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ABSTRACT
Having shared access to high-quality random numbers is essen-
tial in many important applications. Yet, existing constructions of
distributed random beacons still have limitations such as imper-
fect security guarantees, strong setup or network assumptions, or
high costs. In this paper, we present SPURT, an efficient distributed
randomness beacon protocol that does not require any trusted or
expensive setup and is secure against a malicious adversary that
controls up to one-third of the nodes in a partially synchronous
network. We formally prove that each output of SPURT is un-
predictable, bias-resistant, and publicly verifiable. SPURT has an
amortized total communication cost of 𝑂(_𝑛2) per beacon output
in the fault-free case and 𝑂(_𝑛2 log𝑛 + 𝑛3) in the worst case. We
implement SPURT and evaluate it using a network of up to 128
nodes running in geographically distributed AWS instances. Our
evaluation shows that SPURT has practical computation and band-
width costs and can produce beacon outputs every second for a
network of 64 nodes, and every 3 seconds for a network of 128
nodes.

1 INTRODUCTION
A reliable source of a continuous stream of shared randomness,
also referred to as a random beacon, is crucial for many distributed
protocols. Applications of random beacon include leader election
in proof-of-stake based blockchains [5, 40], blockchain sharding [9,
47, 50, 68], scaling smart contracts [30], annonymous communi-
cations [7, 41, 65, 66], solving consensus under asynchrony [36],
anonymous browsing [32, 39, 43], publicly auditable auctions and
lottery [20], electronic voting [8], cryptographic parameter genera-
tions [11, 49], and so on.

The simplest approach is to rely on a single node or organiza-
tion, such as NIST random beacon or Random.org, to produce the
required randomness. This is undesirable or even unreasonable in
some scenarios. Incidents such as the backdoor of Dual elliptic curve
pseudorandom number generator [14] and 1969 US conscription
lottery [1] present arguments against centrally generated random-
ness. Moreover, in systems such as blockchains where the main
objective is to remove centralized authorities, using a trusted party
for randomness generation defeats the purpose of the blockchain
itself.

A natural approach to remove the trusted third party is to decen-
tralize the process of generating randomness among many nodes
using a distributed protocol. This approach guarantees that, as long

as a large fraction (majority or supermajority) of nodes faithfully fol-
low the protocol, the protocol will produce shared randomness with
desired properties [57]. Briefly, any randomness beacon protocol
should be available and each beacon output should be unpredictable,
bias-resistant and publicly verifiable. Informally, unpredictability
guarantees that neither adversary nor honest nodes can compute
any non-trivial information about future beacon outputs. Similarly,
bias-resistance ensures that beacon outputs are sampled from a
uniform distribution and are independent of other beacon outputs.
Lastly, public verifiability enables external clients, i.e., users that do
not participate in the beacon generation protocol to validate the
correctness of every beacon output.

Existing works. Starting from Blum’s two-node coin tossing pro-
tocol [17], a long line of works have looked into the problem
of generating shared randomness under different system mod-
els [2, 10, 17, 22–24, 31, 40, 46, 55, 61, 64]. Due to its use in practical
blockchain systems, which typically involves a large number of
nodes [30, 47, 50, 68], recent randomness beacon protocols put an
emphasis on scalability. Specifically, it is desirable to construct a
beacon protocol that has low latency, low communication complex-
ity, and low computation cost per node per beacon output. Also,
since many of these protocols are decentralized and are aimed at
eliminating trusted entities, it is preferable that the beacon protocol
does not rely on a trusted setup.

Despite decades of research and many breakthroughs, state-of-
the-art distributed randomness beacon protocols still have scalabil-
ity issues, require strong cryptographic or network assumptions, or
do not provide the full suite of desired properties of a randomness
beacon. For example, the random outputs from many blockchain
protocols [31, 40, 55] can be biased by amalicious adversary (though
the blockchain protocols themselves are often secure). Protocols
such as [24, 28, 46] have at least 𝑂(_𝑛3 log𝑛) total communication
cost per beacon output, where _ is the security parameter and 𝑛 is
the number of nodes running the protocol.

A recent protocol Hydrand [61] reduces the communication cost
to𝑂(_𝑛2) but does not provide perfect unpredictability, even in the
presence of a semi-honest adversary. Very recently, a concurrent
and independent work Brandpiper [15] improves upon Hydrand to
provide perfect unpredictibility and increased fault tolerance. As
a trade-off, Brandpiper incurs higher worst-case communication
and computation costs and makes the 𝑞−SDH assumption, which
requires a trusted setup to generate the desired public parameters.

Regarding the setup assumption, many protocols [2, 15, 22, 44]
assume an initial trusted setup, where a trusted party generates



Table 1: Comparison of existing randomness beacon protocol.
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Aleph [37] async. 1/3 ✓ 𝑂(_𝑛2) ✓ ✓ 𝑂(1) 𝑂(1) Uniq. th-sig. DKG
Cachin [55] async. 1/3 ✓ 𝑂(_𝑛2) ✓ ✓ 𝑂(1) 𝑂(1) Uniq. th-sig. DKG
RandHerd [64]∗ async. 1/3♣ ✓ 𝑂(_𝑐2 log𝑛)♣ ✓ ✓ 𝑂(𝑐2 log𝑛) 𝑂(1) PVSS+CoSi DKG
Dfinity [44] sync. 1/2 ✓ 𝑂(_𝑛2) ✓ ✓ 𝑂(1) 𝑂(1) Uniq. th-sig. DKG
Drand [2] sync. 1/2 ✓ 𝑂(_𝑛2) ✓ ✓ 𝑂(1) 𝑂(1) Uniq. th-sig. DKG
HERB [28]♠ sync. 1/3 ✓ 𝑂(_𝑛3) ✓ ✓ 𝑂(𝑛) 𝑂(𝑛) Partial HE DKG

Algorand [40] partial sync. 1/3♣ ✓ 𝑂(_𝑐𝑛)♣ Ω(𝑡 ) ✗ 𝑂(𝑐) 𝑂(1) VRF CRS
Proof-of-Work [55] sync. 1/2 ✓ 𝑂(_𝑛) Ω(𝑡 ) ✗ very high 𝑂(1) Hash func. CRS
Hydrand [61] sync. 1/3 ✓ 𝑂(_𝑛2) 𝑡 + 1 ✓ 𝑂(𝑛) 𝑂(𝑛) PVSS CRS
Ouroboros [46] sync. 1/3 ✓ 𝑂(_𝑛3) ✓ ✓ 𝑂(𝑛3) 𝑂(𝑛3) PVSS CRS
Scrape [24] sync. 1/2 ✓ 𝑂(_𝑛4)‡ ✓ ✓ 𝑂(𝑛2) 𝑂(𝑛2) PVSS+Broadcast CRS
GRandPiper [15] sync. 1/2 ✓ 𝑂(_𝑛2) 𝑡 + 1 ✓ 𝑂(𝑛2) 𝑂(𝑛2) VSS 𝑞−SDH
BRandPiper [15] sync. 1/2 ✓ 𝑂(_𝑛3) ✓ ✓ 𝑂(𝑛2) 𝑂(𝑛2) VSS 𝑞−SDH
SPURT partial sync. 1/3 ✓ 𝑂(_𝑛2 log𝑛 + 𝑛3) ✓ ✓ 𝑂(𝑛) 𝑂(𝑛) PVSS+Multisig. CRS

∗ RandHerd uses RandHound as a one-time setup phase. RandHound is driven by a
leader node and hence its liveness requires the leader to be honest. As presented,
RandHerd is biasable but can use additional techniques to be unbiasable.

‡ Scrape assumes a broadcast channel and in the protocol every node uses the broad-
cast channel to share 𝑂(𝑛) groups elements. Thus even with the best known
protocol for broadcast protocol, its total communication complexity would be
𝑂(_𝑛4).

♣ Algorand and Randherd use a randomly sampled subset of size 𝑐 to run the pro-
tocol. This approach improves scalability and (slightly) reduces fault tolerance. It
is thus not instructive to directly compare the efficiency of sampling-based and
non-sampling-based protocols.

♠ HERB has three variant of protocol depending upon the underlying broadcast
channel. We report their first variant since it uses standard metric for measuring
broadcast channel communication cost.

trapdoors based on public parameters and shares them with the
nodes. Security of such protocols relies crucially on the adversary’s
inability to access the trapdoor. Some protocols replace the trusted
setup with a Distributed Key Generation (DKG) procedure [37,
64]. But it comes with a high initial setup cost as the best-known
DKG protocols in synchronous and asynchronous networks has a
communication cost of𝑂(𝑛3 log𝑛) and𝑂(𝑛4 log𝑛), respectively [37,
38, 64]. Another limitation of using DKG, as observed in [15], is the
inability/inefficiency to replace nodes. Whenever a participating
node is to be replaced, we would need to run the expensive DKG
procedure again.

We summarize existing works in Table 1 and will provide more
details about each protocol in §7.

Our result. In this paper, we design SPURT, an efficient distributed
random beacon protocol that works in a partially synchronous
network [34] and does not require any trusted or expensive setup
phase. SPURT guarantees availability, unpredictability, unbiasibility,
and public verifiability, against a malicious adversary that controls
up to one-third of the nodes.

In a network of 𝑛 nodes, for every beacon output, SPURT has
a total amortized communication cost of 𝑂(_𝑛2) in the fault-free
case (𝑂(1) malicious nodes) and𝑂(_𝑛2 log𝑛 +𝑛3) in the worst case,
where _ is the security parameter. Note that for _ = 256 which
is typical for most elliptic curves, 𝑛3 < _𝑛2 log𝑛 for 𝑛 < 2950,
which is reasonably large for most practical applications. SPURT’s
amortized computation cost per node per beacon output is only

𝑂(𝑛). Thus, we believe SPURT has good scalability and is suitable
for applications with a large number of nodes deployed globally
across the internet.

Design overview. In designing a beacon protocol with the above
mentioned guarantees and properties, we encountered many chal-
lenges that resulted from various subtleties. To ensure unpredictabil-
ity, each beacon output must require contribution from at least
𝑡 + 1 nodes. Furthermore, the contribution from honest nodes must
remain hidden from the adversary before they become publicly
available. In addition, the bias-resistant property requires that the
adversary should not be able to force the protocol to abort after
observing a beacon output.

Existing protocols that do not rely on trusted setup address these
challenges using publicly verifiable secret sharing (PVSS) schemes.
We will also start with this design paradigm. Briefly, the idea is that,
for every beacon output, each node runs a concurrent instance of
PVSS to share a randomly chosen secret with every other node.
Once the sharing phase terminates for all nodes, the shares are
reconstructed and aggregated to compute the beacon output.

The downside of naïvely using PVSS is that the PVSS schemes
assume the existence of broadcast channels. In fact, this will be
the major source of high communication complexity. A broadcast
channel, when actually implemented using a distributed protocol,
has a communication lower bound of Ω(𝑛2) [33].

This motivates us to revisit the use of broadcast channels in dis-
tributed randomness beacons. Previous works such as Scrape [24]
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and Hydrand [61] explicitly mentioned that for a beacon protocol
to be bias-resistant and available, the sub-protocol invoked for each
beacon output must provide guaranteed output delivery [29]. The
use of broadcast channels then becomes natural as it is standard
and commonly assumed/used in the multi-party computation lit-
erature [42, 58] to achieve guaranteed output delivery. However,
in this paper, we observe that guaranteed output delivery is not
necessary, and as a result, we can use an state machine replication
protocol (SMR) (cf. §2.5) instead of Byzantine broadcast [48],which
enables us to extend our results to a partially synchronous net-
work [34].

The second key technique to reduce communication complexity
is to use accumulators such as Merkle trees and additively homo-
morphic commitment and encryption schemes in PVSS to compress
the amount of data sent using the SMR protocol.

Thirdly, we observe that to decide on any beacon output, the
SMR requires acknowledgments from a quorum of 2𝑡 + 1 nodes.
This implies acknowledgments from at least 𝑡 + 1 honest nodes.
This property, along with the properties of threshold secret sharing
ensures bias-resistance and achieves optimal fault tolerance. Lastly,
we use multi-signature to enforce unpredictability of each beacon
output.
Evaluation.We implement SPURT in Golang atop the open-source
Quorum [6], which implements the Istanbul BFT [54] state machine
replication protocol and is a fork of open source go-ethereum [4]
implementation. We then evaluate our prototype for a network of
up to 128 nodes running in geographically distributed AWS EC2
instances. We evaluate the throughput of SPURT, measured as the
number of beacons generated per minute, the network bandwidth
usage and computation time per node per beacon output. Our eval-
uation illustrates that for a network of size up to 64, SPURT can
generate at least one beacon output every second, and has a band-
width cost (amount of sent plus received data) of about 43 Kilobytes
per node per beacon output. For a larger network with 128 nodes,
SPURT can generate one beacon output every 3 seconds and the
bandwidth cost is 85 Kilobytes per node per beacon output.
Summary. In summary, we make the following contributions:
• We design SPURT, a partially synchronous distributed ran-
dom beacon protocol with a total amortized communication
cost of 𝑂(_𝑛2 log𝑛 + 𝑛3) (𝑂(_𝑛2) in the fault-free case) per
beacon output and does not require any trusted or expensive
setup.
• We formally prove that SPURT is available and each beacon
output is unpredictable, bias-resistant and publicly-verifiable,
against a malicious adversary controlling up to one-third of
the nodes in a partially synchronous network.
• We implement a prototype of SPURT and evaluate it in a
network of up to 128 nodes. Our evaluation illustrate that
SPURT is concretely efficient and can generate output every
few seconds.

Paper organization. The rest of the paper is organized as follows.
In §2, we discuss relevant background and introduce notations. We
then describe the system model and provide an overview of SPURT
in §3 followed by the detailed description of the protocol in §4.
We analyze the security and performance guarantees of SPURT
in §5. We present the details of our prototype implementation and

evaluation results in §6. We describe related work in detail in §7
and conclude with a discussion in §8.

2 PRELIMINARIES
Let _ be the security parameter. Let G be a cyclic abelian group
of prime order 𝑞 and Z𝑞 the group of integer modulo 𝑞. We say a
probabilistic event happens with high probability or w.h.p if that
event happens with probability 1−𝜖(𝑧) for some negligible function
𝜖 in 𝑧. We denote an element 𝑥 sampled uniformly from a finite
setM by 𝑥 ←M. We denote vectors using x and inner product
between two vectors x, y by ⟨x, y⟩. For any integer 𝑛, we will use
[𝑛] to denote the set {1, 2, . . . , 𝑛}.

We next define the desired properties of a distributed random
beacon protocol and then briefly discuss the tools we use in SPURT.

2.1 Randomness Beacon
The two most crucial property for a randomness beacon are un-
predictability and bias-resistance. Unpredictability ensures that a
cryptographically bounded malicious adversary controlling up to a
threshold fraction of nodes should not be able to predict or com-
pute any function on any future beacon outputs with non-negligible
advantage. The bias-resistance property of the beacon protocol re-
quires that every output is chosen uniformly randomly from the
intended distribution and independently of other outputs. This too
should hold even in the presence of an adversary controlling a
threshold fraction of nodes in the system.

In addition to unpredictability and bias-resistance, any beacon
protocol should also guarantee availability, i.e., an adversary con-
trolling a threshold fraction of nodes should not prevent the proto-
col from producing new beacon outputs. The final desirable prop-
erty is public-verifiability, which states that each beacon output is
efficiently verifiable even by users that do not directly participate
in the beacon generation protocol.

2.2 Zero knowledge Proof of Equality of
Discrete Logarithm

SPURT has a step that requires nodes to produce zero-knowledge
proofs about equality of discrete logarithms for a tuple of publicly
known values. In particular, given a group G of prime order 𝑞, two
uniformly random generators 𝑔, ℎ ← G and a tuple (𝑔, 𝑥, ℎ,𝑦), a
prover P wants to prove to a probabilistic polynomial time (PPT)
verifierV , in zero-knowledge, the knowledge of a witness 𝛼 such
that 𝑥 = 𝑔𝛼 and 𝑦 = ℎ𝛼 . Throughout this paper, we will use the
Chaum-Pedersen sigma protocol [27], which assumes the hardness
of the Decisional Diffie-Hellman (DDH) problem, and can be made
non-interactive using the Fiat-Shamir heuristic [35].
Decisional Diffie–Hellman assumption. Given a group G with
generator 𝑔 ∈ G and uniformly random samples 𝑎, 𝑏, 𝑐 ← Z𝑞 , the
Decisional Diffie–Hellman (DDH) hardness assumes that the follow-
ing two distributions 𝐷0, 𝐷1 are computationally indistinguishable:
𝐷0 = (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) and 𝐷1 = (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 ).
Protocol for equality of discrete logarithm. For any given tuple
(𝑔, 𝑥, ℎ,𝑦), the Chaum-Pedersen protocol proceeds as follows.

(1) P samples a random element 𝛽 ← Z𝑞 and sends (𝑎1, 𝑎2) to
V where 𝑎1 = 𝑔𝛽 and 𝑎2 = ℎ𝛽 .

3



(2) V sends a challenge 𝑒 ← Z𝑞 .
(3) P sends a response 𝑧 = 𝛽 − 𝛼𝑒 toV .
(4) V checks whether 𝑎1 = 𝑔𝑧𝑥𝑒 and 𝑎2 = ℎ𝑧𝑦𝑒 and accepts if

and only if both the equality holds.
As mentioned, this protocol can be made non-interactive in the

Random Oracle model using the Fiat-Shamir heuristic [35, 56]. This
protocol guarantees completeness, knowledge soundness, and zero-
knowledge. The knowledge soundness implies that if P convinces
the V with non-negligible probability, there exists an efficient
(polynomial time) extractor that can extract 𝛼 from the prover with
non-negligible probability.

Throughout this paper, we will use the non-interactive variant
of the protocol described above and denote it using dleq(·). In par-
ticular, for any given tuple (𝑔, 𝑥, ℎ,𝑦) where 𝑥 = 𝑔𝑠 and 𝑦 = ℎ𝑠 ,
𝜋 ← dleq.Prove(𝑠, 𝑔, 𝑥, ℎ,𝑦) generates the proof 𝜋 . Given the proof
𝜋 and (𝑔, 𝑥, ℎ,𝑦), dleq.Verify(𝜋,𝑔, 𝑥, ℎ,𝑦) verifies the proof.

2.3 Threshold Secret Sharing
A (𝑛, 𝑡 + 1) threshold secret sharing scheme allows a secret 𝑠 ∈ Z𝑞
to be shared among 𝑛 nodes such that any 𝑡 + 1 of them can come
together to reconstruct the original secret, but any subset of 𝑡 shares
cannot be used to reconstruct the original secret [16, 63]. We use
the common Shamir secret sharing [63] scheme , where the secret is
embedded in a random degree 𝑡 polynomial in the field Z𝑞 for some
prime 𝑞. Specifically, to share a secret 𝑠 ∈ Z𝑞 , a polynomial 𝑝(·) of
degree 𝑡 is chosen such that 𝑠 = 𝑝(0). The remaining coefficients
of 𝑝(·), 𝑎1, 𝑎2, · · · , 𝑎𝑡 are chosen uniformly randomly from Z𝑞 . The
resulting polynomial 𝑝(𝑥 ) is defined as:

𝑝(𝑥 ) = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥
2 + · · · + 𝑎𝑡𝑥

𝑡

Each node is then given a single evaluation of 𝑝(·). In particular, the
𝑖th node is given 𝑝(𝑖) i.e., the polynomial evaluated at 𝑖 . Observe
that given 𝑡 + 1 points on the polynomial 𝑝(·), one can efficiently
reconstruct the polynomial using Lagrange Interpolation. Also note
that when 𝑠 is uniformly random in Z𝑞 , 𝑠 is information theoreti-
cally hidden from an adversary that knows any subset of 𝑡 or less
evaluation points on the polynomial other than 𝑝(0) [63].

2.4 Publicly Verifiable Secret Sharing
SPURT crucially relies on publicly verifiable secret sharing (PVSS).
In particular, we use the PVSS scheme from Scrape [24], which is
an improvement over the Schoenmakers scheme [62]. The scheme
allows a node (dealer) to share a secret 𝑠 ∈ Z𝑞 among 𝑛 nodes, such
that any subset of at least 𝑡 + 1 nodes can reconstruct ℎ𝑠 . Here,
ℎ is one of the independent generators of G. The reconstruction
threshold 𝑡 + 1 is chosen in a way such that a colluding adversary
can not recover ℎ𝑠 without contribution of at least one honest node.
A key property of a PVSS scheme is that, not only the recipients but
any third party (with access to recipients’ public keys) can verify,
even before the reconstruction phase begins, that the dealer has
generated the shares correctly without having plaintext access to
the shares. This property is crucial to SPURT .

The PVSS scheme of Scrape [24] is non-interactive in the random
oracle model and has three procedures: PVSS.Share, PVSS.Verify,
and PVSS.Recon. A node (dealer) with public-private key pair 𝑝𝑘, 𝑠𝑘 ,
uses PVSS.Share to share a secret 𝑠 , other nodes or external users

Let 𝑠 be the secret a node (the dealer) with public-private
key pair (𝑠𝑘, 𝑝𝑘) wants to share with set of nodes with public
keys {𝑝𝑘 𝑗 }𝑗 for 𝑗 = 1, 2, . . . , 𝑛.

PVSS.Share(𝑠, 𝑔, ℎ, 𝑠𝑘, {𝑝𝑘}𝑗, 𝑗=1,2,...,𝑛)→ (v, c, 𝝅 ):
(1) Sample uniform random 𝑎𝑘 ∈ Z for 𝑘 = 1, 2, . . . , 𝑡 − 1 and

let
𝑝(𝑥 ) = 𝑠 + 𝑎1𝑥 + . . . + 𝑎𝑡𝑥

𝑡 ;
(2) Compute 𝑠 𝑗 ← 𝑝( 𝑗 ); 𝑣 𝑗 ← 𝑔𝑠 𝑗 ; and 𝑐 𝑗 ← 𝑝𝑘

𝑠 𝑗
𝑗
, ∀𝑗 ∈ [𝑛].

(3) Compute 𝜋 𝑗 ← dleq.Prove(𝑠, 𝑔, 𝑣 𝑗 , 𝑝𝑘 𝑗 , 𝑐 𝑗 )
(4) Output v = {𝑣1, 𝑣2, . . . , 𝑣𝑛}; c = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, and 𝝅 =
{𝜋1, 𝜋2, . . . , 𝜋𝑛}.

PVSS.Verify(𝑔, ℎ, v, c, 𝝅 , {𝑝𝑘}𝑗, 𝑗=1,2,...,𝑛)→ 0/1:
(1) Sample a random code word y⊥ ∈ 𝐶⊥ and check whether

𝑛∏
𝑘=1

𝑣
𝑥⊥
𝑘

𝑘
= 1G (1)

where 1G is the identity element of G.
(2) Check whether dleq.Verify(𝑔, 𝑣 𝑗 , 𝑝𝑘 𝑗 , 𝑐 𝑗 , 𝜋 𝑗 ) = 1 for all 𝑗 .
(3) Output 1 if both checks pass, otherwise output 0.

Let 𝑇 be the set of valid tuples of the form (𝑠 𝑗 , �̃�𝑘 ) where
�̃�𝑘 = dleq.Prove(𝑔, 𝑝𝑘𝑘 , 𝑠𝑘 , 𝑐𝑘 )) where |𝑇 |= 𝑡 + 1, then

PVSS.Recon({𝑠𝑘 }𝑘∈𝑇 )→ ℎ𝑠 :
(1) Output ∏

𝑘∈𝑇
(𝑠𝑘 )`𝑘 =

∏
𝑘∈𝑇

ℎ`𝑘 ·𝑝(𝑘) = ℎ𝑝(0) (2)

where `𝑘 = ∏
𝑗 ̸=𝑘

𝑗

𝑗−𝑘 for 𝑘 ∈ 𝑇 are Lagrange coefficients.

Figure 1: Scrape’s PVSS scheme.

use PVSS.Verify to validate the shares, and PVSS.Recon is used to
recover ℎ𝑠 . We describe them in detail in Figure 1.

The verification procedure of Scrape’s PVSS uses properties of
error correcting code, specifically the Reed Solomon code [59]. They
use the observation by McEliece and Sarwate [51] that sharing of a
secret using a degree 𝑡 polynomial among 𝑛 nodes is equivalent to
encoding the message (𝑥, 𝑎1, 𝑎2, · · · , 𝑎𝑡 ) using a [𝑛, 𝑡 + 1, 𝑛 − 𝑡] Reed
Solomon code [59].

Let𝐶 be a [𝑛, 𝑘, 𝑑] linear error correcting code over Z𝑞 of length
𝑛 and minimum distance 𝑑 . Also, let 𝐶⊥ be the dual code of 𝐶 i.e.,
𝐶⊥ consists vectors y⊥ ∈ Z𝑛𝑞 such that for all x ∈ 𝐶 , ⟨x, y⊥⟩ = 0.
Here, ⟨·, ·⟩ is the inner product operation. Scrape’s PVSS.Verify uses
the following basic fact (Lemma 2.1) of linear error correcting code.
We refer readers to [24, Lemma 1] for its proof, and §A for a brief
description of the Reed Solomon and its dual code.

Lemma 2.1. If x ∈ Z𝑛𝑞 \𝐶 , and y⊥ is chosen uniformly at random
from 𝐶⊥, then the probability that ⟨x, y⊥⟩ = 1 is exactly 1/𝑞.

The PVSS scheme of Scrape provides the secrecy property stated
in Theorem 2.2. We refer reader to Appendix B for the definition of
IND1-Secrecy and to [24] for the proof of the theorem.
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Theorem 2.2. (IND1-Secrecy [24, Theorem 1]) Under the deci-
sional Diffie-Hellman assumption, the PVSS protocol in [24] is IND1-
secret against a static probabilistic polynomial time adversary that
can collude with up to 𝑡 nodes.

Remark. SPURT does not use the Scrape’s PVSS scheme in a black-
box manner because their PVSS scheme requires a broadcast chan-
nel over which the dealer sends a large amount of data. Instead,
we customize the use of PVSS procedures in SPURT to minimize
the amount of data sent over the broadcast channel. Then, in the
actual implementation, we use a state machine replication protocol
to serve as the broadcast channel.

2.5 State Machine Replication
A State Machine Replication is a distributed protocol run by a
network of 𝑛 nodes to decide on a sequence of values, one for each
height. It provides the following properties.
• Agreement/Safety. If an honest node decides some value 𝑣
in height 𝑟 , then for height 𝑟 , no honest node decides on a
value 𝑣 ′ such that 𝑣 ′ ̸= 𝑣 for height 𝑟 .
• Validity/Liveness. If an honest node broadcasts a value 𝑣 ,
every honest node eventually decides 𝑣 in some height.
• Verifiability. Whenever a node decides on a value, it can
prove to other nodes and external parties the correctness of
the decided value.

Note that unlike regular SMR [26, 67], in our case only partic-
ipating nodes propose values and all decided values must meet a
certain external valid predicate𝑀 .

We will use Istanbul BFT (IBFT) [54]. It is a variant of the popular
PBFT [26] protocol and tolerates up to one third malicious nodes
in a partially synchronous network (which is optimal). IBFT is
an epoch based protocol, where each epoch has a leader. In every
epoch, the IBFT protocol finalizes a value in three steps: Propose,
Prepare, and Commit. We present a simplified description of the
IBFT protocol in Figure 2, and refer the reader to [54] for more
details.

Let 𝑟 be the current epoch and 𝐿 be its leader. Also, let ht−1
be the latest finalized height.
Propose. 𝐿 proposes a value 𝑧 to be finalized at height ht by
sending ⟨𝑝𝑟𝑜𝑝𝑜𝑠𝑒, 𝑧, 𝑟, ht, 𝑋 ⟩ message to all the nodes. Here
𝑋 is the view change certificate (if any) that validates that the
proposal is safe.
Prepare. Each node 𝑃 𝑗 , upon receiving the proposal checks
whether the proposal is consistent with IBFT specifications
using𝑋 , and𝑀(𝑧) is true for an external predicate𝑀(·). If both
checks pass, 𝑃 𝑗 multi-casts ⟨𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑧, 𝑟, ht⟩ to all nodes.
Commit. Upon receiving 2𝑓 + 1 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 messages for
the proposal 𝑧 at height ht and epoch 𝑟 , 𝑃 𝑗 multi-casts
⟨𝑐𝑜𝑚𝑚𝑖𝑡, 𝑧, 𝑟, ht⟩ message to every node.
Upon receiving 2𝑓 +1 𝑐𝑜𝑚𝑚𝑖𝑡 messages for (𝑧, 𝑟, ht), decide

𝑧 for height ht.

Figure 2: Steady state of Istanbul BFT [54] SMR protocol.

3 SYSTEM MODEL AND OVERVIEW
3.1 System Model
We consider a network of 𝑛 nodes connected via pair-wise authen-
ticated channels. We assume a standard public-key infrastructure,
i.e., every node in the system is aware of every other node’s public
key in the system. Let 𝑝𝑘𝑖 be the public key of node 𝑖 . We assume
that at most 𝑡 < 𝑛/3 nodes can be malicious. A single adversary,
A controls all malicious nodes. The remaining nodes are honest
and they strictly follow the specified protocol. We also assume that
at the start of the protocol, all honest nodes agreed on a pair (𝑔, ℎ)
of randomly and independently chosen generators of G. This is a
common reference string (CRS) setup. We assume that A cannot
break standard cryptographic constructions such as hash functions,
signatures schemes and the ones specified in §2.

We adopt the standard partially synchronous networkmodel [34],
i.e., a network that oscillates between periods of synchrony and
periods of asynchrony. During periods of synchrony all messages
sent by honest replicas adhere to a known delay bound ∆. During
periods of asynchrony messages, messages can be delayed arbitrar-
ily. (In theoretical works, the partial synchrony model [34] is often
stated differently (e.g., using an unknown Global Standardization
Time, GST) for rigor or convenience, but the essence is to capture
the practical oscillating timing model mentioned above.) A beacon
protocol in the partially synchronous model is secure if it ensures
that every beacon output is unpredictable, bias-resistant, and pub-
licly verifiable even during periods of asynchrony, and guarantees
availability during periods of synchrony.

3.2 Overview
We now give an overview of SPURT to describe our core ideas. For
ease of exposition, we will first explain how SPURT generates a sin-
gle beacon output assuming that nodes have access to a broadcast
channel. Strictly speaking, a single-value broadcast channel [48] is
impossible in a partially-synchronous network; we merely assume
its existence to simplify this overview and aid intuitive understand-
ing. Later in §4, we will replace it with an BFT SMR protocol while
preserving the overall efficiency of the protocol. Throughout this
paper, we will assume that all messages exchanged between honest
nodes are digitally signed by the sender, and recipients validate
them before processing them further.

SPURT proceeds in epochs where each epoch has a designated
leader. The leader of a given epoch is chosen using any deterministic
algorithm. For concreteness, we assume leaders are chosen in a
round-robin order, i.e., the leader of epoch 𝑟 is node 𝑖 = 𝑟 mod 𝑛

with public key 𝑝𝑘𝑖 . We will use 𝐿𝑟 to denote the leader of epoch
𝑟 . The beacon generation process in every epoch has four phases:
Commitment, Aggregation, Agreement and Reconstruction phase. We
illustrate the communication pattern of in all four in Figure 3 and
describe the message contents (symbols over the arrows) in §4.

Commitment phase. During the commitment phase, each node
chooses a uniformly random secret and computes shares for the
chosen secret using the PVSS.Share primitive described in §2.4.
Each node then sends all these shares to 𝐿𝑟 . Here on, we refer
to the messages sent by nodes to 𝐿𝑟 as the PVSS tuples of epoch
𝑟 . We remark that, despite having access to PVSS messages from
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Figure 3: Messages sent during each phase of the SPURT. We describe
contents of the messages i.e., the notations over the arrows in §4. We use
Root(·) as the shorthand for Merkle root.

all nodes, 𝐿𝑟 can not break unpredictability of SPURT. Intuitively,
this is because each share is encrypted using the public key of the
recipient node, and a zero-knowledge scheme is used for proving
consistency. We will give more details on this in §5.
Aggregation phase. In the aggregation phase, 𝐿𝑟 upon receiving
PVSS tuple from a node, validates them using PVSS.Verify from §2.4.
Upon receiving and validating PVSS messages from 𝑡 + 1 nodes, 𝐿𝑟
aggregates them using the additive homomorphic property of the
underlying polynomial commitment and encryption schemes. If
𝑝1, 𝑝2, . . . , 𝑝𝑡+1 are the underlying polynomials from the 𝑡 + 1 valid
polynomial commitments, 𝐿𝑟 aggregates them to obtain the com-
mitment to the aggregated polynomial 𝑝(𝑥 ) = ∑𝑡+1

𝑗=1 𝑝 𝑗 (𝑥 ). Moreover,
𝐿𝑟 aggregates the 𝑡 + 1 encrypted shares to obtain encrypted shares
corresponding to the aggregated polynomial 𝑝(·).
Agreement phase.After aggregation,𝐿𝑟 computes a cryptographic
digest of the commitment of the aggregated polynomial 𝑝(·), the
identities (or indices) of nodes whose polynomial are aggregated
into 𝑝(·), and the encrypted shares of the secret embedded in 𝑝(·).
𝐿𝑟 then sends this cryptographic digest to all of the nodes via a
broadcast channel. Note again that our actual protocol will use an
SMR protocol instead.

Additionally, to each node 𝑖 , 𝐿𝑟 sends node 𝑖 the entire commit-
ment to the aggregated polynomial 𝑝(·), and the encrypted shares
corresponding to 𝑝(·) using the pair-wise channel between 𝑖 and 𝐿𝑟 ,
Moreover, 𝐿𝑟 also sends the encrypted shares for 𝑖 of the original
𝑡 + 1 polynomials aggregated into 𝑝(·), and the corresponding NIZK
proofs. Note that these shares are encrypted under the public key
of 𝑖 . In total, during the agreement phase, 𝐿𝑟 sends𝑂(_) bits of data
via the broadcast channel and𝑂(𝑛_) bits of data to each node using
pair-wise private channels.

Each node 𝑖 , upon receiving the cryptographic digest over the
broadcast channel and private messages from 𝐿𝑟 , validates them to
ensure that 𝐿𝑟 did the aggregation phase correctly. For this step,
node 𝑖 relies on the properties of linear error-correcting code and
NIZK proofs forwarded by 𝐿𝑟 . Upon successful validation, node
𝑖 starts the reconstruction phase. Else, node 𝑖 moves to the next
epoch with the next leader and the cycle continues.
Reconstruction phase. When the agreement phase terminates,
i.e., all honest nodes agree on the cryptographic digest broadcast
by the 𝐿𝑟 , every honest node who received valid shares from 𝐿𝑟

;

root

Merkle Root

Figure 4: Aggregation phase at the leader.

multicasts its aggregated share along with the NIZK proof of its
correctness. As we show in §5, if the agreement phase terminates
successfully, then at least 𝑡 + 1 honest nodes hold valid shares
of the aggregated polynomial 𝑝(·). Also, all nodes will be able to
prove the correctness of their aggregated shares. Moreover, all
these nodes starts the reconstruction process within three message
transmission delays. Hence, during the reconstruction phase, every
honest node will receive at least 𝑡 + 1 valid shares of 𝑝(·), along
with their correctness proofs. As a result, every honest node will
be able to successfully reconstruct the polynomial ℎ𝑝(·), and hence
the output of the beacon for this epoch.

4 DESIGN
In this section, we present the detailed design of SPURT. As dis-
cussed in previous sections, SPURT proceeds in epochs and each
epoch has four phases. We next describe each phase in detail.

Let 𝑔 and ℎ be two independently chosen generators of a group
G of order 𝑞 (this is the common reference string). We will model
hash(·) as a random oracle. Recall from §A, 𝐶 is the linear error
correcting code corresponding to (𝑡, 𝑛 + 1) Shamir secret sharing
and 𝐶⊥ is the dual code of 𝐶 . Let 𝑠𝑘𝑖 ← Z𝑞 and 𝑝𝑘𝑖 = ℎ𝑠𝑘𝑖 be the
secret and public keys of node 𝑖 .

4.1 Commitment Phase
For any given epoch 𝑟 , let 𝐿𝑟 be its leader. Each node 𝑖 samples a
uniformly random secret 𝑠𝑖 ← Z𝑞 and computes the PVSS tuples
using the PVSS.Share primitive described in §2.4:

v𝑖 , c𝑖 , 𝝅𝑖 ← PVSS.Share(𝑠𝑖 , 𝑔, ℎ, 𝑠𝑘𝑖 , {𝑝𝑘}𝑗, 𝑗=1,2,...,𝑛) (3)

Recall from Figure 1, v𝑖 = {𝑣𝑖,1, 𝑣𝑖,2, . . . , 𝑣𝑖,𝑛}, c𝑖 = {𝑐𝑖,1, 𝑐𝑖,2, . . . , 𝑐𝑖,𝑛},
and 𝝅𝑖 = {𝜋𝑖,1, 𝜋𝑖,2, . . . , 𝜋𝑖,𝑛}. Node 𝑖 then sends the tuple (v𝑖 , c𝑖 , 𝝅𝑖 )
to 𝐿𝑟 .

4.2 Aggregation Phase
The leader 𝐿𝑟 , on receiving each PVSS tuple (v𝑖 , c𝑖 , 𝝅𝑖 ), validates
them using PVSS.Verify(v𝑖 , c𝑖 , 𝝅𝑖 ). Upon receiving 𝑡 + 1 valid PVSS
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tuples, 𝐿𝑟 aggregates them as follows. Let 𝐼 ⊆ [𝑛] be the set of
nodes that send valid PVSS tuples. 𝐿𝑟 computes the commitment
v̂ = (𝑣1, 𝑣2, ..., 𝑣𝑛) of the aggregated polynomial 𝑝(·) = ∑

𝑖∈𝐼 𝑝𝑖 (·),
where

𝑣ℓ =
∏
𝑖∈𝐼

𝑣𝑖,ℓ (4)

Similarly, 𝐿𝑟 aggregates the encryptions using their additive ho-
momorphism property, i.e., 𝐿𝑟 computes the vector ĉ = (𝑐1, 𝑐2, ..., 𝑐𝑛),
where

𝑐ℓ =
∏
𝑖∈𝐼

𝑐𝑖,ℓ (5)

Figure 4 illustrates this step using 𝐼 = {1, 2, . . . , 𝑡 + 1} as an ex-
ample. Observe that the 𝑡 + 1 PVSS tuples received and validated
by 𝐿𝑟 can be represented as three matrices shown in Figure 4. Here
on, we refer to these matrices as the commitment matrix {𝑣𝑖, 𝑗 }, the
ciphertext matrix {𝑐𝑖, 𝑗 }, and the proof matrix {𝜋𝑖, 𝑗 }. Let c̄𝑗 , v̄𝑗 and
�̄� 𝑗 be the 𝑗 th column of the ciphertext, commitment, and proof ma-
trix respectively. Stated differently, c̄𝑗 is the set of encryptions
sent by nodes in 𝐼 that are encrypted under the public key of
node 𝑗 . Similarly, v̄𝑗 and �̄� 𝑗 are 𝑗 th coordinate of commitments
and dleq proofs sent by nodes in 𝐼 , respectively. Without loss of
generality, let 𝐼 = {1, 2, . . . , 𝑡 + 1}, then c̄𝑗 = {𝑐1, 𝑗 , 𝑐2, 𝑗 , . . . , 𝑐𝑡+1, 𝑗 },
v̄𝑗 = {𝑣1, 𝑗 , 𝑣2, 𝑗 , . . . , 𝑣𝑡+1, 𝑗 }, and �̄� 𝑗 = {𝜋1, 𝑗 , 𝜋2, 𝑗 , . . . , 𝜋𝑡+1, 𝑗 }.

Then, 𝑐 𝑗 is the product of all elements in c̄𝑗 and 𝑣 𝑗 is the product
of all elements in v̄𝑗 .

Next, 𝐿𝑟 computes root, the Merkle root [52] that commits 𝐼 , v̂,
and ĉ, also shown in Figure 4. In the agreement phase, root will be
the only value that is sent using the SMR protocol. 𝐼 , v̂, ĉ themselves
and the original PVSS tuples will be sent privately to corresponding
nodes.

4.3 Agreement Phase
Let ht be the height chosen by 𝐿𝑟 according to SMR. Then, to each
node 𝑗 , 𝐿𝑟 sends (root, v̂, ĉ, 𝐼 , v̄𝑗 , c̄𝑗 , �̄� 𝑗 , ht) and proposes root using
the SMR protocol for height ht.

Observe that in the above message, only v̄𝑗 , c̄𝑗 , and �̄� 𝑗 are recipi-
ent specific and everything else is common to all nodes. Essentially,
the tuple 𝐿𝑟 sends to each node corresponds to the BFT SMR pro-
posal on root for epoch 𝑟 and height ht.

Upon receiving (root, v̂, ĉ, 𝐼 , v̄𝑗 , c̄𝑗 , �̄� 𝑗 , ht) from 𝐿𝑟 , node 𝑗 vali-
dates them by checking:

(1) The proposal is safe according to SMR,
(2) root is a valid Merkle root of 𝐼 , v̂, and ĉ; and
(3) For a randomly chosen code word y⊥ = {𝑦⊥1 , 𝑦

⊥
2 , ..., 𝑦

⊥
𝑛 } from

the dual code 𝐶⊥
𝑛∏

𝑘=1
𝑣
𝑦⊥
𝑘

𝑘
= 1G; and (6)

(4) Every tuple (𝑣𝑖, 𝑗 , 𝑐𝑖, 𝑗 , 𝜋𝑖, 𝑗 ) ∈ (v̄𝑗 , c̄𝑗 , �̄� 𝑗 ) is valid dleq proof
according to §2.2; and

(5) 𝑐 𝑗 = ∏
𝑖∈𝐼 𝑐𝑖, 𝑗 and 𝑣 𝑗 = ∏

𝑖∈𝐼 𝑣𝑖, 𝑗 .
If all of the above mentioned checks are satisfied, node 𝑗 multi-

casts the ⟨𝑝𝑟𝑒𝑝𝑎𝑟𝑒, root, 𝑟 , ht⟩ to all other nodes. Alternatively, if
any of the above checks fails or if 𝑗 does not receive the required
private information from 𝐿𝑟 , 𝑗 does not send the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 message
in the prepare step of the SMR protocol (cf. §2.5).

As discussed in Figure 2, every honest node upon receiving 2𝑡 +
1 ⟨𝑝𝑟𝑒𝑝𝑎𝑟𝑒, root, 𝑟 , ht⟩ messages multi-casts ⟨𝑐𝑜𝑚𝑚𝑖𝑡, root, 𝑟 , ht⟩
to all other nodes. Next, each honest node upon receiving 2𝑡 + 1
⟨𝑐𝑜𝑚𝑚𝑖𝑡, root, 𝑟 , ht⟩ messages decide on root at height ht.

4.4 Reconstruction Phase
Every honest node that decides root (cf. §2.5) and receives valid
messages from the leader during the agreement phase starts the
reconstruction phase for the beacon at height ht. In particular, these
nodes compute the reconstruction share 𝑠 𝑗 and its correctness proof
�̃� 𝑗 as in equation (7) and multicasts (𝑠 𝑗 , �̃� 𝑗 ) them to all other nodes.

𝑠 𝑗 = 𝑐

1
𝑠𝑘𝑗

𝑗
= ℎ

∑
𝑖∈𝐼 𝑠𝑖,𝑗 ; and �̃� 𝑗 = dleq.Prove(𝑠𝑘 𝑗 , ℎ, 𝑝𝑘 𝑗 , 𝑠 𝑗 , 𝑐 𝑗 ) (7)

Let 𝐻 be the set of honest nodes and let 𝑉 ⊆ 𝐻 be the set
of honest nodes that received valid messages from 𝐿𝑟 during the
proposal step of the SMR, but are yet to decide on root. Upon
hearing a reconstruction message (𝑠 𝑗 , �̃� 𝑗 ) from a node 𝑗 , nodes in
𝑉 requests node 𝑗 for the proof of the decision on root, to which
node 𝑗 responds by sending the multi-signature of the proof of
decision. Upon receiving the multi-signature, nodes in 𝑉 validate
it for correctness, and on successful validation multi-casts their
reconstruction shares all other nodes. This implies all honest nodes
who received valid shares from 𝐿𝑟 start the reconstruction within
three message delays from the instant an honest node decides on
root.

Every node 𝑖 , upon receiving a tuple (𝑠 𝑗 , �̃� 𝑗 ), validates �̃� 𝑗 us-
ing dleq.Verify. Note that some honest nodes who did not receive
valid messages from the leader, may not have v̂ and/or ĉ. In such
a situation, these nodes query the sender of (𝑠 𝑗 , �̃� 𝑗 ) for (𝑣 𝑗 , 𝑐 𝑗 ) and
the Merkle path from (𝑣 𝑗 , 𝑐 𝑗 ) to root, and validate them using
dleq.Verify

Let𝑇 be the set of nodes from which node 𝑖 receives valid (𝑠 𝑗 , �̃� 𝑗 )
tuples. Upon receiving 𝑡 + 1 such valid tuples, i.e., when |𝑇 |≥ 𝑡 + 1, 𝑖
outputs the beacon output for height ht as ℎ𝑠 . Recall from §4.1, 𝑠 =
𝑝(0) = ∑

𝑖∈𝐼 𝑠𝑖 . The honest nodes constructs ℎ𝑠 using the Lagrange
interpolation: ∏

𝑘∈𝑇
(𝑠𝑘 )`𝑘 =

∏
𝑘∈𝑇

ℎ`𝑘 ·𝑝(𝑘) = ℎ𝑝(0) (8)

where `𝑘 = ∏
𝑗 ̸=𝑘

𝑗

𝑗−𝑘 are the Lagrange coefficients.

4.5 Optimizations
In this section, we will describe few optimizations we employ to
improve the computation efficiency of nodes and amortize the
computation and bandwidth usage of the leader.
Pre-aggregating data. Recall from §4.2, during the aggregation
phase, the leader validates a total of 𝑂(𝑛2) NIZK proofs. Moreover,
the leader aggregates polynomial commitments from 𝑡 + 1 nodes.
As a result, the leader performs 𝑂(𝑛2) group exponentiations. For
a large 𝑛, this may introduce delay in the agreement phase, and
hence delay the beacon generation process.

SPURT addresses this by enabling leaders to pre-compute the
messages of aggregation phase. In particular, at any epoch 𝑟 , every
node sends their PVSS shares for epoch 𝑟 + 𝜏 to 𝐿𝑟+𝜏 . Here, 𝜏 is
a system parameter. Since the leader selection rule in SPURT is
deterministic, 𝐿𝑟+𝜏 is fixed, and known to all nodes in advance. 𝐿𝑟+𝜏 ,
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upon receiving the shares for epoch 𝑟 + 𝜏 , immediately starts aggre-
gating them as in §4.2, and sends the aggregated messages as well
as the private messages to each node. By doing so, SPURT amor-
tizes the leader’s higher usage of computation and communication
across 𝜏 epochs. As a result, during epoch 𝑟 + 𝜏 , 𝐿𝑟+𝜏 only sends
_ bits of information to every node, incurring a total bandwidth
usage of 𝑂(𝑛_) bits (instead of 𝑂(𝑛2_) bits), which is comparable to
non-leader nodes.
Multi-exponentiation.We further reduce the computation cost
using the multi-exponentiation technique [53]. For any given group
G, let g = [𝑔1, 𝑔2, · · · , 𝑔𝑚] be a vector of𝑚 elements in G, and let
a = [𝑎1, 𝑎2, · · · , 𝑎𝑚] be a vector of𝑚 scalars in Z𝑞 . Given a and g,
the multi-exponentiation technique computes more efficiently:

𝑔′ =
𝑚∏
𝑘=1

𝑔
𝑎𝑘
𝑘

(9)

In SPURT, nodes need to compute an expression of this form to:
(𝑖) validate the polynomial commitments sent during commitment
phase; (𝑖𝑖) validate the aggregated polynomial sent by the leader;
and (𝑖𝑖𝑖) compute the beacon output from reconstruction shares.
In our implementation, we use the Interleaved window method of
computing multi-exponentiation from Strauss [13].

5 ANALYSIS
In this section, we will first argue that SPURT is available in a par-
tially synchronous network. Next, we will prove that every output
of SPURT is unpredictable, bias-resistant, and publicly-verifiable.
We then analyze the computation and communication complexity
of each epoch. Lastly, we will discuss the latency involved in gen-
erating a beacon output. Throughout our analysis, we will assume
that the dleq protocol is sound and complete.

5.1 Reconstructability and Availability
We will first argue that at any given epoch 𝑟 and height ht, if an
honest node decides on a digest root, then at least 𝑡+1 honest nodes
must have possessed and validated the private messages associated
with root. We then use this property, the safety property of the BFT
SMR, and the fact that the beacon output for every decided value
is reconstructible by all honest nodes to prove the bias-resistance
property of SPURT.

Lemma 5.1. At any given height ht and epoch 𝑟 , if an honest node
decides on root, then at least 𝑡+1 honest nodes received valid messages
from 𝐿𝑟 at epoch 𝑟 .

Proof. An honest node decides root, only if it receives a quo-
rum Q2 of 2𝑡 + 1 𝑐𝑜𝑚𝑚𝑖𝑡 messages. Since, there are at most 𝑡 ma-
licious nodes in the system, at least 𝑡 + 1 of the nodes in Q2 are
honest. Also, since an honest node sends a 𝑐𝑜𝑚𝑚𝑖𝑡 message only
upon receiving 2𝑡 + 1 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 messages, by a similar argument this
implies that at least 𝑡 + 1 honest nodes sent 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 message.

Recall from §4.3, an honest node sends a 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 message only
if it received a valid message from 𝐿𝑟 , this implies that at least 𝑡 + 1
honest nodes received valid messages for epoch 𝑟 . □

Next, wewill argue that whenever honest nodes output any value
due to the SMR then w.h.p the degree of the underlying polynomial
is at most 𝑡 .

Lemma 5.2. For any given epoch 𝑟 and height ht, if an honest
node outputs root and 𝑝(·) is the polynomial whose commitment is
embedded in the leaves of root, i.e.,

v̂ = (𝑔𝑝(1), 𝑔𝑝(2), ..., 𝑔𝑝(𝑛)) (10)

then with probability at least 1 − 1/𝑞, deg(𝑝(·)) ≤ 𝑡 , where deg(·)
denote the degree of the polynomial.

Proof. When an honest node outputs root in any epoch 𝑟 , from
Lemma 5.1 we know that at least 𝑡 + 1 nodes have validated the
messages sent by 𝐿𝑟 and found them to be valid. This implies that
the check (6) was successful for at least 𝑡 + 1 nodes.

Recall from Lemma (2.1), for any polynomial of degree greater
than 𝑡 , at any honest node, the check in equation (6) passes with
probability exactly 1/𝑞. Let 𝐴 be the event that deg(𝑝(·)) > 𝑡 and
the check (6) was successful for at least 𝑡 + 1 honest nodes. Since
every honest node checks this condition independently,

Pr[𝐴] ≤
(
2𝑡 + 1
𝑡 + 1

)
1

𝑞𝑡+1 ≤
1
𝑞

; (since 𝑡 ≪ 𝑞) □

An immediate consequence of Lemma 5.1 and 5.2 is that for
every root output by the SMR the corresponding beacon output
ℎ𝑝(0) is reconstructible by the honest parties.

Lemma 5.3. For any given epoch 𝑟 , if an honest node decides root,
then ℎ𝑝(0) is reconstructible by the honest nodes.

Proof. From Lemma 5.2 and 5.1 w.h.p the degree of 𝑝(·) is at
most 𝑡 and at least 𝑡 + 1 honest nodes received valid messages
from 𝐿𝑟 . Let 𝑇 be the set of indices of such honest nodes, then
by the security guarantees of dleq, each node 𝑃 𝑗 for 𝑗 ∈ 𝑇 holds
ℎ𝑠𝑘 𝑗 ·𝑝(𝑗 ). Also, these nodes can compute the decrypted share ℎ𝑝(𝑗 )

and construct a NIZK proof of its correctness using their secret key
𝑠𝑘 𝑗 . Honest nodes can use these shares to reconstruct ℎ𝑝(0) using
Lagrange interpolation. □

Next, we will argue that during periods of synchrony, when an
honest node becomes leader SPURT is available.

Theorem 5.4. (Availability) During periods of synchrony, if the
leader 𝐿𝑟 of an epoch 𝑟 is honest, w.h.p SPURT will produce an output
and that output will be available at every honest node.

Proof. When 𝐿𝑟 is honest, all the checks described in §4.3 will
be successful at every honest node. Thus, the SMR will proceed
normally. Hence, during periods of synchrony, due to the liveness
property of the SMR honest nodes will decide on the value pro-
posed by 𝐿𝑟 . Next, from Lemma 5.3, we know that whenever the
SMR decides, the corresponding beacon output is reconstructible.
Moreover, from §4.4, we know that every node that received a
valid message during the agreement phase will multi-cast their
decrypted shares along with its proof of correctness to every other
node. This implies that every honest node will receive at least 𝑡 + 1
valid decrypted shares to reconstruct the beacon output for epoch
𝑟 . □
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5.2 Unpredictability and Bias-Resistance
It follows from Theorem 2.2, Proposition 1 of [46], and knowledge
soundness of dleq protocol that w.h.p the polynomials chosen by
the adversarial nodes are independent of the polynomials chosen
by the honest nodes. We will use this to argue that every beacon
output includes an input of at least one honest node.

Proposition 5.5. For any epoch 𝑟 , if honest nodes decide on root
and 𝑝(·) be the underlying polynomial, then there exists an honest
node such that

𝑝(𝑥 ) = 𝑝𝑖 (𝑥 ) + 𝑞(𝑥 )
where 𝑝𝑖 (·) is the polynomial chosen by node 𝑖 and 𝑞(·) is a polynomial
of degree 𝑡 independent of 𝑝𝑖 (·). As a result, 𝑝(0) is uniformly random
and independent of aggregated polynomial of any other epoch.

Proof. When an honest node decides root, by Lemma 5.1 and
the collision resistance property of the hash function, at least 𝑡 + 1
honest nodes validate that contribution from at least 𝑡 + 1 nodes
are included elements of the commitment vector v̂ = (𝑣1, 𝑣2, . . . , 𝑣𝑛).
Since, there are at most 𝑡 malicious nodes, this implies that contri-
bution from at least one honest node is included in at least 𝑡 + 1
elements of v̂.

Without loss of generality, let 𝑖 be the honest node whose contri-
bution is included in 𝑡 + 1 elements of v̂ and 𝑝𝑖 (·) be the polynomial
chosen by node 𝑖 . By construction deg(𝑝𝑖 (·)) = 𝑡 . Thus the 𝑡 + 1 eval-
uation points validated by the 𝑡 + 1 honest nodes fix the polynomial
𝑝𝑖 (·) and hence all other evaluation points of 𝑝𝑖 (·). Moreover, since
the polynomials chosen by adversarial nodes are independent of
𝑝𝑖 (·), this implies that evaluation of 𝑝𝑖 (·) must be included at all
other remaining elements v̂ as well. Hence, 𝑝(𝑥 ) = 𝑝𝑖 (𝑥 ) +𝑞(𝑥 ). This
immediately implies deg(𝑞(·)) ≤ 𝑡 . □

Next we will use Proposition 5.5, the safety property of SMR and
the fact that beacon output for every SMR decision is reconstructible
by all nodes to prove that SPURT is bias-resistant.

Theorem 5.6. (Bias-Resistant) Every SPURT output is uniformly
random and is independent of any other beacon output.

Proof. For any epoch 𝑟 and height ht, from Proposition 5.5, we
know that for every SMR decision on digest root corresponding
to aggregated polynomial 𝑝(·), 𝑝(0) is uniformly random and inde-
pendent of aggregated polynomials of any other height. Moreover,
from Lemma 5.3, a beacon output corresponding to every digest
finalized by the atomic broadcast is reconstructible. This implies
that SPURT is bias resistant. □

Theorem 5.7. (Unpredictability) SPURT ensures unpredictability
in the sense that as soon an adversary A learns any function of a
beacon output, every honest party learns the beacon output within
three communication delays.

Proof. From Proposition 5.5, every beacon output includes a
secret from at least one honest party. Let 𝑠∗ be the secret of the
honest node. Then, from Theorem 2.2, till an honest node starts
reconstruction of the aggregated secret, 𝑠∗ is indistinguishable from
a uniformly randomly chosen element in Z𝑞 . Whenever an honest
node starts the reconstruction phase, after a round trip delay all
honest nodes start the reconstruction phase. Hence, all honest nodes

Table 2: Summary of communication and computation cost of each epoch
of SPURT. — indicate the no cost for the corresponding phase.

Communication Computation

Protocol Phase Leader Non-leader Leader Non-leader

Commitment 𝑂(_𝑛2) 𝑂(_𝑛) — 𝑂(𝑛)
Aggregation — — 𝑂(𝑛2) —
Agreement 𝑂(_𝑛2) 𝑂(_𝑛) — 𝑂(𝑛)
Reconstruction — 𝑂(_𝑛) ;𝑂(_𝑛 log𝑛 + 𝑛2) — 𝑂(𝑛)

will reconstruct the corresponding beacon output at most three
communication delays later since the time the adversary learns the
output. This implies that SPURT ensures unpredictability. □

5.3 Public Verifiability
Public verifiability for beacon protocols producing true random
numbers differs from beacon protocols producing pseudorandom
numbers [2, 22, 44, 64]. In pseudorandom beacons, each beacon
output is some deterministic function of the secret key generated
during the initial setup phase. Hence, the output of such protocols
can be efficiently verified given only the verification/public key
corresponding to the secret key used for beacon generation. Con-
trary to this, truly random beacon protocols such as Scrape [24],
Hydrand [61], and SPURT do not have a trusted setup phase, so
their outputs are verified using the transcript of the interaction
between nodes.

At any given height ht, let root be digest decided by honest
nodes, and 𝑜ht be the output of SPURT. Then, to verify the validity
of 𝑜ht, a user (need not be one of the nodes) queries up to 𝑡 +1 nodes,
either in sequence or in parallel, for the SMR decision certificate
Cht for height ht, leaves of the Merkle tree corresponding to root,
and the 𝑡 + 1 valid reconstruction shares along with their proofs
of correctness. Note that, from Theorem 5.4, every honest node
will have these information at the end of the reconstruction phase.
Upon receiving these information the external client can validate
them by checking that:

• Cht is a multi-signature of at least 2𝑡 + 1 nodes.
• root is a valid Merkle root of the received leaves.
• The dleq proofs of all the reconstruction shares are valid and
consistent with root and the quorum certificate Cht.

5.4 Performance
In this section, we analyze the communication cost of each epoch
and the amortized cost of generating every beacon output. We will
report the communication complexity in number of bits each node
needs to send in every epoch. We then analyze the computation
complexity of each node measured in of number of exponentiations
each node needs to perform every epoch the amortized computation
cost of each beacon output. Also, throughout this section, we will
assume that signatures and multi-signatures are 𝑂(_) and 𝑛 +𝑂(_)
bits long, respectively. Also, we assume that a node needs to perform
𝑂(1) exponentiation to compute and validate a single signature, and
𝑂(𝑘) exponentiations to create and validate a multi-signature of 𝑘
nodes. We summarize our performance analysis in Table 2.
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Communication cost.During the commitment phase of an epoch
𝑟 , each node sends 𝑂(𝑛) group elements to 𝐿𝑟 . Thus, the commit-
ment phase’s total communication cost is 𝑂(_𝑛2). Next, during the
agreement phase 𝐿𝑟 sends back𝑂(𝑛) group elements to every node.
During the agreement phase, every node multi-casts a constant
number of group elements to all other nodes. Hence, the agree-
ment phase’s total communication complexity is 𝑂(_𝑛2). Finally,
during the reconstruction phase, in the fault-free case, every honest
node sends only a constant number of group elements to every
other honest node. In other scenarios, nodes might have to send
the Merkle path (𝑂(log𝑛) group elements) from their share to the
Merkle root, the aggregated signature, and the list of signers (𝑂(𝑛)
bits) to all other nodes. Hence, SPURT incur a total communica-
tion cost 𝑂(_𝑛2 log𝑛 + 𝑛3) bits in the worst case and 𝑂(_𝑛2) in the
fault-free case.

Observe that during periods of synchrony, for every 𝑛 epochs,
there will be at least ⌈2𝑛/3⌉ honest leaders. From Theorem 5.4, for
every honest leader, SPURTwill produce an output. Hence, in every
sequence of 𝑛 epochs, SPURT will output at least ⌈2𝑛/3⌉ outputs.
This implies that the amortized communication complexity of each
beacon output is 𝑂(_𝑛2) in the fault-free case and 𝑂(_𝑛2 log𝑛 + 𝑛3)
in the worst case.

Computation cost. During the commitment phase of an epoch 𝑟 ,
each node performs𝑂(𝑛) exponentiation to evaluate PVSS.Share for
their chosen secret, and to sign the PVSS shares. In the aggregation
phase, only 𝐿𝑟 verifies the PVSS shares from all nodes. Since, verifi-
cation of each node requires𝑂(𝑛) exponentiations [24], 𝐿𝑟 performs
𝑂(𝑛2) exponentiation to verify all the PVSS shares. Computing the
aggregated commitment and aggregated encryption requires 𝑂(𝑛2)
multiplications. Lastly, 𝐿𝑟 performs 𝑂(𝑛) operations to construct
the required Merkle tree. Overall, during the aggregation phase,
the leader of the epoch performs 𝑂(𝑛2) exponentiations and the
remaining nodes do not perform any computation.

During the agreement phase, each node performs 𝑂(𝑛) expo-
nentiations to validate signatures, and the aggregated polynomial.
Finally, in the reconstruction phase, every node verifies 𝑂(𝑛) dleq
proofs and possibly reconstructs a Merkle tree of size 𝑂(𝑛). More-
over, nodesmight also need to aggregate𝑂(𝑛) signatures. Hence, the
computation cost per node in both agreement and reconstruction
phase is 𝑂(𝑛).

In summary, in every epoch, the leader of the epoch performs
𝑂(𝑛2) exponentiations whereas every other node performs 𝑂(𝑛)
exponentiations. However, in a sequence of 𝑛 epochs, each node
becomes the leader only once, and due to pre-aggregation opti-
mization (cf. §4.5), the leader gets 𝜏 = Θ(𝑛) rounds to compute
𝑂(𝑛2) exponentiations. As a result, during periods of synchrony,
the amortized computation cost of each beacon output is 𝑂(𝑛) ex-
ponentiation per node.

Public verification. Recall from §5.3, to validate a beacon output,
external clients need to download the SMR BFT decision certificate,
the leaves of the Merkle tree, the reconstruction shares, and the
corresponding dleq proofs. Each of these messages is 𝑂(𝑛) group
elements. Hence, the communication cost of verifying a beacon
output is 𝑂(_𝑛). Moreover, verifying all these messages require
𝑂(𝑛) exponentiations. Verifying 𝑂(𝑛) signatures and dleq proofs,
constructing the Merkle tree, and reconstruction of the secret all

have a computation cost of 𝑂(𝑛), so the computation complexity of
public verification is 𝑂(𝑛).
Latency. During periods of synchrony, when an honest node is
chosen as the leader of an epoch, SPURT produces a beacon output.
Thus, in the fault-free case, in practice, SPURT would only require
five message delays. However, there might be a sequence of 𝑡 mali-
cious leaders in the worst case, and all of them may decide to abort
their epochs. In such cases, SPURT will take 𝑂(𝑡 ) message delay
to produce the next output. Nevertheless, since in a sequence of
𝑛 epochs, SPURT will produce at least 2𝑛/3 beacon outputs, the
amortized latency of SPURT is 1.5 epochs.

6 IMPLEMENTATION & EVALUATION
We have implemented a prototype of SPURT using the go pro-
gramming language version 1.9.0. Our implementation builds atop
the open-source Quorum client version 2.4.0. Quorum is a fork of
Ethereum go client and implements the Istanbul BFT protocol as
one of its consensus protocol. Istanbul BFT [54] is a variant of PBFT
protocol with a total quadratic communication complexity both
during view change and steady-state.

Throughout our implementation, we have used the ed25519 el-
liptic curve for our cryptographic primitive and have used the
filippo.io/edwards25519 [3] package for primitive elliptic curve op-
erations. Thus, throughout our evaluation, the security parameter
_ is 256 bits. For multi-exponentiations, we have used the native
implementation of [3], which implements the interleaved window
method. Also, we disable the IBFT parameter to artificially control
the time between two consecutive proposals and modify the under-
lying implementation such that the next leader proposes its value
as soon as the previous beacon output is finalized.

6.1 Experimental Setup
We evaluate our implementation of SPURT with varying nodes, i.e.,
16, 32, 64, and 128.We run all nodes on AmazonWeb Services (AWS)
t3a.medium virtual machine (VM) with one node per VM. All VMs
have two vCPUs, 4GB RAM and 5.0 GB/s network bandwidth. The
operating system for each VM is Ubuntu 20.04.

To simulate an execution over the internet, we pick eight differ-
ent AWS regions, namely, Canada, Ireland, London, N. California,
N. Virginia, Paris, Singapore, and Tokyo. For any given choice of
the total number of nodes, we distribute the nodes evenly across all
eight regions. We create an overlay network among nodes where
all nodes are pair-wise connected, i.e., they form a complete graph
or any given network size.

6.2 Evaluation Results
All our evaluation results are averaged over three runs for each
value of number of nodes.
Throughput. We report the throughput of SPURT as the number
of beacon output generated per minute in Figure 5. With 16, 32,
and 64 nodes, SPURT on average can generate 4, 2, and 1 beacon
output per second. With 128 nodes, SPURT takes about 3 seconds
to generate one beacon output.

One interesting thing we observe is that, despite the fact that Hy-
drand [61] and SPURT have similar communication cost in the fault-
free case operation, i.e., without any adversarial attacks, throughput
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Figure 5: Average number of random beacon generated per minute with
varying number of nodes.
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Figure 6: Average bandwidth usage (send + received data) measured in
Kilobytes per beacon output with varying number of nodes.

Data sent (bits) 𝑛 = 64 (KBytes)
Protocol Leader Non-leader Leader Non-leader

Scrape [24] — BB(4_𝑛 + 2_) — —
Hydrand [61] (10/3)_𝑛2 + 7_𝑛 14_𝑛 450 28
SPURT (10/3)_𝑛2 + 5_𝑛 9_𝑛 442 18

Table 3: Bandwidth usage per node per beacon output. Here BB(𝑥 ) is the
bandwidth usage of byzantine broadcast of a message of size 𝑥 .

of SPURT is about 3 or more times higher than Hydrand [61]. We
believe this is because SPURT is partially synchronous, i.e., it does
not require any network delay parameter and hence can make
progress at the speed of true network delay. In the literature, this
is also referred to as the responsiveness property of protocols [67].
Bandwidth usage. We report the bandwidth usage measured as
the amount of bytes sent and received per node per beacon output
in Figure 6. Recall from §5 that at every epoch, each node sends
and receives a total of 𝑂(𝑛_) bits of information to and from other
nodes. Hence, with an increase in the number of nodes, we observe
an approximately linear increase in the bandwidth usage per node
per beacon output. For example, from 64 to 128 nodes, the average
bandwidth usage per node per beacon output increases from 43 to
83 Kilobytes.

In Table 3, we present the number of bits sent by each node
during the fault-free case operation of SPURT, and compare it
against Scrape and Hydrand. We calculate these numbers based on
their protocol specifications, and we measure the cost of sending
both scalars and group-elements as _ bits to avoid any discrepancies
in implementation details. Since Scrape uses a broadcast channel in
a black-box manner, we measure its cost as the number of bits each
node needs to send over the broadcast channel. Hence, we denote
it as BB(·). For concreteness, we calculate this value for the 64 node
network. We note that each node in SPURT sends 18 Kilobytes of
data in comparison to 28 kilobytes in Hydrand; the leader in SPURT
sends 442 Kilobytes of data, whereas the leader in Hydrand sends
450 Kilobytes of data.
Computation cost. Table 4 presents the time required for each
of the four phases. Except for the aggregation phase, the other
three phases take less than 0.1 seconds. Furthermore, for these
phases, the computation time increases linearly with the number
of nodes. The aggregation phase requires the leader to perform a

Time taken (in milliseconds)

Protocol Phase 𝑛 = 16 𝑛 = 32 𝑛 = 64 𝑛 = 128

Commitment 6.0 12.14 24.6 51.18
Aggregation 48.63 180.57 718.22 2811.18
Agreement 7.63 13.86 27.33 54.16
Reconstruction 7.83 14.11 27.87 55.67

Table 4: Time taken (in milliseconds) to compute different cryptographic
functions required in the different phases of SPURT. All measurements
performed using a t3a.medium AWS EC2 instance.

# exponentiations 𝑛 = 64
Protocol Leader Non-leader Leader Non-leader

Scrape [24] — (15/4)𝑛2 + 13𝑛 + 3 — 16848
Hydrand [61] 4𝑛 + 4 3𝑛 262 192
SPURT 𝑛2 + 3𝑛 5𝑛 + 5 4416 327

Table 5: Computation cost measured in number of exponentiations per
node per beacon output in the normal case operation.

quadratic number of exponentiations, so the computation time is
higher than the other phases. Nevertheless, since we pipeline the
aggregation phase by sending the commitments to the leader in
advance (cf. §4.5), the aggregation phase is not the bottleneck in
the critical path.

In Table 5, we present the number of exponentiations each node
needs to perform for any given epoch during a fault-free operation
and compare it with the number of exponentiations required for
fault-free operation in Scrape and Hydrand. In Scrape for every
beacon output, each node performs a quadratic number of exponen-
tiations. In SPURT only the leader performs a quadratic number of
exponentiation whereas all other nodes perform a linear number of
exponentiations. In Hydrand, both leader and the remaining nodes
perform a linear number of exponentiations, and it is about 40% less
than what non-leader performs in SPURT. Nevertheless, we believe
this higher computational cost in SPURT is a favorable trade-off
for tolerating partially synchronous network, offering strong un-
predictability and avoiding the need for an expensive initialization
(cf. §7).
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7 RELATEDWORK
Based on the setup assumption, existing distributed protocols can
be classified into two categories; protocols with trusted setup and
with transparent setup.

The protocols with trusted setup involve generation of pub-
lic parameters that embed a secret trapdoor. These parameters
can either be generated by a trusted third party (hence the name
trusted setup) or can be generated by running a maliciously se-
cure multi-party computation protocol, often a Distributed Key
Generation (DKG) step. The security of the protocol with a trusted
setup relies crucially on the assumption that the adversary does
not have access to the secret trapdoor. Existing protocols in this
category include [2, 15, 22, 28, 37, 44, 64]. Note that even proto-
cols without a trusted setup assumption may also require an initial
step to generate public parameters. The subtlety is that the public
parameters are uniformly random elements from certain groups.
This is a milder assumption than the trusted setup assumption
described above, where the public parameters hide information
about the trapdoor. Protocols in the transparent setup category
include [10, 24, 31, 40, 46, 55, 61].

The protocols due to Cachin et al [22], Dfinity [44], Drand [2],
and Aleph [37] require a threshold signing key [19] to be shared
among all the nodes as per the shamir threhsold secret sharing
scheme [63]. Cachin et al. and Aleph can tolerate asynchronous
network whereas Drand and Dfinity require the network to be
synchronous. The random beacon’s output at any given epoch is
the BLS signature on the hash of the epoch number. Cachin et al.,
and Dfinity do not provide specific details of the DKG phase of
the protocol. Drand uses the DKG protocol of Gennaro et al. [38],
which requires a Byzantine broadcast channel over which each
node sends 𝑂(_𝑛) bits to information. Hence, the overall communi-
cation complexity of the setup phase of Drand is𝑂(_𝑛3 log𝑛). After
the DKG step, the communication complexity for generating one
beacon output for all three protocol is 𝑂(𝑛2_). Aleph [37] presents
their own DKG protocol with a total communication complexity of
𝑂(_𝑛4 log𝑛).

Most relevant to our protocol are Scrape [24] and Hydrand [61].
Both Scrape and Hydrand assume that the underlying network is
synchronous. Scrape [24] improves the computation complexity
of PVSS protocol of [62] from 𝑂(𝑛2) exponentiation to 𝑂(𝑛) expo-
nentiation per PVSS, and uses their PVSS along with a broadcast
channel to generate distributed randomness. In particular, for every
beacon output in Scrape, each node uses the broadcast channel
to share their secret. Once 𝑡 + 1 nodes share their secret, nodes
reconstruct the secrets using the reconstruction phase of the PVSS
and combine them to produce the beacon output. In Scrape, for
each beacon, each node uses the broadcast channel to share 𝑂(𝑛_)
size message to all other nodes. Thus, the total communication cost
of at least 𝑂(𝑛3 log𝑛). Also, for every beacon output, each node
requires to perform 𝑂(𝑛2) exponentiations.

Hydrand [61] modifies the Scrape protocol to remove the im-
plicit assumption of a broadcast channel. Unlike Scrape, in each
epoch of Hydrand, only one node, a designated leader shares a
secret using Scrape’s PVSS scheme. Hydrand has an initialization
step where each node shares a secret using PVSS scheme, which
costs 𝑂(_𝑛3 log𝑛) communication wise. After the setup phase, for

every beacon, Hydrand has an amortized total communication
and computation cost of 𝑂(_𝑛2) and 𝑂(𝑛), respectively. One major
disadvantage of Hydrand is that it only provides probabilistic un-
predictability, i.e., at any epoch, an adversary can predict beacon
output for up to 𝑡 future epochs. In contrast, SPURT has a fault-free
complexity of 𝑂(_𝑛2), provides perfect unpredictability, and does
not require an initialization step.

A concurrent and independent work Bhat et al., GRandPiper [15]
improves upon Hydrand and increases its fault tolerance to one-
half, but requires a trusted setup to generate 𝑞-SDH parameters. To
overcome the lack of perfect unpredictability in GRandPiper (and
Hydrand), Bhat et al [15] presents BRandPiper, where the leader
share 𝑛 secrets in a single epoch and has the nodes reconstruct a
random value accumulating secrets chosen by 𝑡 + 1 distinct nodes.
Similar to GRandPiper, BRandPiper also requires a trusted setup to
generate 𝑞-SDH parameters, and has a worst-case communication
complexity of 𝑂(_𝑛3).

Randherd [64] uses Randhound in a one-time setup to parti-
tion nodes into smaller subgroups of size 𝑐 , and additionally setup
keys for threshold signatures. The total complexity of Randherd
is 𝑂(_𝑐2log 𝑛). Randherd, as presented, is not bias-resistant as a
malicious leader can abort the protocol after observing the bea-
con output, and will require additional mechanisms to make it
bias-resistant. Also, in general, although the protocols that rely
on random committee selection increase efficiency; they typically
tend to have (slightly) reduced fault tolerance and can be applied to
improve many other protocols described in this section. It is thus
not instructive to directly compare the efficiency of sampling-based
and non-sampling-based protocols.

In addition to the above mentioned protocols, other beacon pro-
tocols include Proof-of-Work (PoW) [55], Proof-of-Delay [21], Al-
gorand [40], Ouroboros [46], Ouroboros Praos [31], etc. The PoW,
Algorand and Ouroboros Praos are not bias-resistant as a malicious
adversary can decide to discard undesirable beacon outputs. The
Proof-of-Delay based protocol relies on strong and new assump-
tions about verifiable time-lock puzzles [12, 25] or Verifiable Delay
Functions [18]. The Ouroboros [46] protocol requires every node
to perform PVSS over a broadcast channel, and hence has high
communication complexity.

8 CONCLUSION AND FUTURE DIRECTIONS
We have presented SPURT, an efficient distributed randomness
beacon protocol with transparent setup, i.e., trapdoor-free public
parameters. SPURT guarantees that each beacon output is unpre-
dictable, bias-resistant and publicly verifiable, and provides these
properties in a partially synchronous network against a malicious
adversary controlling up to one third of the total nodes. In the fault-
free case of operation, SPURT has amortized total communication
of 𝑂(_𝑛2). In the worst case, the amortized total communication
cost is 𝑂(_𝑛2 log𝑛 + 𝑛3). (Note that for _ = 256 and 𝑛 < 2950,
𝑛3 < _𝑛2 log𝑛.) Computation wise, each node performs𝑂(𝑛) group
exponentiations per beacon output.

An interesting question for future work is whether it is pos-
sible to design a randomness beacon protocol with optimal fault
tolerance and sub-quadratic communication complexity (possibly
with a trusted setup). Note that protocols that sample subsets can
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be easily made sub-quadratic in the trusted setup phase. But such
protocols come with reduced fault tolerance. It is interesting to
study whether we can design a sub-quadratic protocol that does
not resort to subset sampling. On the flip side, it would also be very
interesting to show some sort of communication lower bound for
randomness beacon. Similar lower bounds for Byzantine agreement
or multiparty computation may be good starting points towards
that direction.

One may also try to extend SPURT to fully asynchronous net-
works. The major hurdle we encounter is that consensus (SMR)
protocols in fully asynchronous network require shared random-
ness [36], which creates a circularity.
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A LINEAR ERROR CORRECTING CODE
Let 𝐶 be a [𝑛, 𝑘, 𝑑] linear error correcting code over Z𝑞 of length 𝑛
and minimum distance 𝑑 . Also, let𝐶⊥ be the dual code of𝐶 i.e.,𝐶⊥
consists vectors y⊥ ∈ Z𝑛𝑞 such that for all x ∈ 𝐶 , ⟨x, y⊥⟩ = 0. Here,
⟨·, ·⟩ is the inner product operation. SPURT uses the basic fact from
coding theory. Refer to Lemma 1 of [24] for its proof.

Lemma A.1. If x ∈ Z𝑛𝑞 \𝐶 , and y⊥ is chosen uniformly at random
from 𝐶⊥, then the probability that ⟨x, y⊥⟩ = 1 is exactly 1/𝑞.

Throughout this paper, we will use 𝐶 to be the [𝑛, 𝑘, 𝑛 − 𝑘 + 1]
Reed-Solomon Code of the form

𝐶 = {𝑝(1), 𝑝(2), ..., 𝑝(𝑛) : 𝑝(𝑥 ) ∈ Z𝑞[𝑥]; and
deg(𝑝(·)) ≤ 𝑘 − 1}

Table 6: Notations used and their descriptions

Notation Description

𝑔, ℎ ∈ G Two uniform random generators of G
_ security parameter
𝑛 Total number of nodes
𝑡 Maximum number of byzantine nodes

𝑝𝑘𝑖 , 𝑠𝑘𝑖 Public and Secret key of 𝑖th node.
𝑟, ht epoch and height
𝑠𝑖 Secret chosen by 𝑖th node at epoch 𝑟
𝑝𝑖 (·) Polynomial chosen by 𝑖th node to share 𝑠𝑖
𝑠𝑖, 𝑗 𝑝𝑖 ( 𝑗 ), i.e, 𝑝𝑖 (·) evaluated at 𝑗
𝑣𝑖, 𝑗 Commitment of 𝑠𝑖, 𝑗 computed as 𝑔𝑠𝑖,𝑗
𝑐𝑖, 𝑗 Encryption of 𝑠𝑖, 𝑗 under 𝑝𝑘 𝑗 computed as 𝑝𝑘𝑠𝑖,𝑗

𝑖
dleq(·) NIZK proof for equality of discrete logarithm
⟨x, y⟩ Inner product of two vectors x and y
[𝑛] Set {1, 2, . . . , 𝑛}
𝐶⊥ Dual of error correcting code 𝐶
𝐿𝑟 Leader of epoch 𝑟

where deg(𝑝(·)) is the degree of the polynomial 𝑝(·). Thus its [𝑛, 𝑛 −
𝑘, 𝑘 + 1] dual code 𝐶⊥ can be written as

𝐶⊥ = {(`1 𝑓 (1), `2 𝑓 (2), ..., `𝑛 𝑓 (𝑛); 𝑓 (𝑥 ) ∈ Z𝑞[𝑥]; and
deg(𝑓 (·)) ≤ 𝑛 − 𝑘 + 1}

where the coefficients `𝑖 = ∏𝑛
𝑖=1,𝑖 ̸=𝑗

1
𝑖−𝑗 . This implies that random

elements from 𝐶⊥ of interest is efficiently samplable.

B INDISTINGUISHABILITY OF SECRETS
Intuitively, for any (𝑛, 𝑡+1) PVSS scheme, IND1-secrecy ensures that
prior to the reconstruction phase, the public information together
with the secret keys 𝑠𝑘𝑖 of any set of at most 𝑡 players gives no infor-
mation about the secret. Formally this is stated as in the following
indistinguishability based definition adapted from [45, 60]:

Definition B.1. (IND1-Secret) A (𝑛, 𝑡 + 1) PVSS is said to be IND1-
secret if for any probabilistic polynomial time adversaryA corrupt-
ing at most 𝑡 parties, A has negligible advantage in the following
game played against an challenger.

(1) The challenger runs the Setup phase of the PVSS as the dealer
and sends all public information to A. Moreover, it creates
secret and public keys for all honest nodes, and sends the
corresponding public keys to A.

(2) A creates secret keys for the corrupted nodes and sends the
corresponding public keys to the challenger.

(3) The challenger chooses values 𝑠0 and 𝑠1 at random in the
space of secrets. Furthermore it chooses 𝑏 ← {0, 1} uni-
formly at random. It runs the phase of the protocol with 𝑠𝑏
as secret. It sendsA all public information generated in that
phase, together with 𝑠𝑏 .

The advantage of A is defined as |Pr[𝑏 = 𝑏 ′] − 1/2|.
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