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Abstract

In classical commitments, statistical binding means that for almost any commitment transcript there
is at most one possible opening. While quantum commitments (for classical messages) sometimes have
benefits over their classical counterparts (e.g. in terms of assumptions), they provide a weaker notion of
binding. Essentially that the sender cannot open a given commitment to a random value with probability
noticeably greater than 1/2.

We introduce a notion of classical binding for quantum commitments which provides guarantees
analogous to the classical case. In our notion, the receiver performs a (partial) measurement of the
quantum commitment string, and the outcome of this measurement determines a single value that the
sender may open. We expect that our notion can replace classical commitments in various settings,
leaving the security proof essentially unchanged. As an example we show a soundness proof for the
GMW zero-knowledge proof system.

We construct a non-interactive quantum commitment scheme which is classically statistically-binding
and has a classical opening, based on the existence of any post-quantum one-way function. Prior candi-
dates had inherently quantum openings and were not classically binding. In contrast, we show that it is
impossible to achieve classical binding for statistically hiding commitments, regardless of assumption or
round complexity.

Our scheme is simply Naor’s commitment scheme (which classically requires a common random string,
CRS), but executed in superposition over all possible values of the CRS, and repeated several times. We
hope that this technique for using quantum communication to remove a CRS may find other uses.

1 Introduction

Commitment schemes [Blu81] are one of the most basic cryptographic primitives, and can be viewed as a
digital analog of a locked box. They involve two parties: a sender (committer) and a receiver, that interact
in two phases: commit and reveal. After the reveal phase, the receiver can either accept or reject, and if it
accepted then it should also obtain some message string m. Intuitively, in the commit phase, the sender is
sending the message m inside a locked box, and in the reveal phase, the key to unlock the box is sent to the
receiver. Formally, we wish that after the commit phase, no information about m should be known to the
receiver, a property known as hiding (this guarantee can be either information theoretic or computational).
At the same time, after the commit phase the sender should not be able to change their mind, so there can
be at most one m that the receiver can accept in the reveal phase, this property is called binding.

The notion of binding becomes more complicated when quantum communication between the parties is
allowed. In such a case, achieving the aforementioned guarantee is generally considered to be impossible due
to the well-known superposition attack. Let us consider the task of committing to a single bit. A sender can
generate a superposition of the values 0 and 1, e.g. |b〉 = |+〉 = 1√

2
(|0〉+ |1〉), and perform the commitment
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phase honestly, controlled by the value |b〉. That is, Let Q0, Q1 be the quantum algorithms that perform the
0, 1 commitments respectively. Then the sender executes the operation |b〉 |x〉 → |b〉Qb |x〉. One can think
of this as a purification of the process of committing to a random value. Then, only in the reveal phase,
the value of b is measured, which leaves the sender with a valid opening for the measured value. Therefore,
there is no sense in which the sender’s value is “fixed” after the commit phase. In fact, even for statistically
binding classical commitment one may wonder what happens if the communication channel is quantum and
a quantum adversary sends a quantum value as the commitment string, again causing potential ambiguity.
A straightforward solution is for the receiver to measure the information it receives over the channel in order
to “force” the commitment to be classical. The reader may want to keep this in mind.

Using quantum commitments is desirable for another reason: it is possible to construct non-interactive
quantum commitments from any (post-quantum) one-way function (OWF) [KO09, KO11, YWLQ15]. This
is not known for classical commitments and is, in fact, subject to a black box barrier [MP12]. Alas, in order
to enjoy the non-interactive scheme, we must sacrifice the beloved classical binding property. We therefore
pose the following question.

Can we get the best of both worlds? In particular, can we get quantum non-interactive com-
mitments from one-way functions with the binding guarantee of classical commitments?

In this work we answer the above as follows. We start by defining the notion of classical binding for
quantum commitments. We proceed by showing that classically binding commitments can replace classical
commitments in an example protocol, with analysis that is essentially identical to the classical analysis. We
then present a non-interactive classically-statistically-binding quantum commitment scheme based on the
existence of any post-quantum OWF, thus showing that we can get the benefits of quantum commitments
together with those of classical binding. Our construction has additional benefits compared to the (only)
previous candidate [YWLQ15] in that it has a classical opening whereas the opening in [YWLQ15] is inher-
ently quantum. This is an improvement both in terms of simplicity and also since we do not require the
sender and receiver to keep a joint coherent quantum state between the commit and reveal phase. Instead,
once the commitment string is sent, only the receiver needs to hold quantum information locally (which can
be protected by, e.g., a quantum error correcting code). Finally, we show that classical binding is impossible
for statistically hiding quantum commitments, regardless of their round complexity.

1.1 Overview of Our Results and Techniques

We now present our results and techniques in slightly more detail. The reader is encouraged to refer to the
technical sections for full details.

Classical Binding for Quantum Commitments. Our definition provides a meaningful interpretation
to the claim that, even in the quantum setting, the value of the transcript determines a single message that
can be opened by the sender. In a nutshell, our definition instructs the receiver to measure a part of the
commitment string, with the guarantee that conditioned on the measured value (with high probability) the
sender can successfully reveal (at most) a single fixed message. This alludes to our previous discussion on
using classical commitments in the quantum setting. Indeed, classical statistically binding commitments over
a quantum channel also enjoy our notion of classical binding by simply instructing the receiver to measure
the entire transcript of the communication. We show (as discussed below) that classical binding can be
achieved also with minimal interaction under minimal assumptions, namely non-interactively under one-way
functions.

We view the introduction of this notion as a conceptual contribution of this work, since we believe it
allows to pinpoint our intuitive idea of a quantum commitment that behaves like a classical one in terms
of binding. The fact that it naturally generalizes the properties of classical commitments over quantum
channels could be seen as an indication of its usefulness.

We note that our security model relies on the receiver’s ability to perform a measurement. This is justified
whenever the receiver has access to a “macroscopic” medium that cannot be placed in superposition under

2



any conceivable circumstances (e.g. a piece of paper).1 We furthermore note that our notion is useful in
many cases even if the measurement is not actually performed, since the register to be measured is kept
under the control of the receiver and therefore the sender cannot “misbehave” since from its viewpoint this
register may have been actually measured. We may therefore use the measurement as a tool in the analysis
even if the actual receiver in our protocol never actually performs it.

Application: Soundness for Zero-Knowledge. The premise of our notion is in its potential to replace
the use of classical commitments in the quantum setting. To illustrate this potential, we show how to prove
soundness for the GMW zero-knowledge protocol [GMW86] using classically-binding quantum commitments.
This method generalizes straightforwardly to commit-and-open Σ-protocols. This allows to obtain a 3-
message zero-knowledge protocol (with non-trivial soundness) from any one-way function, using quantum
communication (rather than in four messages, or with a CRS, classically). We note that this final result
was already shown before in [YWLQ15, FUW+20]. However, using our notion, the soundness analysis
becomes straightforward. Furthermore, instantiated with our particular OWF-based commitment scheme,
the resulting Σ-protocol requires only the first message to be quantum, whereas in previous solutions the
third message was also inherently quantum.

We recall that the GMW protocol for 3-coloring requires the prover to commit to a coloring of the
input graph (randomly permuting the colors) and send the commitments to the verifier. The verifier then
samples an edge of the graph and requests the opening of its endpoints. If the graph is not colorable,
then a commitment to any coloring will have at least one monochromatic edge which will be detected with
probability at least 1/|E| (where E is the set of edges). Prior analysis using quantum commitment had
to take into account a setting where the prover commits to a superposition over colorings, and one had to
deduce from the weaker soundness guarantee that a monochromatic opening must occur with reasonable
probability. Classical binding solves this problem striaghtforwardly: assume (even just for the sake of the
analysis) that the verifier performs the “binding” measurement on the commitment values. Then, with
all but negligible probability over the outcome of the measurement, the prover is committed to a single
coloring (in the sense that any opening that deviates from this coloring will be rejected with overwhelming
probability). The probability that a random edge is monochromatic in this coloring is again at least 1/|E|
and therefore the probability that the verifier rejects is at least 1/|E| (up to negligible terms). We note that
classical binding does not help (nor hurts) in dealing with complications that arise from establishing the
zero-knowledge property in the quantum domain. Indeed, our aim is to replace classical commitments in
post-quantum secure protocols.

For more details about the notion of classical binding and its applicability, see Section 3.

Non-Interactive Classically Statistically-Binding Commitments from OWF. Our construction
from OWF can be viewed as a “de-randomization” of Naor’s commitment scheme (which normally requires
a CRS). In some sense, we “delegate” the choice of the CRS to the prover, and the quantum communication
allows us to do this without compromising soundness (i.e. binding). In that sense our construction is in-
herently different from the prior construction of quantum non-interactive statistically-binding commitments,
and indeed it leads to new properties such as classical opening and (of course) to achieving classical binding.
We hope that this technique of removing the CRS will find other applications and allow to use quantum
communication as a resource.

Concretely, we recall Naor’s commitment [Nao91], which will be convenient to consider as a 2-message
protocol (rather than single message with a CRS). The scheme uses a length-tripling pseudorandom generator
G : {0, 1}n → {0, 1}3n as follows. In the first message, the receiver samples x ∈ {0, 1}3n and sends it to
the sender. The sender, wishing to send a bit b, samples a seed s for the PRG and sends G(s) ⊕ xb (i.e.
either G(s) or G(s) ⊕ x depending on b). The opening is simply (b, s). Binding for this classical protocol
follows since if it is possible to classically open a commitment to both 0 and 1, then there exist s0, s1 s.t.
G(s0)⊕G(s1) = x. A counting argument shows that there are at most 22n such strings, and therefore for a
random x this is impossible with all but 2−n probability.

1Alternatively, it suffices to perform an operation that is equivalent to a measurement from the viewpoint of an adversary,
such as copying (via CNOT operation) the “measured” value into a space that is inaccessible by the adversary.
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The basic intuition is to allow the sender to sample x and send it to the receiver. If we only have
classical communication then soundness is lost since the sender will always choose a “bad” x. However, in
the quantum setting we can instruct the sender to generate a superposition over all possible x values. This
quantum state (a uniform superposition

∑
x |x〉) can be efficiently verified (just like a deterministic classical

state) and, upon measurement, produces the uniform distribution over x. The intuition, therefore, is that
the sender sends a superposition over commitments, so that the verifier can perform the measurement and
sample the first message from the correct distribution. We will see that there are a few more ideas required
in order to push this intuition through.

Let us take a look at a superposition of commitments. For a value b, we have
∑
x |x〉 |G(s)⊕ xb〉, where s

is a random seed sampled by the sender. Glancing at this expression, we can see that the hiding property is
now lost, since if b = 0 then the second register is independent of the first which makes it easy to recover the
committed value. Essentially, we want to have a “fresh uncorrelated copy” of the Naor commitment for any x
value. One way to do this is to replace s with f(x) where f is a random function. This random function can
be replaced by a pseudorandom function, but we notice an even simpler solution which is to replace f with
a pairwise independent function h. That is, a commitment to b is

∑
x |x〉 |G(h(x))⊕ xb〉 where h is chosen

at random from a pairwise independent family. It is known [Zha12b] that pairwise-independent functions
are indsitnguishable from random functions if a single quantum query is made. The hiding property of this
construction follows using by-now-standard arguments from [Zha12b]. The opening of the commitment are
the values (b, h), note that they are completely classical. Our final scheme is simply a parallel repetition of
this building block, for reasons that we explain below.

Towards analyzing binding, we establish the following properties of the aforementioned building-block.
First, we notice that given an opening (b, h) is it possible to “uncompute” the commitment string and
verify that it has been honestly computed (note that (b, h) completely determine the quantum commitment
state). Second, if indeed the state is as prescribed (for some (b, h) regardless of what these values are), then
measuring the entire commitment (in the computational basis) will result in a “standard” Naor commitment,
and furthermore x will be “bad” only with negligible probability. This means that for the particular classical
value obtained from the measurement there can exist only a single accepting opening. These properties are
still insufficient for classical binding but we note that they already suffice in order to establish the notion of
quantum statistical binding as defined in [YWLQ15].

Nevertheless, we require the stronger notion of classical binding, for which the above seems insufficient.
Recall that we wish to measure the commitment string so as to establish a classical value that will uniquely
determine at most one value for which opening is possible. Alas, in the building block above, if we perform
the measurement prior to receiving the opening, we are no longer able to verify the correctness of the state
after the opening is received. Our solution is to repeat the commitment k times. This will allow us to
measure some of the copies (say each copy with probability 1/2) and use the other copies for the sake of
verification. We show that with all but negligible probability, the measured values will bind the sender to a
single message.

To prove the classical binding property of the parallel repeated commitment, we consider an interactive
game as follows. A sender first sends a commitment from the single-instance building block. The receiver
flips a coin and based on the outcome it does one of the following. For one coin-flip outcome, it measures the
commitment state, and asks the receiver to produce two equivocal openings for the measured commitment.
For the other coin-flip outcome, the receiver does not measure, and instead asks the sender for an opening
that will pass the quantum well-formedness test. We show that in the basic building block, no sender can
succeed with probability > 1/2+negl in this game. We then use the parallel repetition theorem for quantum
protocols of Kitaev and Watrous [KW00] to argue that in a k-parallel-repetition, no sender can succeed
with non-negligible probability. The k-repeated version of the game exactly corresponds to our k-repeated
commitment, and thus we establish that it is impossible to produce an opening that will explain the measured
values in the “wrong” way, and at the same time pass the quantum tests on the other copies. Note that the
malicious sender is allowed to know which copies have been measured as well as the measured values and
still breaking binding is impossible with noticeable probability.

In the body, we prove amplification for a class of commitments that generalizes the properties of the
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above Naor-type commitment. For more details about our construction and proof, see Section 4.

Statistical Hiding with Classical (Computational) Binding. Lastly, we show that our classical binding
approach can only be carried out in the setting of statistical binding. This is perhaps not surprising because
statistical hiding implies that measurements performed by the receiver cannot noticeably effect the state
that is held by the sender. In particular, the well-known superposition adversary can break classical binding.
We prove this formally in Section 5.

1.2 Related Work

Commitment schemes in the quantum setting have been studied from various aspects. One line of re-
search is concerned with providing post-quantum security guarantees for classical commitment schemes, e.g.
[AC02, Unr12, Unr16a, Unr16b]. Most of these efforts are concerned with statistically hiding commitments
where binding poses challenges even when using a completely classical scheme. Another line of work is
concerned with using quantum communication in order to reduce the assumptions required to achieve com-
mitment schemes with certain properties. This includes the negative result showing that statistical hiding
and statistical binding cannot be simultaneously achieved even in the quantum setting [May97, LC97]. Other
works showed how to achieve statistically hiding commitments with improved round complexity from mini-
mal assumptions [DMS00, KO09, KO11]. There are also works that are concerned with constructing crypto-
graphic applications, most notably oblivious transfer from one-way functions [CDMS04, BCKM20, GLSV20].

Most relevant to this work are the works of Yan et al. [YWLQ15] and of Fang et al. [FUW+20] which
focus on statistical binding in the quantum setting.

The former [YWLQ15] proposes a definition which is weaker than ours and only requires that the honest
commitments to b = 0 and b = 1 are far apart in trace distance. This yields a canonical reveal phase as follows.
Consider the sender’s preparation of a commitment to some bit value b, and consider the purification (deferred
measurement) version of this procedure, so that the sender can be assumed, without loss of generality, to
generate a pure state |ϕb〉 and send some part of it to the receiver as the commitment string. In the
canonical reveal phase, the sender sends the purification (in addition to b itself of course) so that the receiver
can indeed verify that it is holding |ϕb〉. The statistical binding property is used by the authors in order
to prove soundness for protocols such as the aforementioned GMW zero-knowledge protocol. However, as
they explain, they are required to take a geometric approach and analyze the Hilbert space induced by the
protocol in quite detail. Our stronger notion in comparison allows to carry out the classical argument almost
verbatim. As explained above, our construction also enjoys the property of the opening being classical and
in particular it does not require the sender and receiver to share an entangled state at any point in the
protocol.

The latter work [FUW+20] is focused on deriving more applications from the notion of statistical binding.
They notice that if we had perfect binding, then it would have been possible to introduce a “virtual measure-
ment” in the analysis that fixes the value of the commitment. They then show that statistical binding can
be viewed as an approximation of the above. In some sense, one can view their measurement as playing a
similar role to the binding measurement in our definition. However, in our case we are guaranteed by design
that the measurement outcome, with high probability, fixes the sender’s possible opening. This again makes
our notion seemingly easier to work with.

We note that on top of the technical differences from previous works, we believe that the notion of
classical binding carries conceptual importance in providing a way for a receiver of a quantum commitment
to ensure that the sender is committed to a single value.

2 Preliminaries and Basic Tools

2.1 Quantum Formalism

We propose a formalism that associates “quantum variables” with wires of a quantum circuit. This circuit
is sometimes explicit but in other cases it is implicit in the description of a quantum procedure. We denote
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quantum variables with boldface letters, e.g. x and classical values using plain letters, e.g. x. We can consider
density matrices of quantum variables and also joint density matrices for variables that can jointly occur,
namely there exists a cut in our (explicit or implicit) circuit that contains both variables. When a value
is “classical” it can be copied, and we therefore formally assume that for any classical value there exist
numerous (an unbounded number) of copies of that value.

We refer to all physically allowed manipulation of a quantum system as “quantum operations”. This
includes quantum gates, unitaries, and also non-unitary operations as tracing out, concatenation of ancilla
variables and measurements. For measurement or tracing out, the lost information (i.e. the traced out
register or the purification of the measurement) may not be accessible to the parties in our setting, but they
can always be recalled for the sake of analysis. Note that all of the above can be formulated in the form
of a quantum circuit, and therefore it complies with our aforementioned notion of quantum variables. We
denote an application of a quantum operator F on a quantum variable x by y = F (x), in this case y is the
quantum variable representing the output wires of F . A quantum operation can be given in oracle form, in
which case a party with access to the oracle can perform y = F (x), but without receiving any information
on the functionality of F .

For example, let us consider quantum teleportation where an EPR pair (x,y) is shared between two
parties. Then the party holding x takes another (independent) single-qubit variable z and measures zx in
the EPR basis to obtain two classical values z, x. We can then compute w = ZzXz(y).

In this case, we can consider the joint density matrix ρxyz which in this case will be equal to ρxy ⊗ ρz.
The reduced density matrix ρx will just be (scaled) identity. However, the density matrix ρyw does not exist
since w is derived from y. We can also consider density matrices of classical values, e.g. ρzx (for the post-
measurement values) is a scaled identity matrix (maximally mixed state). However, ρzxy is not diagonal.
The operation w = ZzXz(y) can be described as applying CNOT and CZ on the joint state zxy.

We denote the class of quantum polynomial time algorithms by QPT. We say that two distribution
ensembles D0,D1 are computationally indistinguishable (by quantum adversaries), which we denote D0 ≈
D1, if no QPT algorithm (possibly with quantum auxiliary input) can distinguish them with noticeable
probability.

2.2 Standard Tools

Definition 2.1 (PRG). A pseudorandom generator G with stretch `(λ) > λ is a classical polynomial-time
algorithm that satisfies pseudorandomness (against quantum distinguishers):

{G(Uλ) }λ ≈ {U`(λ) }λ ,

where for any k, Uk is the uniform distribution on k bits.

Such PRGs are known based on one-way functions [HILL99].2

Definition 2.2 (PIH). A pairwise independent family of hash functions H = {h : {0, 1}n → {0, 1}m } sat-
isfies for any distinct x, x′ ∈ {0, 1}n and any y, y′ ∈ {0, 1}m:

Pr[h(x) = y, h(x′) = y′ : h← H] = 2−2m .

Such polynomial-time computable families of functions are known where each function is described by
|h| = O(m+ n) bits.

3 Classically Binding Quantum Commitments

In this section we define classically binding quantum commitments. For simplicity we restrict attention to
non-interactive commitments (which we later construct); the definition can be naturally extended also to
interactive protocols.

2The proof there considers classical distinguishers (and inverters), but is known to extend to the quantum setting.
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Figure 1: The figure on the left depicts the honest commitment experiment, where the decommitment d is
generated together with the commitment c. The figure on the right depicts the binding experiment, where
the commitment c is entangled with an arbitrary state s, and the equivocation circuit E may use it along
with the measured r in order to generate the decommitment.

Definition 3.1 (CBQC). A classically binding quantum commitment (CBQC) scheme consists of QPT
algorithms (S,R, V ) satisfying:

• Syntax:

– S(m) is a sender algorithm that given classical string m ∈ {0, 1}`, outputs quantum commitment
c and decommitment d.

– R(c) is a receiver algorithm that (w.l.o.g) has the following structure. Apply an efficiently com-
putable unitary UR on (c,0). Then parse the output as (q, r) and apply a computational-basis
measurement on r to obtain a classical value r. Return (q, r).

– V (q, r,m,d) is a verification algorithm that given quantum and classical receiver state (q, r),
classical string m, and quantum decommitment state d outputs a bit (accept or reject).

All algorithms also take a security parameter 1λ and string length parameter 1`, which we typically
suppress.

• Correctness: For any m ∈ {0, 1}`,

Pr

[
V (q, r,m,d) = acc :

(c,d)← S(m)
(q, r)← R(c)

]
= 1 ,

where the probability is over all measurements.

• Computational Hiding:

{ c : (c,d)← S(m0) }λ,m0,m1
≈ { c : (c,d)← S(m1) }λ,m0,m1

.

• Classical Binding: There exists a negligible function ν (called the binding error) and a (classical)
function m̄ : {0, 1}∗ → {0, 1}` (called an extractor), such that for any quantum state (c, s) and for any
quantum circuit Ē,

Pr [(q, r, s) is m̄-binding : (q, r)← R(c)] ≥ 1− ν(λ) ,

where the probability is over the measurement done by R and (q, r, s) is m̄-binding if

Pr

[
V (q, r,m,d) = acc :

(d,m)← Ē(s, r)
m 6= m̄(r)

]
≤ ν(λ) ,

where the probability is over all measurements.
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The honest commitment experiment as well as the binding experiment are depicted in Figure 1.
In the above definition, the equivocation algorithm E is fixed before the receiver’s measurement, but

obtains the result of the measurement. We next note that this is equivalent to allowing the equivocation
algorithm E to be fixed after the receiver measurement and may depend on the classical description (e.g., as
a density matrix) of the state of the system after the measurement. This definition will be slightly cleaner
to use in applications.

Definition 3.2 (Classical Binding with Post-Measurement Equivocation). There exists a negligible function
ν (called the binding error) and a (classical) function m̄ : {0, 1}∗ → {0, 1}` (called an extractor), such that
for any quantum state (c, s),

Pr [(q, r, s) is m̄-binding : (q, r)← R(c)] ≥ 1− ν(λ) ,

where the probability is over the measurement done by R and (q, r, s) (where r is a fixed post-measurement
value) is m̄-binding if for any quantum circuit E = Eρ(q,r,s) it holds that

Pr[V (q, r,m,d) = acc :
(d,m)← E(s)
m 6= m̄(r)

] ≤ ν(λ) ,

where the probability is over all measurements.

Proposition 3.1. A set of algorithms (S,R, V ) is CBQC according to Definition 3.2 if and only if it is
CBQC according to Definition 3.1.

Proof. We prove that binding according to one notion implies binding according to the other, with respect
to the same extractor m̄ and binding error ν, and vise versa.

Assume that binding holds with respect to definition 3.2. Consider a state (c, s), let (q, r) be defined
using R as above. Consider any family of equivocators E = {Eρ(q,r,s) }, which takes s as input and produces

an arbitrary output. Then we show that there exists Ē such that (q, r, Ē(s, r)) is distributed identically to
(q, r, Eρ(s,q,r)(s)). This implies that binding holds with respect to definition 3.1. To see why the above is
true, note that the state (s,q, r) is exactly ((I ⊗ |r〉 〈r|) · (I ⊗ UR))(s, c,0), properly normalized. Therefore,
given r and given the density matrix of (c, s), it is possible to compute exactly the density matrix of (s,q, r).

Consider, therefore, the procedure Ē which contains a description of ρ(c,s), and takes r as one if its inputs.
It can compute out of ρ(c,s) and r the density matrix ρ(q,r,s), and then recovers the corresponding equivocator
Eρ(q,r,s) (which as defined depends on (q, r, s) so is fully specified by their density matrix), and applies this

Eρ(q,r,s) on its input s. By definition (q, r, Ē(s, r)) is identical to (q, r, E(s)) and the claim follows.
In the converse direction, assume that binding holds with respect to definition 3.1. Consider again a

state (c, s), and (q, r) be defined using R as above. Consider any (universal) equivocator Ē, which takes
(s, r) as input and produces an arbitrary output. Then consider E = {Eρ(q,r,s) } where Eρ(q,r,s)(s) applies

Ē(s, r). Then (q, r, Ē(s, r)) is distributed identically to (q, r, Eρ(q,r,s)(s)). This implies that binding holds
with respect to definition 3.2.

3.1 Composition and Application

In this section, we show that like classical commitments, classically-binding quantum commitments can
be composed in parallel. In particular, it seems that they can generally replace classical commitments in
“commit and open” protocols such as zero knowledge protocols, essentially without changing the proof.
As a simple example, we show how CBQCs can be used to prove the soundness of the GMW protocol.
Throughout this section, it will be convenient to use the equivalent Definition 3.2 of classical binding with
post-measurement equivocation.

Proposition 3.2 (Multi-Commitment Classical Binding). Let (S,R, V ) be a CBQC with extractor m̄ :
{0, 1}∗ → {0, 1}` and binding error ν. Then for any quantum state (s, c1, . . . , ct),

Pr [(q1, r1, . . . ,qt, rt, s) is m̄-binding : (q1, r1)← R(c1) . . . (qt, rt)← R(ct)] ≥ 1− t · ν(λ) ,
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where the probability is over the measurements done by R and (q1, r1, . . . ,qt, rt, s) is m̄-binding if for any
quantum circuit E and i ∈ [t],

Pr

[
V (qi, ri,m,d) = acc :

(d,m)← E(s)
m 6= m̄(ri)

]
≤ ν(λ) ,

where the probability is over all measurements.

Remark 3.1 (String Commitments). Note that an immediate corollary of the above is that as in the classical
case, classically binding bit commitments (i.e. where ` = 1) imply classically binding string commitment
(i.e. where ` = poly(λ) for an arbitrary polynomial).

Proof of Proposition 3.2. Fix (s, c1, . . . , ct) and assume toward contradiction that

Pr [(q1, r1, . . . ,qt, rt, s) is not m̄-binding : (q1, r1)← R(c1) . . . (qt, rt)← R(ct)] > t · ν(λ) .

Then there exists an i ∈ [t] such that

Pr [(qi, ri, s) is not m̄-binding : (qi, ri)← R(ci)] =

Pr [(qi, ri, s) is not m̄-binding : (q1, r1)← R(c1) . . . (qt, rt)← R(ct)] > ν(λ) ,

where the probability is over the measurements done by R, and m̄-binding is according to Definition 3.2 (the
single commitment case). This contradicts classical binding of (S,R, V ) with respect to the commitment
and sender state (ci, s).

Soundness of GMW. As a simple example we show how CBQCs can replace classical commitments in
the GMW three-coloring protocol [GMW91], while the soundness proof remains the same as in the classical
case.

We do not address zero knowledge here. The proof of Watrous [Wat09] that the protocol is zero knowledge
relies only on the computational hiding of the commitments, and holds as is, in the case that the commitments
are quantum rather than classical. This was already observed for instance in [YWLQ15].

We recall the description of the honest verifier in the GMW protocol, where we instantiate the com-
mitment scheme using a CBQC (S,R, V ) (we omit details about the honest prover algorithm, as they are
irrelevant to the proof of soundness.

The GMW verifier Vzk, given a graph G = ([n], E):

1. Vzk receives from the prover commitments c1, . . . , cn, each to a color σk ∈ [3].

2. Vzk applies the commitment receiver (qk, rk)← R(ck) for all k ∈ [n].

3. Vzk picks a random edge (i, j) ∈ E, and sends it to the prover.

4. Vzk receives openings (di, σi), (dj , σj) to the corresponding commitments i, j.

5. Vzk applies the commitment verifier V (qi, ri, σi,di), V (qj , rj , σj ,dj), and accepts if both accept, and
σi 6= σj .

Remark 3.2. In the above description, we could defer the application of R to the last step (and also apply it
only on ci, cj). Indeed, these operations commute and do not change the probability of acceptance. However,
the above order will make the soundness analysis conceptually simple.

Proposition 3.3. Let G be a graph that is not three-colorable. Then no prover (unbounded quantum circuit)
convinces the verifier of excepting with probability greater than 1− 1/|E|+ negl(λ).

Proof. Fix any graph G = ([n], E) that is not three colorable, and any prover. We assume w.l.o.g that the
prover has the following simple form:
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• It sends quantum commitments c1, . . . , cn and keeps a corresponding state s.

• Given the verifier choice i, j, it applies a quantum circuit Pi,j(s) to generate its message (di, σi,dj , σj).

By (multi-commitment) classical binding, with probability 1−negl(λ) over the measurements of R in Step 2,
(s,q1, r1, . . . ,qn, rn) is m̄-binding. Let σ̄k = m̄(rk), where m̄ is the extractor function given by the CBQC.
Then, because G is not three-colorable, there exists (i∗, j∗) ∈ E such that σ̄i∗ = σj∗ . Conditioned on the
verifier choosing at random (i∗, j∗), it accepts only in the case that for some k ∈ { i∗, j∗ }, V (qk, rk, σk,dk) =
acc and σk 6= σ̄k = m̄(rk). However, by m̄-binding, this occurs with probability at most negl(λ). Overall,
the prover fails to convince the verifier with probability 1/|E| − negl(λ).

4 Construction

Toward the construction we define a stronger notion that we call split classical binding (SCB). The advantage
of this notion is that it allows for binding amplification, which we will use in our constructions.

4.1 Split Classical Binding

In split classical binding quantum commitments (SCBQC), the decommitment d is classical. Furthermore,
the verifier V is split to a classical part cV and a quantum part qV . The high-level guarantee is that with
overwhelming probability over the measurements of the receiver, the measured value r is either:

• a (classical) commitment that is binding with respect to the classical verifier cV — i.e. cV would
accept at most a single message as an opening of r.

• or, the quantum verifier qV will reject with overwhelming probability.

Definition 4.1 (Split Classical Binding). A quantum commitment (S,R, V ) is split classically binding if:

• Classical Decommitment: The sender (c, d) ← S(m) produces a classical decommitment (equiva-
lently, V (q, r,m,d) always measures the decommitment d in the computational basis).

• Split Verifier: There exists a classical PPT verifier cV and a QPT verifier qV such that

V (q, r,m, d) = acc if and only if qV (q,m, d) = acc and qV (r,m, d) = acc.

• Split Binding: There exists a negligible function ν (called the binding error) such that for any quantum
state (c, s) and any (unbounded) quantum circuit E,

Pr

[
qV (q, b, d) = acc and r is not binding :

(q, r)← R(c)
(d, b)← E(s, r)

]
≤ ν(λ) ,

where the probability is over all measurements done by R, E, and qV , and r is not binding if

cV (r,m0, d0) = cV (r,m1, d1) = acc for some d0, d1 and m0 6= m1.

The scheme is δ-binding if ν is replaced by some (non-negligible) function δ.

Proposition 4.1. Any SCBQC is a CBQC.

Proof. Let (S,R, V ) be SCBQC. Then by split binding, there exists a negligible function ν such that for all
(s, c) and E it holds that

Pr

[
qV (q, r,m, d) = acc and r is not binding :

(q, r)← R(c)
(d,m)← E(s, r)

]
≤ ν(λ) .
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Define the extractor function m̄(r) that returns m if there is a unique bit m such that cV (r,m, d) = acc

for some d; otherwise, m̄(r) returns ⊥.
Therefore, with probability at least 1 −

√
ν(λ) over the measurement (q, r) ← R(c), the state (q, r, s)

satisfies either:

1. r is binding, in which case cV (r,m, d) = rej for any m 6= m̄(r), or

2. Pr [qV (q, b, d) = acc : (d,m)← E(s, r)] ≤
√
ν(λ).

Recall that by definition, V accepts only if both qV and cV accept. It follows that

Pr

[
V (q, r,m,d) = acc ∧ m 6= m̄(r) :

(q, r)← R(c)
(d,m)← E(s, r)

]
≤
√
ν(λ) .

This completes the proof, showing classical binding with binding error
√
ν(λ)).

4.2 Split Binding Amplification

In this section we prove that for SCBQC we can amplify δ-binding to negl-binding.

Definition 4.2 (n-Fold SCBQC). Let (S,R, V = (qV, cV )) be an SCBQC, the corresponding n-fold SCBQC
denoted by (S⊗n, R⊗n, V ⊗n = (qV ⊗n, cV ⊗n)) is defined as follows:

• S⊗n(m) applies S(m) n times independently resulting in (c1, d1), . . . , (cn, dn).

• R⊗n(c1, . . . , cn) applies R(ci) for every i resulting in (q1, r1), . . . , (qn, rn).

• qV ⊗n((q1, . . . ,qn),m, (d1, . . . , dn)) applies qV (qi, b, di) for every i and outputs acc if and only if all
are acc.

• cV ⊗n((r1, . . . , rn),m, (d1, . . . , dn)) applies cV (ri, b, di) for every i and outputs acc if and only if all are
acc.

Proposition 4.2 (Binding Amplification). If (S,R, qV, cV ) is δ-binding for some constant δ < 1, then the
n-fold (S⊗n, R⊗n, qV ⊗n, cV ⊗n) is δn-binding.

Proof. Consider the following 3-message quantum proof system (P,V) for the empty language:

1. P sends V a commitment c.

2. V applies (q, r)← R(c) and sends r to P.

3. P provides d0, d1,m0,m1.

4. V accepts if cV (r,m0, d0) = cV (r,m1, d1) = acc and qV (q,m0, d0) = acc.

Claim 4.1. The soundness error ε of (P,V) is at most δ.

Proof. Fix any prover P? with initial state s0 and let ε be the probability it convinces the verifier V to
accept. Let c be the first message of P? and let s be its state after sending it. Let E be the quantum circuit
that given (s, r) computes the prover’s third message (d0, d1,m0,m1) corresponding to state s and verifier
message r, and outputs (d0,m0).

By the definition of V, we can bound the probability ε that P? convinces V as follows

ε ≤Pr

[
qV (q,m0, d0) = acc and r is not binding :

(q, r)← R(c)
(d0,m0)← E(s, r)

]
≤ δ ,

where the last inequality follows by the δ-binding of the SCBQC (S,R, V = (qV, cV )).
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Invoking a parallel repetition theorem by Kitaev and Watrous for 3-message quantum interactive proofs,
we deduce that in the n-fold version of the protocol the soundness error reduces at an exponential rate.

Claim 4.2 ([KW00]). Let (P⊗n,V⊗n) be the n-fold parallel repetition of (P,V). The soundness error of
(P⊗n,V⊗n) is εn = εn.

Finally, to prove that the binding error of the n-fold SCBQC (S⊗n, R⊗n, V ⊗n = (qV ⊗n, cV ⊗n)) also
reduces at an exponential rate, we relate it to the soundness of the corresponding n-fold interactive proof.

Claim 4.3. (S⊗n, R⊗n, qV ⊗n, cV ⊗n) is δn-binding for δn ≤ εn.

Proof. Let (c, s) be a quantum state and E a quantum circuit which violate η-binding for some η ∈ (0, 1].
We describe a prover strategy P? that convinces V⊗n to accept with probability ε′ ≥ η:

1. P? sends c as its first message, and keeps the register s.

2. Given r, P? applies (d0,m0)← E(s, r).

3. P? searches for a decommitment d1 and m1 such that r can be opened to m1, namely such that
cV ⊗n(r,m1, d1) = acc. If such d1 exists, P? sends (d0, d1,m0,m1) to V; otherwise, it aborts.

We can bound from below the probability ε′ that P? convinces V⊗n as follows:

ε′ ≥Pr

[
qV (q,m0, d0) = acc and r is not binding :

(q, r)← R(c)
(d0,m0)← E(s, r)

]
≥ η ,

where the last inequality follows by our assumption that c, s, E violate η-binding.

Overall, we deduce that δn ≤ δn. Proposition 4.2 follows.

4.3 SCBQC from any One-Way Function

In this section we show how to construct SCBQC from any post-quantum secure one-way function.

Theorem 4.1. Assuming QOWFs there exist a Ω(1)-binding split classically binding quantum bit commit-
ment.

In what follows, let G : {0, 1}λ → {0, 1}3λ be a length-tripling PRG and, let H3λ,λ be a pairwise independent
hash family mapping {0, 1}3λ to {0, 1}λ. As noted in Section 2, PRGs exist assuming one-way functions,
and pairwise independent hashing families exist unconditionally.

The Scheme:

• (c, d)← S(b): samples a random hash h← H and prepares the state:

|c〉 = |ch,b〉 := 2−3λ/2
∑

x∈{0,1}3λ
|x〉 |G(h(x))⊕ xb〉 ,

where x1 := x and x0 := 0|x|.
The decommitment information d is the hash h.

• (q, r)← R(c): tosses a random coin t← { measure, keep } and

– If t = measure, measures c in the computational basis, stores the bit t and the result of measuring
c in r and also stores t in q.

– If t = keep, stores the bit t and c in q and also stores t in r.
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We note that this functionality can be arranged to comply with the syntax in Definition 3.2 by defining
the unitary UR as follows.

First consider a purification of the coin t by considering a variable t initialized to 0, and then applying
a Hadamard gate so that t contains the |+〉 state (associating the value measure with 0 and keep with
1). It then CNOTs t into another quantum register t′ (so that t, t′ are in fact an EPR pair).

It then creates two registers q and r, where the former contains (t, c), and the latter contains (t′,0).
Then controlled on the value of t (i.e. controlled on the value being equal to keep), swap the second
parts of q and r.

One can verify that the outcome of this procedure is as described above. Note that t is always being
measured since it is a part of r and the value of t′ in q will always be equal to this classical measured
value, so after the measurement we can refer to this value as one classical value t.

• qV (q, b, d): parse q = (t′, c′), recall that t′ has been indirectly measured and therefore corresponds to
the classical value t:

– If t = measure, outputs acc.

– If t = keep, parses d = h as a hash, performs the measurement { | ch,b〉 〈ch,b | , I − | ch,b〉 〈ch,b | }
on c′, and accepts if it succeeded.

cV (r, b, d): reads t from r:

– If t = keep, outputs acc.

– If t = measure, parses d = h, reads the measurement (x, y) from r, and outputs acc if and only if

y = G(h(x))⊕ xb .

The correctness of the scheme follow readily from the construction. We prove that the scheme is Ω(1)-
binding in Proposition 4.3, and prove that it is computationally hiding in Proposition 4.4.

Proposition 4.3. The scheme is δ-binding for δ = 1/2− 2 · 2−λ/2.

Proof. We consider a quantum system defined over input wires c, s, t,a, where c corresponds to a commit-
ment, s is a sender state, t represents a choice in { measure, keep }, and a corresponds to any ancilla required
by the system. Fix any state (c, s) and circuit E, and assume w.l.o.g. that the state (c, s) is pure and we
accordingly denote it by |c, s〉 (if (c, s) is not pure, we consider a purification (c, s′) of (c, s)). The initial
(pure) state of the system is |ζ〉 = |c, s〉 |+〉 |0〉.

Let U be a unitary circuit that is a purification of the quantum circuit corresponding to a coherent exe-
cution of the binding experiment. Namely, it applies UR(c,0) followed by E(s, r) and finally by qV (d,b,q).
We consider the outputs v indicating whether qV accepts, as well as o, which is a CNOT of r onto a zero
ancilla. We disregard any additional output wires. The circuit is depicted in Figure 2.

We define a projection Π on the output wires of U that corresponds to breaking split binding; namely,
where the quantum verifier accepts v = acc, and in addition o = r is not binding. We also define restrictions
Πm,Πk of Π to the subspace where t = measure and t = keep, respectively.

Formally, we define the set of equivocable strings as

G⊕ = {x = G(s1)⊕G(s2) for some s1, s2 } ,

and note that r = (t, x, y) is not binding only if t = keep or x ∈ G⊕.
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Figure 2: The unitary U capturing the binding experiment. The circuits R,E, qV are purified and replaced
with their unitary versions. In the above figure, r,q,o each consist of two wires (above and below the
corresponding letter).

We define

Πm := U†
(
I ⊗

∑
r=(t,x,y)
x∈G⊕,t=measure

|r, acc〉 〈acc, r|
)
U ,

Πk := U†
(
I ⊗

∑
r=(t,x,y)
t=keep

|r, acc〉 〈acc, r|
)
U ,

Π = Πm + Πk ,

where
∑
|r, acc〉 〈acc, r| acts on wires (o,v), and I acts on all other output wires.

Then the probability of breaking split binding is

δ := ‖Π |ζ〉 ‖2 = ‖Πm |ζ〉 ‖2 + ‖Πk |ζ〉 ‖2 ,

where above we use the fact that Π = Πm+Πk and the fact that Πm and Πk are projections on two orthogonal
subspaces.

To bound δ we consider a partition of the input commitment wires c into wires (x,y) and define another
projection Π⊕ on x that corresponds to the subspace of equivocable strings. Formally,

Π⊕ :=
∑
x∈G⊕

|x〉 〈x| ⊗ I ,

where
∑
|x〉 〈x| acts on x and I acts on all other input wires. We denote Π̄⊕ := I − Π⊕ (where here I acts

on the entire space).

We now define |ζ⊕〉 = Π⊕ |ζ〉 /α and |ζ̄⊕〉 = Π̄⊕ |ζ〉 /ᾱ, for α = ‖Π⊕ |ζ〉 ‖ and ᾱ = ‖Π̄⊕ |ζ〉 ‖ =
√

1− α2,
where the last equality follows from the fact that Π⊕ and Π̄⊕ project to orthogonal subspaces. (In the
degenerate case α = 0, set |ζ⊕〉 = 0, similarly if ᾱ = 0, set |ζ̄⊕〉 = 0.)

Then

δ = ‖αΠm |ζ⊕〉+ ᾱΠm |ζ̄⊕〉 ‖2 + ‖αΠk |ζ⊕〉+ ᾱΠk |ζ̄⊕〉 ‖2 .

To conclude the proof we show:

Claim 4.4.

1. Πm |ζ̄⊕〉 = 0,
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2. ‖Πm |ζ⊕〉 ‖2 ≤ 1/2,

3. ‖Πk |ζ̄⊕〉 ‖2 ≤ 1/2,

4. ‖Πk |ζ⊕〉 ‖2 ≤ 2−λ.

Before we prove the claim, we show that it indeed gives the desired bound on δ:

δ ≤ α2‖Πm |ζ⊕〉 ‖2 + α2‖Πk |ζ⊕〉 ‖2 + ᾱ2‖Πk |ζ̄⊕〉 ‖2 + 2αᾱ‖Πk |ζ⊕〉 ‖ · ‖Πk |ζ̄⊕〉 ‖
≤ α2/2 + α22−λ + ᾱ2/2 + 2αᾱ · 2−λ/2/2
≤ 1/2 + 2 · 2−λ/2 ,

where the inequalities follows from Claim 4.4 and the fact that α2 + ᾱ2 = 1 (and in particular both are
smaller than 1).

Proof of Claim 4.4.

1. When the initial state is |ζ̄⊕〉, the commitment c = (x,y) is such that x is in the subspace of binding
strings spanned by { | x〉 : x /∈ G⊕ }; in particular, the output wire o = (t′,x′,y′) is such that x′

(which represents the measurement of x) is in the subspace spanned by { | x〉 : x /∈ G⊕ }, accordingly
the projection Πm |ζ̄⊕〉 is zero.

2,3. Note that for any state |ξ〉, ‖Πm |ξ〉 ‖2 (respectively, ‖Πk |ξ〉 ‖2) is the probability that split binding
is broken and t = measure (respectively, t = keep). This probability is in particular at most the
probability that t = measure (respectively, t = keep), which is 1/2. In particular, both ‖Πm |ζ⊕〉 ‖2
and ‖Πk |ζ̄⊕〉 ‖2 are at most 1/2.

4. To bound the probability ‖Πk |ζ⊕〉 ‖2 that t = keep and split binding is broken, consider the state
ξ⊕ on all wires, after E is applied and before qV is applied on wires (q,b,d). Then q = (t,x,y) is
such that x is in the subspace spanned by { | x〉 : x ∈ G⊕ }. Recall that qV will then accept only if
the measurement { | ch,b〉 〈ch,b | , I − | ch,b〉 〈ch,b | } on (x,y) succeeds, where (h, b) are given by the
decommitment d of E. Then we can bound the probability that the measurement succeeds by

〈ξ⊕|

∑
h,b

|ch,b〉 〈ch,b| ⊗ |h, b〉 〈h, b| ⊗ I

 |ξ⊕〉 ,
where

∑
h,b |ch,b〉 〈ch,b| acts on (x,y), |h, b〉 〈h, b| acts on d, and I acts on all other wires. To simplify

notation, we denote from hereon Πh,b := |h, b〉 〈h, b| ⊗ I.

Recall that
|ch,b〉 = 2−3λ/2

∑
x∈{0,1}3λ

|x〉 |gx,b〉 where gx,b := G(h(x))⊕ xb.

We consider a decomposition of |ξ⊕〉, according to wires x,y:

|ξ⊕〉 =
∑

x∈G⊕,y

αx,y |x〉 |y〉 |τx,y〉 ,

where
∑
x∈G⊕,y

|αx,y|2 = 1, |x〉 |y〉 correspond to (x,y), and |τx,y〉 is a unit vector that corresponds to
all other wires.
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Then

〈ξ⊕|

∑
h,b

|ch,b〉 〈ch,b| ⊗Πh,b

 |ξ⊕〉 = 2−3λ
∑
h,b

∥∥∥∥∥∥
∑

x∈G⊕,y

αx,y 〈gx,b|y〉Πh,b |τx,y〉

∥∥∥∥∥∥
2

(1)

= 2−3λ
∑
h,b

∥∥∥∥∥∥
∑
x∈G⊕

αx,gx,bΠh,b |τx,gx,b〉

∥∥∥∥∥∥
2

(2)

(Cauchy-Schwartz) ≤ 2−3λ
∑
h,b

 ∑
x∈G⊕

|αx,gx,b |2
 ∑

x∈G⊕

‖Πh,b |τx,gx,b〉 ‖2
 (3)

= 2−3λ
∑
b

 ∑
x∈G⊕

|αx,gx,b |2
 ∑

x∈G⊕

∑
h

‖Πh,b |τx,gx,b〉 ‖2
 (4)

(all Πh,b are orthogonal) = 2−3λ
∑
b

 ∑
x∈G⊕

|αx,gx,b |2
 ∑

x∈G⊕

‖
∑
h

Πh,b |τx,gx,b〉 ‖2
 (5)

(
∑
h

Πh,b ≤ I) ≤ 2−3λ
∑
b

 ∑
x∈G⊕

|αx,gx,b |2
 ∑

x∈G⊕

‖ |τx,gx,b〉 ‖2
 (6)

(‖τx,gx,b‖ = 1) ≤ 2−3λ
∑
b

 ∑
x∈G⊕

|αx,gx,b |2
 · |G⊕| (7)

( |G⊕| ≤ 22λ) ≤ 2−3λ · 22λ ·
∑

x∈G⊕,b

|αx,gx,b |2 (8)

(
∑

x∈G⊕,y

|αx,y|2 = 1) ≤ 2−λ . (9)

This completes the proof of Proposition 4.3.

Proposition 4.4. The scheme is computationally hiding.

Our proof relies on the following two theorems by Zhandry. (The actual theorems are more general, here
we state specific, simpler, versions that suffice for our needs.)

Theorem 4.2 ([Zha12b]). Let A be an oracle-aided quantum circuit making one quantum query to an oracle
f : X → Y , then for any distribution D on functions f , and pure state z the quantity Prf←D[Af (z) = 1] is a
linear combination of the quantities Prf←F [f(x1) = y1, f(x2) = y2] for all possible settings of x1, y1, x2, y2.

Theorem 4.3 ([Zha12a]). Let G : {0, 1}λ → {0, 1}3λ be a pseudorandom generator. Then the function
ensembles {G(R) }λ and {R′ }λ, where R : {0, 1}3λ → {0, 1}λ and R′ : {0, 1}3λ → {0, 1}3λ are random
functions, are computationally indistinguishable quantumly.

Proof of Proposition 4.4. Our goal is to prove that

2−3λ/2
∑

x∈{0,1}3λ
|x〉 |G(h(x))〉 ≈ 2−3λ/2

∑
x∈{0,1}3λ

|x〉 |G(h(x))⊕ x〉 ,

where h← H3λ,λ is a random pairwise independent function.
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Since H is pairwise independent, for any x1, y1, x2, y2 ∈ {0, 1}3λ and b ∈ {0, 1},

Pr
h←H3λ,λ

[G(h(x1))⊕ xb1 = y1, G(h(x2))⊕ xb2 = y2] = Pr
R←F3λ,λ

[G(R(x1))⊕ xb1 = y1, G(R(x2))⊕ xb2 = y2] ,

where F3n,n is the set of all functions {0, 1}3λ → {0, 1}λ. It then follows from Theorem 4.2 that for any
b ∈ {0, 1},

2−3λ/2
∑

x∈{0,1}3λ
|x〉 |G(h(x))⊕ xb〉 ≡ 2−3λ/2

∑
x∈{0,1}3λ

|x〉 |G(R(x))⊕ xb〉 ,

where h ← H3λ,λ and R ← F3λ,λ. Indeed, note that each of the above states can be constructed with one
quantum query to the oracles x 7→ G(h(x))⊕ xb and x 7→ G(R(x))⊕ xb, respectively.

By Theorem 4.3,

2−3λ/2
∑

x∈{0,1}3λ
|x〉 |G(R(x))〉 ≈ 2−3λ/2

∑
x∈{0,1}3λ

|x〉 |R′(x)〉 , (10)

where R′ ← F3λ,3λ.
Applying bit-wise CNOT (which is efficient and reversible) over the registers in Eq. (10), we have

2−3λ/2
∑

x∈{0,1}3λ
|x〉 |G(R(x))⊕ x〉 ≈ 2−3λ/2

∑
x∈{0,1}3λ

|x〉 |R′(x)⊕ x〉 .

It is left to note that R′(x) and R′(x)⊕x are identically distributed for all x if R′ is a random function, and
hence

2−3λ/2
∑

x∈{0,1}3λ
|x〉 |R′(x)〉 ≡ 2−3λ/2

∑
x∈{0,1}3λ

|x〉 |R′(x)⊕ x〉 .

This concludes the proof.

5 Classical Binding is Impossible with Statistical Hiding

In this section we show that classical binding, even in a computational sense, is not possible for statistically
hiding commitments. Intuitively, since the view of the receiver is independent of the bit committed to by
the sender, performing measurements on the side of the receiver cannot “force” the sender to collapse to a
commitment of either 0 or 1. We believe that a formal argument is still required and it is thus provided below.
Our techniques are somewhat similar to those used to show the impossibility of quantum commitments that
are both statistically hiding and statistically binding [May97, LC97].

The attack we have in mind is simply of a malicious sender that generates a superposition over the
committed bit b, i.e. (|0〉+ |1〉)/

√
2, and executes the honest commitment protocol controlled by the bit b as

the committed bit. Finally during the opening phase, the sender measures the bit b to collapse its state and
opens accordingly. We show that even conditioned on any specific outcome of any possible measurement of
the client’s state, the sender’s measurement of b still yields both values 0 and 1 with probability close to 1/2
each, and therefore classical binding does not hold. (Note that this attack is efficiently implementable.)

Theorem 5.1. Consider an ε-statistically hiding commitment scheme. Then there exists a sender that can
produce an opening that is accepted by the receiver with the same probability as an honest opening, and which
has the following property. Even conditioning on the output of any measurement performed by the receiver
in the commitment phase, the distribution of the opening (b,db) is such that the marginal of b is statistically
close to uniform. Formally it holds that

Ex
[∣∣Eb[(−1)b]

∣∣] ≤ ε , (11)

where the first expectation is over the value x measured by the receiver and the second is over the measurement
of the register b.
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Note that via a Markov argument, Eq. (11) implies that with all but
√
ε probability over the receiver’s

measurement, the marginal of b is within
√
ε statistical distance from uniform.

Proof. Assume w.l.o.g that in the commitment phase, the receiver defers all measurements until the end of
the experiment, and that the sender performs no measurements at all. Note that if the theorem holds in this
case, it also holds in general since we consider classical binding with respect to the receiver’s state at the
end of the commitment phase, and we require that it holds against arbitrary senders (including ones that
are purified).

Let Sb be an honest sender for the commitment scheme that commits to a bit b, as explained above,
we assume that Sb is purified. We now consider a sender S∗ defined as follows. It starts by generating a
register b = |+〉, and then executes Sb controlled by the value b, namely it runs commitments to 0 and 1 in
superposition. After the end of the commitment phase and some arbitrary set of measurements performed by
the receiver, the value (b,db) is produced by measuring the variable b together with the register containing
the decommitment of Sb. By the correctness of the scheme, the opening (b,db) will be accepted by the
receiver.

It remains to analyze the marginal distribution of the value b produced by the attacker, conditioned on the
outcome of an arbitrary measurement by the receiver. We let ((b, s), t) denote the joint state of the sender
and receiver after the end of the commitment phase but before the receiver performs any measurements.

We now consider the following experiment: trace out the s register, apply an arbitrary (possibly partial)
measurement M on the t register to obtain a bit value v, and measure the b register in the computational
basis to obtain a bit b. Return the value (−1)b+v. We note that the measurement on t which produces v
commutes with the measurement on b. The expected value of this experiment is therefore Ev[(−1)vEb[(−1)b]]
or alternatively Eb[(−1)bEv[(−1)v]].

We show that: (i) there exists M such that the value of the experiment is Ex[|Eb[(−1)b]|] as in the
theorem statement. (ii) The maximum value of the experiment over all M is ε, even in absolute value.
Combining the two, the theorem will follow.

Starting with property (i), consider a measurement M on t that produces v as follows. First, perform
the same measurement that the classical binding receiver performs, let x be the classical output of this
measurement. Based on the value of x, consider the marginal distribution of b (conditioned on knowing
x) and let v be the best predictor for the value of b (i.e. v is the most likely value that b takes). Note
that the computation of v is not necessarily efficient, however we are now describing a thought experiment.
Using this definition of the measurement and the value v, the expected value of the experiment is exactly
Ex[|Eb[(−1)b]|], since by definition of v as the best predictor, (−1)v has the same sign as Eb[(−1)b] (all
conditioned on x).

As for property (ii), for every measurementM, consider the following distinguisher between the reduced
states of t conditioned on b = 0 and t conditioned on b = 1 as follows. Perform the measurement M
on t to obtain v and output v as the distinguisher output. The distinguishing gap of this distinguisher is∣∣Eb[(−1)bEv[(−1)v]]

∣∣. It follows that for anyM, the value of the experiment (even in absolute value) cannot
exceed the trace distance between the aforementioned reduced states, which is ε since the commitment
scheme is ε-statistically hiding.
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