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ABSTRACT
With the rapid development of cloud computing, an increasing

number of companies are adopting cloud storage technology to re-

duce overhead. However, to ensure the privacy of sensitive data, the

uploaded data need to be encrypted before being outsourced to the

cloud. The concept of public-key encryption with keyword search

(PEKS) was introduced by Boneh et al. to provide flexible usage

of the encrypted data. Unfortunately, most of the PEKS schemes

are not secure against inside keyword guessing attacks (IKGA),

so the keyword information of the trapdoor may be leaked to the

adversary. To solve this issue, Huang and Li presented public key

authenticated encryption with keyword search (PAEKS) in which

the trapdoor generated by the receiver is only valid for authenti-

cated ciphertexts. With their seminal work, many PAEKS schemes

have been introduced for the enhanced security of PAEKS. Some of

them further consider the upcoming quantum attacks. However, our

cryptanalysis indicated that in fact, these schemes could not with-

stand IKGA. To fight against the attacks from quantum adversaries

and support the privacy-preserving search functionality, we first

introduce a novel generic PAEKS construction in this work. Then,

we further present the first quantum-resistant PAEKS instantiation

based on lattices. The security proofs show that our instantiation

not only satisfies the basic requirements but also achieves enhanced

security models, namely the multi-cipher-

text indistinguishability and multi-trapdoor privacy. Furthermore,

the comparative results indicate that with only some additional

expenditure, the proposed instantiation provides more secure prop-

erties, making it suitable for more diverse application environments.
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1 INTRODUCTION
In recent years, with the widespread development of cloud com-

puting technology, the application of cloud storage has become

increasingly popular. With the support of cloud storage, users and

enterprises can easily reduce the cost of local maintenance and

storage. In addition, combined with the Internet of Things devices,

cloud storage systems can provide more meta-services and appli-

cations. However, as the uploaded data are usually critical and

sensitive, ensuring that service providers can properly protect the

privacy of data becomes an important issue. Therefore, to avoid pri-

vacy leakage, users need to encrypt data before outsourcing them

to the cloud. Unfortunately, the encrypted data will lose the flexi-

bility of use, such as search or modification. As the search function

can considerably reduce the transmission demand, this function is

extremely important for cloud storage.

To resolve this issue, the concept of searchable encryption was

first introduced by Song et al. [56] and Boneh et al. [7]. In these

primitives, encrypted data are uploaded along with multiple en-

crypted keywords by the sender, while the receiver can generate

trapdoors for specific keywords. With the trapdoor, the cloud server

can perform a search to find the matched encrypted keywords, i.e.,
they are associated with the same keyword, and return the corre-

sponding encrypted data to the receiver. With the distinction of

whether the generation of encrypted keywords and trapdoors is

symmetric or asymmetric, searchable encryption can be further

divided into symmetric search encryption (SSE) and public-key

encryption with keyword search (PEKS).
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The first SSE scheme was presented by Song et al. [56] in 2000.

Because SSE has an advantage in efficiency, it has been extensively

studied [17, 44, 46, 57]. However, in practical applications, SSE has

the same problem as symmetric encryption—the key distribution

problem. To resolve this problem, Boneh et al. [7] combined the

concept of public-key encryption and searchable encryption to

introduce the first PEKS scheme. In this scheme, the searchable

ciphertext (i.e., encrypted keyword) is generated by using the re-

ceivers’ public keys, while a receiver can generate a trapdoor by

using his/her private key and hand it to the cloud server to search

for the matching searchable ciphertexts. In addition to proposing

the notion of PEKS and its construction, Boneh et al. [7] also for-

malized the security requirement of the PEKS, namely ciphertext

indistinguishability (CI), i.e., indistinguishability against chosen

keyword attacks (CKA), which ensures that there exists no adver-

sary who can obtain any keyword information from the ciphertext.

However, Byun et al. [8] pointed out that only considering CKA

is insufficient. The adversary may retrieve the keyword information

from the trapdoor by adaptively generating ciphertexts for guess-

ing keywords and performing tests. To model this attack scenario,

they further considered the notion of trapdoor privacy (TP), i.e.,
indistinguishability against keyword guessing attacks (KGA) [53].

This security notion can be divided into outside KGA launched by

an external adversary (e.g., eavesdropper) and inside KGA (IKGA)

launched by an internal adversary (e.g., malicious cloud server).

As discussed in Byun et al.’s work [8], the keyword space in PEKS

schemes is small and limited, e.g., only 225,000 (≈ 2
16
) words in

Merriam-Webster’s collegiate dictionary [10]. Consequently, upon a

brute force attack, there is a high probability (
1

2
16
) that the adversary

can obtain the keyword information hidden by the trapdoor.

Although many KGA-secure PEKS schemes have been intro-

duced [5, 12–14, 19, 21, 22, 30, 31, 52, 53, 58–60], it was not until

the concept of public-key authenticated encryption with keyword

search (PAEKS) was proposed by Huang and Li [27] that the IKGA

was solved in the single-server context without the communica-

tion between the sender and receiver. In this notion, the trapdoor

generated by the receiver is only valid to the ciphertexts that are

authenticated by a specified sender. In this way, the adversaries

cannot perform KGA by adaptively generating ciphertext for any

keyword to test the trapdoors. As the concept of PAEKS solves the

privacy concern, many variants PAEKS schemes [11, 26, 36, 38, 40–

42, 45, 47–49] have been proposed to be suitable for various scenar-

ios.

1.1 Motivation
MCI and MTP Security. Among various PAEKS schemes, Qin et
al. [49] first considered that each encrypted file is related to multiple

searchable ciphertexts in practical scenarios. In this context, PAEKS

needs to ensure that no adversary knows whether two searchable

ciphertext tuples respectively exist ciphertexts that are related to

the same keyword. Hence, they introduced an enhanced security

notion called multi-ciphertext indistinguishability (MCI) to model

this scenario. More concretely, compared with CI, the adversary in

the security model of MCI outputs two keyword tuples and is given

the challenge ciphertext tuple corresponding to one of the keyword

tuples. The adversary’s goal is to point out which keyword tuple

generates the challenge ciphertext tuple.

In addition, Pan and Li [48] followed this concept and introduced

the notion called multi-trapdoor privacy (MTP) to ensure that no

adversary knows whether two trapdoor tuples respectively exist

trapdoors that are related to the same keyword. Unfortunately,

Cheng and Meng [15] recently showed that Pan and Li’s scheme

[48] not only cannot satisfy MCI but also has flaws in the security

proof of MTP.

Quantum-resistant PAEKS. As Shor [54, 55] has confirmed that

there exists a quantum algorithm that can be used to crack the

foundation of many cryptographic primitives—the discrete loga-

rithm hard assumption, scholars have begun to explore how to

construct quantum-resistant PEKS schemes [6, 61]. To further sat-

isfy TP, Zhang et al. [62, 63] introduced two lattice-based PEKS

schemes that are secure against IKGA by restricting the cipher-

text to be authenticated by the sender. However, our cryptanalysis

shows that their schemes contain flaws, and therefore, an adversary

can directly obtain the keyword information of the trapdoor. In

addition, Liu et al. [39] introduced a generic PAEKS construction
and further presented an instantiation based on NTRU lattices. Un-

fortunately, their system model is not a “pure” public-key setting.

More specifically, their construction requires a trusted authority to

assist users in generating their private keys.

Hence, with the above description, it raises an urgent problem:

Can we obtain a quantum-resistant PAEKS that satisfies both MCI
and MTP (without the assistance of trusted authorities)?

1.2 Our Contribution
In this work, we first cryptanalyze Zhang et al.’s lattice-based PEKS
schemes [62, 63] and show that their schemes cannot resist the

attacks from inside adversary due to their security model exist

flaws.

Then, to resolve the problem described in Section 1.1, we present

a generic PAEKS construction by adopting smooth projection hash

function (SPHF) and PEKS. As a high-level idea, to prevent adver-

saries from being able to adaptively generate ciphertexts for any

keyword and further guess the keyword hidden in the trapdoor, we

restrict that the trapdoor generated from a receiver is only valid

to the ciphertext generated from a specific sender. To meet this

requirement, our strategy is to enable the sender and the receiver

to obtain high-entropy randomness without any interaction by

utilizing (pseudo-random) SPHF. Through this randomness, both

parties can obtain an extended keyword to generate a ciphertext

and a trapdoor, respectively, instead of generating them through

the original low-entropy keyword. As a result, the adversary cannot

perform IKGA by randomly selecting keywords.

In addition, to further achieve the MCI and MTP properties,

we provide a theoretical result in Theorem 3.3: if the PAEKS and

Trapdoor algorithms of a PAEKS scheme is probabilistic and the

PAEKS scheme satisfies CI and TP, then this PAEKS scheme also

satisfies MCI andMTP. This interesting result can boost the security

of many existing PAEKS schemes.

Eventually, we compile Behnia et al.’s PEKS [6], and Li andWang

et al.’s SPHF [37] by our generic construction and propose the first

2



PAEKS: Cryptanalysis, Enhanced Security, andQuantum-resistant Instantiation

quantum-resistant PAEKS scheme based on lattices. In terms of the

computational cost and the communication cost, the results show

that our instantiation provides more secure properties with only a

little additional expenditure.

2 PRELIMINARIES
This section introduces some requisite knowledge, including the

background of lattices and the definitions of cryptographic primi-

tives.

2.1 Background of Lattices
2.1.1 Lattices. Here, we briefly summarize the concept of lattices.

Let B = [b1 | · · · |b𝑛] ∈ R𝑚×𝑛 , where b1, · · · , b𝑛 are 𝑛 linear in-

dependent vectors. An𝑚-dimensional lattice Λ generated by B is

defined as Λ(B) := {∑𝑛𝑖=1
b𝑖𝑎𝑖 | 𝑎𝑖 ∈ Z}. Here, B is called the basis

of Λ. In addition, given 𝑛,𝑚,𝑞 ∈ Z, u ∈ Z𝑛𝑞 , and A ∈ Z𝑛×𝑚𝑞 , we can

define two 𝑞-ary lattices and a coset as follows:

• Λ𝑞 (A) := {y ∈ Z𝑚𝑞 | ∃𝑧 ∈ Z𝑛𝑞 , y = A⊤z mod 𝑞};
• Λ⊥𝑞 (A) := {e ∈ Z𝑚𝑞 | Ae = 0 mod 𝑞};
• Λu

𝑞 (A) := {e ∈ Z𝑚 | Ae = u mod 𝑞}.

2.1.2 Discrete Gaussian Distributions. For any positive real num-

ber 𝜎 , any center c ∈ Z𝑚 , and any x ∈ Z𝑚 , we define the Gauss-

ian distribution of D𝜎,c by the probability distribution function

𝜌𝜎,c (x) := exp(−𝜋 · ∥x − c∥2/𝜎2). Furthermore, for any lattice

Λ ⊂ Z𝑚 , we define 𝜌𝜎,c (Λ) :=
∑
x∈Λ 𝜌𝜎,c (x). Then, the discrete

Gaussian distribution over lattice Λwith parameter (𝜎, c) is defined
as follows: For any x ∈ Λ, DΛ,𝜎,c (x) := 𝜌𝜎,c (x)/𝜌𝜎,c (Λ).

2.1.3 Lattices with Trapdoors. Next, we introduce the preimage

sampleable functions and lattice basis delegation technique.

(1) TrapGen(1𝑛, 1𝑚, 𝑞) [4, 43]: For input 𝑛,𝑚,𝑞 ∈ Z, this prob-
abilistic polynomial time (PPT) algorithm outputs a pair

(A ∈ Z𝑛×𝑚𝑞 ,TA ∈ Z𝑚×𝑚𝑞 ), where TA is a basis for Λ⊥𝑞 (A),
such that the following property holds:

{A : (A,TA) ← TrapGen(1𝑛, 1𝑚, 𝑞)} ≈ {A : A
$←− Z𝑛×𝑚𝑞 }.

Here, TA is called a trapdoor of A.
(2) SamplePre(A,TA, u, 𝜎) [24]: For an input matrix A ∈ Z𝑛×𝑚𝑞

and its trapdoor TA ∈ Z𝑚×𝑚𝑞 , a vector u ∈ Z𝑛𝑞 , and param-

eter 𝜎 ≥ ∥T̃A∥ · 𝜔 (
√

log(𝑚)), this PPT algorithm outputs a

sample t ∈ Z𝑚𝑞 from a distribution that is statistically close

to DΛu
𝑞 (A),𝜎 such that At = u mod 𝑞.

(3) NewBasisDel(A,R,TA, 𝜎) [3]: For an input matrix A ∈
Z𝑛×𝑚𝑞 , a Z𝑞-invertible matrix R sampled from the distribu-

tion D𝑚×𝑚 , trapdoor TA, and parameter 𝜎 ∈ R, this PPT
algorithm outputs a short lattice basis TB of Λ⊥𝑞 (B), where
B = AR−1

.

(4) SampleLeft(A,M,TA, u, 𝜎) [2]: For an input matrix A ∈
Z𝑛×𝑚𝑞 and its corresponding trapdoor TA ∈ Z𝑚×𝑚𝑞 , a ma-

trix M ∈ Z𝑛×𝑚1

𝑞 , a vector u ∈ Z𝑛𝑞 , and a parameter 𝜎 ≥
∥T̃A∥ ·𝜔 (

√
log(𝑚 +𝑚1)), this PPT algorithm outputs a sam-

ple t ∈ Z𝑚+𝑚1
from a distribution statistically close to

DΛ𝑢
𝑞 ( [A |M]),𝜎 such that [A|M] · t = u mod 𝑞.

2.2 Public-key Encryption with Keyword
Search

In this subsection, we recall the definition of PEKS defined by

Boneh et al. [7]. A PEKS scheme PEKS consists of the following

four algorithms:

• KeyGen(1_): Taking as input a security parameter _, this

PPT algorithm outputs a pair of keys (pkPEKS, skPEKS),
where pkPEKS is the public key and skPEKS is the private

key.

• PEKS(pkPEKS, kw): Taking as input the public key pkPEKS
and a keyword kw, this PPT algorithm outputs a searchable

ciphertext ctPEKS,kw related to the keyword kw.
• Trapdoor(skPEKS, kw′): Taking as input the private key

skPEKS and a keyword kw′, this PPT algorithm outputs a

trapdoor tdPEKS,kw′ related to keyword kw′.
• Test(ctPEKS,kw, tdPEKS,kw′): Taking as input the searchable

ciphertext ctPEKS,kw and trapdoor tdPEKS,kw′ , this determin-

istic algorithm outputs 1 if ctPEKS,kw and tdPEKS,kw′ are
related to the same keyword (i.e., kw = kw′); otherwise, it
outputs 0.

Correctness. For any security parameter _, any honestly

generated key pairs (pkPEKS, skPEKS), any keywords kw, kw′,
any ciphertext ctPEKS,kw ← PEKS(pkPEKS, kw), and any trap-

door tdPEKS,kw′ ← Trapdoor(skPEKS, kw′), then we have

Pr[Test(ctPEKS,kw, tdPEKS,kw′) = 1] = 1 − negl(_) when kw = kw′

and Pr[Test(ctPEKS,kw, tdPEKS,kw′) = 0] = 1 − negl(_) when kw ≠

kw′.

Ciphertext Indistinguishability of PEKS. The CI ensures that
no PPT adversary can obtain any keyword information from

the given challenge ciphertext, even if it can adaptively query

the trapdoor oracle for any keyword, except for the challenge

keywords. This security requirement is modeled by the following

indistinguishability against the chosen keyword attack (IND-CKA)

game of PEKS that is interacted by a challenger C and an adversary

A.

IND-CKA Game of PEKS:

• Setup. After receiving a security parameter _, C gener-

ates (pkPEKS, skPEKS) by performing the KeyGen algorithm.

Then, it sends the public key pkPEKS to A and keeps the

private key skPEKS secret.
• Phase 1. In this phase, A is allowed to adaptively issue

queries to the trapdoor oracle polynomially many times:

for any keyword kw, C generates a trapdoor tdPEKS,kw by

performing Trapdoor(skPEKS, kw) and returns tdPEKS,kw to

A.

• Challenge. AfterA terminates the Phase 1, it outputs two
challenge keywords kw∗

0
, kw∗

1
to C. The restriction is that

A never issues these two challenge keywords to the trap-

door oracle. C then randomly chooses a bit 𝑏 ∈ {0, 1} and
returns the challenge ciphertext ct∗ to A by performing

PEKS(pkPEKS, kw∗𝑏 ).
3



Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

• Phase 2. A can continue to query the trapdoor oracle as

in Phase 1 for any keyword kw, except for the challenge
keywords (i.e., kw ∉ {kw∗

0
, kw∗

1
}).

• Guess. Finally,A outputs a bit 𝑏 ′ ∈ {0, 1} as its answer, and
wins the game if 𝑏 = 𝑏 ′.

The advantage of A winning the above game is defined as

𝐴𝑑𝑣𝐶𝐼−𝑃𝐸𝐾𝑆A (_) :=

����Pr[𝑏 = 𝑏 ′] − 1

2

���� .
Definition 2.1 (Ciphertext Indistinguishability of PEKS). A PEKS

scheme is called CI (or IND-CKA secure) if, for any PPT adversary

A, 𝐴𝑑𝑣𝐶𝐼−𝑃𝐸𝐾𝑆A (_) is negligible.

2.3 Labelled Public-key Encryption Scheme
A labelled public-key encryption (PKE) scheme can be viewed as

the variant of PKE. As described in [1], a labelled PKE scheme PKE
consists of the following three algorithms:

• KeyGen(1_): Taking as input a security parameter _, this

PPT algorithm outputs a pair of keys (ekPKE, dkPKE), where
ekPKE is the public encryption key and dkPKE is the private

decryption key.

• Encrypt(ekPKE, label,mPKE; 𝜌): Taking as input the public

encryption key ekPKE, a label label, a plaintext mPKE, and

a randomness 𝜌 , this PPT algorithm outputs a ciphertext

ctPKE.
• Decrypt(dkPKE, label, ctPKE): Taking as input the private de-
cryption key dkPKE, a label label, and a ciphertext ctPKE, this
deterministic algorithm outputs a plaintext mPKE or ⊥.

In addition, it must to satisfy the following correctness and se-

curity.

• Correctness: For any security parameter _, any pair of keys

(dkPKE, ekPKE) ← KeyGen(1_), any label label, any plain-

text mPKE, any randomness 𝜌 , and any ciphertext ctPKE ←
Encrypt(ekPKE, label,mPKE; 𝜌), a labelled PKE scheme is cor-

rect if

Pr[Decrypt(dkPKE, label, ctPKE) = mPKE] = 1 − negl(_) .
• IND-CPA/IND-CCA1/IND-CCA2 security: Informally, we

say that a labelled PKE scheme has indistinguishability

against chosen-plaintext attacks (IND-CPA) if there is no

adversary that can obtain any information about the chal-

lenge plaintext. Suppose that the adversary is allowed to

query the decryption oracle for any ciphertext, except for

the challenge ciphertext, then we call it indistinguishability

against chosen-ciphertext attacks (IND-CCA2) security. Here

we note that if the adversary cannot continuously query the

oracles after obtaining the challenge ciphertext, we call it

IND-CCA1 security.

2.4 Smooth Projective Hash Functions
The SPHF was first introduced by Cramer and Shoup [16] to trans-

form an IND-CPA secure encryption scheme into IND-CCA2 se-

curity. Besides, various extended definitions of SPHF are also in-

troduced to achieve password-based authenticated key exchange

schemes [9, 18, 23, 25, 29, 32]. Informally, SPHF is defined for an NP

language L over a domain X that contains two keyed algorithms,

namely Hash and ProjHash that takes as input the hashing key hk
and a projection key hp, respectively. The important property of

SPHF is as follows: for a word 𝜒 ∈ L, the outputs of both algo-

rithms are indistinguishable, while for a word 𝜒 ∉ L, the outputs of
Hash algorithms are statistically indistinguishable with a random

element.

In this work, we focused on the stronger type of SPHF, called

“word-independent” SPHF defined by Katz and Vaikuntanathan

[33, 34]. Compared with general SPHF, the ProjKG algorithm in

word-independent SPHF does not require a word as its input. The

following formally define the languages and word-independent

SPHF.

We first consider a family of languages (ℒlpar,ltrap)lpar,ltrap in-

dexed by some language parameter lpar and some language trap-

door ltrap, together with a family of NP language (ℒ̃lpar)lpar in-
dexed by some parameter lpar, with witness relation 𝒦lpar, such

that

ℒ̃lpar := {𝜒 ∈ Xlpar | ∃𝜔,𝒦lpar (𝜒,𝜔) = 1} ⊆ ℒlpar,ltrap ⊆ Xlpar,
where (Xlpar)lpar is a family of sets and the parameter lpar is gen-
erated by a polynomial-time algorithm Setup.lpar(1_) for some

security parameter _. We suppose that the membership in Xlpar
and𝒦lpar can be checked in polynomial time by the given lpar, and
that the membership inℒlpar,ltrap by the given lpar and ltrap.

Then, let (ℒ̃lpar ⊆ ℒlpar,ltrap ⊆ Xlpar)lpar,ltrap be the languages
defined as above. An approximate word-independent SPHF scheme

SPHF for these languages consists of the following four algorithms:

• HashKG(lpar): Taking as input a language parameter lpar,
this PPT algorithm outputs a hashing key hk.
• ProjKG(hk, lpar): Taking as input a hashing key hk and the

language parameter lpar, this PPT algorithm outputs a pro-

jection key hp.
• Hash(hk, lpar, 𝜒): Taking as input a hashing key hk, the lan-
guage parameter lpar, and a word 𝜒 ∈ Xlpar, this determin-

istic algorithm outputs a hash value H ∈ {0, 1}𝛿 for some

𝛿 ∈ N.
• ProjHash(hp, lpar, 𝜒, 𝜔): Taking as input a projection key

hp, the language parameter lpar, a word 𝜒 ∈ ℒ̃lpar, and a

witness 𝜔 (i.e., 𝒦(𝜒, 𝜔) = 1), this deterministic algorithm

outputs a projected hash value pH ∈ {0, 1}𝛿 for some 𝛿 ∈ N.
An approximate word-independent SPHF scheme has to fulfill

the following properties:

• Approximate correctness: For a word 𝜒 ∈
ℒ̃lpar and its corresponding witness 𝜔 , we

say SPHF is 𝜖-approximate correctness if

Pr[HD(Hash(hk, lpar, 𝜒), ProjHash(hp, lpar, 𝜒, 𝜔)) > 𝜖 · 𝛿]
≤ negl(_), where HD(·, ·) outputs the Hamming distance

of two input values. In addition, if an approximate SPHF is

0-correct, then it is called SPHF.

• Smoothness: For a word 𝜒 ∉ ℒ̃lpar, the hash value H is

statistically indistinguishable from a random element chosen

from {0, 1}𝛿 for some 𝛿 ∈ N.
In addition to these two properties, to prove the security of the

proposed generic construction, we need another property called

pseudo-randomness:

4
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• Pseudo-randomness: For a word 𝜒 ∈ ℒ̃lpar, the hash value

H is indistinguishable from a random element chosen from

{0, 1}𝛿 for some 𝛿 ∈ N.
In fact, an (approximate word-independent) SPHF does not need

this property or even satisfy it. However, if the language for the

(approximate word-independent) SPHF is labelled CCA-secure ci-

phertext, it is easily satisfied because the ciphertexts are based on

hard-on-average problems [35].

3 DEFINITION AND SECURITY MODELS OF
PAEKS

Public-key authenticated encryption with keyword search (PAEKS),

first introduced by Huang and Li [27], can be viewed as inheriting

the existed PEKS scheme [7] but additionally satisfies TP. Next, we

review the definition and security requirements of PAEKS defined

in [27].

3.1 Definition of PAEKS
A PAEKS scheme PAEKS consists of the following six algorithms:

• Setup(1_): Taking as input a security parameter _, this PPT

algorithm outputs a public parameter pp.
• KeyGen𝑆 (pp): Taking as input the public parameter pp,
this PPT algorithm outputs a pair of public/private keys

(pk𝑆 , sk𝑆 ) of the sender.
• KeyGen𝑅 (pp): Taking as input the public parameter pp,
this PPT algorithm outputs a pair of public/private keys

(pk𝑅, sk𝑅) of the receiver.
• PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw): Taking as input the public pa-
rameter pp, the public key pk𝑆 and private key sk𝑆 of the

sender, the public key pk𝑅 of the receiver, and a keyword

kw, this PPT algorithm outputs a searchable ciphertext ctkw
related to the keyword kw.
• Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw′): Taking as input the public
parameter pp, the public key pk𝑆 of the sender, the public key
pk𝑅 and the private key sk𝑅 of the receiver, and a keyword

kw′, this PPT/deterministic algorithm outputs a trapdoor

tdkw′ related to the keyword kw′.
• Test(pp, ctkw, tdkw′): Taking as input the public parameter

pp, searchable ciphertext ctkw , and trapdoor tdkw′ , this al-
gorithm outputs 1 if ctkw and tdkw′ are related to the same

keyword (i.e., kw = kw′); otherwise, it outputs 0.

Correctness. For any security parameter _, any hon-

estly generated key pairs of the sender (pk𝑆 , sk𝑆 ) and re-

ceiver (pk𝑅, sk𝑅), any keywords kw, kw′, any ciphertext

ctkw ← PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw), and any trapdoor

tdkw′ ← Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw′), then we have{
Pr[Test(pp, ctkw, tdkw′) = 1] = 1 − negl(_) when kw = kw′;
Pr[Test(pp, ctkw, tdkw′) = 0] = 1 − negl(_) when kw ≠ kw′.

3.2 Security Requirements of PAEKS
A secure PAEKS scheme should satisfy ciphertext indistinguisha-

bility (CI) and trapdoor privacy (TP). Informally, the notion of CI,

first proposed by Boneh et al. [7], aims to ensure that no PPT adver-

sary can obtain any knowledge of the keyword from the ciphertext.

While the concept of TP, first introduced by Byun [8] in 2006, aims

to ensure that there is no PPT (inside) adversary can obtain any

knowledge of the keyword from the trapdoor.

These two requirements are formally modeled by the following

IND-CKA game and indistinguishability against IKGA (IND-IKGA)

game, respectively, interacted with a challenger C and an adversary

A.

IND-CKA Game of PAEKS:
• Setup. After receiving a security parameter _, C generates

the public parameter pp by executing the Setup algorithm.

Then, it executes the KeyGen𝑆 and KeyGen𝑅 algorithms to

obtain the public/private key pairs (pk𝑆 , sk𝑆 ) and (pk𝑅, sk𝑅)
of the sender and the receiver, respectively. Finally, it sends

(pp, pk𝑆 , pk𝑅) to A.

• Phase 1. In this phase, A is allowed to adaptively issue

queries to the following two oracles polynomially many

times.

– Ciphertext Oracle O𝐶 : For any keyword kw, C gen-

erates a searchable ciphertext ctkw by performing

PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw) and returns ctkw to A.

– Trapdoor Oracle O𝑇 : For any keyword kw,
C generates a trapdoor tdkw by performing

Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw) and returns tdkw to

A.

• Challenge. After A terminates Phase 1, it outputs two
challenge keywords kw∗

0
, kw∗

1
to C. The restriction is thatA

never issues the queries to O𝐶 and O𝑇 for these two chal-

lenge keywords. C then randomly chooses a bit 𝑏 ∈ {0, 1}
and returns the challenge ciphertext ct∗ toA by performing

PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw∗𝑏 ).
• Phase 2.A can continue to query the oracles as in Phase 1
for any keyword kw, except for the challenge keywords (i.e.,
kw ∉ {kw∗

0
, kw∗

1
}).

• Guess. Finally,A outputs a bit 𝑏 ′ ∈ {0, 1} as its answer and
wins the game if 𝑏 = 𝑏 ′.

The advantage of A winning the above game is defined as

𝐴𝑑𝑣𝐶𝐼−𝑃𝐴𝐸𝐾𝑆A (_) :=

����Pr[𝑏 = 𝑏 ′] − 1

2

���� .
Definition 3.1 (Ciphertext Indistinguishability of PAEKS). A

PAEKS scheme is called CI (or IND-CKA secure) if, for any PPT

adversary A, 𝐴𝑑𝑣𝐶𝐼−𝑃𝐴𝐸𝐾𝑆A (_) is negligible.

IND-IKGA Game of PAEKS:
• Setup. Like the IND-CKA game, C generates the public

parameter pp and public/private key pairs (pk𝑆 , sk𝑆 ) and
(pk𝑅, sk𝑅) of the sender and the receiver. Then, it sends

(pp, pk𝑆 , pk𝑅) to A.

• Phase 1. Like the IND-CKA game, A is allowed to adap-

tively issue queries to O𝐶 and O𝑇 polynomially many times.

• Challenge. After A terminates Phase 1, it outputs two
challenge keywords kw∗

0
, kw∗

1
to C. The restriction is thatA

never issues the queries to O𝐶 and O𝑇 for these two chal-

lenge keywords. C then randomly chooses a bit 𝑏 ∈ {0, 1}
5



Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

and returns the challenge trapdoor td∗ to A by performing

Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw∗𝑏 ).
• Phase 2.A can continue to query the oracles as in Phase 1
for any keyword kw, except for the challenge keywords (i.e.,
kw ∉ {kw∗

0
, kw∗

1
}).

• Guess. Finally,A outputs a bit 𝑏 ′ ∈ {0, 1} as its answer and
wins the game if 𝑏 = 𝑏 ′.

The advantage of A winning the above game is defined as

𝐴𝑑𝑣𝑇𝑃−𝑃𝐴𝐸𝐾𝑆A (_) :=

����Pr[𝑏 = 𝑏 ′] − 1

2

���� .
Definition 3.2 (Trapdoor Privacy of PAEKS). A PAEKS scheme

is called TP (or IND-IKGA secure) if, for any PPT adversary A,

𝐴𝑑𝑣𝑇𝑃−𝑃𝐴𝐸𝐾𝑆A (_) is negligible.

To enhance the security requirements of PAEKS, Qin et al. [49]

introduced the notion called multi-ciphertext indistinguishability

(MCI). This notion aims to ensure that no PPT adversary can dis-

tinguish two tuples of challenge ciphertexts. In addition, Pan and

Li [48] considered a concept similar to TP, called multi-trapdoor

privacy (MTP), to ensure that no PPT adversary can distinguish two

tuples of challenge trapdoors. For the security games of MCI and

MTP, please refer to [49] and [48], respectively. Here, we introduce

Theorem 3.3 to show that if the PAEKS and Trapdoor algorithms of

a secure PAEKS scheme are probabilistic, then this scheme satisfies

MCI and MTP.

Theorem 3.3. Suppose that a PAEKS scheme satisfies CI and its
PAEKS algorithm is probabilistic, then the PAEKS scheme satisfies
MCI. Similarly, suppose that a PAEKS scheme satisfies TP and its
Trapdoor algorithm is probabilistic, then the PAEKS scheme satisfies
MTP.

Proof. As the part of TP is similar to CI, we only prove the part

of CI. Suppose that an adversary A can break the MCI of a PAEKS

scheme, then there is a challenger C who can use A as the black

box algorithm to break the CI of the same PAEKS scheme.

• Setup. Given a tuple of public information (pp, pk𝑆 , pk𝑅),
C passes this information to A.

• Phase 1. On receiving any ciphertext query or trapdoor

query for a keyword kw from A, C queries O𝐶 for the ci-

phertext query and queries O𝑇 for trapdoor query. Then, it

returns the answer to A.

• Challenge. After receiving two tuples of challenge key-

words (kw∗
0,1, · · · , kw

∗
0,𝑛) and (kw

∗
1,1, · · · , kw

∗
1,𝑛), C per-

forms the following steps. It randomly chooses a tuple

(kw∗
0,𝑖 , kw

∗
1,𝑖 ) for some 𝑖 such that kw∗

0,𝑖 ≠ kw∗
1,𝑖 . Then, it

takes this tuple as its challenge keyword and receives a

challenge ciphertext ct∗. In addition, it randomly chooses

𝑛 − 1 elements (𝑟1, · · · , 𝑟𝑖−1, 𝑟𝑖+1, · · · , 𝑟𝑛) from the out-

put space of the PAEKS algorithm. Finally, it returns

(𝑟1, · · · , 𝑟𝑖−1, ct∗, 𝑟𝑖+1, · · · , 𝑟𝑛) as the challenge ciphertext for
A.

• Phase 2.A can continue to query the oracles as in Phase 1
for any keyword kw, except for the challenge keywords (i.e.,
kw ≠ kw∗𝑖, 𝑗 ) for 𝑖 ∈ {0, 1} and 𝑗 ∈ {1, 𝑛}.
• Guess. A finally outputs a bit 𝑏 ′, then C takes A’s answer

as its answer.

As ct∗ is C’s challenge ciphertext and the PAEKS scheme satisfies

CI and the PAEKS algorithm is probabilistic, for the view of A,

(𝑟1, · · · , 𝑟𝑖−1, ct∗, 𝑟𝑖+1, · · · , 𝑟𝑛) is the same as the 𝑛 truly ciphertext.

Therefore, supposeA’s answer is right, then C can useA’s answer

to break the CI of the PAEKS scheme.

The proof for TP is the similar to that for CI, except for the

challenge part. More concretely, in the part of TP, C is given

a challenge trapdoor td∗, instead of a challenge ciphertext ct∗.
In addition, C returns (𝑟1, · · · , 𝑟𝑖−1, td∗, 𝑟𝑖+1, · · · , 𝑟𝑛) to A, where

(𝑟1, · · · , 𝑟𝑖−1, 𝑟𝑖+1, · · · , 𝑟𝑛) are randomly chosen from the output

space of the Trapdoor algorithm. Due to the PAEKS scheme satis-

fies TP, for the view ofA, (𝑟1, · · · , 𝑟𝑖−1, td∗, 𝑟𝑖+1, · · · , 𝑟𝑛) is the same

as the 𝑛 truly trapdoors. Based on the above description, with the

answer of A, C can also take A’s answer as its answer. Therefore,

the proof is completed. □

4 CRYPTANALYSIS OF PREVIOUS
TRAPDOOR PRIVACY SCHEMES

In this section, we cryptanalyze two lattice-based (variant) PEKS

schemes proposed by Zhang et al. [62] at Inf. Sci. in 2019 and Zhang

et al. [63] at IEEE Trans. Dependable Secur. Comput. in 2021, respec-

tively. The core idea of these schemes against IKGA is to restrict

the malicious adversary from adaptively generating ciphertexts for

any keyword and to further test the trapdoor generated from the

receiver. Although these schemes have been proven to satisfy TP

(i.e., the schemes are secure against IKGA), the security models

in [62] and [63] do not capture the IKGA in a real scenario. More

concretely, the adversary is considered to have won the game if

and only if the adversary is able to generate a valid searchable

ciphertext, rather than just obtain the information about the key-

word from the challenge trapdoor. In the following, we directly

present our cryptanalysis by two lemmas to show that there exists

an adversary that can easily break the TP in polynomial time by

randomly choosing keywords because the trapdoor directly leaks

the keyword information. Please refer to Appendix A for Zhang et
al.’s schemes).

Lemma 4.1. Zhang et al.’s [63] forward-secure PEKS scheme is
vulnerable to IKGA.

Proof. Here, we show how an inside adversary A can retrieve

the keyword information hidden in the trapdoor. Suppose that A
has received a trapdoor td𝑗 := tkw ∥ 𝑗 related to some time 𝑗 and

keyword kw. It tries to obtain the keyword information via the

following steps:

(1) Since tkw ∥ 𝑗 is generated from the receiver by perform-

ing SamplePre(A𝑅 ∥ 𝑗𝜷−1

𝑗
,Tkw ∥ 𝑗 , 𝝁, 𝜎), we know that 𝝁 =

A𝑅 ∥ 𝑗𝜷−1

𝑗
· tkw ∥ 𝑗 = A𝑅 ∥ 𝑗 · 𝐻2 (kw∥ 𝑗)−1 · tkw ∥ 𝑗 .

(2) Then, A randomly selects a guessed keyword kw′ to test

whether 𝝁
?

= A𝑅 ∥ 𝑗 · 𝐻2 (kw′∥ 𝑗)−1 · tkw ∥ 𝑗 .
(3) If the equation in Step 2 holds, A outputs kw′ as its guess;

otherwise, A returns to Step 2 and continues to select and

test other keywords.

Therefore, as the keyword space is limited, there is a high proba-

bility thatA can obtain the keyword related to the trapdoor by the

brute force attack. □
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Lemma 4.2. Zhang et al.’s [62] proxy-oriented identity-based PEKS
scheme is vulnerable to IKGA.

Proof. Let id𝑃 and id𝑅 be two identities of the proxy and the

receiver, respectively. Here, we show that how an inside adversary

A can retrieve the keyword information hidden in the trapdoor.

Suppose that A has received a trapdoor td := dkw related to some

keyword kw. It tries to obtain the keyword information via the

following steps:

(1) Since dkw is generated from the receiver by perform-

ing SamplePre(Aid𝑅𝜸
−1,Dkw, v, 𝛿), we know that v =

Aid𝑅𝜸
−1dkw , where 𝜸 ← 𝐻4 (id𝑃 ∥id𝑅 ∥kw).

(2) Then, A randomly selects a guessed keyword kw′ and com-

putes 𝜸 ′ ← 𝐻4 (id𝑃 ∥id𝑅 ∥kw′).
(3) A tests whether v ?

= Aid𝑅𝜸
′−1dkw .

(4) If the equation in Step 3 holds, A outputs kw′ as its guess;
otherwise, A returns to Step 2 and continues to select and

test other keywords.

Therefore, similarly, there is a high probability thatA can obtain

the keyword related to the trapdoor by a brute force attack. □

5 PROPOSED GENERIC PAEKS
CONSTRUCTION

In this section, we propose a generic PAEKS construction based on

a PEKS and SPHF with details as follows:

• A PEKS scheme PEKS = (KeyGen, PEKS, Trapdoor, Test)
keyword space KSPEKS that satisfies CI.
• An 𝜖-approximate, word-independent, and pseudo-random

SPHF scheme SPHF = (HashKG, ProjKG, Hash, ProjHash)
with the output length {0, 1}𝑐 for the language of the cipher-
text of a CCA2-secure labelled PKE scheme PKE = (KeyGen,
Encrypt, Decrypt) with public key space PKSPKE and

plaintext space PSPKE, where 𝜖 is negligible.

Language of Ciphertext. Let (lpar, ltrap) = (ekPKE, dkPKE),
where ekPKE ∈ PKSPKE and dkPKE is its correspond-

ing decryption key. We define the language of cipher-

text as: ℒ̃ := {(label, ctPKE,mPKE) | ∃𝜌, ctPKE ←
Encrypt(ekPKE, label,mPKE; 𝜌)} and ℒ := {(label, ctPKE,mPKE) |
Decrypt(dkPKE, label, ctPKE) = mPKE}, where the witness relation
𝒦 is implicit defined as:𝒦((label, ctPKE,mPKE), 𝜌) = 1 if and only

if ctPKE ← Encrypt(ekPKE, label,mPKE; 𝜌).

Construction. The whole construction is described as follows:

• Setup(1_): Given a security parameter _, this algorithm runs

the following steps:

– Generates (ekPKE, dkPKE) ← PKE.KeyGen(1_).
– Randomly chooses a plaintextmPKE

$←− PSPKE and a label
label

$←− {0, 1}∗.
– Chooses two functions𝐻1 : PKSPKE×PSPKE×{0, 1}∗ →
PKSPKE and 𝐻2 : KSPEKS × {0, 1}∗ → KSPEKS, which
are modeled as random oracles.

– Outputs the public parameter pp :=

(_,mpk, ekPKE,mPKE, label, 𝐻1, 𝐻2).

• KeyGen𝑆 (pp): Given the public parameter pp, this algorithm
runs the following steps:

– Checks whether mpk
?

= 𝐻1 (ekPKE,mPKE, label). If the
equation is not satisfied, it terminates.

– Computes hk𝑆 ← SPHF.HashKG(mpk).
– Computes hp𝑆 ← SPHF.ProjKG(hk𝑆 ,mpk).
– Generates ctPKE,𝑆 ← PKE.Encrypt(mpk, label,mPKE; 𝜌𝑆 ),
where 𝜌𝑆 is the witness randomly selected such that

𝒦((label, ctPKE,𝑆 ,mPKE), 𝜌𝑆 ) = 1 is satisfied.

– Outputs the public key pk𝑆 := (hp𝑆 , ctPKE,𝑆 ) and private

key sk𝑆 := (hk𝑆 , 𝜌𝑆 ) of the sender.
• KeyGen𝑅 (pp): Given the public parameter pp, this algorithm
runs the following steps:

– Checks whether mpk
?

= 𝐻1 (ekPKE,mPKE, label). If the
equation is not satisfied, it terminates.

– Computes hk𝑅 ← SPHF.HashKG(mpk).
– Computes hp𝑅 ← SPHF.ProjKG(hk𝑅,mpk).
– Generates ctPKE,𝑅 ← PKE.Encrypt(mpk, label,mPKE; 𝜌𝑅),
where 𝜌𝑅 is the witness randomly selected such that

𝒦((label, ctPKE,𝑅,mPKE), 𝜌𝑅) = 1 is satisfied.

– Generates (pkPEKS, skPEKS) ← PEKS.KeyGen(1_).
– Outputs the public key pk𝑅 := (hp𝑅, ctPKE,𝑅, pkPEKS) and
private key sk𝑅 := (hk𝑅, 𝜌𝑅, skPEKS) of the receiver.

• PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw): Given the public parameter

pp, the public key pk𝑆 and the private key sk𝑆 of the sender,

the public key pk𝑅 of the receiver, and a keyword kw′ ∈
KSPEKS, this algorithm runs the following steps:

– Computes H𝑆 ← SPHF.Hash(hk𝑆 ,mpk, (ctPKE,𝑅,mPKE))
and pH𝑆 ← SPHF.ProjHash(hp𝑅,mpk, (ctPKE,𝑆 ,mPKE),
𝜌𝑆 ).

– Computes der-kw𝑆 ← 𝐻2 (𝑘𝑤,H𝑆 ⊕ pH𝑆 ).
– Generates ctPEKS,der-kw𝑆

←
PEKS.PEKS(pkPEKS, der-kw𝑆 ).

– Outputs a searchable ciphertext ctkw := ctPEKS,der-kw𝑆
.

• Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw′): Given the public param-

eter pp, the public key pk𝑆 of the sender, the public key

pk𝑅 and private key sk𝑅 of the receiver, and a keyword

kw′ ∈ KSPEKS, this algorithm runs the following steps:

– Computes H𝑅 ← SPHF.Hash(hk𝑅,mpk, (ctPKE,𝑆 ,mPKE))
and pH𝑅 ← SPHF.ProjHash(hp𝑆 ,mpk, (ctPKE,𝑅,mPKE),
𝜌𝑅).

– Computes der-kw′𝑅 ← 𝐻2 (𝑘𝑤 ′,H𝑅 ⊕ pH𝑅).
– Generates tdPEKS,der-kw′𝑅 ←
PEKS.Trapdoor(skPEKS, der-kw′𝑅).

– Outputs a trapdoor tdkw′ := tdPEKS,der-kw′𝑅 .
• Test(pp, ctkw, tdkw′): Given the public parameter pp, the
searchable ciphertext ctkw , and the trapdoor tdkw′ , this al-
gorithm outputs the result of PEKS.Test(ctkw, tdkw′).

Correctness. Suppose that the public parameter pp and the pub-

lic/private key pairs (pk𝑆 , sk𝑆 ), (pk𝑅, sk𝑅) are honestly generated.

Let ctkw be the searchable ciphertext related with the keyword kw
generated by the sender, and tdkw′ be the trapdoor related with the

keyword kw′ generated by the receiver.
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As the underlying SPHF is 𝜖-correct for some 𝜖 = negl(_), it
follows that

H𝑆 = SPHF.Hash(hk𝑆 ,mpk, (ctPKE,𝑅,mPKE))
= SPHF.ProjHash(hp𝑆 ,mpk, (ctPKE,𝑅,mPKE), 𝜌𝑅)
= pH𝑅 ;

H𝑅 = SPHF.Hash(hk𝑅,mpk, (ctPKE,𝑆 ,mPKE))
= SPHF.ProjHash(hp𝑅,mpk, (ctPKE,𝑆 ,mPKE), 𝜌𝑆 )
= pH𝑆 .

Therefore, H𝑆 ⊕ pH𝑆 = H𝑅 ⊕ pH𝑅 holds. Clearly, if kw = kw′,
then der-kw𝑆 = 𝐻2 (𝑘𝑤,H𝑆 ⊕ pH𝑆 ) = 𝐻2 (𝑘𝑤 ′,H𝑅 ⊕ pH𝑅),
and therefore, ctPEKS,der-kw𝑆

and tdPEKS,der-kw′𝑅 are re-

lated to the same extended keyword. As the underlying

PEKS scheme is correct, PAEKS.Test(pp, ctkw, tdkw′) = 1

holds with overwhelming probability. In contrast, since

𝐻2 is modeled as a random oracle, if kw ≠ kw′, then

der-kw𝑆 = 𝐻2 (𝑘𝑤,H𝑆 ⊕ pH𝑆 ) ≠ 𝐻2 (𝑘𝑤 ′,H𝑅 ⊕ pH𝑅) = der-kw′𝑅 ,
and therefore, ctPEKS,der-kw𝑆

and tdPEKS,der-kw′𝑅 are re-

lated to different extended keywords. Consequently,

PAEKS.Test(pp, ctkw, tdkw′) = 0 holds with overwhelming

probability.

Security Analysis. Below, Theorem 5.1 and Theorem 5.2 indicate

that the proposed construction satisfies CI and TP, respectively,

by adopting the sequence-of-games strategy. More concretely, we

construct a sequence of games: the first game is identical to the

real attack game and A can only distinguish these games with a

negligible advantage. For simplicity, let 𝐴𝑑𝑣
Game𝑖
A (_) denote the

advantage of A in game Game𝑖 , where 𝑖 ∈ {0, · · · , 3}. Further-
more, by Theorem 5.3, we also show that the proposed construction

satisfies MCI and MTP.

Theorem 5.1. The proposed generic PAEKS construction satisfies
CI if the underlying SPHF scheme satisfies pseudo-randomness and
𝐻2 is modeled as random oracles.

Proof. This proof consists of four games, illustrated as follows:

Game0: This game is identical to the real IND-CKA game defined

in Section 3.2. Suppose that the advantage of A in this game is

defined as 𝐴𝑑𝑣
Game0

A (_) := 𝜖 . In addition, to simulate a real view

for A, on receiving the query for some keyword kw from A, the

challenger C responds as follows:

• O𝐶 : For keyword kw, C computes ctkw ←
PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw) and returns ctkw to A.

• O𝑇 : For keyword kw, C computes tdkw ←
Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw) and returns tdkw to

A.

Game1: This game is identical to Game0, except for the

generation of the challenge ciphertext ct∗ in the Chal-
lenge phase. More concretely, instead of generating H𝑆 ←
SPHF.Hash(hk𝑆 ,mpk, (ctPKE,𝑅,mPKE)), C randomly chooses H𝑆

from the output space of the SPHF.Hash algorithm. Since the un-

derlying SPHF scheme satisfies pseudo-randomness, A cannot dis-

tinguish the view betweenGame0 andGame1. Therefore, we obtain���𝐴𝑑𝑣Game1

A (_) −𝐴𝑑𝑣Game0

A (_)
��� ≤ negl(_) .

Game2: This game further changes the generation of the challenge

ciphertext ct∗ in theChallenge phase. In this game, der-kw𝑆 is ran-
domly chosen from KSPEKS, instead of by computing der-kw𝑆 ←
𝐻2 (kw∗𝑏 ,H𝑆 ⊕ pH𝑆 ) for some 𝑏 ∈ {0, 1}. As H𝑆 is randomly chosen

and 𝐻2 is modeled as random oracle, the output of 𝐻2 (kw∗𝑏 ,H𝑆 ⊕
pH𝑆 ) is random. Therefore,A cannot distinguish the view between

Game1 and Game2. Consequently, we obtain���𝐴𝑑𝑣Game2

A (_) −𝐴𝑑𝑣Game1

A (_)
��� ≤ negl(_) .

Game3: This game is the last game. Because the chal-

lenge ciphertext ct∗ = ctPEKS,der-kw𝑆
is generated from

PEKS.PEKS(pkPEKS, der-kw𝑆 ) and der-kw𝑆 is now randomly cho-

sen from KSPEKS, the challenge ciphertext does not contain any

information about the challenge keywords (kw∗
0
, kw∗

1
) given by A.

The only way for A is to guess. Therefore, we have

𝐴𝑑𝑣
Game3

A (_) = 0.

Finally, combining the above games, we have 𝜖 ≤ negl(_). The
proof is completed. □

Theorem 5.2. The proposed generic PAEKS construction satisfies
TP if the underlying SPHF scheme satisfies pseudo-randomness and
𝐻2 is modeled by random oracle.

Proof. This proof is similar to the proof of Theorem 5.1, again

with four games.

Game0: This game is identical to the real IND-IKGA game defined

in Section 3.2. Suppose that the advantage of A in this game is

defined as𝐴𝑑𝑣
Game0

A (_) := 𝜖 . In addition, the view simulated by the

challenger C is the same as that in Game0 in the proof of Theorem

5.1.

Game1: This game is identical to Game0, except for the

generation of the challenge trapdoor td∗ in the Chal-
lenge phase. More concretely, instead of generating

H𝑅 ← SPHF.Hash(hk𝑅,mpk, (ctPKE,𝑆 ,mPKE)), C randomly

chooses H𝑅 from the output space of the SPHF.Hash algorithm.

Since the underlying SPHF scheme satisfies pseudo-randomness,

A cannot distinguish the view between Game0 and Game1.

Therefore, we obtain���𝐴𝑑𝑣Game1

A (_) −𝐴𝑑𝑣Game0

A (_)
��� ≤ negl(_) .

Game2: This game further changes the generation of the challenge

trapdoor td∗ in the Challenge phase. In this game, der-kw𝑅 is ran-

domly chosen from KSPEKS, instead of by computing der-kw𝑅 ←
𝐻2 (kw∗𝑏 ,H𝑅 ⊕ pH𝑅) for some 𝑏 ∈ {0, 1}. As H𝑅 is randomly chosen,

the output of 𝐻2 (kw∗𝑏 ,H𝑅 ⊕ pH𝑅) is random. Therefore, A cannot

distinguish the view between Game1 and Game2. Consequently,

we obtain ���𝐴𝑑𝑣Game2

A (_) −𝐴𝑑𝑣Game1

A (_)
��� ≤ negl(_) .

8
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Game3: This game is the last game. Because the chal-

lenge trapdoor td∗ = tdPEKS,der-kw𝑅
is generated from

PEKS.PEKS(pkPEKS, der-kw𝑅) and der-kw𝑅 is now randomly cho-

sen from KSPEKS, the challenge trapdoor does not contain any

information about the challenge keywords (kw∗
0
, kw∗

1
) given by A.

The only way for A is to guess. Therefore, we have

𝐴𝑑𝑣
Game3

A (_) = 0.

Finally, combining the above games, we have 𝜖 ≤ negl(_). The
proof is now complete. □

Theorem 5.3. The proposed generic PAEKS construction further
satisfies MCI and MTP if Theorem 3.3, Theorem 5.1 as well as Theorem
5.2 holds, and PEKS as well as Trapdoor algorithms of the underlying
PEKS scheme are probabilistic.

Proof. In the proposed construction, the PAEKS and Trapdoor
algorithms actually perform the PEKS and Trapdoor algorithms of

the underlying PEKS scheme. To the best of our knowledge, for the

current well-known PEKS schemes (e.g., [6, 7, 28]), the PEKS and
Trapdoor algorithms are probabilistic. Hence, by combining the

result of Theorem 5.1, Theorem 5.2, and Theorem 3.3, the proposed

construction satisfies MCI and MTP. □

6 LATTICE-BASED INSTANTIATION
In this section, we propose the first quantum-resistant PAEKS in-

stantiation based on lattices. This instantiation leverages three

lattice-based primitives as the building blocks and inherits their

securities to be secure against quantum attacks. More con-

cretely, we adopt the word-independent SPHF scheme intro-

duced by Li and Wang et al. [37] based on the labelled IND-

CCA1 PKE scheme introduced by Micciancio and Peikert [43],

and the PEKS scheme introduce by Behnia et al. [6]. In addi-

tion, we adopted the internal .net classes of MATLAB, namely

System.Security.Cryptography.HashAlgorithm to implement

hash functions. Note that, since labelled IND-CCA1 PKE can be

transferred to IND-CCA2 PKE by combining a one-time signature

scheme; for simplicity, we only describe the weaker version (IND-

CCA1) of the PKE scheme [43] in the following instantiation.

Before introducing our instantiation, we define some important

notations. Let R be a ring and U be a subset of R× of invertible

elements. In addition, let G := I𝑛 ⊗ g⊤ be the gadget matrix defined

in [43], where g⊤ := [1, 2, · · · , 2𝑘 ] and 𝑘 := ⌈log𝑞⌉ − 1. Finally,

we also define the encoding function Encode(` ∈ {0, 1}) := ` ·
(0, · · · , 0, ⌈𝑞/2⌉)⊤ and the deterministic rounding function R(𝑥) :=

⌊2𝑥/𝑞⌉ mod 2. Finally, the notations [A|B] and [A;B] = [A⊤ |B⊤]⊤
denote the horizontal concatenation and vertical concatenation of

matrices A and B, respectively.
The whole instantiation is described as follows:

• Setup(1_): Given a security parameter _ and the parameters

𝑞, 𝑛,𝑚, 𝜎1, 𝜎2, 𝛼 (set as instructed in the following parameter

selection part), this algorithm runs the following steps:

– Sets ^, 𝜌, ℓ ← poly(𝑛) and randomly chooses m =

𝑚1𝑚2 · · ·𝑚^
$←− {0, 1}^ .

– Computes (A0,T) ← TrapGen(1𝑛, 1𝑚, 𝑞).
– Sets ekPKE := A0, dkPKE := T, and mPKE := m.

– Randomly chooses element 𝑢
$←− U and sets label := 𝑢

– Choose two secure hash functions 𝐻1 : Z𝑛×𝑚𝑞 × {0, 1}^ ×
U → Z𝑛×𝑚𝑞 , 𝐻2 : {1,−1}ℓ × {0, 1}^ → {1,−1}ℓ , and an

injective ring homomorphism ℎ : R → Z𝑛×𝑛𝑞 .

– Computes A← 𝐻1 (A0,m, 𝑢) ∈ Z𝑛×𝑚𝑞 and sets mpk := A.
– Outputs pp := (_, 𝑛,𝑚, 𝑞, 𝜎1, 𝜎2, ^, 𝜌, ℓ, ekPKE :=

A0,mpk := A,mPKE := m, label := 𝑢, 𝐻1, 𝐻2, ℎ).
• KeyGen𝑆 (pp): Given the public parameter pp, this algorithm
runs the following steps:

– Checks whether A ?

= 𝐻1 (A0,m, 𝑢).
– ComputesA𝑢 = A+[0;Gℎ(𝑢)], randomly chooses amatrix

hk𝑆 := k𝑆
$←− 𝐷𝑚
Z,𝑠

, and computes hp𝑆 := p𝑆 = A𝑢⊤ · k𝑆 ∈
Z𝑛𝑞 , where 𝑠 ≥ [𝜖 (Λ⊥ (A𝑢 )) for some 𝜖 = negl(𝑛).

– For 𝑖 = 1, · · · , ^, randomly chooses vectors s𝑆,𝑖
$←− Z𝑛𝑞 as

well as e𝑆,𝑖
$←− 𝐷𝑚

Z,𝑡
(re-select e𝑆,𝑖 if ∥e𝑆,𝑖 ∥ > 2𝑡

√
𝑚), and

computes c𝑆,𝑖 = A⊤𝑢 ·s𝑆,𝑖 +e𝑆,𝑖 +Encode(𝑚𝑖 ) mod 𝑞, where

𝑡 = 𝜎1

√
𝑚 · 𝜔 (

√
log𝑛.

– Outputs the public key pk𝑆 := (hp𝑆 := p𝑆 , ctPKE,𝑆 :=

{c𝑆,𝑖 }^𝑖=1
) and the private key sk𝑆 := (hk𝑆 := k𝑆 , 𝜌𝑆 :=

{s𝑆,𝑖 }^𝑖=1
) of the sender.

• KeyGen𝑅 (pp): Given the public parameter pp, this algorithm
runs the following steps:

– Checks whether A ?

= 𝐻1 (A0,m, 𝑢).
– ComputesA𝑢 = A+[0;Gℎ(𝑢)], randomly chooses amatrix

hk𝑅 := k𝑅 ← 𝐷𝑚
Z,𝑠

, and computes hp𝑅 := p𝑅 = A⊤𝑢 · k𝑅 ∈
Z𝑛𝑞 , where 𝑠 ≥ [𝜖 (Λ⊥ (A𝑢 )) for some 𝜖 = negl(𝑛).

– For 𝑖 = 1, · · · , ^, randomly chooses vectors s𝑅,𝑖
$←− Z𝑛𝑞

as well as e𝑅,𝑖 ← 𝐷𝑚
Z,𝑡

(re-select e𝑅,𝑖 if ∥e𝑅,𝑖 ∥ > 2𝑡
√
𝑚),

and computes c𝑅,𝑖 = A⊤𝑢 · s𝑅,𝑖 + e𝑅,𝑖 + Encode(𝑚𝑖 ) mod 𝑞,

where 𝑡 = 𝜎1

√
𝑚 · 𝜔 (

√
log𝑛.

– Generates (B𝑅, S𝑅) ← TrapGen(1𝑛, 1𝑚, 𝑞).
– Selects ℓ + 1 random matrices B𝑅,1, · · · ,B𝑅,ℓ ,C𝑅

$←− Z𝑛×𝑚𝑞

and a random vector r𝑅
$←− Z𝑛𝑞 .

– Outputs the public key pk𝑅 := (hp𝑆 := p𝑅, ctPKE,𝑅 :=

{c𝑅,𝑖 }^𝑖=1
, pkPEKS := {B𝑅, {B𝑅,𝑖 }ℓ𝑖=1

,C𝑅, r𝑅}) and the pri-

vate key sk𝑅 := (hk𝑅 := k𝑅, 𝜌𝑅 := {s𝑅,𝑖 }^𝑖=1
, skPEKS := S𝑅)

of the receiver.

• PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw): Given the public parameter

pp, the public key pk𝑆 and the private key sk𝑆 of the sender,

the public key pk𝑅 of the receiver, and a keyword kw ∈
{1,−1}ℓ , this algorithm run as follows.

– For 𝑖 = 1, · · · , ^, computes ℎ𝑆,𝑖 ← R(c⊤
𝑅,𝑖
· k𝑆 (mod 𝑞)),

𝑝𝑆,𝑖 ← R(s⊤
𝑆,𝑖
· p𝑅 (mod 𝑞)) and 𝑦𝑆,𝑖 = ℎ𝑆,𝑖 · 𝑝𝑆,𝑖 .

– Sets y𝑆 = 𝑦𝑆,1𝑦𝑆,2 · · ·𝑦𝑆,^ ∈ {0, 1}^ .
– Computes der-kw𝑆 := dk𝑆 = dk𝑆,1dk𝑆,2 · · · dk𝑆,ℓ ←
𝐻2 (kw, y𝑆 ) ∈ {1,−1}ℓ .

– Computes Bdk = C𝑅 +
∑ℓ
𝑖=1

dk𝑆,𝑖B𝑅,𝑖 and Fdk =

[B𝑅 |Bdk] ∈ Z𝑛×2𝑚
𝑞 .

– For 𝑗 = 1, · · · , 𝜌 , performs the following steps:
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∗ Chooses 𝑏 𝑗
$←− {0, 1}, a random s𝑗

$←− Z𝑛𝑞 , and matrices

R𝑖 𝑗
$←− {1,−1}𝑚×𝑚 for 𝑖 = 1, · · · , ℓ .

∗ Sets R̄𝑗 =
∑ℓ
𝑖=1

dk𝑆,𝑖R𝑖 𝑗 ∈ {−ℓ, · · · , ℓ}𝑚×𝑚 .

∗ Chooses noise vectors 𝑥 𝑗
Ψ̄𝛼←−− Z𝑞 and y𝑗

Ψ̄𝑚
𝛼←−−− Z𝑚𝑞 .

∗ Sets z𝑗 ← R̄⊤
𝑗
y𝑗 ∈ Z𝑚𝑞 , 𝑐0𝑗

= r⊤
𝑅
s𝑗 + 𝑥 𝑗 + 𝑏 𝑗 ⌊𝑞/2⌋ ∈ Z𝑞 ,

and c1𝑗
= F⊤dks𝑗 + [y𝑗 ; z𝑗 ] ∈ Z

2𝑚
𝑞 .

– Outputs a searchable ciphertext ctkw := (ctPEKS,der-kw𝑆
:=

{𝑐0𝑗
, c1𝑗

, 𝑏 𝑗 }𝜌𝑗=1
).

• Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw′): Given the public param-

eter pp, the public key pk𝑆 of the sender, the public key

pk𝑅 and private key sk𝑅 of the receiver, and a keyword

kw′ ∈ {1,−1}ℓ , this algorithm runs as follows.

– For 𝑖 = 1, · · · , ^, computes ℎ𝑅,𝑖 ← R(c⊤
𝑆,𝑖
· k𝑅 (mod 𝑞))

and 𝑝𝑅,𝑖 ← R(s⊤
𝑅,𝑖
· p𝑆 (mod 𝑞)), and 𝑦𝑅,𝑖 = ℎ𝑅,𝑖 · 𝑝𝑅,𝑖 .

– Sets y𝑅 = 𝑦𝑅,1𝑦𝑅,2 · · ·𝑦𝑅,^ ∈ {0, 1}^ .
– Computes der-kw′

𝑅
:= dk𝑅 = dk𝑅,1dk𝑅,2 · · · dk𝑅,ℓ ←

𝐻2 (kw′, y𝑅).
– Computes Bdk = C𝑅 +

∑ℓ
𝑖=1

dk𝑅,𝑖B𝑅,𝑖 and samples

tdPEKS,der-kw′𝑅 := tdk ← SampleLeft(B𝑅,Bdk, S𝑅, r𝑅, 𝜎2).
– Outputs tdtw′ := (tdPEKS,der-kw′𝑅 := tdk).
• Test(pp, ctkw, tdkw′): Given the public parameter pp, the
searchable ciphertext ctkw , and the trapdoor tdkw′ , this al-
gorithm runs as follows.

– For 𝑗 = 1, · · · , 𝜌 , computes a 𝑗 = 𝑐0𝑗
− tdkc1𝑗

∈ Z𝑞 .
– Checks whether |a 𝑗 − ⌊𝑞/2⌋ | < ⌊𝑞/4⌋; sets a 𝑗 = 1 if the

equation holds; otherwise, sets a 𝑗 = 0.

– If a 𝑗 = 𝑏 𝑗 for all 𝑗 = 1, · · · , 𝜌 , outputs 1; otherwise, outputs

0.

Correctness. To ensure that the proposed construction works cor-

rectly, there are two conditions that need to be satisfies:

• If kw = kw′, the sender and the receiver obtain the same

derived keyword (i.e., der-kw𝑆 = der-kw′
𝑅
).

• If ctkw and tdkw′ are related to the same derived keyword,

then the Test algorithm outputs 1.

We first consider the first condition by Lemma 6.1 followed by

the description in [37]. That is, if the norm of the first error term is

less than 𝜖/2 · 𝑞/4 and 𝑘𝑤 = 𝑘𝑤 ′, then dk𝑆 = dk𝑅 .

Lemma 6.1. Suppose the norm of the first error term (e⊤
𝑅,𝑖
·k𝑆,𝑖 and

e⊤
𝑆,𝑖
· k𝑅,𝑖 ) is less than 𝜖/2 · 𝑞/4 and 𝑘𝑤 = 𝑘𝑤 ′, then dk𝑆 = dk𝑅

Proof. For 𝑖 = 1, · · · , ^, we have

ℎ𝑆,𝑖 = R(c⊤𝑅,𝑖 · k𝑆,𝑖 (mod 𝑞))
= R((s⊤𝑅,𝑖 · A𝑢 ) · k𝑆,𝑖 + e⊤𝑅,𝑖 · k𝑆,𝑖︸    ︷︷    ︸

first error term

(mod 𝑞))

= R((s⊤𝑅,𝑖 · A𝑢 ) · k𝑆,𝑖 (mod 𝑞))
= 𝑝𝑅,𝑖 ;

ℎ𝑅,𝑖 = R(c⊤𝑆,𝑖 · k𝑅,𝑖 (mod 𝑞))
= R((s⊤𝑆,𝑖 · A𝑢 ) · k𝑅,𝑖 + e⊤𝑆,𝑖 · k𝑅,𝑖︸    ︷︷    ︸

first error term

(mod 𝑞))

= R((s⊤𝑆,𝑖 · A𝑢 ) · k𝑅,𝑖 (mod 𝑞))
= 𝑝𝑆,𝑖 .

Since 𝑦𝑆,𝑖 = ℎ𝑆,𝑖 · 𝑝𝑅,𝑖 = ℎ𝑅,𝑖 · 𝑝𝑆,𝑖 = 𝑦𝑅,𝑖 for 𝑖 = 1, · · · , ^, we
have y𝑆 = y𝑅 . Furthermore, as y𝑆 = y𝑅 and kw = kw′, we have
der-kw𝑆 = dk𝑆 = 𝐻2 (kw, y𝑆 ) = 𝐻2 (kw′, y𝑅) = dk𝑅 = der-kw′

𝑅
.

□

Then, we consider the second condition in which the Test algo-
rithm will output a correct answer: For all 𝑗 = 1, · · · , 𝜌 , we have

a 𝑗 = 𝑐0𝑗
− tdkc1𝑗

= r⊤𝑅 s𝑗 + 𝑥 𝑗 + 𝑏 𝑗 ⌊𝑞/2⌋ − tdk (F
⊤
dks𝑗 + [y𝑗 ; z𝑗 ])

= 𝑏 𝑗 ⌊𝑞/2⌋ + 𝑥 𝑗 − tdk [y𝑗 ; z𝑗 ]︸             ︷︷             ︸
second error term

.

According to Lemma 22 in [2], if the norm of the second error

term is bounded by 𝑞 ·𝜎2 · ℓ ·𝑚 ·𝛼 ·𝜔 (
√

log𝑚) +O(ℓ𝜎2𝑚
3/2) ≤ 𝑞/5,

then 𝑏 𝑗 can be obtained correctly. Hence, we have a 𝑗 = 𝑏 𝑗 for

𝑗 = 1, · · · , 𝜌 if the derived keywords are the same.

Parameter Selection. To make the system work properly, the

parameters have the following restrictions [2, 37, 43]:

(1) 𝑚 > 5𝑛 log𝑞 so TrapGen can operate [43].

(2) 𝑞 > 𝜎1𝑚
3/2𝜔 (

√
log𝑛) so that the first error term is bounded

by 𝜖/2 · 𝑞/4 and therefore y𝑆 = y𝑅 .
(3) 𝛼 < [𝜎2ℓ𝑚𝜔 (

√
log𝑚)]−1

and 𝑞 = Ω(𝜎2𝑚
3/2) so that the

second error term is bounded by 𝑞/5.
(4) 𝜎1 = 2

√
𝑛 and 𝑞 > 2

√
𝑛/𝛼 so that Regev’s reduction [50, 51]

can operate.

(5) 𝜎2 > ℓ ·𝑚 · 𝜔 (
√

log𝑚) such that the security proof in [2]

and SampleLeft work correctly.

To achieve these requirements, the parameters are set as follows.

𝑚 = 6𝑛1+𝛿
; 𝑞 =𝑚2.5 · 𝜔 (

√
log𝑛);

𝜎1 = 2

√
𝑛; 𝜎2 =𝑚ℓ · 𝜔 (

√
log𝑛);

𝑛𝛿 > ⌈log𝑞⌉; 𝛼 = [ℓ2𝑚2 · 𝜔 (
√

log𝑛)]−1 .

Security. The security of the proposed instantiation is directly

based on the underlying schemes. As the language of Li and Wang

et al.’s word-independent SPHF scheme [37] is for the ciphertext of

the labelled IND-CCA2 PKE scheme [43], the word of the scheme

is a ciphertext. Therefore, this SPHF trivially satisfies pseudo-

randomness. In addition, the PEKS and Trapdoor algorithms in

Behnia et al.’s PEKS scheme [6] are probabilistic. On the basis of

Theorem 5.1, Theorem 5.2, and Theorem 5.3, we obtain the follow-

ing theorem:

Theorem 6.2. The proposed lattice-based PAEKS scheme satisfies
MCI and MTP.
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Table 1: Comparison of security properties with those of PAEKS schemes

Schemes CI MCI TP MTP QR NTA

BOC
+
04 [7] ✓ ✓ ✗ ✗ ✗ ✓

HL17 [27] ✗ ✗ ✗ ✗ ✗ ✓

ZTW
+
19 [62] ✓ ✓ ✗ ✗ ✓ ✗

QCH
+
20 [49] ✓ ✓ ✓ ✗ ✗ ✓

BOY20 [6] ✓ ✓ ✗ ✗ ✓ ✓

ZXW
+
21 [63] ✓ ✓ ✗ ✗ ✓ ✓

LTT
+
21 [39] ✓ ✓ ✓ ✓ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

✓: The scheme supports the corresponding feature; ✗: The scheme fails in supporting the corresponding feature; QR: Quantum-resistant; NTA: No trusted

authority.

Table 2: Comparison of Required Operations with those for other Lattice-based PEKS Schemes

Schemes Ciphertext Generation Trapdoor Generation Testing

ZTW
+
19 [62] 2𝑇𝐻 + (𝜌𝑛 + 𝑛𝑚2 + 𝜌𝑛𝑚 + 𝜌)𝑇𝑀 +𝑇𝑆𝑃 𝑇𝐻 + 𝑛𝑚2𝑇𝑀 +𝑇𝐵𝐷 +𝑇𝑆𝑃 𝑇𝐻 + (ℓ𝑚 + 𝑛𝑚)𝑇𝑀

BOY20 [6] 𝜌 (𝑚2 + 2𝑛𝑚 + 𝑛 + ℓ + 1)𝑇𝑀 ℓ𝑇𝑀 +𝑇𝑆𝐿 2𝜌𝑚𝑇𝑀
ZXW

+
21 [63] 𝑇𝐻 + (𝜌𝑛 + 𝑛𝑚2 + 𝜌𝑛𝑚 + 𝜌)𝑇𝑀 +𝑇𝑆𝑃 𝑇𝐻 + 𝑛𝑚2𝑇𝑀 +𝑇𝐵𝐷 +𝑇𝑆𝑃 𝑇𝐻 + (ℓ𝑚 + 𝑛𝑚)𝑇𝑀

Ours 𝑇𝐻 + (^ (𝑚 + 𝑛 + 1) + 𝜌 (𝑚2 + 2𝑛𝑚 + 𝑛 + ℓ + 1))𝑇𝑀 𝑇𝐻 + (^ (𝑚 + 𝑛 + 1) + ℓ)𝑇𝑀 +𝑇𝑆𝐿 2𝜌𝑚𝑇𝑀

^, 𝜌 : The parameters related to security parameter _; ℓ : The length of the keyword; 𝑇𝑀 , 𝑇𝐻 , 𝑇𝑆𝑃 , 𝑇𝐵𝐷 , and 𝑇𝑆𝐿 : The running time of a

general multiplication, general hash function, SamplePre function, BasisDel function, and SampleLeft function, respectively.

(a) Encrypting keywords (b) Generating trapdoors (c) Performing tests

Figure 1: Comparison of Computational Costs with other Lattice-based PEKS Schemes

Table 3: Comparison of Communication Costs with other
Lattice-based PEKS Schemes

Schemes Ciphertext Trapdoor

ZTW
+
19 [62] (ℓ +𝑚ℓ +𝑚) |𝑞 | 𝑚 |𝑞 |

BOY20 [6] ^ ( |𝑞 | + 2𝑚 |𝑞 | + 1) 2𝑚 |𝑞 |
ZXW

+
21 [63] (ℓ +𝑚ℓ +𝑚) |𝑞 | 𝑚 |𝑞 |

Ours ^ ( |𝑞 | + 2𝑚 |𝑞 | + 1) 2𝑚 |𝑞 |

𝑛: The parameter related to security parameter;𝑚: Dimension;

𝑞: Modules; ^: The parameter related to security parameter; ℓ :

The length of the keyword.

7 COMPARISON
In this section, we present a comparison of our lattice-based instanti-

ation with other PEKS/PAEKS schemes (i.e., BOC+
04 [7], HL17 [27],

ZTW
+
19 [62], QCH

+
20 [49], BOY20 [6], ZXW

+
21 [63], and LTT

+
21

[39]) in terms of security properties, computational complexity,

computational cost, and communication cost. Table 1 presents a

comparison of the seven properties of each scheme, namely CI, MCI,

TP, MTP, quantum-resistance (QR), and no trusted authority (NTA).

As we have cryptanalyzed ZTW
+
19 [62] and ZTW

+
21 [63] in the

previous section, there are only the QCH
+
20’s [49] and LTT

+
21’s

[39] schemes satisfy TP. In addition, only LTT
+
21 [39] provides

quantum-resistant instantiation based on the NTRU lattices. How-

ever, their solution requires an additional trusted authority to help

users generate their private keys, which increases the difficulty

11
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of use in practice. To provide higher-level security, we removed

this requirement. In general, our instantiation is the first quantum-

resistant PAEKS scheme that satisfies TP and MTP and does not

require a trusted authority.

We subsequently conducted two comparisons with three lattice-

based schemes (i.e., ZTW+
19, BOY20, and ZXW

+
21) in terms of com-

putational complexity and communication cost in Table 2 and Table

3, respectively. For simplicity, only five types of time-consuming op-

erations are considered, namely general multiplication (𝑇𝑀 ), general

hash function (𝑇𝐻 ), SamplePre function (𝑇𝑆𝑃 ), BasisDel function
(𝑇𝐵𝐷 ), and SampleLeft function (𝑇𝑆𝐿). In addition, Fig. 1 presents the

results of the experimental simulation, where the simulation was

carried out in the MATLAB language on Windows 10 Enterprise

Version 1909with Inter(R) Core(TM) i7-9700 CPUwith 3.00 GHz and

32GB of system memory. To achieve the 80-bit security level, we set

the parameters with 𝑛 = 256,𝑚 = 9753, 𝑞 = 4096, 𝜌 = 10, ^ = 10, ℓ =

10, 𝜎1 = 8, 𝜎2 = 8, where 𝜌, ^ are the parameters related to the

security parameter (i.e., ^, 𝜌 ← poly(_)) and ℓ is the length of the

keyword. In addition, we adopted the internal .net classes of MAT-

LAB, namely System.Security.Cryptography.HashAlgorithm
to implement the SHA256 hash function.

As our instantiation adopted BOY20 [6] as the building block, we

first analyzed the differences with BOY20 [6]. The results indicated

that our instantiation only required some extra cost in terms of

computational cost. In terms of the communication cost, as our in-

stantiation did not require additional elements to meet the required

securities (e.g., TP and MTP), the communication cost was the same

as that for BOY20 [6]. In contrast, although our instantiation took

approximately twice as long as ZTW
+
19 [62] and ZXW

+
21 [63] to

generate ciphertexts, the time it took to generate trapdoors and per-

form tests decreased by approximately 40% and 99%, respectively.

In terms of the communication cost, the ciphertext size and the

trapdoor size of our instantiation were both approximately twice

larger than those for ZTW
+
19 [62] and ZXW

+
21 [63]. Although the

communication cost increased, we believe that this additional cost

is acceptable under the trade-offs of more security and efficiency.

8 CONCLUSION
In this work, we proposed a generic PAEKS construction that could

transform a PEKS scheme to a PAEKS scheme by equipping a

pseudo-random SPHF scheme. Our security proofs demonstrated

that the proposed construction satisfied two basic security nota-

tions—CI and TP. In addition, based on our theoretical result (The-

orem 3.3), we demonstrated that the proposed construction further

satisfied MCI and MTP if the PEKS algorithm and Trapdoor algo-
rithms of the underlying PEKS scheme were probabilistic. Further-

more, we introduced the first quantum-resistant PAEKS instantia-

tion that not only offered privacy-preserving keyword search but

also satisfied MCI and MTP. Compared with the existing quantum-

resistant PEKS schemes, the results indicated that our instantiation

was safer and more suitable for environments with security con-

cerns.
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A ZHANG ET AL.’S PEKS SCHEMES
A.1 Forward-secure PEKS
Here, we briefly review Zhang et al.’s lattice-based forward-secure

PEKS scheme [63], which consists of five algorithms.

• Setup(1_): Taking as input a security parameter _, this algo-

rithm runs the following steps:

– Randomly selects 𝝁
$←− Z𝑛𝑞 and three secure hash func-

tions 𝐻1 : Z𝑛×𝑚𝑞 × {0, · · · , [} → Z𝑚×𝑚𝑞 , 𝐻2 : {0, 1}ℓ1 ×
{0, · · · , [} → Z𝑛×𝑚𝑞 , 𝐻3 : Z𝑚×ℓ𝑞 × {0, 1}ℓ → Z𝑛𝑞 .

– Respectively generates (A𝑆 ∥0,T𝑆 ∥0) and (A𝑅 ∥0,T𝑅 ∥0) by
performing TrapGen(1𝑛, 1𝑚, 𝑞).

– Outputs the public parameter pp := (𝝁, 𝐻1, 𝐻2, 𝐻3),
the public/private key pairs of the sender (pk𝑆,0 :=

A𝑆 ∥0, sk𝑆,0 := T𝑆 ∥0) and the receiver (pk𝑅,0 :=

A𝑅 ∥0, sk𝑅,0 := T𝑅 ∥0) for time period 0.

• KeyUpdate(pk𝑅,𝑖 , sk𝑅,𝑖 , 𝑖, 𝑗): Taking as input an input pub-

lic/private key pair (pk𝑅,𝑖 := A𝑅 ∥𝑖 , sk𝑅,𝑖 := T𝑅 ∥𝑖 ) of the
receiver in the previous time period 𝑖 and the current time

period 𝑗 , this algorithm runs the following steps:

– Computes R𝑅 ∥𝑖→𝑗 = 𝐻1 (A𝑅 ∥ 𝑗) + · · · + 𝐻1 (A𝑅 ∥𝑖 + 1) ∈
Z𝑚×𝑚𝑞 .

– Computes T𝑅 ∥ 𝑗 ← NewBasisDel(A𝑅 ∥𝑖 ,R𝑅 ∥𝑖→𝑗 , T𝑅 ∥𝑖 ,
𝛿 𝑗 ), where A𝑅 ∥ 𝑗 = A𝑅 ∥𝑖 (R𝑅 ∥𝑖→𝑗 )−1 = A𝑅 (R𝑅 ∥ 𝑗 )−1 ∈
Z𝑛×𝑚𝑞 .

– Outputs the public/private key pair (pk𝑅,𝑗 := A𝑅 ∥ 𝑗 ,
sk𝑅,𝑗 := T𝑅 ∥ 𝑗 ) of the receiver for time period 𝑗 .

Note that the sender can use the same steps to generate

his/her public/private key pair (pk𝑆,𝑗 := A𝑆 ∥ 𝑗 , sk𝑆,𝑗 := T𝑆 ∥ 𝑗 )
for time period 𝑗 .

• PEKS(pk𝑆,𝑗 , sk𝑆,𝑗 , pk𝑅,𝑗 , 𝑗, kw): Taking as input a pub-

lic/private key pair (pk𝑆,𝑗 := A𝑆 ∥ 𝑗 , skS,j := T𝑆 ∥ 𝑗 ) of the
sender for time period 𝑗 , the public key pk𝑅,𝑗 := A𝑅 ∥ 𝑗 of
the receiver for time period 𝑗 , the current time period 𝑗 , and

keyword kw ∈ {0, 1}ℓ1 , the sender runs the following steps:
– Chooses a random binary string 𝜸 𝑗 = 𝛾 𝑗1𝛾 𝑗2 · · ·𝛾 𝑗ℓ

$←−
{0, 1}ℓ , uniform matrix B𝑗

$←− Z𝑛×ℓ𝑞 , noise e𝑗 =

𝑒 𝑗1𝑒 𝑗2 · · · 𝑒 𝑗ℓ ), and noise V𝑗 = v𝑗1v𝑗2 · · · v𝑗ℓ , where

𝑒 𝑗1 , · · · , 𝑒 𝑗ℓ
$←− Z𝑞 and v𝑗1 , · · · , v𝑗ℓ

$←− Z𝑚𝑞 .

– Computes 𝜷 𝑗 ← 𝐻2 (kw∥ 𝑗), c𝑗1 = 𝝁⊤B𝑗 + 𝑒 𝑗 +
(𝛾 𝑗1 , · · · , 𝛾 𝑗ℓ ) ⌊𝑞/2⌋, c𝑗2 = (A𝑅 ∥ 𝑗𝜷−1

𝑗
)B𝑗 + V𝑗 .

13



Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

– Computes h𝑗 ← 𝐻3 (c𝑗2 ∥𝜸 𝑗 ) ∈ Z𝑛𝑞 and generates 𝜻 𝑗 ←
SamplePre(A𝑆 ∥ 𝑗 ,T𝑆 ∥ 𝑗 , h𝑗 , 𝜎 𝑗 ).

– Outputs a searchable ciphertext ct𝑗 := (c𝑗1 , c𝑗2 , 𝜻 𝑗 ).
• Trapdoor(pk𝑅,𝑗 , sk𝑅,𝑗 , 𝑗, kw): Taking as input a pub-

lic/private key pair (pk𝑅,𝑗 := A𝑅 ∥ 𝑗 , sk𝑅,𝑗 := T𝑅 ∥ 𝑗 ) of
the receiver for time period 𝑗 , current time period 𝑗 and

keyword kw ∈ {0, 1}ℓ1 , the receiver runs the following steps:
– Computes 𝜷 𝑗 ← 𝐻2 (kw∥ 𝑗),Tkw ∥ 𝑗 ←
NewBasisDel(A𝑅 ∥ 𝑗 , 𝜷 𝑗 ,T𝑅 ∥ 𝑗 , 𝛿 𝑗 ) ∈ Z𝑚×𝑚𝑞 .

– Computes tkw ∥ 𝑗 ← SamplePre(A𝑅 ∥ 𝑗𝜷−1

𝑗
,T𝑤 ∥ 𝑗 , 𝝁, 𝜎 𝑗 ) ∈

Z𝑚𝑞 .

– Outputs a trapdoor td𝑗 := tkw ∥ 𝑗 .
• Test(ct𝑗 , td𝑗 ): Taking as input a ciphertext ct𝑗 :=

(c𝑗1 , c𝑗2 , 𝜻 𝑗 ) for time period 𝑗 and trapdoor td𝑗 := tkw ∥ 𝑗
for time period 𝑗 , the cloud server runs the following steps:

– Computes 𝜸 𝑗 = 𝛾 𝑗1𝛾 𝑗2 · · ·𝛾 𝑗ℓ = c𝑗1 − t⊤𝑤 ∥ 𝑗 c𝑗2 .
– For 𝑘 = 1, · · · , ℓ , if |𝛾 𝑗𝑘 − ⌊𝑞/2⌋ | < ⌊𝑞/4⌋, sets 𝛾 𝑗𝑘 = 1;

otherwise, sets 𝛾 𝑗𝑘 = 0.

– Updates 𝜸 𝑗 and computes h𝑗 ← 𝐻3 (c𝑗2 ∥𝜸 𝑗 ) ∈ Z𝑛𝑞 .
– If A𝑆 ∥ 𝑗𝜻 𝑗 = h𝑗 and 𝜻 𝑗 is distributed in D

Λ
h𝑗
𝑞 (A𝑆 ∥ 𝑗 ),𝜎 𝑗

,

outputs 1; otherwise, outputs 0.

A.2 Proxy-oriented Identity-based PEKS
In this subsection, we review Zhang et al.’s proxy-oriented identity-
based PEKS scheme [62], which consists of six algorithms.

• Setup(1_): Taking as input a security parameter _, the key

generator center runs the following steps:

– Generates (A,TA) ← TrapGen(1𝑛, 1𝑚, 𝑞).
– Selects a uniform random vector v

$←− Z𝑛𝑞 and five secure

cryptographic hash functions: 𝐻1 : {0, 1}ℓ1 → Z𝑚×𝑚𝑞 ,

𝐻2 : {0, 1}ℓ1 × {0, 1}ℓ1 × {0, 1}ℓ2 ×Z𝑛𝑞 → Z𝑛𝑞 , 𝐻3 : {0, 1}ℓ1 ×
{0, 1}ℓ1 × {0, 1}ℓ2 × Z𝑚𝑞 → Z𝑚×𝑚𝑞 , 𝐻4 : {0, 1}ℓ1 × {0, 1}ℓ1 ×
{0, 1}ℓ3 → Z𝑚×𝑚𝑞 , and 𝐻5 : {0, 1}ℓ × Z𝑚×ℓ𝑞 → Z𝑛𝑞 .

– Outputs the public parameters pp :=

(A, v, 𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5) and master private key

msk := TA.
• KeyExtract(msk, id): Taking as input the master secret key

msk := TA and an identity id ∈ {0, 1}ℓ1 , key generator center
runs the following steps:

– Computes Rid ← 𝐻1 (id) and Aid = A(Rid )−1 ∈ Z𝑛×𝑚𝑞 .

– Generates Tid ← NewBasisDel(A,Rid ,TA, 𝜎).
– Outputs the secret key skid := Tid for identity id.
• Proxy-oriented key generation: This interactive PPT algo-

rithm between a data owner id𝑂 and a proxy id𝑃 . id𝑂 first

runs the following steps:

– Generates a warrant w ∈ {0, 1}ℓ according to its require-

ments.

– Selects a uniform random vector r
$←− Z𝑛𝑞 and computes

𝝁 ← 𝐻2 (id𝑂 ∥id𝑃 ∥w∥r).
– Computes 𝜷w ← SamplePre(Aid𝑂 ,Tid𝑂 , 𝝁, 𝛿) ∈ Z𝑚𝑞 .

– Sends (w, r, 𝜷w) directly to id𝑃 .
After receiving the data send from id𝑂 , id𝑃 runs the follow-

ing steps:

– Computes Rw ← 𝐻3 (id𝑂 ∥id𝑃 ∥w∥𝜷w) and Tpro ←
NewBasisDel(Aid𝑃 ,Rw,Tid𝑃 , 𝜎).

– Sets (pkpro := Apro, skpro := T𝑝𝑟𝑜 ) as the proxy-oriented
public/private key pair, where Apro = Aid𝑃 (Rw)−1 ∈
Z𝑛×𝑚𝑞 .

• IBEKS(pkpro, skpro, kw, id𝑅): Taking as input the pub-

lic/private key pair (pkpro := A𝑝𝑟𝑜 , skpro := T𝑝𝑟𝑜 ) of the
proxy-oriented a keyword kw ∈ {0, 1}ℓ3 , and receiver’s iden-

tity id𝑅 , the proxy id𝑃 runs the following steps:

– Randomly chooses F
$←− Z𝑛×ℓ𝑞 and a binary string 𝝉 =

𝜏1𝜏2 · · · 𝜏ℓ
$←− {0, 1}ℓ .

– Samples a noise vector 𝜼 = [1[2 · · ·[ℓ
$←− 𝜒 and a noise

matrix S = s1s2 · · · sℓ
$←− Z𝑚×ℓ𝑞 , where 𝜒 is a Gaussian

distribution.

– Computes 𝜸 ← 𝐻4 (id𝑃 ∥id𝑅 ∥kw), 𝝃 = (Aid𝑅𝜸
−1)⊤F +

S, 𝜻 = v⊤F + 𝜼 + (𝜏1, 𝜏2, · · · , 𝜏ℓ ) ⌊𝑞/2⌋.
– Computes h ← 𝐻5 (𝝉 ∥𝝃 ) and 𝜽 ←
SamplePre(Apro,Tpro, h, 𝛿) ∈ Z𝑚𝑞 .

– Outputs a searchable ciphertext ct := (𝝃 , 𝜻 , 𝜽 ).
• Trapdoor(skid𝑅 , kw): Taking as input the private key

skid𝑅 := T𝑖𝑑𝑅 of the receiver id𝑅 and a keyword kw ∈
{0, 1}ℓ3 , id𝑅 runs the following steps:

– Computes 𝜸 ← 𝐻4 (id𝑃 ∥id𝑅 ∥kw) and Dkw ←
NewBasisDel(Aid𝑅 ,𝜸 ,Tid𝑅 , 𝜎) ∈ Z𝑚×𝑚𝑞 .

– Generates dkw ← SamplePre(Aid𝑅𝜸
−1,Dkw, v, 𝛿) ∈ Z𝑚𝑞 ,

where Aid𝑅𝜸
−1dkw = v is satisfied.

– Outputs a trapdoor td := dkw .
• Test(pkpro, ct, td): Taking as input the proxy-oriented public
key pkpro := Apro, a searchable ciphertext ct := (𝝃 , 𝜻 , 𝜽 ), and
a trapdoor td := dkw , the cloud server runs the following

steps:

– Computes 𝝉 = 𝜏1𝜏2 · · · 𝜏ℓ = 𝜻 − d⊤kw𝝃 ∈ Z
ℓ
𝑞 .

– For 𝑗 = 1, · · · , ℓ , if |𝜏 𝑗 − ⌊𝑞/2⌋ | < ⌊𝑞/4⌋, sets 𝜏 𝑗 = 1;

otherwise, sets 𝜏 𝑗 = 0.

– Updates 𝝉 and further computes h← 𝐻5 (𝝉 ∥𝝃 ).
– Checks whether the equation Apro𝜽

?

= h holds. If the

equation holds, outputs 1; otherwise, outputs 0.
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