
SPURT: Scalable Distributed Randomness Beacon
with Transparent Setup

Sourav Das, Vinith Krishnan, Irene Miriam Isaac and Ling Ren
University of Illinois at Urbana-Champaign

{souravd2, vinithk, irenemi2, renling}@illinois.edu

Abstract—Having shared access to high-quality random num-
bers is essential in many important applications. Yet, existing
constructions of distributed random beacons still have limitations
such as imperfect security guarantees, strong setup or network
assumptions, or high costs. In this paper, we present SPURT, an
efficient distributed randomness beacon protocol that does not
require any trusted or expensive setup and is secure against
a malicious adversary that controls up to one-third of the
nodes in a partially synchronous network. We formally prove
that each output of SPURT is unpredictable, bias-resistant, and
publicly verifiable. SPURT has an amortized total communication
cost of O(λn2) per beacon output in the fault-free case and
O(λn2 logn + n3) in the worst case, where λ is the security
parameter. While designing SPURT, we also design a publicly-
verifiable secret sharing (PVSS) scheme whose security relies
on the standard Decisional bilinear Diffie-Hellman assumption
and does not require a Random oracle. We implement SPURT
and evaluate it using a network of up to 128 nodes running
in geographically distributed AWS instances. Our evaluation
shows that SPURT can produce beacon output about every second
with 64 nodes and every four seconds with 128 nodes. This
performance is comparable to systems with stronger assumptions
or weaker security.

I. INTRODUCTION

A reliable source of a continuous stream of shared ran-
domness, also referred to as a random beacon, is crucial for
many distributed protocols. Applications of random beacon
include leader election in proof-of-stake based blockchains [6],
[43], blockchain sharding [10], [53], [57], [74], scaling smart
contracts [33], annonymous communications [8], [44], [72],
[73], solving consensus under asynchrony [39], anonymous
browsing [35], [42], [46], publicly auditable auctions and
lottery [22], electronic voting [9], cryptographic parameter
generations [12], [55], and so on.

The simplest approach is to rely on a single node or
organization such as NIST random beacon or Random.org,
to produce the required randomness. This is undesirable given
incidents such as the backdoor of Dual elliptic curve pseudo-
random number generator [15] and 1969 US conscription lot-
tery [1]. It is also unreasonable in systems such as blockchains
as a trusted party for randomness generation defeats the
blockchain’s main object of removing central authorities.

A natural approach to remove the trusted third party is
to decentralize the process of generating randomness among
many nodes using a distributed protocol. As long as a large
fraction (majority or supermajority) of nodes faithfully follow
the protocol, the protocol will produce shared randomness with
desired properties. Briefly, any randomness beacon protocol

should be available and each beacon output should be un-
predictable, bias-resistant and publicly verifiable. Informally,
unpredictability requires that no one can compute any non-
trivial information about future beacon outputs, bias-resistance
requires that beacon outputs are independently sampled from
a uniform distribution, and public verifiability enables external
clients to validate the correctness of beacon outputs.

Existing works. Starting from Blum’s two-node coin tossing
protocol [18], a long line of works have looked into the
problem of generating shared randomness under different
system models [4], [11], [18], [24], [26], [27], [34], [43], [52],
[61], [68], [71]. Due to its use in practical blockchain systems,
which typically involves a large number of nodes [33], [53],
[57], [74], recent randomness beacon protocols put an em-
phasis on scalability. Specifically, it is desirable to construct
a beacon protocol that has low latency, low communication
complexity, and low computation cost per node per beacon
output. Also, since many of these protocols are decentralized
and are aimed at eliminating trusted entities, it is preferable
that the beacon protocol does not rely on a trusted setup.

Despite decades of research and many breakthroughs, exist-
ing distributed randomness beacon protocols still have scala-
bility issues, require strong cryptographic or network assump-
tions, or do not provide the full suite of desired properties.

For example, protocols such as [27], [31], [52] have at
least O(λn4) communication cost per beacon output, where
λ is the security parameter and n is the number of nodes
running the protocol. A recent work Hydrand [68] reduces
communication O(λn2) but does not provide perfect unpre-
dictability, even in the presence of a semi-honest adversary.
Very recently, a concurrent work Brandpiper [16] improves
upon Hydrand to provide perfect unpredictibility and increased
fault tolerance. As a trade-off, Brandpiper incurs higher worst-
case communication and computation costs and makes the q-
SDH assumption, which requires a trusted setup to generate
the desired public parameters.

Regarding setup assumptions, many protocols [4], [16],
[24], [47] assume an initial trusted setup, where a trusted
party generates trapdoors based on public parameters and
shares them with the nodes. Security of such protocols relies
crucially on the adversary’s inability to access the trapdoor.
Some protocols replace the trusted setup with a Distributed
Key Generation (DKG) procedure [40], [71]. But DKG comes
with a high initial setup cost: the best-known DKG protocols in

1

Table I: Comparison of existing randomness beacon protocol.

N
et

w
or

k
m

od
el

Fa
ul

t
To

le
ra

nc
e

L
iv

en
es

s
/

A
va

ila
bi

lit
y

U
np

re
di

ct
ab

ili
ty

B
ia

s-
re

si
st

an
ce

C
om

m
un

ic
at

io
n

C
os

t
(t

ot
al

)

C
om

pu
ta

tio
n

C
om

pl
ex

ity

Pu
bl

ic
V

er
ifi

ca
tio

n
C

om
pl

ex
ity

C
ry

pt
og

ra
ph

ic
Pr

im
iti

ve
s

Se
tu

p
A

ss
um

pt
io

n

Cachin et al. [61] async. 1/3 3 3 3 O(λn2) O(n) O(1) Uniq. th-sig. DKG
RandHerd [71]∗ async. 1/3♣ 3 3 3 O(λc2 logn)♣ O(c2 logn) O(1) PVSS+CoSi DKG
Dfinity [47] sync. 1/2 3 3 3 O(λn3) O(n) O(1) Uniq. th-sig. DKG
Drand [4] sync. 1/2 3 3 3 O(λn2) O(n) O(1) Uniq. th-sig. DKG
HERB [31] sync. 1/3 3 3 3 O(λn4)‡ O(n) O(n) Partial HE DKG

Algorand [43] partial sync. 1/3♣ 3 Ω(t) 7 O(λcn)♣ O(c) O(1) VRF CRS
Proof-of-Work [61] sync. 1/2 3 Ω(t) 7 O(λn) very high O(1) Hash func. CRS
Ouroboros [52] sync. 1/2 3 3 3 O(λn4)‡ O(n3) O(n3) PVSS CRS
Scrape [27] sync. 1/2 3 3 3 O(λn4)‡ O(n2) O(n2) PVSS+Broadcast CRS
Hydrand [68] sync. 1/3 3 t+ 1 3 O(λn2 logn) O(n) O(n) PVSS CRS
RandRunner [67] sync. 1/2 3 t+ 1 3 O(λn2) VDF O(1) VDF CRS
GRandPiper [16] sync. 1/2 3 t+ 1 3 O(λn2) O(n2) O(n2) PVSS q−SDH
BRandPiper [16] sync. 1/2 3 3 3 O(λn3) O(n2) O(n2) VSS q−SDH

SPURT partial sync. 1/3 3 3 3 O(λn2 logn+ n3) O(n) O(n) PVSS+Pairing CRS

∗ RandHerd uses RandHound as a one-time setup phase. RandHound
is driven by a leader node and hence its liveness requires the leader
to be honest. As presented, RandHerd is biasable and need additional
techniques to be unbiasable.
♣ Algorand and Randherd use a randomly sampled committee of size c

to run the protocol. This is an orthogonal technique and can be applied
to most other protocols in the table to improve scalability at the cost of
slightly reducing fault tolerance.

‡ Scrape, Ouroboros and HERB assume a broadcast channel (or
blockchain) and every node uses the broadcast channel to share O(n)
groups elements. Even with best known broadcast protocols, its total
communication complexity would be O(λn4). HERB has three variants
depending upon the underlying broadcast channel. We report their first
variant since it uses standard metric for measuring broadcast channel
communication cost.

synchronous and asynchronous networks has a communication
cost of at O(n3 log n) and O(n4 log n), respectively [40],
[41], [71]. Another limitation of using DKG, as observed
in [16], is the inability/inefficiency to replace nodes. Whenever
a participating node is to be replaced, we would need to run the
expensive DKG procedure again. Thus, DKG-based solutions
such as [4], [25], [40], [47] are efficient when members are
fixed, but are not suitable in applications where members
change frequently (e.g., proof-of-stake [43], [52]).

An orthogonal and effective approach is the sampling
technique [43], [71], which samples a subset of nodes to
form a committee, and then runs a random beacon protocol
in the committee. Note that after sampling, we still need a
random beacon protocol to run on the committee. Again, if
the committee rarely changes, a DKG-based random beacon
protocol is suitable, but if the committee changes frequently,
no efficient solution exists.

We summarize existing works in Table I and will provide
more details about each protocol in §VIII.
Our results. In this paper, we design SPURT, an efficient
distributed random beacon protocol that does not require any
trusted or expensive setup. SPURT guarantees availability,
unpredictability, unbiasibility, and public verifiability in a par-
tially synchronous network [37] against a malicious adversary
that controls up to one-third of the nodes.

In a network of n nodes, SPURT’s computation cost per node
per beacon output is only O(n). SPURT’s communication cost
per beacon output (across all nodes) is O(λn2) in the good

case (with up to a constant number of malicious nodes) and
O(λn2 log n+n3) in the worst case. λ is a security parameter
representing the size of group elements. We make the λ term
explicit in communication complexity because not all terms
depend on it. This is important because the n3 term is actually
not the bottleneck in practice since n3 < λn2 log n for up to
n < 2950 with a typical λ = 256.

With these costs, we believe SPURT has good scalability
and is suitable for applications with a large number of nodes
deployed globally across the internet (possibly after applying
the sampling technique).

While designing SPURT, we also design a new publicly
verifiable secret sharing (PVSS) scheme whose security relies
on the standard Decisional bilinear Diffie-Helmann (DBDH)
assumption [21] and does not require a random oracle. Our
new scheme is inspired by the PVSS scheme of Scrape [27],
which assumes a less standard Decisional Bilinear Squaring
assumption [48]. Our new PVSS scheme has comparable
efficiency as Scrape’s PVSS.

Design overview. Existing protocols that do not rely on
trusted setup address these challenges using publicly verifiable
secret sharing (PVSS) schemes. We will also start with this
design paradigm. Briefly, the idea is that, for every beacon
output, each node runs a concurrent instance of PVSS to
share a randomly chosen secret with every other node. Once
the sharing phase finishes for n − t nodes, the shares are
reconstructed and aggregated to compute the beacon output.
This way, each beacon output has contributions from some

2

honest nodes, and these remain hidden from the adversary
before reconstruction.

The downside of naïvely using PVSS is that PVSS schemes
assume broadcast channels. In fact, this is the major source
of high communication complexity. A broadcast channel,
when actually implemented using a distributed protocol, has a
communication lower bound of Ω(n2) [36].

Therefore, a main design philosophy of SPURT is to min-
imize the amount of data sent via the broadcast channel.
Firstly, we utilize the additive homomorphism of commitments
and encrypted shares in PVSS to aggregate PVSS messages
across nodes. This requires us to customize the use of PVSS
procedures in a non-blackbox manner. Secondly, even after
aggregation, we still have linear-size data, and we only send
its Merkle root via the broadcast channel. Other pieces of data
will be sent over pair-wise private channels. These techniques
minimize the use of the broadcast channel and yield the
quadratic complexity of SPURT.

Another major downside of broadcast channel is that it is
impossible to achieve in partial synchrony, the network model
we target. This is also why most previous works have to
stick with the stronger synchrony model. This motivates us
to revisit the use of broadcast channels. Previous works such
as Scrape [27] and Hydrand [68] explicitly mentioned that for
a beacon to be bias-resistant and available, the sub-protocol
invoked for each beacon output must provide guaranteed
output delivery [32]. The use of broadcast channels then
becomes natural as it is the standard technique in the multi-
party computation literature [45], [64] to achieve guaranteed
output delivery. However, we observe that guaranteed output
delivery is not necessary. Instead, we just need to ensure that
the adversary cannot abort a beacon output after learning
its output. This allows us to use a state machine replication
protocol (SMR) (cf. §II-E) instead of broadcast channels,
which enables us to handle a partially synchronous network.

Other secondary techniques include co-designing PVSS
procedures and SMR and achieve the optimal t < n/3 fault
tolerance in partial synchrony, using pairing to verify correct
decryption of shares, and using multi-signatures to forward
SMR decision proofs to enforce unpredictability. We will
elaborate on these in §V.

Evaluation. We implement SPURT in Golang atop the open-
source Quorum codebase [7] for Istanbul BFT [60]. We
evaluate our prototype for a network of up to 128 nodes
running in geographically distributed AWS EC2 instances. We
evaluate the throughput of SPURT, measured as the number of
beacon outputs generated per minute, the network bandwidth
usage, and computation time per node per beacon output.

We compare with Hydrand [68] and the deployed protocol
Drand [4]. Note that Hydrand has imperfect predictability, and
Drand requires a DKG setup. Our evaluation illustrates that
SPURT can generate beacons at a rate comparable to or better
than Drand and Hydrand. For example, for a network of size
of 32 and 64, SPURT can generate about 90 and 45 beacon
output every every minute, respectively. However, SPURT has

a bandwidth cost (amount of data sent and received per node)
of 35 Kilobytes and 71 Kilobytes for a network of 32 and
64 nodes, respectively, which is 6× higher than Drand and is
about 65% of the bandwidth cost of Hydrand.
Summary. In summary, we make the following contributions:

• We design SPURT, a distributed random beacon protocol
with a communication cost of O(λn2 log n+ n3) (O(λn2)
in the common case) per beacon output and does not require
any trusted or expensive setup. We formally prove SPURT
achieves all desired properties against a malicious adversary
controlling up to one-third of the nodes in a partially
synchronous network.

• We design a new PVSS scheme whose security relies on the
Decisional bilinear Diffie-Hellman assumption.

• We prototype SPURT and evaluate it in a network of
up to 128 nodes. Our evaluation shows that SPURT can
generate an output every few seconds, which is comparable
to systems with stronger assumptions or weaker guarantees.

Paper organization. The rest of the paper is organized as
follows. In §II, we give preliminaries and notations. We give
our new PVSS scheme in §III. We describe the system model
and an overview of SPURTin §IV. We describe SPURT in detail
in §V and analyze its security and complexity in §VI. We
present our prototype implementation and evaluation results
in §VII. We describe related work in detail in §VIII and
conclude with a discussion in §IX.

II. PRELIMINARIES

Let λ be the security parameter. Let G0,G1 and GT be
cyclic groups of prime order q and Zq the group of integer
modulo q. We denote an element x sampled uniformly from
a finite setM by x←M. We denote vectors using bold face
lowercase letters such as x.

We next define the desired properties of a distributed
random beacon protocol and then briefly discuss the tools we
use in SPURT.

A. Randomness Beacon

The two most crucial property for a randomness beacon are
unpredictability and bias-resistance. Unpredictability ensures
no nodes are able to predict or compute any function on
any future beacon outputs with non-negligible advantage. The
bias-resistance property of the beacon protocol requires that
every output is chosen uniformly randomly from the intended
distribution and independently of other outputs. In addition
to unpredictability and bias-resistance, any beacon protocol
should also guarantee availability, i.e., the protocol keeps
producing new beacon outputs, and public-verifiability, which
states that each beacon output is efficiently verifiable even by
users that do not directly participate in the beacon generation
protocol. All properties should hold in the presence of a
computationally bounded adversary controlling a threshold
fraction of nodes in the system.

3

B. Bilinear Pairings

SPURT and our new PVSS scheme ΠDBDH make use of
pairing. In particular, security of ΠDBDH relies on the the
decisional version of the bilinear Diffie-Hellman assumption.

Definition 1 (Bilinear Pairing). Let G0,G1 and GT be three
cyclic groups of prime order q where g0 ∈ G0 and g1 ∈ G1

are generators. A pairing is an efficiently computable function
e : G0 ×G1 → GT satisfying the following properties.

1) bilinear: For all u, u′ ∈ G0 and v, v′ ∈ G1 we have

e(u · u′, v) = e(u, v) · e(u′, v), and (1)
e(u, v · v′) = e(u, v) · e(u, v′) (2)

2) non-degenerate: gT := e(g0, g1) is a generator of GT .
We refer to G0 and G1 as the pairing groups or source groups,
and refer to GT as the target group.

C. Zero knowledge Proof of Equality of Discrete Logarithm

SPURT and our new PVSS scheme ΠDBDH have steps that
require nodes to produce zero-knowledge proofs about equality
of discrete logarithms for a tuple of publicly known values. In
particular, given groups G0 and G1 of prime order q, random
generators g0 ∈ G0 and g1 ← G1 and a tuple (g0, x, g1, y),
where x ∈ G0 and y ∈ G1, a prover P wants to prove to
a verifier V in zero-knowledge, that there exists a witness α
such that x = gα0 and y = gα1 . Moreover, SPURT also requires
knowledge soundness, i.e., the prover knows α.

We use two different protocols (for reasons to be described
later) for equality of discrete logarithm. The first protocol is
the classic Chaum-Pedersen Σ-protcotol [30] in the random
oracle model, and the second protocol uses bilinear pairings.
Chaum-Pedersen Σ-protocol. For a given tuple (g0, x, g1, y),
the Chaum-Pedersen protocol proceeds as follows.

1) P samples a random element β ← Zq and sends (a0, a1)

to V where a0 = gβ0 and a1 = gβ1 .
2) V sends a challenge e← Zq .
3) P sends a response z = β − αe to V .
4) V checks whether a0 = gz0x

e and a1 = gz1y
e and accepts

if and only both equations hold.
This protocol can be made non-interactive in the random

oracle model using the Fiat-Shamir heuristic [38], [63]. This
protocol guarantees completeness, knowledge soundness, and
zero-knowledge. The knowledge soundness implies that if P
convinces the V with non-negligible probability, there exists
an efficient (polynomial time) extractor that can extract α from
the prover with non-negligible probability.

Throughout this paper, we will use the non-interactive
variant of the above protocol and denote it using dleq(·).
In particular, for any given tuple (g0, x, g1, y) where x =
gα0 and y = gα1 , the procedure dleq.Prove(α, g0, x, g1, y)
generates the proof π. Given the proof π and (g0, x, g1, y),
dleq.Verify(π, g0, x, g1, y) verifies the proof.

The pairing based protocol for equality of discrete logarithm
is rather straightforward and does not require any interaction
or additional proof. Given a tuple (g0, x, g1, y), the verifier

can check whether x = gα and y = gα1 for some witness α,
using the following equality check:

e(g0, y) = e(x, g1) (3)

In case of an honest prover equation (3) will hold because

e(g0, y) = e(g0, g
α
1) = e(g0, g1)α = e(gα0 , g1) = e(x, g1)

D. Threshold Secret Sharing

A (n, t+1) threshold secret sharing scheme allows a secret
s ∈ Zq to be shared among n nodes such that any t+1 of them
can come together to reconstruct the original secret, but any
subset of t shares cannot be used to reconstruct the original se-
cret [17], [70]. We use the common Shamir secret sharing [70]
scheme, where the secret is embedded in a random degree
t polynomial in the field Zq for some prime q. Specifically,
to share a secret s ∈ Zq , a polynomial p(·) of degree t is
chosen such that s = p(0). The remaining coefficients of p(·),
a1, a2, · · · , at are chosen uniformly randomly from Zq . The
resulting polynomial p(x) is defined as:

p(x) = s+ a1x+ a2x
2 + · · ·+ atx

t

Each node is then given a single evaluation of p(·). In partic-
ular, the ith node is given p(i) i.e., the polynomial evaluated
at i. Observe that given t + 1 points on the polynomial p(·),
one can efficiently reconstruct the polynomial using Lagrange
Interpolation. Also note that when s is uniformly random in
Zq , s is information theoretically hidden from an adversary
that knows any subset of t or less evaluation points on the
polynomial other than p(0) [70].

E. State Machine Replication

A State Machine Replication is a distributed protocol run
by a network of n nodes to decide on a sequence of values,
one for each height. It provides the following properties.
• Agreement/Safety. If an honest node decides some value
v in height r, then for height r, no honest node decides
on a value v′ such that v′ 6= v for height r.

• Validity/Liveness. If an honest node broadcasts a value
v, every honest node eventually decides v in some height.

• Verifiability. Whenever a node decides on a value, it can
prove to other nodes and external parties the correctness
of the decided value.

Note that unlike regular SMR protocols that service
clients [29] in our case only participating nodes propose values
and all decided values must meet a certain external valid
predicate M .

We will use Istanbul BFT (IBFT) [60]. It is a variant
of the popular PBFT [29] protocol and tolerates up to one
third malicious nodes in a partially synchronous network
(which is optimal). IBFT is an epoch based protocol, where
each epoch has a leader. In every epoch, the IBFT protocol
finalizes a value in three steps: Propose, Prepare, and Commit.
We present a simplified description of the IBFT protocol in
Figure 1, and refer the reader to [60] for more details.

4

Let r be the current epoch and L be its leader. Also,
let ht− 1 be the latest finalized height.
Propose. L proposes a value z to be finalized at height
ht by sending 〈propose, z, r, ht, X〉 message to all the
nodes. Here X is the view change certificate (if any) that
validates that the proposal is safe.
Prepare. Each node Pj , upon receiving the proposal
checks whether the proposal is consistent with IBFT
specifications using X , and M(z) is true for an exter-
nal predicate M(·). If both checks pass, Pj multi-casts
〈prepare, z, r, ht〉 to all nodes.
Commit. Upon receiving 2f + 1 prepare messages for
the proposal z at height ht and epoch r, Pj multi-casts
〈commit, z, r, ht〉 message to every node.

Figure 1: Steady state of Istanbul BFT [60] SMR protocol.

III. PVSS SCHEME FOR UNIFORM SECRETS

In this section we will describe our PVSS scheme ΠDBDH.
ΠDBDH builds upon the PVSS scheme from Scrape [27],
which relies on a less standard Decisional Bilinear Squar-
ing assumption [48]. Our new ΠDBDH scheme only re-
lies on the much more standard Decisional bilinear Diffie-
Hellman (DBDH) assumption and does not require a random
oracle. Due to space restrictions, we will directly describe
the protocol and refer the readers to Appendix B for formal
definition and desired security properties of PVSS.

Our PVSS scheme allows a node (dealer) to share a uniform
random secret s ∈ Zq among n nodes, such that any subset of
at least t+ 1 nodes can reconstruct e(hs0, h1) where h0 ∈ G0

and h1 ∈ G1 are uniformly random independent elements
from the respective groups. The reconstruction threshold t+ 1
ensures that an adversary controlling t nodes cannot recover
e(hs0, h1) without contribution of at least one honest node. A
key property of PVSS is that, not only the participating nodes
but any third party (with access to participating node’s public
keys) can verify, even before the reconstruction phase begins,
that the dealer has generated the shares correctly without
having plaintext access to the shares. This property will be
crucial to SPURT.

ΠDBDH has four procedures: PVSS.Setup, PVSS.Share,
PVSS.Verify, and PVSS.Recon. The PVSS.Setup procedure
takes the security parameter λ as the input and generates four
independent generators g0, h0, g1, h1 where g0, h0 ∈ G0 and
g1, h1 ∈ G1. Here G0 and G1 are two pairing groups of order
q. Note that the tuple (g0, h0, g1, h1) needs to be generated
only once and can be reused across different execution of the
protocol. During the setup step, each node i also samples their
secret key ski ∈ Zq and publishes their public key pki = hski0 .
After the setup step, the dealer uses PVSS.Share to share
a secret s, other nodes or external users use PVSS.Verify
to validate the shares, and PVSS.Recon is used to recover

PVSS.Setup(1λ)→ (g0, h0, g1, h1, {(ski, pki)}) :
The setup algorithm chooses uniform random and inde-
pendent generators g0, h0 ∈ G0 and g1, h1 ∈ G1 and
publishes it in a public ledger. Each node i, then generates
a secret key ski ∈ Zq , a public key pki = hski0 , and
registers the public key pki by posting it to the public
ledger, for 1 ≤ i ≤ n.

During the sharing step, the dealer L, samples s ∈ Zq
and let S = e(hs0, h1) be the secret the dealer with public-
private key pair (sk, pk) wants to share with set of nodes
with public keys {pkj}j for j = 1, 2, . . . , n.

PVSS.Share(s, g1, sk, {pk}j,j=1,2,...,n)→ (v, c):
1) Sample uniform random ak ∈ Z for k = 1, 2, . . . , t−1

and let
p(x) = s+ a1x+ . . .+ atx

t;

2) Compute sj ← p(j); vj ← g
sj
1 ; cj ← pk

sj
j , ∀j ∈ [n].

3) Multi-cast to all nodes v = {v1, v2, . . . , vn} and c =
{c1, c2, . . . , cn} using a broadcast channel.

Upon receiving (v, c) from the dealer, each node
validates them as follows.

PVSS.Verify(g1,v, c, {pk}j,j=1,2,...,n)→ 0/1:
1) Sample a random code word y⊥ ∈ C⊥ and check

whether
n∏
k=1

v
x⊥
k

k = 1G1 (4)

where 1G1 is the identity element of G1.
2) Check whether e(pkj , vj) = e(cj , g1) for all j.
3) Output 1 if both checks pass, otherwise output 0.

During the reconstruction step, each node j decrypts
its share cj to compute s̃j ← c

1/skj
j , and multi-casts s̃j to

all nodes. A node i upon receiving s̃j from node j checks
if e(h0, vj) = e(s̃j , g1). Let H be the set of indices of
t+ 1 valid decrypted shares s̃j .

PVSS.Recon(h1, {s̃k}k∈H)→ e(hs0, h1) :

1) Use Lagrange interpolation to compute∏
k∈H

(s̃k)µk =
∏
k∈H

h
µk·p(k)
0 = h

p(0)
0 (5)

where µk =
∏
j 6=k

j
j−k are Lagrange coefficients.

2) Output e(hs0, h1).

Figure 2: Description of ΠDBDH.

e(hs0, h1). We describe them in detail in Figure 2.
The verification procedure of ΠDBDH uses properties of er-

ror correcting code, specifically the Reed-Solomon code [65].
In particular, we use the observation by McEliece and Sar-
wate [58] that sharing of a secret x using a degree t polyno-
mial among n nodes is equivalent to encoding the message

5

(x, a1, a2, · · · , at) using a [n, t + 1, n − t] Reed-Solomon
code. Let C be a [n, k, d] linear error correcting code over
Zq of length n and minimum distance d. Also, let C⊥ be
the dual code of C i.e., C⊥ consists vectors y⊥ ∈ Znq such
that for all x ∈ C, 〈x,y⊥〉 = 0. Here, 〈·, ·〉 is the inner
product operation. The PVSS.Verify step uses the following
basic fact (Lemma 1) of linear error correcting code. We refer
readers to [27, Lemma 1] for its proof, and Appendix A for
a brief description of the Reed Solomon and its dual code.

Lemma 1. If x ∈ Znq \ C, and y⊥ is chosen uniformly at
random from C⊥, then the probability that 〈x,y⊥〉 = 1 is
exactly 1/q.

We provide more details about the verification step of
ΠDBDH in Appendix A. Also in appendix B, we will define the
required properties for PVSSsuch as correctness, verifiability,
and IND1-Secrecy. We then prove that assuming DBDH hard-
ness, ΠDBDH guarantees the desired correctness, verifiability,
and IND1-Secrecy properties.

IV. SYSTEM MODEL AND OVERVIEW

A. System Model

We consider a network of n nodes connected via pair-
wise authenticated channels. We assume a standard public-
key infrastructure, i.e., every node in the system is aware of
every other node’s public key in the system. We assume that at
most t < n/3 nodes can be malicious and they are controlled
by a single adversary A. The remaining nodes are honest
and strictly follow the specified protocol. We also assume
that at the start of the protocol, all honest nodes agree on
public parameters g0, h0 ∈ G0 and g1, h1 ∈ G1, which are
randomly and independently chosen generators of G0 and G1.
This is a common reference string (CRS) setup. We assume
A cannot break standard cryptographic constructions such as
hash functions, signatures and the ones specified in §II.

We assume the network is partially synchronous, i.e., it
oscillates between periods of synchrony and periods of asyn-
chrony. During periods of synchrony, all messages sent by
honest replicas adhere to a known delay bound ∆. During
periods of asynchrony messages, messages can be delayed
arbitrarily. (Theoretical works often state partial synchrony
differently [37] (e.g., using an unknown Global Standardiza-
tion Time, GST) for rigor or convenience, but the essence
is to capture the above practical oscillating network model.)
A beacon protocol in the partially synchronous model should
ensure that every beacon output is unpredictable, bias-resistant,
and publicly verifiable even during periods of asynchrony, and
guarantees availability during periods of synchrony.

B. Overview

We now give an overview of SPURT to describe our core
ideas. For ease of exposition, we will first explain how SPURT
generates a single beacon output assuming that nodes have
access to a broadcast channel. Strictly speaking, a single-value
broadcast channel [54] is impossible in a partially-synchronous
network; we merely assume its existence to simplify this

SMR

Agreement
Phase

Reconstruction
Phase

Commitment
Phase

Aggregation
Phase

Output

Leader
Node

Non-Leader
Node

Multi-cast to
all Nodes

Private
Channel

Root
Output

Output

Output

Figure 3: Messages sent during each phase of the SPURT. We describe
contents of the messages i.e., the notations over the arrows in §V.
We use Root(·) as the shorthand for Merkle root.

overview and aid intuitive understanding. Later in §V, we
will replace it with a BFT SMR protocol while preserving
the overall efficiency of the protocol. Throughout this paper,
we assume that all messages exchanged between honest nodes
are digitally signed by the sender, and recipients validate them
before processing them further.

SPURT proceeds in epochs where each epoch has a des-
ignated leader chosen in any deterministic manner. For con-
creteness, we assume leaders are chosen in a round-robin
order, i.e., the leader of epoch r is node i = r mod n. We
will use Lr to denote the leader of epoch r. Every epoch
has four phases: Commitment, Aggregation, Agreement and
Reconstruction phase. We illustrate the communication pattern
of in all four in Figure 3 and describe the message contents
(symbols over the arrows) in §V.

Commitment phase. During the commitment phase, each
node chooses a uniformly random secret and computes shares
for the chosen secret using the PVSS.Share primitive described
in §III. Each node then sends all these shares to Lr. Here
on, we refer to the messages sent by nodes to Lr as the
PVSS messages of epoch r. We remark that, despite having
access to PVSS messages from all nodes, Lr can not break
unpredictability of SPURT. This is because each share is
encrypted using the public key of the intended recipient node,
and a zero-knowledge scheme is used for proving consistency.
We will give more details on this in §VI.

Aggregation phase. In the aggregation phase, Lr upon receiv-
ing PVSS tuple from a node, validates it using PVSS.Verify
from §III. Upon receiving and validating PVSS messages from
t + 1 nodes, Lr aggregates them using the additive homo-
morphic property of the underlying polynomial commitment
and encryption schemes. If p1, p2, . . . , pt+1 are the underlying
polynomials from the t+1 valid polynomial commitments, Lr
aggregates them to obtain the commitment to the aggregated
polynomial p̂(x) =

∑t+1
j=1 pj(x). Moreover, Lr aggregates

the t + 1 encrypted shares to obtain the encrypted shares
corresponding to the aggregated polynomial p̂(·).

Agreement phase. After aggregation, Lr computes a cryp-
tographic digest of the commitment of the aggregated poly-

6

nomial p̂(·), the identities (or indices) of nodes whose poly-
nomials are aggregated into p̂(·), and the encrypted shares of
the secret embedded in p̂(·). Lr then sends this cryptographic
digest to all of the nodes via a broadcast channel. Note again
that our actual protocol will use an SMR protocol instead.

Additionally, to each node i, Lr sends node i the en-
tire commitment to the aggregated polynomial p̂(·), and the
encrypted shares corresponding to p̂(·) using the pair-wise
channel between i and Lr, Moreover, Lr also sends the
encrypted shares for i of the original t + 1 polynomials
aggregated into p̂(·), and the corresponding NIZK proofs. Note
that these shares are encrypted under the public key of i. In
total, during the agreement phase, Lr sends O(λ) bits of data
via the broadcast channel and O(nλ) bits of data to each node
using pair-wise private channels.

Each node i, upon receiving the cryptographic digest over
the broadcast channel and private messages from Lr, validates
them to ensure that Lr did the aggregation phase correctly.
For this step, node i relies on the properties of linear error-
correcting code and NIZK proofs forwarded by Lr. Upon
successful validation, node i starts the reconstruction phase.
Else, node i moves to the next epoch with the next leader and
the cycle continues.
Reconstruction phase. When the agreement phase terminates,
i.e., all honest nodes agree on the cryptographic digest broad-
cast by Lr, every honest node who received valid shares from
Lr multicasts its aggregated share along with the NIZK proof
of its correctness. As we show in §VI, if the agreement phase
terminates successfully, then at least t+ 1 honest nodes hold
valid shares of the aggregated polynomial p̂(·). Also, all nodes
will be able to prove the correctness of their aggregated shares.
Moreover, all these nodes start the reconstruction process
within three message transmission delays. Hence, during the
reconstruction phase, every honest node will receive at least
t+ 1 valid shares of p̂(·), along with their correctness proofs.
As a result, every honest node will be able to successfully
reconstruct hp̂(·)0 , and hence the output of the beacon for this
epoch as e(hp̂(0)0 , h1).

V. DESIGN AND OPTIMIZATIONS

In this section, we present the detailed design of SPURT.
As discussed in previous sections, SPURT proceeds in epochs
and each epoch has four phases. We next describe each phase
in detail. The notations are summarized in Table II.

A. Commitment Phase

For any given epoch r, let Lr be its leader. Each node i
samples a uniformly random secret si ← Zq and computes
the PVSS tuples using the PVSS.Share primitive described
in §III:

vi, ci,← PVSS.Share(si, g1, h0, ski, {pk}j,j=1,2,...,n) (6)

where vi = {vi,1, . . . , vi,n} and ci = {ci,1, . . . , ci,n}.
Also, for each j ∈ {1, 2, . . . , n}, node i computes πj as

πj = dleq.Prove(g1, vj , pkj , cj , si,j)

Table II: Notations used in the paper

Notation Description

g0, h0 Random generators in G0

g1, h1 Random generators in G1

λ Security parameter
n Total number of nodes
t Maximum number of malicious nodes

pki, ski Public and secret keys of ith node.
r, Lr epoch number, and the leader of epoch r
ht height number
si Secret chosen by ith node
pi(·) Polynomial chosen by ith node to share si
si,j pi(j), i.e., pi(·) evaluated at j
vi,j Commitment of si,j computed as g

si,j
1

ci,j Encryption of si,j under pkj computed as pk
si,j
i

dleq(·) NIZK proof for equality of discrete logarithm
C⊥ Dual of error correcting code C

;

root

Merkle Root

Figure 4: Aggregation phase at the leader.

where si,j is the share of secret si for node j. Let πi =
{πi,1, πi,2, . . . , πi,n}. Node i then sends (vi, ci,πi) to Lr.

B. Aggregation Phase

Lr on receiving a tuple (vi, ci,πi), first validates vi and
ci using PVSS.Verify(vi, ci, {pkj}j=1,2,...,n). Then, for each
j, Lr checks πi,j using the dleq.Verify. We remark that since
the leader anyway checks the equality of discrete logarithm
using dleq.Verify, the leader need not perform step 2) of
PVSS.Verify as this check is redundant with dleq.Verify.

Upon receiving t+ 1 such valid tuples, Lr aggregates them
as follows. Let I ⊆ [n] be the set of nodes that send valid
messages during the commitment phase. Lr aggregates the
commitments into v̂ = (v̂1, v̂2, . . . , v̂n), a commitment to the
aggregated polynomial p̂(·) =

∑
i∈I pi(·). Lr also aggregates

the encrypted shares into ĉ = (ĉ1, ĉ2, . . . , ĉn), encrypted
shares for the aggregated secret p̂(0).

v̂` =
∏
i∈I

vi,`, ĉ` =
∏
i∈I

ci,` (7)

Figure 4 illustrates this step using I = {1, 2, . . . , t+ 1} as
an example. Observe that the t + 1 messages received and

7

validated by during Lr can be represented as three matrices
shown in Figure 4. Here on, we refer to these matrices as the
commitment matrix {vi,j}, the ciphertext matrix {ci,j}, and
the proof matrix {πi,j}. Let c̄j , v̄j and π̄j be the jth column
of the ciphertext, commitment, and proof matrix respectively.
Stated differently, c̄j is the set of encryptions sent by nodes
in I that are encrypted under the public key of node j. v̄j
and π̄j are jth coordinate of commitments and dleq proofs
sent by nodes in I , respectively. Without loss of generality, let
I = {1, 2, . . . , t+ 1}, then c̄j = {c1,j , c2,j , . . . , ct+1,j}, v̄j =
{v1,j , v2,j , . . . , vt+1,j}, and π̄j = {π1,j , π2,j , . . . , πt+1,j}.
Then, ĉj is the product of all elements in c̄j and v̂j is the
product of all elements in v̄j .

Next, Lr computes root, the Merkle root that commits
I, v̂, and ĉ, also shown in Figure 4. In the agreement phase,
root will be the only value that is sent via SMR. I, v̂, ĉ
themselves and the original PVSS tuples will be sent privately
to corresponding nodes.

C. Agreement Phase

Let ht be the height chosen by Lr according to SMR. Then,
to each node j, Lr sends (root, v̂, ĉ, I, v̄j , c̄j , π̄j , ht) and
proposes root using the SMR protocol for height ht.

Observe that in the above message, only v̄j , c̄j , and π̄j are
recipient specific and everything else is common to all nodes.
Essentially, the tuple Lr sends to each node corresponds to
the BFT SMR proposal on root for epoch r and height ht.

Upon receiving (root, v̂, ĉ, I, v̄j , c̄j , π̄j , ht) from Lr, node
j validates them by checking:

1) The proposal is safe according to SMR,
2) root is a valid Merkle root of I, v̂, and ĉ; and
3) Let y⊥ = {y⊥1 , y⊥2 , . . . , y⊥n } be a randomly chosen code

word from the dual code C⊥, then check whether
n∏
k=1

v̂
y⊥k
k = 1G2

; and (8)

This check ensures that v̂ is a commitment to a polyno-
mial if degree at most t.

4) Every tuple (vi,j , ci,j , πi,j) ∈ (v̄j , c̄j , π̄j) is valid dleq
proof according to §II-C; and

5) ĉj =
∏
i∈I ci,j and v̂j =

∏
i∈I vi,j .

If all of the above mentioned checks pass, node j multi-casts
the 〈prepare, root, r, ht〉 to all other nodes. Alternatively, if
any of the above checks fails or if j does not receive the
required private information from Lr, j does not send the
prepare message in the SMR protocol (cf. §II-E). An honest
node upon receiving 2t + 1 〈prepare, root, r, ht〉 messages
multi-casts 〈commit, root, r, ht〉 to all other nodes. Next,
each honest node upon receiving 2t+1 〈commit, root, r, ht〉
messages decides on root at height ht. We will use a mul-
tisignature scheme [20] to combine these commit messages
into a (λ+ n)-bit proof for the SMR decision.

D. Reconstruction Phase

Every honest node that decides root (cf. §II-E) and receives
valid messages from the leader during the agreement phase

starts the reconstruction phase for the beacon at height ht. In
particular, these nodes compute the reconstruction share s̃j as
follows and multicasts s̃j to all other nodes.

s̃j = ĉ
1

skj

j = h
∑

i∈I si,j
0 (9)

Let H be the set of honest nodes and let V ⊆ H be the
set of honest nodes that received valid messages from Lr
in SMR, but are yet to decide on root. Upon receiving a
reconstruction message s̃j from a node j, nodes in V validate
s̃j per equation 10. Upon successful validation, nodes in V
request from node j the proof of the decision on root,
to which node j responds with the multi-signature as the
proof of SMR decision. Upon receiving the multi-signature,
nodes in V validate it, and on successful validation multicast
their reconstruction shares. This implies all honest nodes who
received valid shares from Lr start reconstruction within three
message delays from the instant an honest node decides on
root.

Every node i, upon receiving a tuple s̃j , validates it using
the pairing-based discrete log equality check (cf. § II-C)

e(s̃j , g1) = e(h0, v̂j) (10)

Note that some honest nodes who did not receive valid
messages from the leader may not have v̂ and/or ĉ. In such
a situation, these nodes, up receiving s̃j from node j, query
node j for (v̂j , ĉj) and the Merkle path from (v̂j , ĉj) to root,

Let T be the set of nodes from which node i receives valid
s̃j tuples. Upon receiving t + 1 such valid tuples, i.e., when
|T | ≥ t + 1, i outputs the beacon output for height ht as
e(hs0, h1). Recall from §V-A, s = p̂(0) =

∑
i∈I si. Honest

nodes construct hs0 using the Lagrange interpolation:∏
k∈T

(s̃k)µk =
∏
k∈T

h
µk·p̂(k)
0 = h

p̂(0)
0 (11)

where µk =
∏
j 6=k

j
j−k are the Lagrange coefficients.

E. Optimizations

Pre-aggregating data. Recall from §V-B, during the aggrega-
tion phase, the leader validates a total of O(n2) NIZK proofs.
Moreover, the leader aggregates polynomial commitments
from t+1 nodes. As a result, the leader performs O(n2) com-
putation while other nodes each perform O(n) computation.
For a large n, the leader will become a bottleneck.

SPURT addresses this by having leaders pre-compute the
messages of aggregation phase. In particular, at any epoch
r, every node sends their PVSS shares for epoch r + τ to
Lr+τ . Here, τ is a system parameter. Since the leader selection
rule in SPURT is deterministic, Lr+τ is fixed and known to
all nodes in advance. Lr+τ , upon receiving the shares for
epoch r + τ , immediately starts aggregating them, and sends
the aggregated messages as well as the private messages to
each node. By doing so, SPURT amortizes the leader’s higher
usage of computation and communication across τ epochs. As
a result, during epoch r+τ , Lr+τ only sends λ bits of data to
every node, incurring a total bandwidth usage of O(nλ) bits

8

(instead of O(n2λ) bits), which is comparable to non-leader
nodes.
Multi-exponentiation. We further reduce the computation
cost using the multi-exponentiation technique [59]. For any
given group G, let g = [g1, g2, · · · , gm] be a vector of m
elements in G, and let a = [a1, a2, · · · , am] be a vector of
m scalars in Zq . Given a and g, the multi-exponentiation
technique computes more efficiently:

g′ =

m∏
k=1

gakk (12)

In SPURT, nodes need to compute an expression of this
form to: (i) validate the polynomial commitments sent during
commitment phase; (ii) validate the aggregated polynomial
sent by the leader; and (iii) compute the beacon output from
reconstruction shares.

VI. ANALYSIS OF SPURT

In this section, we will first argue that SPURT is available
in a partially synchronous network. Next, we will prove
that every output of SPURT is unpredictable, bias-resistant,
and publicly-verifiable. We then analyze the computation and
communication complexity of each epoch.

A. Reconstructability and Availability
Lemma 2. If an honest node decides root in epoch r, then
every honest node reconstruct ha0 for some a ∈ Zq at epoch r
and a = p̂(0).

Proof. If an honest node decides root, there must be 2t+ 1
prepare and commit messages. t+1 of these must come from
honest nodes. From §V-C, an honest node sends a prepare
message only if it receives from Lr a private message that
passes the check in equation (8).

This means, except for negligible probability, the degree of
p̂(·) is at most t. This is because any polynomial of degree
greater than t passes the check in equation (8) with probability
only 1/q; hence, the probability that it passes the check at t+1
honest nodes is merely

(
2t+1
t+1

)
1

qt+1 ≤ 1
q , which is negligible.

By the security guarantees of dleq, each of the t+ 1 honest
nodes who sent prepare (say node j) holds hskj ·p̂(j)0 . It can
then compute the decrypted share h

p̂(j)
0 . This implies that

during the reconstruction phase, at least t+1 honest node will
multi-cast valid decrypted shares, hence every honest node will
receive at least t+1 valid decrypted shares which is sufficient
for reconstruction.

Consider an honest node i that outputs ha0 for some a ∈ Zq
during the reconstruction phase. Then, for every decrypted
share s̃j = h

aj
0 for some aj ∈ Zq that i receives during

the reconstruction phase, i accepts s̃j only if the discrete log
equality check e(s̃j , g1) = e(h0, v̂j) is successful. Observe
that, a successful discrete equality check implies aj = sj as

e(h0, v̂j) = e(h0, g1)sj = e(h
sj
0 , g1) (13)

Since equation (13) holds for every valid decrypted shares,
upon Lagrange interpolation in the exponent using these
decrypted shares, node i will compute hp̂(0)0 .

Next, we will argue that during periods of synchrony, when
an honest node becomes leader SPURT is available.

Theorem 1. (Availability) During periods of synchrony, if the
leader Lr of an epoch r is honest, SPURT will produce an
unique output and that output will be available at every honest
node.

Proof. When Lr is honest, all the checks described in §V-C
will be successful at every honest node. Thus, the SMR will
proceed normally. Hence, during periods of synchrony, due to
the liveness property of the SMR honest nodes will decide
on the value proposed by Lr. Next, from Lemma 2, we know
that whenever the SMR decides, the corresponding beacon
output is reconstructible. Moreover, from §V-D, we know that
every node that received a valid message during the agreement
phase will multicast their decrypted shares along with its proof
of correctness to every other node. This implies that every
honest node will receive at least t+ 1 valid decrypted shares
to reconstruct the beacon output for epoch r.

B. Unpredictability and Bias-Resistance

It follows from our Theorem 5, Proposition 1 of [52], and
knowledge soundness of dleq protocol that except for neg-
ligible probability, the polynomials chosen by the adversarial
nodes are independent of the polynomials chosen by the honest
nodes. We will use this to argue that every beacon output
includes an input of at least one honest node.

Proposition 1. For any epoch r, if honest nodes decide on
root and p̂(·) be the underlying polynomial, then there exists
an honest node i such that

p̂(x) = pi(x) + q(x)

where pi(·) is the polynomial chosen by node i and q(·) is a
polynomial of degree t independent of pi(·). As a result, p̂(0) is
uniformly random and independent of aggregated polynomial
of any other epoch.

Proof. When an honest node decides root, by the proof of
Lemma 2 and the collision resistance property of the hash
function, at least t+1 honest nodes validate that contributions
from at least t + 1 nodes are included in coordinates of
the commitment vector v̂ = (v̂1, v̂2, . . . , v̂n). This implies
contribution from at least one honest node is included in at
least t+ 1 elements of v̂.

Without loss of generality, let i be the honest node whose
contribution is included in t+1 elements of v̂ and pi(·) be the
polynomial chosen by node i. By construction deg(pi(·)) = t.
Thus the t + 1 evaluation points validated by the t + 1
honest nodes fix the polynomial pi(·) and hence all other
evaluation points of pi(·). Moreover, since the polynomials
chosen by adversarial nodes are independent of pi(·), this
implies that evaluation of pi(·) must be included at all other
remaining elements v̂ as well. Hence, p̂(x) = pi(x) + q(x).
This immediately implies deg(q(·)) ≤ t.

9

We will next use the safety property of the BFT SMR,
unique reconstruction for every SMR decision, and Proposi-
tion 1 to prove the bias-resistance of every beacon output.

Theorem 2. (Bias-Resistant) Every SPURT output is uniformly
random and is independent of any other beacon output.

Proof. For any epoch r and height ht, from Proposition 1,
we know that for every SMR decision on digest root cor-
responding to aggregated polynomial p̂(·), p̂(0) is uniformly
random and independent of aggregated polynomials of any
other height. Moreover, from Lemma 2, a beacon output cor-
responding to every digest finalized by the atomic broadcast is
reconstructible. This implies that SPURT is bias resistant.

Theorem 3. (Unpredictability) SPURT ensures unpredictabil-
ity in the sense that as soon an adversary A learns any
function of a beacon output, every honest party learns the
beacon output within three communication delays.

Proof. From Proposition 1, every beacon output includes a
secret from at least one honest party. Let s∗ be the secret of the
honest node. Then, from Theorem 5, till an honest node starts
reconstruction of the aggregated secret, s∗ is indistinguishable
from a uniformly randomly chosen element in Zq . Whenever
an honest node starts the reconstruction phase, after a round
trip delay all honest nodes start the reconstruction phase.
Hence, all honest nodes will reconstruct the corresponding
beacon output at most three communication delays later since
the time the adversary learns the output. This implies that
SPURT ensures unpredictability.

C. Public Verifiability

Public verifiability for beacon protocols producing true
random numbers differs from beacon protocols producing
pseudorandom numbers [4], [24], [47], [71]. In pseudorandom
beacons, each beacon output is some deterministic function of
the secret key generated during the initial setup phase. Hence,
the output of such protocols can be efficiently verified given
only the verification/public key corresponding to the secret key
used for beacon generation. Contrary to this, truly random
beacon protocols such as Scrape [27], Hydrand [68], and
SPURT do not have a trusted setup phase, so their outputs are
verified using the transcript of the interaction between nodes.

At any given height ht, let root be digest decided by
honest nodes, and oht be the output of SPURT. Then, to verify
the validity of oht, a user (need not be one of the nodes)
queries up to t + 1 nodes, either in sequence or in parallel,
for the SMR decision certificate Cht for height ht, leaves of
the Merkle tree corresponding to root, and the t + 1 valid
reconstruction shares along with their proofs of correctness.
By Theorem 1, every honest node will have these data at the
end of the reconstruction phase. Upon receiving these data, an
external client can validate them by checking that:
• Cht is a multi-signature of at least 2t+ 1 nodes.
• root is a valid Merkle root of the received leaves.
• The dleq proofs of all the reconstruction shares are valid

and consistent with root and the quorum certificate Cht.

Table III: Summary of communication and computation cost of each
epoch of SPURT. — indicate the no cost for the corresponding
phase. The f in the communication cost of a non-leader during
the reconstruction phase denotes the number of faulty nodes in the
network.

Communication Computation

Protocol Phase Leader Non-leader Leader Non-leader

Commitment O(λn2) O(λn) — O(n)
Aggregation — — O(n2) —
Agreement O(λn2) O(λn) — O(n)
Reconstruction — O(λn+ f(λ logn+ n)) — O(n)

D. Performance

In this section, we analyze the communication cost of each
epoch and the amortized cost of generating every beacon
output. We will report the communication complexity in
number of bits each node needs to send in every epoch.
We then analyze the computation complexity of each node
measured in of number of exponentiations and pairings each
node needs to perform every epoch and report the amortized
computation cost of each beacon output. Also, throughout this
section, we will assume that signatures and multi-signatures
are O(λ) and n + O(λ) bits long, respectively. Also, we
assume that a node needs to perform O(1) exponentiations
and pairings to compute and validate a single signature, and
O(k) exponentiations,O(1) pairings to create and validate a
multi-signature of k nodes. We summarize our performance
analysis in Table III.

Communication cost. During the commitment phase of an
epoch r, each node sends O(n) group elements to Lr.
Thus, the commitment phase’s total communication cost is
O(λn2). Next, during the agreement phase Lr sends back
O(n) group elements to every node. During the agreement
phase, every node multi-casts a constant number of group
elements to all other nodes. Hence, the agreement phase’s
total communication complexity is O(λn2). Finally, during
the reconstruction phase, when there are f malicious nodes,
honest nodes may have to send the Merkle path (O(log n)
group elements) corresponding to their share, the aggregated
signature, and the list of signers (O(n) bits) to f different
nodes. Hence, we get a communication cost per node would
be O(nλ+ f(λ log n+ n)).

Also observe that during periods of synchrony, for every
n epochs, there will be at least d2n/3e honest leaders. From
Theorem 1, for every honest leader, SPURT will produce an
output. Hence, in every sequence of n epochs, SPURT will
output at least d2n/3e outputs. This implies that the amortized
communication complexity of each beacon output is O(λn2)
in the good case (i.e., f = O(1)) and O(λn2 log n + n3) in
the worst case.

Computation cost. During the commitment phase of an
epoch r, each node performs O(n) exponentiation to evaluate
PVSS.Share for their chosen secret, and to sign the PVSS
shares. In the aggregation phase, only Lr verifies the PVSS
shares from all nodes. Since, verification of PVSS shares each

10

node requires O(n) exponentiations [27], Lr performs O(n2)
exponentiations to verify all the PVSS shares. Computing the
aggregated commitment and aggregated encryption requires
O(n2) multiplications of group elements. Lastly, Lr performs
O(n) hash computation to construct the required Merkle tree.
Overall, during the aggregation phase, Lr performs O(n2)
exponentiations while the remaining nodes do not perform any
computation.

During the agreement phase, each node performs O(n)
exponentiations to validate commitments, and the aggregated
polynomial. Furthermore, as a part of the SMR step, each
node performs O(n) pairing operations to validate signatures
on messages sent by other nodes. Finally, in the recon-
struction phase, every node verifies decrypted shares using
O(n) pairings and possibly reconstructs a Merkle tree of size
O(n). Moreover, nodes might also need to aggregate O(n)
signatures. Hence, the computation cost per node in both
agreement and reconstruction phase is O(n) exponentiations
and pairings.

In summary, in every epoch, the leader of the epoch
performs O(n2) exponentiations whereas every other node
performs O(n) exponentiations and O(n) pairings. However,
in a sequence of n epochs, each node becomes the leader
only once, and due to pre-aggregation optimization (cf. §V-E),
the leader gets τ = Θ(n) rounds to compute O(n2) ex-
ponentiations. As a result, during periods of synchrony, the
amortized computation cost of each beacon output is O(n)
exponentiations and pairings per node.

Public verification. Recall from §VI-C, to validate a beacon
output, external clients need to download the SMR BFT
decision certificate, the leaves of the Merkle tree, the recon-
struction shares, and the corresponding commitments. Each of
these messages is O(n) group elements. Hence, the communi-
cation cost of verifying a beacon output is O(λn). Moreover,
verifying all these messages require O(n) exponentiations
and pairings. Verifying O(n) signatures and commitments ,
constructing the Merkle tree, and reconstruction of the secret
all have a computation cost of O(n), so the computation
complexity of public verification is O(n).

Latency. During periods of synchrony, when an honest node
is chosen as the leader of an epoch, SPURT produces a beacon
output. Thus, in the fault-free case, in practice, SPURT would
only require five message delays. However, there might be a
sequence of t malicious leaders in the worst case, and all of
them may decide to abort their epochs. In such cases, SPURT
will take O(t) message delay to produce the next output.
Nevertheless, in a sequence of n epochs, SPURT will produce
at least 2n/3 beacon outputs, so the amortized latency is at
most 1.5 epochs.

VII. IMPLEMENTATION & EVALUATION

We have implemented a prototype of SPURT using the go

programming language version 1.13.0. Our implementation
builds atop the open-source Quorum client version 2.4.0.
Quorum is a fork of Ethereum go client and implements

the Istanbul BFT protocol as one of its consensus protocol.
Istanbul BFT [60] is a variant of PBFT protocol with a total
quadratic communication complexity both during view change
and steady-state. We disable the artificial delay between con-
secutive proposals and modify the underlying implementation
such that the next leader proposes as soon as the previous
beacon output is finalized.

Throughout our implementation, we have used the
bls12-381 elliptic curve as our pairing curve. In partic-
ular, we have used the implementation of bls12-381 by
gnark-crypto [2] for primitive elliptic curve operations.
When transmitting elliptic curve group elements we use the
standard point compression technique [51]. After point com-
pression, an element of G0 and G1 is 48 bytes and 96 bytes,
respectively. For multi-signatures during the reconstruction
phase, we implemented the multi-signature scheme of [20] us-
ing the bn256 elliptic curve [3]. For multi-exponentiations, we
have used the native implementation of [2] which implements
the multi-exponentiation algorithm from [14, §4].

A. Experimental Setup

We evaluate our implementation of SPURT with varying
nodes, i.e., 16, 32, 64, and 128. We run all nodes on Amazon
Web Services (AWS) t3a.medium virtual machine (VM) with
one node per VM. All VMs have two vCPUs and 4GB RAM.
The operating system for each VM is Ubuntu 20.04.

Network. To simulate an execution over the internet, we
pick eight different AWS regions, namely, Canada, Ireland, N.
California, N. Virginia, Oregon, Ohio, Singapore, and Tokyo.
For any choice of total number of nodes, we distribute the
nodes evenly across all eight regions. We create an overlay
network among nodes where all nodes are pair-wise connected,
i.e., they form a complete graph.

Baselines. We compare our implementation with two state of
the art publicly available implmentations: Hydrand [5] and
Drand [4]. Note that Hydrand has imperfect predictability an
Drand requires a DKG setup. Nevertheless, we chose Hydrand
as it is most closely related to SPURT in terms of cryptographic
and setup assumptions and Drand as it has been deployed.

B. Evaluation Results

All our evaluation results are averaged over three runs for
each value of number of nodes.

Bandwidth usage. We report the bandwidth usage measured
as the amount of bytes sent and received per node per beacon
output in Figure 5. Recall from §VI that at every epoch, each
node sends and receives a total of O(nλ) bits of information to
and from other nodes. Hence, with an increase in the number
of nodes, we observe an approximately linear increase in the
bandwidth usage per node per beacon output. For example,
from 32 to 64 nodes, the average bandwidth usage per node
per beacon output increases from 35 to 71 Kilobytes. This
is about 65% of the bandwidth cost of Hydrand. For Drand,
we expected a bandwidth cost of 96n Kilobytes as each node
multi-casts one and receives n partial signatures which are

11

16 32 64 128
0

50

100

150

200

250

Number of nodes

B
an

dw
id

th
(K

B
/b

ea
co

n)
SPURT

Drand
Hydrand

Figure 5: Average bandwidth usage (sent + received data) measured
in Kilobytes per beacon output with varying number of nodes.

16 32 64 128
0

20
40
60
80

100
120
140
160

Number of nodes

T
hr

ou
gh

pu
t

(b
ea

co
n/

m
in

)

SPURT

Drand
Hydrand

Figure 6: Average number of random beacon generated per minute
with varying number of nodes.

48 Bytes long each. However, in the Drand implementation,
we observed a bandwidth cost of 2 × 96n Kilobytes. Upon
close inspection, we found that each node in Drand also multi-
casts the previous beacon output, which doubles the bandwidth
usage. Hence, for 32 and 64 nodes Drand has a communication
cost of 6.2 and 12.3 KiloBytes, respectively. Although SPURT
has 6× higher bandwidth usage than Drand, we believe that
this is a reasonable trade-off for removing DKG and handling
partial synchrony.

Throughput. We report the throughput of SPURT as the
number of beacon output generated per minute in Figure 6.
Our evaluation results illustrate that with 16, 32, 64, and 128
nodes, SPURT on average can generate 140, 90, 45, and 15
beacon output per minute.

We will try to compare with Drand and Hydrand but there is
a subtlety here. Since Drand and Hydrand assume synchronous
networks, their throughput is directly decided by a hard-
coded parameter, the estimated network delay upper bound.
A higher estimate hurt throughput but is a safer choice since
synchronous protocols lose security when the delay bound is
violated. Thus, we first look for a smallest network delay
parameter that do not break their implementations and then
measure throughput with that delay parameter. For Hydrand,
the throughput we found in our experiment is much lower
than what was reported in [5], so we simply use Hydrand’s
reported throughput in Figure 6 in their favor. For Drand, the
actual deployed Drand sets its throughput to be two beacon
values per minute (one per 30 seconds). We are able to adopt
much more aggressive parameters, making Drand’s throughput
in Figure 6 much higher than its deployed version, again in
their favor.

Interestingly, even after favoring the baselines, SPURT
achieves significantly better throughput than Hydrand despite
having only slightly better bandwidth; furthermore, despite
having higher communication cost than Drand, SPURT slightly
outperforms Drand in terms of throughput. We believe this
is in part because SPURT is partially synchronous, i.e., it
does not require any network delay parameter and hence can
make progress at the speed of true network delay. In contrast,
Hydrand and Drand assume synchronous networks and need
to run at the speed of a conservatively chosen network delay
estimate. Of course, there may be other inefficiencies in the

implementations of Drand and Hydrand that hindered their
throughput. Also we could only report the throughput of Drand
for up to 32 nodes, as in our experiments, the DKG step in
Drand keeps aborting for 64 or more nodes, even when we
choose very large estimates for the network delay.

Computation cost. Table V presents the concrete time
required for each of the four phases. Except for the aggre-
gation phase, the computation times for the other three phases
scale linearly with the number of nodes. The aggregation
phase requires the leader to perform a quadratic amount of
computation. But since we pipeline the aggregation phase by
sending the commitments to the leader in advance (cf. §V-E),
the aggregation phase is not the bottleneck in the critical path.

We also report in Table IV the number of exponentiation
and pairing operations each node needs to perform per bea-
con output. These numbers are more useful for comparing
computation cost with prior works because the concrete com-
putation time depend upon implementation details. Note that
the number of operations depend on f , the actual number of
faulty nodes in the system. Concretely, the computation cost
of SPURT is comparable to Hydrand but about 20x worse than
Drand.

VIII. RELATED WORK

Based on the setup assumption, existing distributed pro-
tocols can be classified into two categories; protocols with
trusted setup and protocols with transparent setup. Protocols
with trusted setup involve generation of public parameters
that embed a secret trapdoor. These parameters can either be
generated by a trusted third party (hence the name trusted
setup) or by running a maliciously secure multi-party com-
putation protocol, often a Distributed Key Generation (DKG)
step. Note that protocols without a trusted setup assumption
may also require a step to generate some uniformly random
public parameters. The subtle difference is that these public
parameters do not contain secrets or trapdoors (hence the name
transparent setup) and it is hence a milder assumption.

Protocols in the trusted setup category include [4], [16],
[24], [31], [40], [47], [71]. Most of them follow the paradigm
of Cachin et al. where the random beacon’s output at any
given epoch is a unique threshold signature on the hash
of the epoch number. Cachin et al. and Aleph can tolerate

12

exponentiations Best case, i.e., n = 64, f = 0 Worst case, i.e., n = 64, f = t
Protocol Leader Non-leader Leader Non-leader Leader Non-leader

Scrape [27] — 5n2 + 7f — 20901 — 21125
Drand [4] — n/2 — 32 — 32
Hydrand [68] 4n 32

3
n+ 17f 563 694 901 1054

SPURT 7
3
n2 + 8n+ f(7n) 28

3
n+ 4f 10387 613 19935 698

Table IV: Computation cost (amortized) measured in number of exponentiations and pairing operations per node per beacon output. We
assume n = 64; t = n/3 for Hydrand and SPURT and t = n/2 for Scrape to calculate concrete worst case costs. The best case refers
to f = 0. SPURT uses pairing based signature scheme from [20] for signing SMR messages. It also uses pairings for validating decrypted
shares during the reconstruction phase. Overall, SPURT incurs a pairing cost of 8(n/3 + f) which translates to 342 pairing operations for
64 nodes. Drand uses BLS signatures and incurs a pairing cost of 2(n/2 + f) which translates to 128 pairing operations for 64 nodes.

Time taken (in milliseconds)

Protocol Phase n = 16 n = 32 n = 64 n = 128

Commitment 9.72 19.53 39.00 78.89
Aggregation 108.08 371.5 1447.07 5728.5
Agreement 120.77 240.22 479.74 957.66
Reconstruction 188.91 359.39 702.38 1392.21

Table V: Time taken (in milliseconds) to compute different crypto-
graphic functions required in the different phases of SPURT.

asynchronous network whereas Drand and Dfinity assume
a synchronous network. Cachin et al., and Dfinity do not
discuss details about the setup phase. Drand uses the DKG
protocol of Gennaro et al. [41], which requires a Byzantine
broadcast channel over which each node sends O(λn) bits
to information. Hence, the overall communication complexity
of Drand’s setup phase is at least O(λn3 log n). After the
DKG step, the communication complexity for generating one
beacon output for all three protocol is O(n2λ). Aleph [40]
presents their own asynchronous DKG protocol with a total
communication complexity of O(λn4 log n).

Protocols in the transparent setup category include [11],
[27], [34], [43], [52], [61], [68]. Most relevant to our work
are Scrape [27] and Hydrand [68]. Both Scrape and Hy-
drand assume that the underlying network is synchronous.
Scrape [27] improves the computation complexity of PVSS
protocol of [69] from O(n2) exponentiation to O(n) expo-
nentiation per PVSS, and uses their PVSS over a broadcast
channel to generate distributed randomness. In particular, for
every beacon output in Scrape, each node uses the broadcast
channel to share their secret. Once t + 1 nodes share their
secret, nodes reconstruct the secrets using the reconstruction
phase of the PVSS and combine them to produce the beacon
output. In Scrape, each node uses the broadcast channel to
share O(nλ) size message per beacon output. Thus, the total
communication cost per beacon output is at least O(n4λ).
Also, for every beacon output, each node requires to perform
O(n2) exponentiations.

Hydrand [68] modifies the Scrape protocol to remove the
broadcast channel. Unlike Scrape, in each epoch of Hydrand,
only a leader node shares a secret using Scrape’s PVSS
scheme. Hydrand has an initialization step where each node
shares a secret using PVSS scheme, which costs O(λn3 log n)
communication. After the setup phase, for every beacon,

Hydrand has a total communication and computation cost of
O(λn2) and O(n), respectively. One major disadvantage of
Hydrand is that it only provides imperfect unpredictability,
i.e., at any epoch, an adversary can predict beacon output for
up to t future epochs.

A concurrent work by Bhat et al. [16] presents GRandPiper,
which improves upon Hydrand to have one-half fault tolerance,
but requires a trusted setup to generate q-SDH parameters.
To fix the unpredictability issue of Hydrand and GRandPiper,
Bhat et al [16] further presents BRandPiper, where the leader
shares n secrets in a single epoch and nodes reconstruct a
random value accumulating secrets from t+ 1 nodes. Similar
to GRandPiper, BRandPiper also requires a trusted setup to
generate q-SDH parameters, and has a worst-case communi-
cation complexity of O(λn3).

Randherd [71] uses Randhound in a one-time setup to par-
tition nodes into smaller subgroups of size c, and additionally
setup keys for threshold signatures. The total complexity of
Randherd is O(λc2log n). Randherd, as presented, is not
bias-resistant as a malicious leader can abort the protocol
after observing the beacon output, and will require additional
mechanisms to make it bias-resistant. The committee sampling
technique is orthogonal to random beacon designs and can be
applied to most random beacon protocols. It is effective in
improving scalability when there are a very large number of
nodes at the cost of slightly reducing fault tolerance.

In addition to the above mentioned protocols, other beacon
protocols include Bitcoin’s Proof-of-Work (PoW) [61], Proof-
of-Delay [23], Algorand [43], Ouroboros [52], Ouroboros
Praos [34], etc. The Ouroboros [52] protocol requires every
node to perform PVSS over a broadcast channel, and hence
has high communication complexity. Bitcoin, Algorand and
Ouroboros Praos are not bias-resistant as a malicious adversary
can decide to discard undesirable beacon outputs (even though
they are still secure as blockchain protocols). Protocol based
on Proof-of-Delay rely on strong and new assumptions about
verifiable time-lock puzzles [13], [28], [67] or Verifiable Delay
Functions [19].

PVSS schemes without Random Oracle. PVSS schemes
in the plain model, i.e., without random oracle, were first
proposed in [66] and later improved in [27], [48]–[50]. These
schemes either rely on non-standard assumption or have high
computation cost. For example, the schemes due to Ruiz and

13

Villar [66] and Jhanwar et al. [50] are based on the hard-
ness of Decisional Composite Residuosity assumption [62]
and the verifier in these schemes need to perform O(n2)
exponentiations. The schemes from [48] and [27] rely on the
Decisional Bilinear Square Assumption and require 2n pairing
operations for each verifier. Jhanwar [49] reduces the number
of pairing operation needed during verification to 4 using the
even less standard (n, t)-multi-sequence of exponents Diffie-
Hellman assumption [49]. Our new PVSS scheme relies on
the standard Decisional bilinear Diffie-Hellman assumption
and achieves similar performance as Scrape, which assumes
the less standard hardness of Decisional Bilinear Squaring
problem. Both in our PVSS scheme and Scrape’s PVSS
scheme, a verifier needs to perform n exponentiations and 2n
pairings to validate shares for all the nodes.

IX. CONCLUSION AND FUTURE DIRECTIONS

We have presented SPURT, an efficient distributed random-
ness beacon protocol with transparent setup, i.e., trapdoor-free
public parameters. SPURT guarantees that each beacon output
is unpredictable, bias-resistant and publicly verifiable, and
provides these properties in a partially synchronous network
against a malicious adversary controlling up to one third of
the total nodes. In the fault-free case of operation, SPURT has
amortized total communication of O(λn2). In the worst case,
the amortized total communication cost is O(λn2 log n+n3).
(Note that for λ = 256 and n < 2950, n3 < λn2 log n.)
Computation wise, each node performs O(n) group expo-
nentiations per beacon output. While designing SPURT, we
also design a publicly-verifiable secret sharing (PVSS) scheme
whose security relies on the standard Decisional bilinear
Diffie-Hellman assumption and does not require a Random
oracle.

An interesting question for future work is whether it is
possible to design a randomness beacon protocol with optimal
fault tolerance and sub-quadratic communication complexity
(possibly with a trusted setup). Note that protocols that sample
subsets can be easily made sub-quadratic in the trusted setup
phase. But such protocols come with reduced fault tolerance.
It is interesting to study whether we can design a sub-quadratic
protocol that does not resort to subset sampling. On the flip
side, it would also be very interesting to show study commu-
nication lower bound for randomness beacon. Similar lower
bounds for Byzantine agreement or multiparty computation
may be good starting points towards that direction. One may
also try to extend SPURT to fully asynchronous networks. The
major hurdle we encounter is that consensus (SMR) protocols
in fully asynchronous network require shared randomness [39],
which creates a circularity.

ACKNOWLEDGMENT

The authors would like to thank Amit Agarwal, Adithya
Bhat, Aniket Kate, Jong Chan Lee, Kartik Nayak, Nibesh
Shrestha, Zhuolun Xiang, and Tom Yurek for helpful discus-
sions related to the paper.

REFERENCES

[1] “Draft lottery (1969),” 1969. [Online]. Available: https://en.wikipedia.
org/wiki/Draft_lottery_(1969)

[2] “bls12381,” 2020. [Online]. Available: https://github.com/ConsenSys/
gnark-crypto/tree/master/ecc/bls12-381

[3] “bn256cloudflare,” 2020. [Online]. Available: https://github.com/
cloudflare/bn256

[4] “Drand - a distributed randomness beacon daemon,” 2020, https://github.
com/drand/drand.

[5] “Hydrand,” 2020. [Online]. Available: https://github.com/
PhilippSchindler/HydRand

[6] “Proof of stake (pos),” 2020. [Online]. Available: https://docs.ethhub.
io/ethereum-roadmap/ethereum-2.0/proof-of-stake/

[7] “Quorum: A permissioned implementation of ethereum supporting
data privacy,” 2020. [Online]. Available: https://github.com/ConsenSys/
quorum

[8] I. Abraham, T. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren, and
E. Shi, “Communication complexity of byzantine agreement, revisited,”
in Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, 2019, pp. 317–326.

[9] B. Adida, “Helios: Web-based open-audit voting.”
[10] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,

“Chainspace: A sharded smart contracts platform,” 2017.
[11] S. Azouvi, P. McCorry, and S. Meiklejohn, “Winning the caucus race:

Continuous leader election via public randomness,” arXiv preprint
arXiv:1801.07965, 2018.

[12] T. Baigneres, C. Delerablée, M. Finiasz, L. Goubin, T. Lepoint, and
M. Rivain, “Trap me if you can-million dollar curve.” IACR Cryptol.
ePrint Arch., vol. 2015, p. 1249, 2015.

[13] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner, “Craft:
Composable randomness and almost fairness from time,” Cryptology
ePrint Archive, Report 2020/784, 2020, https://eprint.iacr.org/2020/784.

[14] D. J. Bernstein, J. Doumen, T. Lange, and J.-J. Oosterwijk, “Faster batch
forgery identification,” in International Conference on Cryptology in
India. Springer, 2012, pp. 454–473.

[15] D. J. Bernstein, T. Lange, and R. Niederhagen, “Dual ec: A standardized
back door,” in The New Codebreakers. Springer, 2016, pp. 256–281.

[16] A. Bhat, N. Shrestha, A. Kate, and K. Nayak, “Randpiper–
reconfiguration-friendly random beacons with quadratic communica-
tion,” 2020.

[17] G. R. Blakley, “Safeguarding cryptographic keys,” in 1979 International
Workshop on Managing Requirements Knowledge (MARK). IEEE,
1979, pp. 313–318.

[18] M. Blum, “Coin flipping by telephone a protocol for solving impossible
problems,” ACM SIGACT News, vol. 15, no. 1, pp. 23–27, 1983.

[19] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in Annual international cryptology conference. Springer,
2018, pp. 757–788.

[20] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for
smaller blockchains,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2018,
pp. 435–464.

[21] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International conference on the theory and application of
cryptology and information security. Springer, 2001, pp. 514–532.

[22] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public
randomness source.” IACR Cryptol. ePrint Arch., vol. 2015, p. 1015,
2015.

[23] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and random-
ness beacons in ethereum,” IEEE Security and Privacy on the blockchain
(IEEE S&B), 2017.

[24] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography,”
Journal of Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[25] C. Cachin and S. Tessaro, “Asynchronous verifiable information dis-
persal,” in 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05). IEEE, 2005, pp. 191–201.

[26] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement with
optimal resilience,” in Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, 1993, pp. 42–51.

[27] I. Cascudo and B. David, “Scrape: Scalable randomness attested by
public entities,” in International Conference on Applied Cryptography
and Network Security. Springer, 2017, pp. 537–556.

14

[28] ——, “Albatross: publicly attestable batched randomness based on secret
sharing,” Cryptology ePrint Archive, Report 2020/644, 2020, https://
eprint.iacr.org/2020/644.

[29] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design and
Implementation, 1999, p. 173–186.

[30] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
Annual International Cryptology Conference. Springer, 1992, pp. 89–
105.

[31] A. Cherniaeva, I. Shirobokov, and O. Shlomovits, “Homomorphic en-
cryption random beacon.” 2019.

[32] R. Cohen and Y. Lindell, “Fairness versus guaranteed output delivery in
secure multiparty computation,” Journal of Cryptology, vol. 30, no. 4,
pp. 1157–1186, 2017.

[33] S. Das, V. J. Ribeiro, and A. Anand, “Yoda: Enabling computationally
intensive contracts on blockchains with byzantine and selfish nodes,” in
Proceedings of the 26th Annual Network and Distributed System Security
Symposium, 2019.

[34] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

[35] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC, Tech.
Rep., 2004.

[36] D. Dolev and R. Reischuk, “Bounds on information exchange for
byzantine agreement,” Journal of the ACM (JACM), vol. 32, no. 1, pp.
191–204, 1985.

[37] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2, pp.
288–323, 1988.

[38] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Conference on the theory and
application of cryptographic techniques. Springer, 1986, pp. 186–194.

[39] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM
(JACM), vol. 32, no. 2, pp. 374–382, 1985.

[40] A. Gągol, D. Leśniak, D. Straszak, and M. Świętek, “Aleph: Efficient
atomic broadcast in asynchronous networks with byzantine nodes,” in
Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, 2019, pp. 214–228.

[41] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” Journal of Cryp-
tology, vol. 20, no. 1, pp. 51–83, 2007.

[42] M. Ghosh, M. Richardson, B. Ford, and R. Jansen, “A torpath to
torcoin: Proof-of-bandwidth altcoins for compensating relays,” NAVAL
RESEARCH LAB WASHINGTON DC, Tech. Rep., 2014.

[43] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, 2017, pp. 51–68.

[44] S. Goel, M. Robson, M. Polte, and E. Sirer, “Herbivore: A scalable and
efficient protocol for anonymous communication,” Cornell University,
Tech. Rep., 2003.

[45] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, 1987, pp. 218–229.

[46] D. Goulet and G. Kadianakis, “Random number generation during tor
voting,” Tor’s protocol specifications-Proposal, vol. 250, 2015.

[47] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology overview
series, consensus system,” arXiv preprint arXiv:1805.04548, 2018.

[48] S. Heidarvand and J. L. Villar, “Public verifiability from pairings in
secret sharing schemes,” in International Workshop on Selected Areas
in Cryptography. Springer, 2008, pp. 294–308.

[49] M. P. Jhanwar, “A practical (non-interactive) publicly verifiable secret
sharing scheme,” in International Conference on Information Security
Practice and Experience. Springer, 2011, pp. 273–287.

[50] M. P. Jhanwar, A. Venkateswarlu, and R. Safavi-Naini, “Paillier-based
publicly verifiable (non-interactive) secret sharing,” Designs, codes and
Cryptography, vol. 73, no. 2, pp. 529–546, 2014.

[51] A. Jivsov, “Compact representation of an elliptic curve point,” Internet
Engineering Task Force, 2014.

[52] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Interna-
tional Cryptology Conference. Springer, 2017, pp. 357–388.

[53] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 583–598.

[54] L. LAMPORT, R. SHOSTAK, and M. PEASE, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[55] A. K. Lenstra and B. Wesolowski, “A random zoo: sloth, unicorn, and
trx.” 2015.

[56] B. Libert and D. Vergnaud, “Unidirectional chosen-ciphertext secure
proxy re-encryption,” in International Workshop on Public Key Cryp-
tography. Springer, 2008, pp. 360–379.

[57] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 17–30.

[58] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon
codes,” Communications of the ACM, vol. 24, no. 9, pp. 583–584, 1981.

[59] B. Möller, “Algorithms for multi-exponentiation,” in International Work-
shop on Selected Areas in Cryptography. Springer, 2001, pp. 165–180.

[60] H. Moniz, “The istanbul bft consensus algorithm,” arXiv preprint
arXiv:2002.03613, 2020.

[61] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[62] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1999, pp. 223–238.

[63] D. Pointcheval and J. Stern, “Security proofs for signature schemes,”
in International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 1996, pp. 387–398.

[64] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty
protocols with honest majority,” in Proceedings of the twenty-first annual
ACM symposium on Theory of computing, 1989, pp. 73–85.

[65] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[66] A. Ruiz and J. L. Villar, “Publicly verifiable secret sharing from
paillier’s cryptosystem,” in WEWoRC 2005–Western European Workshop
on Research in Cryptology. Gesellschaft für Informatik eV, 2005.

[67] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. Weippl,
“Randrunner: Distributed randomness from trapdoor vdfs with strong
uniqueness,” 2021.

[68] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Hydrand: Practical
continuous distributed randomness,” 2020.

[69] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in Annual International Cryp-
tology Conference. Springer, 1999, pp. 148–164.

[70] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[71] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,”
in 2017 IEEE Symposium on Security and Privacy (SP). Ieee, 2017,
pp. 444–460.

[72] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela:
Scalable private messaging resistant to traffic analysis,” in Proceedings
of the 25th Symposium on Operating Systems Principles, 2015, pp. 137–
152.

[73] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent
in numbers: Making strong anonymity scale,” in Presented as part
of the 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12), 2012, pp. 179–182.

[74] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 931–
948.

APPENDIX A
LINEAR ERROR CORRECTING CODE

Let C be a [n, k, d] linear error correcting code over Zq
of length n and minimum distance d. Also, let C⊥ be the

15

dual code of C i.e., C⊥ consists vectors y⊥ ∈ Znq such that
for all x ∈ C, 〈x,y⊥〉 = 0. Here, 〈·, ·〉 is the inner product
operation. Our PVSS scheme uses the basic fact from coding
theory. Refer to Lemma 1 of [27] for its proof.

Lemma 3. If x ∈ Znq \ C, and y⊥ is chosen uniformly at
random from C⊥, then the probability that 〈x,y⊥〉 = 1 is
exactly 1/q.

Throughout this paper, we will use C to be the [n, k, n −
k + 1] Reed-Solomon Code of the form

C = {p(1), p(2), ..., p(n) : p(x) ∈ Zq[x]; and
deg(p(·)) ≤ k − 1}

where deg(p(·)) is the degree of the polynomial p(·). Thus its
[n, n− k, k + 1] dual code C⊥ can be written as

C⊥ = {(µ1f(1), µ2f(2), ..., µnf(n); f(x) ∈ Zq[x]; and
deg(f(·)) ≤ n− k + 1}

where the coefficients µi =
∏n
i=1,i6=j

1
i−j . This implies that

random elements from C⊥ of interest is efficiently samplable.

APPENDIX B
PVSS: DEFITIONS AND SECURITY

We adopt the general model for PVSS from [69], and the
security definitions from [56], [66]. Given a set of n nodes, a
dealer L seeks to share a randomly chosen secret s among the
nodes using an (n, t+1) threshold access-structure. Informally,
the property we seek from PVSS is that any subset of t or
fewer shares do not reveal any information about the secret s
but any subset of t + 1 or more shares recover the secret
s. Additionally, any external verifier V should be able to
check that the dealer L acted honestly without learning any
information about the shares or the secret, hence the name
publicly verifiable.

A PVSS protocol has four steps described below:
– Setup: The setup algorithm generates and publishes the

parameters of the scheme. Every node i publishes a public
key pki and keeps the corresponding secret key ski private.

– Sharing: The dealer L creates shares s1, ..., sn for a ran-
domly chosen secret s. It then encrypts each share si with
the public key pki of node i to obtain ci. It then publishes
these ci’s along with proofs πi’s that these are indeed
encryptions of valid shares of some secret.

– Verification: In this step, any external V (not necessarily a
participant in the protocol) can verify non-interactively that
ci are encryptions of valid shares of some secret.

– Reconstruction: During reconstruction, node i decrypts ci
using its secret key ski to get s̃i and publishes si together
with a (non-interactive) zero-knowledge proof π̃i that s̃i is
indeed a correct decryption of ci. An external verifier V
validates the decrypted shares. If there are at least t + 1
valid decrypted shares, V applies a reconstruction procedure
to recover the original secret s shared by the dealer.

Any PVSS scheme must provide the following three security
guarantees: Correctness, Verifiability, and IND1-Secrecy.
– Correctness: If the dealer is honest, then all verification

checks in all steps and the secret can be reconstructed in
the reconstruction step.

– Verifiability: If the checks in the verification step passes,
then except for negligible probability, the values ci are
encryptions of a valid shares of some secret. If the check
in the reconstruction step passes, then the communicated
values si are the shares created by the dealder.

– IND1-Secrecy: Prior to the reconstruction step, the published
information together with the secret keys of any t nodes
gives no information about the secret. This can be formal-
ized by the following indistinguishability definition adapted
from [27], [56], [66].

Definition 2. (IND1-Secret) A (n, t+ 1) PVSS is said to be
IND1-secret if for any probabilistic polynomial time adversary
A corrupting at most t parties, if A has negligible advantage
in the following game played against an challenger.

1) The challenger runs the Setup step of the PVSS as the
dealer and sends all public information to A. Moreover,
it creates secret and public keys for all honest nodes, and
sends the corresponding public keys to A.

2) A sends the public keys of the corrupted nodes to the
challenger.

3) The challenger chooses values s0 and s1 at random in the
space of secrets. It then chooses b← {0, 1} uniformly at
random and runs the Sharing step of the protocol with sb
as secret. It sends A all public information generated in
the Sharing step, together with sb.

4) A makes a guess b′.
The advantage of A is defined as |Pr[b = b′]− 1/2|.

The correctness of ΠDBDH follows trivially from the proper-
ties of bilinear pairing and the fact that every code word u in a
code C is orthogonal to all code words in C⊥. The following
theorem ensures that ΠDBDH guarantees verifiability. Recall
from §III, q is the order of the groups in our PVSS scheme.

Theorem 4 (Verifiability). If the checks in the verification step
is successful, then except for probability 1/q the ci are correct
encryptions of shares of each node. Furthermore, during the
reconstruction step, honest nodes only accept si that are
correct decryption of ci.

Proof. From Lemma 1, except with probability 1/q the poly-
nomial committed by the dealer is a degree t polynomial.
Furthermore, since e(ci, g1) = e(pki, vi) holds for every
i ∈ {1, 2. . . . , n}, this implies logg1 vi = logpki ci for each
i. Otherwise, if a = logg1 vi 6= logpki ci = b for some i, then
e(ci, g1) = e(pki, g1)b 6= e(pki, g

a
1)a = e(pki, v1) and the

check would fail.
Furthermore, during the reconstruction step, if an honest

node accepts si that is not the correct decryption of ci, then
the verification would fail with probability 1, because when
s̃i = ha0 for some a 6= si, then e(h0, vi) = e(h0, g1)si 6=
e(s̃i, g1) = e(ha0 , g1).

16

The IND1-Secrecy of ΠDBDH assumes hardness of the De-
cisional bilinear Diffie-Helmann (DBDH) assumption, which
is given below.

Definition 3 (Decision bilinear Diffie-Hellman (DBDH)).
Given pairing groups G0,G1, target group GT , each of size q,
let e : G0×G1 → GT be the efficient bilinear pairing map. For
generators g0 ∈ G0, g1 ∈ G1, random values α, β, γ, δ ← Zq
and u0 ← gα0 , u1 ← gα1 , v0 ← gβ0 , w1 ← gγ1 , the following
distributions D0 and D1 are computationally indistinguishable

D0 =
(
u0, u1, v0, w1, e(g0, g1)αβγ

)
D1 =

(
u0, u1, v0, w1, e(g0, g1)δ

)
Theorem 5. Under the Bilinear Decisional Diffie-Hellman
assumption, the protocol ΠDBDH is IND1-secret against a
static PPT adversary.

Proof. We show that, if there exists an adversary Apriv that
can break the IND1-secrecy of the protocol ΠDBDH then there
exists an adversary ADBDH which can use Apriv to break
bilinear decisional Diffie-Hellman assumption with the same
advantage. Without loss of generality Apriv corrupts the first
t nodes.

Let g0 ∈ G0 and g1 ∈ G1 be the generators of the groups.
Let (gα0 , g

α
1 , g

β
0 , g

γ
1 , z) be an instance of the DBDH problem.

If α = 0 or β = 0 or γ = 0, then the problem is trivial, so we
assume these values are non-zero. Now ADBDH, upon given
the DBDH instance, plays the role of the challenger for Apriv

and simulates the IND1 game to Apriv as follows.
1) The challenger sets h0 = gβ0 , h1 = gγ1 and runs the Setup

step of ΠDBDH. For t < i ≤ n, ADBDH selects uniformly
random values ui ← Zp (these can be thought of implicitly
defining ski as ski = ui/β) and sends pki = gui

0 to Apriv.
2) For 1 ≤ i ≤ t, Apriv sends the public keys pki to the

challenger.
3) For 1 ≤ i ≤ t, the challenger chooses uniformly random

values si ∈ Zq and set vi = gsi1 , wi = gsi0 and ci = pksii .
For t < i ≤ n, it generates values vi = g

p(i)
1 and wi = g

p(i)
0

where p(x) is the unique polynomial of degree at most t
determined by p(0) = α and p(i) = si for i = 1, ..., t.
Note that ADBDH does not know α, but it does know gα1 ,
gα0 , gsi1 , and gsi0 for 1 ≤ i ≤ t, so it can use the Lagrange
interpolation in the exponent to compute the adequate vi
and wi. For t < i ≤ n, it also creates the values ci = wui

i .
Note that then ci = g

ui·p(i)
0 = pk

p(i)
i . Finally it sends all

this information together with the value z (which plays the
role of xb in the IND game) to Apriv.

4) Apriv makes a guess b′.
If b′ = 0, ADBDH guesses that z = e(g0, g1)αβγ otherwise

ADBDH guesses that z is a random element in GT .
Note that the information Apriv receives in step 3) is

distributed exactly like a sharing phase of the value e(hα0 , h1)
with the PVSS. Since h0 = gβ and h1 = gγ1 , e(hα0 , h1) =
e(g0, g1)αβγ . It is now easy to see that the guessing advantage
of ADBDH is the same as the advantage of Apriv.

17

