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ABSTRACT
Wepresent the LP-PUF, a novel, Arbiter PUF-based, CMOS-compatible
strong PUF design. We explain the motivation behind the design
choices for LP-PUF and show evaluation results to demonstrate that
LP-PUF has good uniqueness, low bias, and fair bit sensitivity and
reliability values. Furthermore, based on analyses and discussion of
the LR and splitting attacks, the reliability attacks, and MLP attack,
we argue that the LP-PUF has potential to be secure against known
PUF modeling attacks, which motivates a discussion of limitations
of our study and future work with respect to the LP-PUF.

1 INTRODUCTION
Strong Physical Unclonable Functions (PUFs) have the potential
to remove the need for secure non-volatile memory in hardware
security tokens like ID documents or credit cards. Unfortunately,
strong PUF proposals based on optical tokens require large and ex-
tremely sensitive measurement setups Pappu et al. [13]. Alternative
proposals using integrated circuits are easy to manufacture when
using CMOS technology Gassend et al. [8], but strong PUF designs
implemented in CMOS circuits could not yet reliably withstand
modeling attacks. As successful modeling attacks enable an attacker
to impersonate the PUF token much like is the case in a successful
key retrieval attack in the classical setting, modeling attack resilient
designs are prerequisite to the deployment of PUF-based security
tokens.

In this paper, we propose a novel PUF circuit based on the CMOS-
compatible and well-studied Arbiter PUF Gassend et al. [8]. We
argue why the design has the potential to withstand known mod-
eling attacks and present simulation results that indicate that a
reliable implementation of the design is possible. In more detail,
our contributions are:

• The presentation of the novel, CMOS-compatible LP-PUF
circuit, which is motivated by recent attacks on Arbiter PUF-
based PUFs, and a discussion of the motivation to the design
(Sec. 3).

• A simulation-based assessment of the fundamental PUF met-
rics of the LP-PUF (Sec. 3.2).

• A first broad, but promising security analysis of the LP-PUF,
with respect to
– the LR attack [14, 18, 23] and it’s variant, the splitting
attack [22], both in an analytical and empirical fashion
(Sec. 4.1);

– the reliability attack [2, 17], analytically, but based on
empirical evidence on the behavior of simulated LP-PUF
instances (Sec. 4.2);

– the MLP attack [23], in an empirical fashion (Sec. 4.3).
• A discussion of limitations of our preliminary analyses and
suggestions for future work (Sec. 5).

2 BACKGROUND
The Arbiter PUF [8] inspired the design of the XOR Arbiter PUF
[16], which in turn inspired the design of the Interpose PUF. Each
step in this evolution was motivated by by an successful attack on
the predecessor design. For all designs, mathematical models based
on the additive delay model are available that are able to model the
behavior of the involved circuit closely. The 𝑛-bit 𝑘-XOR Arbiter
PUF can be modeled as a Boolean function1 𝑓 : {−1, 1}𝑛 → {−1, 1}
parameterized by 𝑘 · 𝑛 real values𝑊 ∈ R𝑘×𝑛 with represent the
intrinsic physical properties of a PUF instance by

𝑐 ↦→ 𝑓 (𝑐) =
𝑘∏
𝑙=1

(
sgn

𝑛∑
𝑖=1

𝑊𝑙,𝑖 · 𝑥𝑖

)
,

where the feature vector 𝑥 ∈ {−1, 1}𝑛 is a function of the challenge
defined as 𝑥 =

(∏𝑖
𝑗=1 𝑐 𝑗

)
𝑖
, i.e. 𝑥1 = 𝑐1𝑐2 · · · 𝑐𝑛 and 𝑥2 = 𝑐2 . . . 𝑐𝑛, ...

and 𝑥𝑛 = 𝑐𝑛 . Writing the model function using the feature vector 𝑥
rather than the given challenge 𝑐 is a crucial insight for running
modeling attacks; we will refer back to it below. The additive delay
model model is motivated by the physics of the Arbiter PUF; for a
detailed motivation of the model we refer the reader to Wisiol et al.
[23, Appendix A].

For the purpose of simulation of noisy responses of Arbiter PUFs,
i.e. 𝑘 = 1, a Gaussian ΔN with zero mean and prescribed variance
is used,

𝑐 ↦→ 𝑓 (𝑐) = sgn

(
ΔN +

𝑛∑
𝑖=1

𝑊𝑖 · 𝑥𝑖

)
.

This extends to XOR Arbiter PUFs by adding independently chosen
noise for each involved Arbiter PUF. We refer to this as the the
Arbiter PUF noise model [6].

To study the security of PUFs, we use an attacker model where
the attacker gets physical access to the PUF for a limited amount of
time after it was manufactured. Afterwards, the PUF is then passed
on to the legitimate user.

3 PROPOSED DESIGN
The strong PUF circuit proposed in this paper is an advancement
of the Interpose PUF design [12]. The Interpose PUF followed a
design strategy similar to the Feed-Forward Arbiter PUF [8] by
including challenge bits that have been generated internally, i.e.
not been given as part of the challenge. While this does not change
the fact that the Arbiter PUF response can be effectively modeled
by a linear threshold function, it is supposed to mitigate modeling
attacks by depriving the attacker of the knowledge of all input bits.
1For the sake of convenience, we use {−1, 1} to model Boolean values both for
challenges and responses. This enables us to write the the Arbiter PUF function
as the sign of a scalar product and the XOR of Boolean values as the (real) product,
which in turn generalizes to a differentiable function. However, it is just a ques-
tion of convenient presentation, all arguments in this work also apply when us-
ing {0, 1} to model Boolean values. For conversion, use the group homomorphism
𝜑 : {−1, 1} → {0, 1} , 𝑐 ↦→ 1/2 − 1/2𝑐.
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Layer 3:
𝑚-XOR Arbiter PUF: {−1, 1}𝑛 → {−1, 1}

Layer 2:
Mixing Operation 𝑇 : {−1, 1}𝑛+𝑚 → {−1, 1}𝑛

Layer 1:
𝑚 Arbiter PUFs of Length 𝑛/𝑚:

{−1, 1}𝑛 → {−1, 1}𝑚

Input from {−1, 1}𝑛

Output from {−1, 1}

Figure 1: The LP-PUF design, parameterized by the chal-
lenge length 𝑛 and the additional security parameter𝑚.

We present the LP-PUF in the form of three layers, parameterized
by a challenge length 𝑛 ∈ N and an additional security parameter
𝑚 ∈ N which must be a divisor of 𝑛.

(1) In Layer 1, the LP-PUF generates𝑚 private challenge bits. To
that end, the (public) challenge 𝑐 = (𝑐1, . . . , 𝑐𝑛) to the PUF
is split into𝑚 partitions of equal length by cutting it into
𝑚 blocks (𝑐1, . . . , 𝑐𝑚) , (𝑐𝑚+1, . . . , 𝑐2𝑚) , . . . , (𝑐𝑛−𝑚, . . . , 𝑐𝑛) .
Each block is fed into an individual Arbiter PUF of challenge
length 𝑛/𝑚, generating𝑚 response bits which are not part
of the input, but an instance-specific function of the chal-
lenge. Note that the Arbiter PUFs in this layer are chosen
deliberately short.

(2) In Layer 2, the the LP-PUF mixes the private challenge with
the public challenge by computing a function𝑇 : {−1, 1}𝑛+𝑚 →
{−1, 1}𝑛 , where each output bit of 𝑇 is the parity (XOR) of
exactly one of the public inputs and an individual subset
of size 𝑚/2 of the𝑚 private inputs. We chose the involved
subsets uniformly at random at design-time. This operation
thus does not depend on the given PUF instance, but is a
design-constant.

(3) In Layer 3, the 𝑛-bit challenge computed in Layer 2 is fed
into an ordinary 𝑛-bit𝑚-XOR Arbiter PUF, which produces
the final output bit of the LP-PUF.

3.1 Motivation
Inspired by the Feed-Forward Arbiter PUF and Interpose PUF, we
carefully designed the LP-PUF to use easy-to-model building blocks
combined with attacker-unknown outputs (in Layer 1) and attacker-
unknown inputs (in Layer 3) to build a composite PUF which is
resistant to known modeling attacks.

There are various motivations for the different aspects of our
design. To mitigate a splitting attack (originally on the Interpose
PUF [22]), we introduced the use of more than one “interpose bit”

as well as the mixing operation in Layer 2. This drastically reduces
the chance of the attacker to guess the feature vector required to
learn the XOR Arbiter PUF of Layer 3. We detail on the mitigation
of the splitting attack in Sec. 4.1.

By reducing the attacker-knowledge about the input to Layer 3,
the mixing operation of Layer 2 also mitigates the reliability-based
attacks [2, 17] on Layer 3. This is detailed in Sec. 4.2.

The use of Arbiter PUFs in our design is to facilitate a CMOS-
compatible design, which allows for fabrication of the LP-PUF using
standard design processes. It also benefits from literature available
on implementation [such as 6] and a well-studied model of its
behavior (see 2).

The use of short Arbiter PUFs in Layer 1 is motivated by the
hope that short Arbiter PUFs can be implemented such that it
generates very reliable responses. In Sec. 4.2, we detail on this. In
Sec. 5, we discuss potential problems with this choice with respect
to chosen-challenge attacks.

This yields an overall structure that vaguely resembles a substitution-
permutation-network, which are used in block cipher design. Specif-
ically, and in contrast to proposals such as the Lightweight Secure
PUF and Permutation PUF [10, 20], the LP-PUF employs a scheme
where the attacker cannot compute the first or last operation in
the network. Furthermore, in an advancement of the Interpose PUF
design, by introducing the mixing operation in Layer 2, the LP-PUF
combines operations of each low complexity, but from different
“realms”, albeit limited to only one and a half “rounds”.

Alternatives and extensions of these design choices include to
use several rounds, i.e. to introduce a second mixing layer, and/or
to not use the original challenge input in deeper layers. We did
not study these variations in great detail due to concerns with
respect to the reliability of implementations. However we believe
that the security of the construction would greatly benefit from
such modifications.

3.2 Metrics
The metrics in this chapter are fundamental requirements to every
strong PUF design. A high uniqueness of a PUF design shows that
two randomly chosen instances of this design indeed behave dif-
ferently. If they show correlation or similarity in their behavior, an
attacker can use this fact to guess PUF responses of one instance
with the assistance of another, unrelated PUF instance. A low bias is
required to reduce the probability that the attacker guesses correctly
by choosing the most likely response to the minimum possible. (For
PUFs with more than one response bit, which are not studied in this
work, this generalizes to the notion of min-entropy.) A proper bit
sensitivity is needed to prevent attackers from predicting responses
when the response to a related challenge is known. Finally, a high
reliability is of the PUF implementation is needed for the design to
be usable, as for low reliability, PUF responses are no longer repro-
ducible, depriving the PUF of its key feature. For formal definitions
of the measured quantities, we refer the reader to the definitions
given in pypuf [21].

The results shown in this section justify the hope that the LP-PUF
can fulfill these requirements. The LP-PUF shows high uniqueness,
low bias, bit sensitivity similar to that of an XOR Arbiter PUF, and
fair reliability in our simulations.

https://pypuf.readthedocs.io/en/latest/metrics/basics.html
https://pypuf.readthedocs.io/en/latest/metrics/basics.html
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Figure 2: Uniqueness and bias of the proposed LP-PUF, mea-
sured in noise-free simulations and for 𝑛 = 64 challenge bits
across different values of the𝑚 parameter. For comparison,
the corresponding metrics are also shown for Layer 3 of the
LP-PUF, which consists of a traditional 𝑛-bit𝑚-XOR Arbiter
PUF.
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Figure 3: Bit sensitivity values for the LP-PUF and XOR Ar-
biter PUF for both 64-bit challenges. Values of 1/2 are ideal.

In Fig. 2, we show the uniqueness and bias values, compared to a
baseline given by the XOR Arbiter PUF in Layer 3 of the LP PUF. In
all studied cases, the LP-PUF shows the same or better uniqueness
and bias distribution as the XOR Arbiter PUF.

In Fig. 3, we show the bit sensitivity for LP-PUF and XOR Arbiter
PUFs, which are very similar, and could be improved by adjusting
the mixing operation in Layer 2.

The reliability of the LP-PUF must be studied in more detail, as
it is crucial for the feasibility of LP-PUF implementations. (It is easy
to come up with a PUF design that is resilient to modeling attacks
when reliability is not an issue.)

As a design composed of several building blocks, the reliability
of the LP-PUF is a function of the reliability of the involved building
blocks. Solely composed of Boolean logic, Layer 2 is assumed to
be fully reliable. For the XOR Arbiter PUF in Layer 3, commonly
believed reliability values can be found in the literature [2, 6, 22]
if 64-bit challenges are employed. For the (short) Arbiter PUFs in
Layer 1, however, to the extend of our knowledge, no reliability
estimate is available in the literature. (There are some arguments
to justify an increase in stability for very long Arbiter PUFs [22].)
The established noise model used for Arbiter PUFs [6], unfortu-
nately, does not allow reliability predictions for longer or shorter
challenges, as it remains unclear how much noise is introduced by
the 𝑛 stages used in the Arbiter PUF and how much noise is due to
the one arbiter element. Other factors engineering factors which
might change with increasing challenge length are also not taken
into account by the commonly used Arbiter PUF noise model. We
conclude that the reliability of Arbiter PUFs with challenge lengths
other than the usual 64 and 128 bit remains an open research ques-
tion. In lack of better options, we assume that the reliability of the
LP-PUF Layer 1 will be in between 99.8% and 87.7%.

In Fig. 4, we study the reliability of the LP-PUF based on simula-
tions and as a function of the reliability of Layers 1 and 3. For Layer
1, we give the average reliability of the𝑚 Arbiter PUFs in use, but
remark that there is little variance. For Layer 3, we give the reliabil-
ity of the single output bit of Layer 3, as measured individually, i.e.,
with challenges directly applied to Layer 3, disregarding layers 1
and 2.

We conclude that assuming a 96.3% reliability for Layer 1 and
a 79% reliability of Layer 3, the LP-PUF is conceivable for at least
𝑚 = 8, as the total reliability in this case is estimated at 73%. While
this reliability is within the acceptable range for a basic authenti-
cation protocol based on pre-recorded challenges, we remark that
an even lower reliability could make the protocol inefficient or
shrink the security margin against attackers using models with
weak prediction accuracy. Hence, to obtain a definite answer on
the feasibility of the LP-PUF design, a study of the reliability of
real-world data will be necessary.

4 SECURITY ANALYSIS
4.1 Logistic Regression / Splitting Attack
As the LP-PUF is an extension of the Interpose PUF [12], we first
consider an extension of the splitting attack [22]. The splitting at-
tack reduced the security level of an (1, 𝑘)-Interpose PUF to that
of a 𝑘-XOR Arbiter PUF and thereby demonstrated that the secu-
rity advantage of the Interpose PUF is less than what had been
previously claimed.

The original splitting attack employs the LR attack [14], which
is a well-established and well-studied analysis tool in the field of
Arbiter-based PUFs [18, 20, 23]. However, the employed modeling
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Figure 4: Simulated reliability of the 64-bit LP-PUFs depend-
ing on reliabilities of the building blocks.

algorithm of the splitting attack can be swapped out for alternatives,
e.g. for a Multilayer Perceptron (MLP) attack [23]. In any case, the
splitting attack is based on CRPs collected from the composite PUF
under attack, but attacks the building blocks of the PUF separately.

We review the procedure of the splitting attack on the Interpose
PUF. It is conducted in two steps which may be repeated to increase
the resulting accuracy. The attack is prepared by collecting CRP
data of the Interpose PUF, i.e. challenges to the upper layer and
responses of the lower layer. The attacker has no knowledge of
the intermediate challenges, i.e. the responses of the upper layer
and challenges applied to the lower layer. Furthermore, an XOR
Arbiter PUF model of appropriate size of each the upper and the
lower layer of the Interpose PUF are initialized but not yet trained.

(1) Lower Layer Training. Using the model of the upper layer,
for each challenge of the CRP data, a guess for the output
of the upper layer, and thus for the intermediate challenge
is generated. With the resulting set of guessed intermediate
challenges and recorded responses from the CRP data, the
model for the layer lower is trained.

(2) Upper Layer Training. Based on the model of the lower
layer, the responses of the upper layer are estimated: For
each challenge from the available CRP data, for all possible
responses of the upper layer, the corresponding intermediate
challenges are computed and evaluated on the model of the
lower layer; the responses are compared to the recorded re-
sponses of the CRP data. If for any given challenge, only one
variant matches the recorded CRP data, then it is assumed
that the corresponding response of the upper layer is the
correct one. With the resulting set of guessed responses of

the upper layer and recorded challenges from the CRP data,
the upper layer is trained.

Pseudocode for the attack is given by Wisiol et al. [22].
For the analysis of the splitting attack, we analyze the probability

that the attacker guesses the feature vectors 𝑥 required for training
correctly. In case of the Interpose PUF, the attacker guesses the
single response bit of the upper layer, which is directly fed into the
middle challenge bit of the lower layer. Due to the nature of the
feature vector required for training models of XOR Arbiter PUFs
(see Sec. 2), this challenge bit appears in the first 𝑛/2 + 1 features 𝑥𝑖
for training. So, while the attacker has to guess many features, they
are highly correlated. The probability to guess an entire 𝑛-feature
vector correctly is 50%. The probability to guess individual feature
bits correctly is approx. 75% on average (50% for the feature bits
including the interpose bit, 100% for the feature bits not including
it).

We note that it is not sufficient to extend the Interpose PUF with
a number of 𝑙 interpose bits to mitigate this attack. One could think
that the guessing probability of the attacker is degraded to 2−𝑙 . We
show that this is not the case. If there were two interpose bits 𝑐𝑖
and 𝑐 ′

𝑖
in the middle of the lower layer, then the first 𝑛/2 features

of the lower layer all include the XOR of 𝑐𝑖 and 𝑐 ′𝑖 — a value that
the attacker can still guess with probability 50%; so not much is
gained in this setting. Similar arguments apply for any number of
interpose bits. Distributing these interpose bits across the challenge
of the lower layer, i.e. not only interposing in the middle, opens up
other attack surfaces, as outlined by the original authors [12].

In the LP-PUF design, the mixing operation in Layer 2 is aimed at
removing correlations from the feature bits to minimize the guess-
ing advantage. The goal is that the attacker can guess feature bits
correctly only with probability 50%, and feature vectors only with
probability approximately 2−𝑚 . We confirmed this in our simula-
tions. The measured guessing probabilities for feature bits were
at 53% and 50% for𝑚 = 4 and𝑚 ≥ 8, respectively. The measured
probabilities for guessing feature vectors correctly were 13% for
𝑚 = 4 and 0.7% for𝑚 = 8 and < 1/10,000 for𝑚 = 16. In this way, the
LP-PUF provides a way to introduce almost𝑚 bit of entropy in the
challenges to Layer 3.

We did not study the guessing probability for each feature bit
separately, but remark that if the attacker is able to guess single
feature bits with higher probability, or finds correlations between
the feature bits, then using this knowledge may enable the attacker
to increase their guessing probability.

The reduced guessing probability for the features to the model
of Layer 3 constitutes itself in a significant increase of required
CRPs for successfully training a model. In the case of𝑚 = 4, the
(adapted) splitting attack requires approx. 500,000 CPRs to train
a high-accuracy model, compared to 60,000 CRPs for the (𝑚,𝑚)-
Interpose PUF and 30,000 CRPs for the𝑚-XOR Arbiter PUF. We
believe that the reason that the training succeeds at all is that the
probability to guess feature vectors correctly is still at 13%, which
means that guessing errors can be averaged out over large sets of
CRPs. However, as the guessing advantage of the attacker declines
exponentially with𝑚, we also expect an exponential increase of the
required CRPs in𝑚. Unfortunately, we also have seen in Sec. 4.2
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that the reliability of the LP-PUF suffers greatly from an increase
of𝑚.

Nevertheless, there is hope that the LP-PUF could find a sweet
spot that mitigates the splitting attack, while at the same time
provides sufficiently reliable responses, e.g. for𝑚 = 8 or𝑚 = 16.
Note that while the XOR Arbiter PUF also suffers from decreasing
reliability in it’s security parameter, the known reliability-attacks
[2, 17] cannot be mitigated by increasing the XOR Arbiter PUF size.

4.2 Reliability Attack
In the past, reliability attacks have targeted Arbiter PUFs [6], XOR
Arbiter PUFs [2, 17], and the Interpose PUFs [17]. The observa-
tion fundamental to all of these attacks is that the reliability of
an Arbiter PUFs response to a given challenge is a function of the
delay difference corresponding to this challenge. The smaller the
absolute value of the delay difference, the higher the unreliability.
This means that Arbiter PUFs can be identified not only by their
response behavior, but also by their reliability. In the case of single
Arbiter PUFs, it is sufficient so obtain an approximate solution to a
system of linear equations. In the case of XOR Arbiter PUFs, evo-
lution strategies or gradient-decent machine learning algorithms
can be employed to find high accuracy models. These approaches
are based on the Pearson correlation of the measured reliability of
target PUF and model; the higher the correlation, the more accurate
the model will be.

In principle, all Arbiter PUFs in a composite design can be target
of a reliability-based attack if the attacker can correlate any mea-
surable reliability to the reliability of the target Arbiter PUF. In case
of the XOR Arbiter PUF, it was found that the XOR Arbiter PUF’s
output reliability is correlated with the reliability of the individual
Arbiter PUFs [2]. Similarly, the output of the Interpose PUF has
reliability correlation with the lower layer [17].

To analyze the vulnerability of the LP-PUF towards reliability-
based attacks, we thus study the reliability correlation of Layer 1
and Layer 3 with the attacker-measurable reliability of responses
at the LP-PUF output. Based on our simulations, we could not find
significant correlations of output reliability and Layer 1, as shown in
Fig. 5. Instead, the correlation shows values that are also measured
when compared to an entirely unrelated PUF. (The increase with𝑚
can be explained as we show themaximum correlation to any of the
𝑚 individual reliability vectors of Layer 1.) This result is expected
and applies similarly to the Interpose PUF.

The reliability correlation of Layer 3 with the output of the LP-
PUF is high for small values of𝑚 and indicates that an attack for
these values of𝑚 will be possible. However, as we increase𝑚, the
correlation vanishes, with𝑚 = 8 and𝑚 = 16 hardly showing any
difference when compared to the correlation with an unrelated
PUF instance. We conclude that increasing𝑚 will mitigate current
versions of the reliability attack.

We note that the attack is not mitigated by removing unreliable
challenges from Layer 3, or by improving the reliability of the imple-
mentation. (Due to the nature of the Arbiter PUF, we believe such
an approach to be not promising.) Instead, by decreasing attacker
knowledge of the challenge applied to Layer 3, we remove the at-
tackers ability to meaningfully correlate the measured reliability,
which prevents an application of evolution-strategies or gradient
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Figure 5: The correlation of the attacker-observable overall
reliability of a given 𝑛 = 64 challenge bit LP-PUF with the re-
liability of Layer 1. To account for all response bits of Layer
1, the maximum correlation in each instance is taken. If a
large correlation of Layer 1 reliability and LP-PUF reliabil-
ity can be established, an attacker could attempt a reliability-
based modeling attack on Layer 1.
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Figure 6: The correlation of the attacker-observable over-
all reliability of a given 𝑛 = 64 challenge bit 𝑚-LP-PUF
with the reliability of it’s Layer 3 under attacker-guessed
challenges. High correlations pave the way to conduct a
reliability-based attack on Layer 3 (as done on the Interpose
PUF Tobisch et al. [17]). The absence of high correlation
for the LP-PUF is not caused by increasing the reliability of
Layer 3, but by reducing the ability of the attacker to guess
Layer 3 input bits.

descent machine learning algorithms. Still, the theoretical analysis
of the reliability-based attacks is quite thin, and we are afraid that
there could be a way to adapt the attack to account for the mixing
operation in Layer 2, especially since the attacker can choose the
individual inputs to the PUFs in Layer 1.
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Figure 7: Prediction accuracy of the MLP attack by Wisiol
et al. [23] run on 64-bit 𝑚-LP-PUF. The neural network,
training parameters, and – perhaps most importantly – the
features were notmodified from the original version. Due to
the attacker-unknown challenge to Layer 3 of the LP-PUF, it
is unclear how the attacker should adjust the features.

4.3 MLP Attack
The latest addition to the toolbox in strong PUF security analysis
are attacks based on multilayer perceptrons (MLP) [1, 11, 15, 22, 23].
These attacks have the advantage over the LR attack that no exact
model is required, while at the same time, the required CRPs for
modeling XOR Arbiter PUF and Interpose PUF is decreased. On the
downside, even a successful modeling attack will not allow much
insight in the inner workings of the attack, as it cannot be expected
that the trained weights of the model can be interpreted. As such,
it is well-suited for quick and preliminary analysis of novel PUF
designs such as the LP-PUF.

We first consider the MLP attack on the full 64-bit LP-PUF, i.e.
without applying any technique similar to the splitting attack dis-
cussed in Sec. 4.1. Similar experiments have shown that straight-
forward extensions of the Interpose PUF can be attacked [22].

While for𝑚 = 2, we were able to obtain models with an accuracy
around 80% (reminiscent of the first step of the splitting attack),
already for𝑚 = 4 we did not achieve any significant success, even
when using 50 million CPRs. (The 64-bit 4-XOR Arbiter PUF re-
quires merely 150,000 CRPs [23].) We can conclude that either we
chose inappropriate network parameters (we tried networks which
have been shown to be able to attack 4-XOR Arbiter PUFs and
5-XOR Arbiter PUFs), or that the MLP attack might not be able to
infer the features required to model Layer 3. As evidence for the
latter case, it was reported that MLP is also unable to train a model
given the challenges, instead of the Arbiter PUF features [15].

An MLP-based splitting attack on the LP-PUF is also conceivable,
as it has been demonstrated against the Interpose PUF [23]. How-
ever, it faces the same difficulties in guessing the feature bits for the
model of Layer 3, and is hence largely covered by our arguments in
Sec. 4.1. Given that the MLP attack has been shown to reduce the
number of required CRPs [23], this may also apply to the splitting
attack discussed in this paper.

5 LIMITATIONS AND FUTUREWORK
The design of the LP-PUF and the results presented on its metrics
and security properties aim at making the case that the LP-PUF and
related designs are worth to be studied in more detail; the analysis
presented here is by no means exhaustive.

To conduct a more rigorous security analysis, a formal model of
the LP-PUF, based on the additive delay model, should be derived.
Due to the verbose definition of the mixing operation in Layer 2,
the use of a computer algebra system such as sage is necessary.
To the extend of our knowledge, no such analysis has ever been
done on a PUF. Such a formal model will serve as a basis for a
formalization of some of the arguments made above, e.g. for the
decreasing chances of the attacker to guess the feature bits when
𝑚 is increased. It could also allow for a more rigorous choice of the
mixing operation, rather than just using randomly chosen subsets
and allow for an improvement in the bit sensitivity of the LP-PUF.

Likewise, a model for the reliability of the LP-PUF needs to be
developed, to make sure that attacks based on the correlation of
reliability behavior cannot be adjusted to somehow work around
the mixing operation in Layer 2 (see Sec. 4.2).

To increase the trustworthiness of our failed modeling attempts
using machine learning algorithms, it will also be necessary to
revisit the chosen hyperparameters and argue in more detail that
also hyperparameter optimization will not enable the attacker to
obtain a model of the LP-PUF or parts thereof.

As mentioned above, it is uncertain if Arbiter PUFs of short
length can be reliably build; the commonly used noise model of the
Arbiter PUF is ill-suited to make a prediction. This can be clarified
by studying the behavior of short Arbiter PUFs in real hardware or
by replacing them with an alternative solution.

Adjusting the design of Layer 1 may also be indicated to defend
against attackers that choose challenges, instead of using challenges
that are chosen uniform at random. Given the standard attacker
model for PUFs, where the attacker gets physical access to the PUF
for a limited amount of time, this is certainly a concern for the LP-
PUF. Alternatives to Layer 1 could try to limit the freedom of the
attacker in choosing which challenges are applied to which Arbiter
PUF; at the very least, they should remove known weaknesses in
the bit sensitivity of the Arbiter PUFs in Layer 1.

Not included in this work is an analysis of the LP-PUF with
respect to its PAC learnability. While here, we cannot expect to
obtain a negative result, the known proofs of learnability should be
applied to the new setting to verify that no known attack applies.
As a first step, the PUF-G framework [4] and the PUFMeter [7]
should be applied to the LP-PUF.

Finally, even though we argue that a PUF design needs to with-
stand all scrutiny in an idealized form, i.e. in simulation, eventually
also an implementation needs to be analyzed with the same preci-
sion. To that end, FPGA or ASIC data has to be collected. Due to
the highly specific nature of the mixing operation in Layer 2 which
generates the challenge to Layer 3, none of the publicly available
Arbiter PUF measurement data is suited for this task.

To facilitate future work, we publish the simulation of the LP-
PUF as well as all analyses of this work at https://github.com/nils-
wisiol/LP-PUF/ under a free license.

https://github.com/nils-wisiol/LP-PUF/
https://github.com/nils-wisiol/LP-PUF/
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6 RELATEDWORK
To alleviate the machine learning attacks on (XOR) Arbiter PUFs,
several works suggest to preprocess the challenge before it is ap-
plied to the hardware. Wisiol et al. [20] report that, with respect
to the LR attack, the number of required CRPs may increase when
such preprocessing is applied and propose the Permutation PUF,
which employs an easy-to-implement preprocessing. While the
complexity is increased, their results also show that the attack
remains possible even if a pseudorandom number generator is em-
ployed as preprocessing method. Zhuang et al. [26] report that the
MLP attack can be mitigated by applying challenge preprocessing,
a finding that may relate to above-mentioned hypothesis that MLP
is unable to compute the features required for modeling [15].

In a similar branch of work, Delvaux demonstrated that ad-hoc
solutions to challenge preprocessing or combination of different
PUF types into one can easily fall victim to specialized attacks [5].

Some works suggest to select only a subset of all challenges of a
given PUF [19, 24], but such selections may bias the PUF responses
or expose information that can help to the attacker.

Other composite designs of Arbiter PUFs include the IPN [9],
where the composition of PUFs is changed “from time to time”
before an attacker can collect enough data to train a model.

Some works moving to new implementations and avoid the Ar-
biter PUF entirely. An alternative CMOS-compatible PUF build from
Strong Subthreshold Current Arrays shows good metrics [25], but
the security analysis is based on too few CRPs to allow final con-
clusions. Charlot et al. [3] use Hybrid Boolean Networks as strong
PUF and demonstrate promising security properties by showing
that a modeling of their design by the use of PUFmeter [7] failed.
However, a more detailed analysis using MLP or physically inspired
modeled was not done.
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