracle and let G′ be
any oracle. Then, distinguishing advantage between CF and G′ can be bounded
as

∆D(CF , G′) ≤ ∆D(CF ;CG) +∆D(CG;G′)

≤ ∆D0
(F ;G) +∆D(CG;G′)

where D0 = DSim and Sim is the substitution reduction which simply simulates
the construction CO with the help of its oracle O (which is either F or G). When
G and G′ are random functions, the above relation can be written as

Advprf
CF

(D) ≤ Advprf
F (D0) + Advprf

CRF(D)

Advprf
CF

(θ) ≤ Advprf
F (θ0) + Advprf

CRF(θ)

where θ0 = θSim. So, it would be sufficient to bound the PRF advantage of CRF.
This approach has been used in several security proofs.



3.1 Hybrid Reduction Algorithm

We now extend the notion of substitution reduction or 1-step reduction to a
d-step reduction in the following way.

Definition 8 (d-step reduction). A simulator Sim with a hybrid index space
[d] is called a d-step substitution reduction from a pair of oracles (F ′, G′) to a
pair of oracles (F,G) on a joint query space Q if there are d − 1 intermediate
oracles O1, . . . ,Od−1 such that

O0 := F ′
Sim(1)F/G−→ O1

Sim(2)F/G−→ O2 · · ·
Sim(d−1)F/G−→ Od−1

Sim(d)F/G−→ G′ := Od

In other words, Sim(j) is a substitution reduction from (Oj−1,Oj) to (F,G) on a
joint query space Q. When the simulator Sim and the oracles F,G are understood,
we simply ignore the notation. When G and G′ are random functions, we call
Sim a d-step PRF-reduction from F ′ to F .

The above definition can be easily extended for any arbitrary hybrid index
space I (not necessarily of the form [d]). Note that in the above definition, it is
not required to define the intermediate oracles explicitly. It is sufficient to show
the following two conditions :

– (boundary condition): SimF (1) ∼=Q F ′, SimG(d) ∼=Q G′ and
– (transition equivalence): SimG(j) ∼=Q SimF (j + 1) for all j ∈ [d− 1].

The reduction algorithm Sim is a d-step reduction as we set Oj = SimF (j + 1)
for all 1 ≤ j ≤ d − 1. However, sometimes it is easier to first describe the
intermediate oracles Oj in a stand-alone way and then we show the equivalence
between oracles. Now we state an abstraction of hybrid proof. Some known
applications are given in Appendix A.

Lemma 3 (hybrid reduction). Let Sim be a d-step substitution reduction from
(F ′, G′) to (F,G). Then for any (θ, t)-complexity distinguisher D, we have a
(θSim, t+ tSim)-complexity distinguisher D′ := DSim such that

∆D′(F ; G) =
1

d
·∆D(F ′ ; G′).

So, if Sim is a d-step PRF-reduction from F ′ to F , we have

Advprf
F ′ (θ, t) ≤ d ·Advprf

F (θ′, t+ tSim).

Proof. Let the hybrid index space of Sim be I with |I| = d. Note that Pr(D′O →
1) = 1

d ·
∑
i∈I Pr(DSimO(i) → 1) for any compatible oracle O. Hence,

∆∗D′(F ;G) =
1

d
·
∑
i∈I

Pr(DSimF (i) → 1)− 1

d
·
∑
i∈I

Pr(DSimG(i) → 1)

(1)
=

1

d
· Pr(DF ′ → 1)− 1

d
· Pr(DG′ → 1)

=
1

d
·∆∗D(F ′;G′)



Note that the sum in the first equation is a telescoping sum due to the definition
of d-step reduction of Sim. This justifies equality (1). Now the result follows by
taking absolute value in both sides. ut

4 A Generalized Adaptive Reduction for Cascade

In this section, we provide a general method of reduction proof for the multiuser
cascade against both adaptive and non-adaptive distinguishers. Let Q := Qpf(θ)
be a prefix-closed (i.e., for all mq ∈ Q, and i ∈ [q], mi ∈ Q) joint-query space
of prefix-free tuples. Suppose an adversary makes queries m1,m2, . . . ,mq adap-
tively. On ith query, we represent the state as mi which captures all queries till
the ith query (including the ith query). We write mi = mi[0..`i] ∈ I × B`i . Be-
fore we define our simulator for cascade we define a structure τ which uniquely
associates a simulator Simτ .

Definition 9 (structure). A structure for a joint query space Qpf(θ) is a pair
τ := (R, ρ) of functions (R, ρ) : Q → B∗mu × {orc, sim} satisfying the following
conditions:

– the set {R(mi) : i ∈ [q]} is a leave-cut for Tmq ,
– R(mi) = R(mj)⇒ ρ(mi) = ρ(mj) and
– ρ(mi) = orc⇒ R(mi) 6= mi.

We define a Q-oracle OR which returns responses z1, . . . , zq on queries m1, . . . ,mq

respectively where

zi = f∗RF(R(mi))(mi \R(mi)) ∀i ∈ [q].

The function R puts an independent key at the node R(mi) on ith query mi and
follows the definition of f∗ starting from the key on the node applied to the rest of
the message blocks. We can imagine this as a traversal of the path from the root
till the leaf node mi. Two extreme and trivial examples are Rroot(m

i) = mi[0]
and Rfull(m

i) = mi for all mi. As Rroot(m
i) = mi[0], we actually compute f∗⊗.

Whereas in case of Rfull(m
i) = mi, we assign independent keys at each leaf node

and all these keys are eventually outputs (so, behaves like a random function).
Thus, ORroot

∼= f∗⊗ and ORfull
= RF. Any other R induces an immediate oracle

in between these two extreme examples. The function ρ suggests where to make
oracle query and where it would be simulated by the simulator itself. More
precisely, we define a simulator Simτ below.

Definition 10 (Simulator associated with a structure τ). Let C = {0, 1}c.
For every structure τ = (R, ρ) on a joint query space Q, we associate a simulator
Simτ defined as follows. Given any multiuser (B, C)-oracle O⊗ with user index
space I×B∗, Simτ returns zq on q adaptive query mq (from an oracle algorithm)
where

zi =

{
f∗RF∗→C(mi[..s])

(mi[s+ 1..]) if ρ(mi) = sim,

f∗O⊗(mi[..s] ; mi[s+1])(mi[s+ 2..]) if ρ(mi) = orc,



where R(mi) = mi[..s]. Here, the outputs of RF∗→C(mi[..s]) is simulated by the
simulator itself (as a part of the simulator’s random coin). We write Qτ =
Q(u, q, qmax) if for all mq ∈ Q,

1. Q := {i : ρ(mi) = orc} has at most u elements,

2.
∑
i∈Q |ch(R(mi))| ≤ q and

3. maxi∈Q |ch(R(mi))| ≤ qmax.

Thus, θSimτ = (u, q, qmax).

By definition, whenever ρ(mi) = orc, s < `i and so mi[s + 1] is defined.
Moreover, both RF∗→C(mi[..s])(mi[s+1..]) andO⊗(mi[..s] ; mi[s+1])(mi[s+2..])
are members of C and hence f∗ outputs are defined. For a structure τ = (R < ρ),
we define

next(τ)(mi) =

{
mi[..s] if ρ(mi) = sim

mi[..s+ 1] if ρ(mi) = orc,

where R(mi) = mi[..s]. Whenever ρ(mi) = orc, s < `i and so mi[s+1] is defined.
Let U = {R(mi) : i ∈ [q]} and S = {R(mi) : ρ(mi) = orc}. It is easy to see that
the set {next(τ)(mi) : i ∈ [q]} = U \S ∪ ch(S) and hence it is a leave-cut set for
all mq (see Sect. 2).

Proposition 1 (generalized reduction for multiuser cascade). Let θ be
some complexity parameter. Suppose τi := (Ri, ρi), 0 ≤ i ≤ d, are hybrid struc-
tures over Qpf(θ) such that

1. R0 = Rroot and Rd = Rfull (boundary condition)

2. next(τi−1) = Ri for all i ∈ [d] (transition equivalence)

3. Qpf(θ)
τi = Q(u, q, qmax) for all i ∈ [d] (complexity reduction)

Then,

Advmu pf prf
f∗⊗ (θ) ≤ d ·Advmu prf

f⊗ (u, q, qmax). (6)

Proof. Let Sim be a reduction which samples h←$ [d] and then run Simτh−1
.

Note that for any prefix-free θ-complexity distinguisher A, ASim is a (u, q, qmax)-
complexity distinguisher. Now we show the following d-step reduction:

f∗⊗
Sim(1)f

⊗/RF

−→ OR1

Sim(2)f
⊗/RF

−→ OR2 · · ·
Sim(d−1)f

⊗/RF

−→ ORd−1

Sim(d)f
⊗/RF

−→ RF′

From the definition of Simτ and oracle OR, it is straightforward that Simf⊗

τ

is equivalent to OR and SimRF⊗

τ is equivalent to Onext(τ). However, we have seen
that OR0

∼= f∗⊗ and ORd ∼= RF. The above d-step reduction follows from the
given condition that next(τi−1) = Ri. Now, by using hybrid reduction lemma,
the result follows. ut



4.1 Application: Classical Reduction for Cascade

As a first application, we establish the classical reduction proof for cascade. Let
Rh(mi) = mi[..h] and

ρ(mi) =

{
orc if h < `i

sim if h ≥ `i.

Then, it is easy to see that for all h ∈ [`], next(Ri−1, ρi−1) = Ri for all i ∈ [`].
Moreover, R0 = Rroot and R` = Rfull. So, by Proposition 1.

Advmu pf prf
f∗⊗ (u, q, qmax, `, σ) ≤ ` ·Advmu prf

f⊗ (u, q, qmax). (7)

Now by using standard multiuser to single user reduction we have

Advmu pf prf
f∗⊗ (u, q, qmax, `, σ) ≤ `qmax ·Advmu prf

f (qmax). (8)

4.2 Application: A Depth-First Reduction

For every mq ∈ Q, we associate a prefix-tree Tmq . We now define a bijective
function DF : V ′ ∪ {λ} → [0..d] mapping λ to 0 where d = |V ′| − 1. So we can
write the elements of V ′∪{λ} in a sequence v0 = λ, v1, . . . , vd where DF(vi) = i.

Recursive Definition of DF

1. Initialize ctr = 1, DF(λ) = 0, v0 = λ.
2. for i = 1 to q
3. for j = 1 to `i − 1

if DF(mi[..j]) is not defined then
DF(mi[..j]) = ctr, vctr = mi[..j] and ctr ← ctr + 1.

Note that d ≤ σ′ = σ− q. When d is smaller than σ′, we define vd+1 = · · · =
vσ′ = vd. Note, we order the vertices following the depth first principle. For any
i, exactly any one of the three conditions will hold:

type-1 DF(mi[`i − 1]) < h.
type-2 DF(mi[..j]) = h.
type-3 DF(mi[..j − 1]) < h and DF(mi[..j]) > h.

Now we define a structure, called depth-first structure.

τh(mi) := (Rh(mi), ρh(mi)) =


(mi, sim) if type-1

(mi[..j], orc) if type-2

(mi[..j], sim) if type-3

where j is defined in type-2 and type-3 as before.



τh is a Structure. We first establish that for all h, τh is a structure. Clearly,
for all i, Rh(mi) � mi. Now, suppose for some i1 6= i2, Rh(mi1) ≺ Rh(mj2).
As mi’s are prefix-free, they cannot satisfy type-1. Let j1, j2 denote the values
of j for i1, i2 respectively. As R values are distinct, both cannot satisfy type-2.
Moreover, DF values for mi1 [..j1 − 1] and mi1 [..j1 − 1] are less than h. But,
mi1 [..j1] � mi2 [..j2 − 1]. This gives a contradiction.

Clearly, from the definition of ρh, the second condition is satisfied. Note
that for type-2 and type-3, mi[..j] is an intermediate node and hence the third
condition is also satisfied.

Now we show that next(τh) = Rh+1 for all h < σ′. Suppose DF(x) = h and
v1, . . . , vr be its all children nodes prefixes of mi1 , . . . ,mir respectively. Let i1
be the smallest index and hence v1 := mi1 [..‖x‖ + 1] has DF value h + 1 and
all other nodes has higher DF values. Thus, Rh+1(mij ) = vj for all j. For all
other i, Rh(mi) = Rh+1(mi). Thus, the set of outputs of Rh+1 values is exactly
the set U \ {x} ∪ ch(x) where U is the set of outputs of Rh. This proves that
next(τh) = Rh+1. So, following our generalized reduction lemma, the following
theorem for multiuser cascade construction is established.

Theorem 1. Let θ = (u, q, qmax, `, σ). Every (θ, T )-distinguisher D can be re-
duced to a (qmax, T

′ := T +O(σ))-distinguisher D′ := DSim (where Sim is defined
as above) so that

Advmu pf prf
f∗⊗ (D) ≤ (σ − q) ·Advprf

f (D′). (9)

Hence, Advmu pf prf
f∗⊗ (θ, T ) ≤ (σ − q) · Advprf

f (qmax, T
′). Moreover, D′ is non-

adaptive whenever D is non-adaptive.

Remark 1. We apply padding whenever the message space is not prefix-free,
e.g. {0, 1}∗. Let pad : {0, 1}∗ → B+ be defined as follows. Given x ∈ {0, 1}∗
we find smallest non-negative integer d such that |x| + 1 + d is a multiple of
b − 1. Let x‖10d = (x1, . . . , x`) ∈ ({0, 1}b−1)`. Finally, we define pad(x) =
(x1‖0, . . . , x`−1‖0, x`‖1). Clearly, for any x 6= x′, pad(x) is not a prefix of pad(x′).
So, f∗K ◦ pad is PRF with same security bound as shown before for arbitrary
message space.

4.3 Applications: Simple Proofs for MDP and Boosted MD

Let α : B′ × C → B × C be a function. So, g := f ◦ α : B′ × C → C. Let pad
be a prefix-free padding rule mapping to B

′+. Then, g∗ ◦ pad is PRF secure
whenever gK is PRF (with the bound mentioned in Theorem 1). Now we discuss
two examples of α which has been used to design some constructions.

Example 1 (MDP PRF). π be a permutation on C and B′ = B×{0, 1}. Now, we
define α((m, 0),K) = (m,K) and α((m, 1),K) = (m,π(K)). In JoC 2012 [17]
authors defined a special case of related key security of f which is essentially
same as the PRF security of f ◦ α. Authors of [17] provided PRF security of
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Fig. 3: MDP Keyed PRF.

g∗ ◦ pad based on related key PRF security of f (equivalently PRF security
of g) with tightness gap ` · q. Clearly this claim is an immediate corollary of
existing prefix-free PRF security of cascade. Moreover, using our reduction of
this section, we have σ as tightness gap of the MDP construction.

Example 2 (Boosted MD or BMD). In Asiacrypt 2007 [34], author proposed
Boosted-MD to provide much faster absorption of message in cascade con-
struction. In particular, we additionally xor c-bit message with chaining values
starting from the key (see Fig 4). Let B′ = B × {0, 1}c and α(m1,m2,K) =
(m1,K ⊕m2). In [34], author considered another variant of related key security
of f which is once again same as the PRF security of g := f ◦ α. Moreover, we
have σ as tightness gap of the MDP construction in contrast to original tightness
gap `q2.

⋯ BMD!
" (𝑚)𝐾 𝑓
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𝑐 𝑐

𝑏

𝑐

𝑓
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𝑓

𝑚[ℓ]

𝑐

Fig. 4: BMD or Boosted-MD keyed function.

5 Improved Bound for Non-Adaptive Distinguisher

In the last subsection, we have shown a multiplicative gap of σ for the cascade,
which is definitely an improvement over the previously known bound of `q. Now
we show that we can improve the query complexity for the simulator in case of
the non-adaptive bound. In Theorem 1, we reduce to a qmax-query algorithm.
However, it is easy to see that the number of queries can be much less. More
precisely, except about q choices, all other hybrid reduction indices reduce to a
single-query algorithm. To conclude this, we need the following simple result on
a rooted tree.



Lemma 4. Let V (T ) and L(T ) denote the set of nodes and the set of leaf nodes
of a rooted tree T respectively and V ′ = V \ L. Then,

∑
v∈V ′(|ch(v)| − 1) =

|L(T )| − 1. Hence, we have

(1) |{v : |ch(v)| > 1}| ≤ |L(T )| − 1, (2) |{v : |ch(v)| > i}| < |L(T )|/i.

Proof. The two equations (1) and (2) directly follow from the first part. We
prove the first part. Note that for every rooted tree, the sum of the number of
all children is |V (T )| − 1 (all nodes except the root node are children). As leaf
nodes do not have any children it is equivalent to summing over all vertices from
V ′. So ∑

v∈V ′
(|ch(v)| − 1) =

∑
v∈V
|ch(v)| − |V ′|

= |V | − 1− |V ′| = |L| − 1.

As all terms in the L.H.S. are non-negative, we have |{v : |ch(v)| > i}|×i ≤ |L|−1
and hence the second part follows. ut

Let θ = (u, q, qmax, `, σ). In the previous section, we have proved that Sim is a
σ-step hybrid reduction from (f∗⊗,RF⊗) to (f,RF) with hybrid index space [σ].
Now, for any mq ∈ Q(θ), we define d as the number of intermediate nodes of the
prefix tree and so d ≤ σ − q. Now, for every h ∈ [d], we associate a unique node
vh. Moreover, Sim(h) makes |ch(vh)| (the number of children) many queries,
whenever vh is defined, otherwise it does not make any query. Note that the
number of children (and hence queries) depends on mq. Let Ni denote the set of
h such that the number of children of vh is i. As Sim(h) is a hybrid reduction,
we have

Pr(Df∗⊗ = 1)− Pr(DRF⊗ = 1) =
∑
h∈[σ]

(Pr(DSimf (h) = 1)− Pr(DSimRF(h) = 1))

=
∑
i≥1

∑
h∈Ni

Pr(DSimf (h) = 1)− Pr(DSimRF(h) = 1)

(10)

Note that the inner sum
∑
h∈Ni Pr(DSimf (h) = 1)−Pr(DSimRF(h) = 1) the signed

advantage for the simulator which makes exactly i queries. Note that the size of
Ni is a random variable depending on mq. However, we know that for all i ≥ 1,∑
j>i |Nj | ≤ q/i (due to the above lemma on the tree). Using this bound we

can prove our improved reduction for non-adaptive distinguisher. The first one
is simple trade-off between the query complexity and tightness gap whereas the
second one involves more terms in the trade-off.

Theorem 2 (First Improved Non-adaptive Reduction).

Advmu pf nprf
f∗⊗ (θ, T ) ≤ σ ·Advnprf

f (1, T ′) + q ·Advnprf
f (qmax, T

′) (11)

where T ′ = T +O(σ).



Proof. We now define a reduction for a non-adaptive algorithm that uses the
simulator Sim(h) defined as before for the adaptive distinguisher in the previous
subsection. For all h ≤ σ, let q(h,mq) denote the number of queries Sim(h)
makes to its oracle whenever mq denotes all non-adaptive queries. It is easy to
see that q(h,mq) = |ch(vh)| (the number of children), whenever vh is defined.
So for all h,mq, q(h,mq) ≤ qmax. Let

1. Ni = {h : q(h,mq) = i} and
2. N[i,j] = {h : i ≤ q(h,mq) ≤ j}.

By (1) of Lemma 4, we have |N[2,qmax]| ≤ q. Now we define two distinguishers D1

and Dqmax
making at most 1 and qmax queries respectively. Let J1 and Jmax be

two sets disjoint from [σ] such that I1 = N1tJ1 and Iqmax
= N[2,qmax]tJqmax

have

σ and q elements respectively. We define Di := DSimi where Simi := Sim(h←$ Ii),
i = 1, qmax elements. So by definition D1,Dqmax

make at most 1 and qmax queries
respectively. Now,

∆∗D1
(f ; RF) = Pr(DSimf1 = 1)− Pr(DSimRF

1 = 1)

=
1

σ
·
∑
h∈I1

(Pr(DSimf (h) = 1)− Pr(DSimRF(h) = 1))

=
1

σ
·
∑
h∈N1

(Pr(DSimf (h) = 1)− Pr(DSimRF(h) = 1))

=
1

σ
·
∑
h∈N1

∆∗D(Simf (h); SimRF(h))

Similarly, ∆∗Dqmax
(f ; RF) = 1

q ·
∑
h∈N[2,qmax]

∆∗D(Simf (h); SimRF(h)). Now, by

using Eq.10, we have

σ ·∆∗D1
(f ; Γ) + qmax ·∆∗Dqmax

(f ; Γ) = ∆∗D(f∗⊗ ; RF)

The proof follows by taking maximum over all possible D on the absolute value
of the above equality. ut

We can make further fine-tuned splitting the hybrid index set [σ] to obtain a
better trade-off between tightness gap and the query complexity. More precisely,
let N ∗2i = {h : 2i−1 < q(h,mq) ≤ 2i} for all 1 ≤ i ≤ s where 2s−1 < qmax ≤ 2s.
As before we have |N ∗2i | ≤ q/2i−1 and we add dummy sets to N ∗2i to obtain I2i
such that |I2i | = q/2i−1 for i ≥ 1. Now, for a θ-distinguisher D and for every i ≥
1, we define 2i-query distinguisher D2i := DSim2i where Sim2i := Sim(h←$ I2i).
Now following the very similar calculation given in the proof of the previous
theorem we have our next improved non-adaptive reduction.

Theorem 3 (Second Improved Non-adaptive Reduction). For any θ :=
(u, q, qmax, `, σ, T )-non-adaptive distinguisher D, we have 1-query non-adaptive
distinguisher D′1 and (2i−1 + 1)-query non-adaptive distinguisher Di for 1 ≤ i ≤



dlog2 qmaxe with run time T ′ = T +O(σ) such that

Advmu pf nprf
f∗⊗ (D) ≤ σ ·Advnprf

f (D′1) +

dlog2 qmaxe∑
i=1

q

2i−1
·Advnprf

f (Di). (12)

Hence,

Advmu pf nprf
f∗⊗ (θ) ≤ σ ·Advnprf

f (1, T ′) +

dlog2 qmaxe∑
i=1

q

2i−1
·Advnprf

f (2i, T ′).

Applications to HMAC and NMAC. The generic reduction from NMAC to
cascade (see Eq. 3) and HMAC to NMAC (see Eq. ??) can be easily extended for
the multiuser set-up in the following way:

Advmu prf

NMACf
(θ, T ) ≤ Advmu pf nprf

f∗ (θ, T ′) + Advprf
f (q, T ′) +

q2

2c
, (13)

Advmu prf

HMACf
(θ, T ) ≤ Advmu prf

NMACf
(θ, T ) + Advprbg

KDF (T ′). (14)

Hence our results for non-adaptive PRF security of cascade can be directly ap-
plied to the multiuser security of HMAC and NMAC.

5.1 Significance of Improvement in the standard model

The known tightness gap `q becomes worse when the queries can be both very
short as well as large. In that case we can limit `, q, σ ≤ D where D represents
the maximum data complexity.3 With this limit, the known bound for cascade
turns out to be

Advprf
f∗ (q, `, σ, T ) ≤ `q ·Advprf

f (q, T ′)

≤ D2 ·Advprf
f (q, T ′)

where T ′ = T + O(σ). In [8,20], authors showed that for almost all designs we

can have Advprf
f (q, T ′) ≥ 2−c/2. Moreover, by key-guessing attack, we also have

Advprf
f (q, T ′) ≥ T ′/2c (as f∗ uses c-bit key). So the known bound can only

ensure security as long as

D ≤ 2c/4, D2T ≤ 2c.

Using our new bound we have Advprf
f∗ (q, `, σ, T ) ≤ D ·Advprf

f (q, T ′) and so our
bound can ensure security as long as

D ≤ 2c/2, DT ≤ 2c.

Thus, it improves the data-time trade-off for the cascade construction. A similar
improvement works for multiuser setup.

3 NIST actually considered this in the call for the standardization process of
lightweight cipher [25].



5.2 Significance of Improvement in the ideal model

We have defined PRF security in the ideal model. Now we extend the definition
in the ideal model. Let Γ be a random function and FK be a construction which
uses Γ as an oracle. A distinguisher D is an oracle algorithm which has access of
two oracles. We define PRF distinguishing advantage of D against F as

Advprf
F (D) := |Pr(DFK ,Γ → 1)− Pr(DRF,Γ → 1|)|

where RF is a compatible random function independent with Γ. Complexity
parameter of D can be written as (θ, η) where θ and η represent the complexity
parameter for all construction queries (i.e., the first oracle which is either FK or
RF) and primitive queries (which is always Γ) respectively. η mostly represents
the number of queries to Γ.

Convention. Note that we assume that η = O(T ) where T is the run time of
D (since otherwise, D can make additional queries which increases run time by
O(T )).

A simple example is the cascade based on a random function (or idealized
compression function) Γ : {0, 1}b+c → {0, 1}c as ΓK(x) := Γ(K,x) where K ∈
{0, 1}c and ΓK : {0, 1}b → {0, 1}c be a keyed function based on an ideal random
function Γ. The reduction proved in the paper and in the previous papers for
the cascade construction Γ∗K can be translated to the following relations for the
complexity parameters θ = (u, q, qmax, `, σ), θ1 = (q, `, σ) and primitive query
complexity η:

Advprf
Γ∗ (θ1, η) ≤ `q ·Advprf

Γ (q, η + σ).

Note that reduction algorithm needs to call at most η+σ many primitive queries
to simulate all queries of the distinguisher. It is easy to show that for any (q, η′)-

query distinguisher D, Advprf
Γ (D) ≤ η′/2c (until we cannot guess the key in

the primitive query, all construction oracle queries behave like an independent
random function) and the bound is tight. So plugging the bound above we can

ensure Advprf
Γ∗ (θ1, η) ≤ `q · (η + σ)/2c. The same bounds hold for non-adaptive

PRF advantage. Similar bound applies when Γ is replaced by Davis-Meyer com-
pression function based on an c-bit ideal cipher E with key space {0, 1}b. In
particular we define DM(K,x) := Ex(K)⊕K.

Our adaptive PRF advantage shows that

Advmu prf
Γ∗ (θ, η) ≤ σ ·Advmu prf

Γ (qmax, η + σ)

and hence Advmu prf
Γ∗ (θ, η) ≤ σ(η + σ)/2c. The same relation holds for non-

adaptive PRF advantage and also for the Davis-Meyer compression function
based cascade construction.

Example 3 (Boosted MD in the ideal model). We define Γ⊕K(x1, x2) = Γ(K ⊕
x1, x2), (x1, x2) ∈ {0, 1}c+b. If a distinguisher cannot make guesses of K ⊕ x1
(of construction queries) in any primitive queries, then it cannot distinguish Γ⊕

from an independent random function RF. Hence, Advprf
Γ⊕ (q, η) ≤ qη/2c. In fact,



one can construct a distinguisher making q construction queries and η primitive
queries with PRF advantage about ηq/2c in an ideal random function model. The
cascade based on Γ⊕ is called boosted MD which has been studied in Sect.4 in the
standard model. A straightforward application of the PRF advantage of Γ⊕ in
the ideal model to the cascade construction gives Advprf

Γ⊕∗(θ1, η) ≤ `q2(η+σ)/2c.
However, our bound provides an improved bound of the form:

Advmu nprf
Γ⊕∗ (θ, η) ≤ (σ + qdlog2 qmaxe)(η + σ)/2c.

Hence we have shown birthday bound for boosted cascade function in a modular
way instead of cubic bound derived from the existing reduction.

Let us now consider some popular examples of compression functions based
on a c-bit ideal cipher E with keyspace {0, 1}b.

Example 4. MMO (Matyas-Meyer-Oseas) compression function based on an ideal
cipher E can be defined as MMO(K,x) = EK‖0b−c(x) ⊕ x. Note that it can be
distinguished from random function with an advantage about q2/2c+η/2c where
q and η denote the number of construction and primitive queries respectively.
The birthday terms arise due to the following reason: In the real construction
there cannot be any collision among the values zi ⊕ xi where zi’s are the out-
puts of the queries xi. However, a collision is observed for a random function RF
with probability about q2/2c+1 Similarly, we also have key guessing attack for

this compression function. Hence, we have Advprf
MMO(q, η) ≥ max{q2/2c+1, η/2c}.

Now if we plug in the existing bound we have a cubic bound:

Advnprf
MMO∗(θ, η) ≤ `q3

2c
+
`qη

2c
.

However, if we use our second improved non-adaptive reduction and simplify the
sum we have quadratic bound (up to a log factor)

Advnprf
MMO∗(θ, η) ≤ dlog2 qmaxeσ(η + σ)/2c + 2qqmax/2

c.

Example 5. The similar result like MMO compression function is also applicable
for Miyaguchi-Preneel compression function: MP(K,x) = EK‖0b−c(x) ⊕ x ⊕K.

Once again, we have Advprf
Γ⊕ (q, η) ≥ max{q2/2c+1, η/2c} the same bound as

MMO compression function.

6 Single Keyed NMAC, Constant-free HMAC and EvMAC

6.1 PRF Security of Single Keyed Composition

For every key K in a key space, let gK : B → K and F : K × X → B. We now
define a keyed function GK : B×X → K by combining g and F as follows:

GK(a, x) := gK
(
F (gK(a), x)

)
.



Here, we recall the notation gK to denote the function g(K, ·). Let I be a user
index space for G. For every γ ∈ I, we sample Kγ ←$K. So, G⊗(γ, (a, x)) :=
GKγ (a, x). We denote this oracle G0 (see Fig.5). Now we define an intermediate
oracle G1. We obtain the oracle G1 replacing g by a (multiuser) random function
RF. More precisely, on a user index γ and an input (a, x), it returns

G1(γ, (a, x)) := RFγ
(
F (RFγ(a), x)

)
Now, for every θ-complexity distinguisher D,

∆D(G0,G1) = ∆D0
(g⊗I ,RF⊗I)

by using the substitution reduction where D0 is a (u, 2q, 2qmax)-complexity dis-
tinguisher (it simply simulates the construction G using its oracle replacing the
function g in G).

F𝑎

𝑥

𝑓!! 𝑓!!

FRF!𝑎

𝑥

𝓖𝟎

𝒪

𝑮𝑲𝜸(𝒙,𝒂)

pad

𝑧

𝑦(𝛾, 𝑥, 𝑎) RF

RF!FRF!𝑎

𝑥
𝓖𝟏

pad

𝑧
𝑦

(𝛾, 𝑥, 𝑎) RF 𝑦

(𝛾, 𝑥, 𝑎) RF′ 𝑦’

𝒪′

Fig. 5: Games G0 and G4 represent the real and ideal world respectively. The games
G1,G2,G3 are intermediate oracles G1 is obtained by replacing f by a random function.
Game G2 makes two executions of random functions independent. G3 replaces F by a
random function.

Now we bound the distance between the oracle G1 and a random function
G2. Let Opp(γ, a, x) = F (RF(γ, a), x) be a post-processing oracle for both G1
and G2. In case of G2, the random function RF is independent with G2. Let D be
any (u, q, qmax)-complexity adaptive distinguisher interacting with either G1 or
G2 and a post-processing oracle which returns responses of all queries made by
D after the query-response phase is over. Let (γ1, (a1, x1)), . . . , (γq, (aq, xq)) ∈
I×B×X be all q queries and y1, . . . , yq ∈ K be the corresponding responses. Let
z1, . . . , zq ∈ B be the responses of post-processing oracle, i.e. F (RF(γi, ai), xi) =
zi. We say that bad holds if

1. either zi = zj for some i 6= j or
2. (γi, zi) = (γj , aj) for some i, j.



So, the event bad satisfies conditions of Lemma 2. Hence there is a non-adaptive
distinguisher D1 with same complexity parameter as D1 such that

Pr(bad holds in DG1,Opp) ≤ Pr(bad holds in D
G2,Opp

1 ).

Now for any good transcript (γq, (aq, xq), yq, zq), it is easy to see that the both
worlds realize the transcript with probability

Pr(F (RF(γi, ai), xi) = zi∀i)
|K′|q

(as the zi values are all distinct and different from the other inputs of RF).
Now by identical until bad lemma, ∆D(G1;G2) ≤ Pr(τ(DG2) is bad). So, we have
proved

∆D(G0;G2) ≤ ∆D(G0;G1) +∆D(G1;G2)

≤ ∆D0
(g⊗I ,RF⊗I) + Pr(τ(D

G2,Opp

1 ) is bad)

Note that the bad does not depend on the response of the oracle G2. So we
can define a bad event bad(D

′O) for a non-adaptive interaction between a non-
adaptive distinguisher D1 and a I-folded (B×X ,B)-oracle O whenever

1. either zi = zj for some i 6= j or
2. (γi, zi) = (γj , aj) for some i, j.

hold true where (γ1, (a1, x1)), . . . , (γq, (aq, xq)) ∈ I×B×X be all q non-adaptive
queries and z1, . . . , zq ∈ B be the corresponding responses. Thus, we have our
single-keyed composition theorem.

Theorem 4 (single-keyed composition). Let g, F and G as defined above.
Then, for any (u, q, qmax, `, σ)-complexity distinguisher D,

(i) there is a (u, 2q, 2qmax)-complexity distinguisher D0, and
(ii) (q, q, qmax, `, σ)-complexity non-adaptive adversary D1 such that

∆D(G⊗I ,RF′′⊗I) ≤ ∆D0(g⊗I ,RF⊗I) + Pr(bad(DO1 )) (15)

where O(γ, a, x) = F (RF(γ, a), x).

6.2 Application: Security of Single-Keyed NMAC

Now we show that the single keyed 1k NMACK := NMACK,K based on f :
{0, 1}c × B → {0, 1}c has almost the same security as NMACK1,K2 . Note that
in Theorem 4 we can consider g = f and F (K,m) = f∗K(m)‖0b−c. Then, the
function G is same as 1k NMACK . By our single keyed composition we need to
bound the probability of bad event for DF⊗

1 .
We note that the queries may not be prefix-free and so we cannot replace f∗

by a random function. However, we consider another bad event bad′ as follows.
Let x be a block such that (γi,mi, x)’s are prefix-free. Clearly such a block x
exists. Now, we say that bad′ holds if



1. either f(zi, x) = f(zj , x) for some i 6= j or
2. (γi, f(zi, x)) = (γj , f(aj , x)) for some i, j.

So, bad ⇒ bad′ and hence Pr(bad) ≤ Pr(bad′). Now, bad′ is actually bad event
for queries (γi,mi, x) which are prefix-free. Thus,

Pr(bad′(DF⊗

1 )) ≤ Pr(bad′(DRF⊗

1 )) + Advmu nprf
F (q, q, qmax, `+ 1, σ + q)

≤ 3q2/2c+1 + AdvF (u, q, qmax, `+ 1, σ + q)

By using randomness of RF, bad′ holds with probability at most 3q2/2c+1. So,
we have proved our PRF analysis for single keyed NMAC.

Theorem 5 (single-keyed NMAC). For T ′ = T +O(σ),

Advmu prf

1k NMACf
(θ) ≤ Advmu pf nprf

f∗ (q, q, qmax, `+ 1, σ + q, T ′)+

+ uAdvprf
f (2qmax, T

′) + 1.5q2/2c.

The previous result can be plugged into the above expression to get the
security of the constant-free variant of HMAC, denoted as HMAC′, where

HMAC′(K,m) := 1k NMAC(KDF(K),m)

and KDF(K) = f(IV,K‖0∗). If f(IV, ·, 0∗) is (almost) regular then KDF(K) is
uniformly distributed and hence the security of the variant of HMAC’ is reduced
to 1k NMAC. So the bound for the single-keyed NMAC can be directly applied
to the constant-free variant of HMAC.

6.3 Application: Security Analysis of Enveloped MAC

We now similarly prove an improved analysis for Enveloped MAC (we get a
better tightness reduction as well as eliminate the related key advantage in the
existing analysis). For any keyed function g, we write

EvMACg∗(m) := g
(
f∗(g(IV ),m[1..])

)
.

Note that EvMAC
f↓K
∗ is the same as EvMAC. We write EvMAC′ = EvMACΓ

∗. By
using a reduction similar to 1k NMAC, we have

∆∗D(EvMAC⊗ ; RF) = ∆∗D(EvMAC′⊗ ; RF) +∆∗D0
(f↓⊗ ; Γ),

where DO
⊗

0 = D . EvMACO
⊗

∗ . So we focus on bounding the multiuser PRF
advantage of Γ

(
f∗(Γ(IV ),m[1..])

)
. Now we see that if we fix mi[1] = IV in

the proof of NMAC we actually reduce to EvMAC′. In other words, we need
to consider the following bad event (for some x to be adjoined at the end as
before to make prefix-free queries): Let bad(mq[1], zq) = 1 if either zi = zj for
some i 6= j, or f(zi, x) = f(IV, x) for some i, j. Following a similar argument as
1k NMAC, we have our result.



Theorem 6 (Envelope MAC).

Advmu prf
EvMAC(θ) ≤ Advmu pf nprf

f∗ (q, q, qmax, `, σ, σmax, T
′)+

+ u′ ·Advprf
f (qmax + 1, T ′) +

q′2

2c
.

7 Final Remarks

Let ε(D,T ) := Advprf
f (D,T ). The dominating terms for the best known bound

for prefix-free PRF advantage against cascade, NMAC and HMAC before this
paper was `q · ε(q, T +σ). Let D denote the user limit of an application before it
re-keys. Some applications can accept a wide range of message sizes (from a sin-
gle block to very large messages), and hence we must assume ` = q = σ = O(D)
(similar guidelines are provided by NIST for lightweight cipher standardiza-
tion [33]). So the best known bound in this set-up becomes D2 · ε(D,T +O(D)).
We already know that ε(D,T ) ≥ max{T/2c, 1/2c/2}. Both lower bounds weaken
the PRF security guarantee of the cascade (and hence of HMAC and NMAC).
Our result resolves these issues.

7.1 Open Problems

The following important open problems can be studied in the future.

1. Similar to the reduction for non-adaptive distinguishers, can we have an
improved trade-off for adaptive reductions? This problem seems to be chal-
lenging as the simulator needs to guess a bound on the number of children
of a node adaptively.

2. Having an improved reduction for adaptive PRF distinguisher of AMAC is
not yet solved. A different approach to handle prefix queries is needed.

3. All known bounds for cascade construction can be at the best DT/2c. How-
ever, there is no such generic matching attack (matching attacks are applica-
ble for some pathological examples). Understanding the right PRF security
bound when f behaves like a random function is not yet known.
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A Known Applications of Hybrid Reduction Lemma

A.1 Application: multiuser to Single User Reduction

Let F⊗ be an I-folded keyed function from X to Y with a key space K. We now
define a u-step reduction algorithm Sim reducing F⊗ to F as follows:

Simulator Sim

1. hybrid index h←$ [u], keys K1, . . . ,Kh−1,Kh+1, . . . ,Ku ←$K and ctr = 1.
2. For i = 1 to q,

(a) let ith query be (γi, xi).
(b) if γi 6∈ γi−1 then rank(γi)← ctr and ctr ← ctr + 1.
(c) r = rank(γi)
(d) response of the query is zi where

zi =


FKr (xi) if r > h

←$Y if r < h

O(xi) if r = h

So when h = 1 and O = FK we have zi = FΓ(γi)(xi) for all i ∈ [q], where
Γ(γi) = Ki if i 6= 1 and Γ(γ1) = K. As Ki’s are independent with K, Γ behaves

as a random function and so SimFK (1) ∼= F⊗. Similarly, SimRF′(u) ∼=(u,q,qmax)

RF (we restrict all query tuples which makes at most u user queries and so
value of rank does not exceed u). This shows the boundary conditions. Now we
show the transition equivalence through intermediate oracles Oh defined below,
0 ≤ h ≤ u. It is clear from the description of Sim and the intermediate oracles

Oracle Oh

1. keys K1, . . . ,Ku ←$K and ctr = 1.
2. For i = 1 to q,

(a) let ith query be (γi, xi).
(b) if γi 6∈ γi−1 then rank(γi)← ctr and ctr ← ctr + 1.
(c) r = rank(γi)
(d) response of the query is zi where

zi =

{
FKr (xi) if r > h

←$Y if r ≤ h

that SimRF(h) behaves identical to Oh and SimF (h) behaves identical to Oh−1.



Moreover, (u, q, qmax)Sim = qmax. Thus, by using hybrid reduction proof, we have

Advmu prf
F (u, q, qmax) ≤ u ·Advprf

F (qmax).

A.2 Application: Known Reduction Proof for Cascade

All known proofs for cascade including GGM proof of PRF to PRB were done
in two main steps where each step is a hybrid reduction algorithm. One of the
two steps is actually multiuser to single user reduction as discussed before. Now
we give details of existing reduction proof. Let us fix a single user complexity
parameter θ = (q, `, σ). Now we define the reduction algorithm Sim(i) as follows

where i ∈ [`] denotes a hybrid index: On jth query mj , SimO⊗(i) returns

zi := f∗(O⊗(mj [..i] ; mj [i+ 1]),mj [i+ 2..])

(with user index as mj [..i] in the oracle query). Here, the multiuser oracle O⊗

has user index space B≤` := ∪i≤`Bi. For every 0 ≤ i ≤ `, we define intermediate
oracles as

Oi(m) = f∗(RF(m[..i]),m[i+ 1..])

Clearly, O0
∼= f∗K where K = RF(λ) and O` ∼= RF. Now, we claim that Sim is

a `-step reduction. We see that the response zi can be equivalently written as
described below.

1. Case O = f : zi = f∗(f(RF(m[..i]),m[i+ 1]),m[i+ 2..]) = Oi(m).
2. Case O = RF′:

zi = f∗(RF
′⊗(m[..i],m[i+ 1]),m[i+ 2..])

∼= f∗(RF(m[..i+ 1]),m[i+ 2..]) = Oi+1(m)

Here we use the observation that RF
′⊗(m[..i],m[i+1]) is equivalent to the oracle

RF(m[..i+ 1]). This proves that Sim(·) is a `-step reduction algorithm and so by
hybrid reduction proof (Lemma 3)

Advprf
f∗ (q, `, σ, t) ≤ ` ·Advmu prf

f (u := q, q, qmax := q)

≤ `q ·Advprf
f (q).

Note that the above reduction algorithm turns a non-adaptive distinguisher to
a non-adaptive distinguisher and so the above result also holds for non-adaptive
PRF advantage.

Remark 2 (extending proof to multiuser). The above proof can be easily ex-
tended to multiuser setup with input space B+

mu := I × B+. The intermediate
oracles Oi is defined as

Oi(m) = f∗(RF(m[0..i]),m[i+ 1..]).



Exactly same proof as described above holds where SimO⊗(h) has I ′-folded

(B,K)-oracle f⊗ or RF
′⊗ where I ′ := I ×B≤` and it is a substitution reduction

from Oh−1 to Oh. This would prove

Advmu pf prf
f∗⊗ (u, q, qmax, `, σ) ≤ ` ·Advmu prf

f⊗ (q, q, qmax)

≤ `q ·Advprf
f (qmax)
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