
Combined Fault and DPA Protection for
Lattice-Based Cryptography

Daniel Heinz1 and Thomas Pöppelmann2

1 Research Institute CODE, Universität der Bundeswehr München, Germany
Daniel.Heinz@unibw.de

2 Infineon Technologies AG, Germany
Thomas.Poeppelmann@infineon.com

Abstract. The progress on constructing quantum computers and the ongoing stan-
dardization of post-quantum cryptography (PQC) have led to the development and
refinement of promising new digital signature schemes and key encapsulation mecha-
nisms (KEM). Especially lattice-based schemes have gained some popularity in the
research community, presumably due to acceptable key, ciphertext, and signature
sizes as well as good performance results and cryptographic strength. However, in
some practical applications like smart cards, it is also crucial to secure cryptographic
implementations against side-channel and fault attacks. In this work, we analyze
the so-called redundant number representation (RNR) that can be used to counter
side-channel attacks. We show how to avoid security issues with the RNR due to
unexpected de-randomization and we apply it to the Kyber KEM and show that the
RNR has a very low overhead. We then verify the RNR methodology by practical
experiments, using the non-specific t-test methodology and the ChipWhisperer plat-
form. Furthermore, we present a novel countermeasure against fault attacks based on
the Chinese remainder theorem (CRT). On an ARM Cortex-M4, our implementation
of the RNR and fault countermeasure offers better performance than masking and
redundant calculation. Our methods thus have the potential to expand the toolbox
of a defender implementing lattice-based cryptography with protection against two
common physical attacks.
Keywords: Lattice-Based Cryptography · Module-LWE · Kyber · Side-Channel
Attacks · ARM Cortex-M

1 Introduction

The importance of post-quantum cryptography (PQC) has significantly grown over the
past couple of years with Shor’s polynomial-time algorithm for prime factorization [Sho94],
advances in the construction of quantum computers [Mos18], and the ongoing NIST PQC
standardization process [Nat16]. Some promising families of cryptosystems currently in
round 3 of the NIST process [NIS20] are based on the hardness of certain lattice problems.
An advantage of lattice-based cryptography is that it allows constructing public-key
encryption (PKE) and digital signatures at the same time with certain similarities in their
structure. In addition, implementations of lattice-based schemes in the NIST process have
proven to be quite efficient on embedded devices [KRSS20], with reasonable public key
and ciphertext or signature sizes.

Even though reference implementations already claim to have constant or secret
independent timing behavior (e.g., see [ABD+20b, JKL+, AAB+20]), this is not sufficient
in a setting where an attacker may gain full control over a device, e.g., in smart cards for
payment, digital identification documents, or digital signatures. In such scenarios, there is

mailto:Daniel.Heinz@unibw.de
mailto:Thomas.Poeppelmann@infineon.com


2 Combined Fault and DPA Protection for Lattice-Based Cryptography

a need for appropriate side-channel and fault attack protection to prevent long-term secrets
from getting compromised [MOP07]. Thus, the development of efficient countermeasures
against physical attacks, which take into account the constraints of embedded devices, is a
prerequisite before PQC can be deployed in the aforementioned use-cases.

A good overview of already existing implementations of PQC is given in [NDR+19] and
a good summary of attacks and countermeasures can be found in [TE15]. Recently, works
like [RRdC+16, RdCR+16, OSPG18, BDK+20, BPO+20] have focused on the side-channel
protection of components or of the whole decryption operation of lattice-based schemes that
are based on the ring learning with errors (RLWE), ring learning with rounding (RLWR) or
the modular versions of these assumptions (MLWE/MLWR). The implementation strategy
on microcontrollers and reconfigurable hardware is usually to employ arithmetic masking
to protect arithmetic operations in the polynomial ring Rq = Zq[X]/(Xn + 1), a masked
decoder, sampling of noise polynomials using a masked sampler [SPOG19], and a masked
comparison [BPO+20].

However, an interesting question is whether alternatives to straightforward arithmetic
masking can be developed to appropriately protect computations in Rq and how such
alternatives perform in comparison to masking in terms of security and efficiency. Note
that most countermeasures to protect elliptic curve cryptography (ECC) [FGM+10, FV12],
like scalar randomization, random projective coordinates, and base point blinding, are
quite efficient and exploit some underlying mathematical structure of the elliptic curve
for efficiency. Besides, some implementations that use masking are still susceptible to
single-trace attacks under certain conditions [PP19, PPM17] and would require further
protection as [RPBC20]. Such new techniques could then either be combined with masking
to increase the security level or used as an alternative due to better performance.

An approach that may complement but not fully replace masking is polynomial
blinding [Saa18] in which two polynomials f , g ∈ Rq are multiplied by a random integer
a ∈ Zq such that (af) · (a−1g)) = f · g. Another approach is shuffling, which was
evaluated in [Pes16] for the context of Gaussian sampling. In addition, Zijlstra, Bigou, and
Tisserand [ZBT19] recently proposed the usage of the redundant number representation
(RNR). The core idea is that one randomizes coefficients c ∈ Zq in Rq by adding a random
value r · q where r ∈ [0, 2k) for some integer k. Computations are then carried out
mod(2kq) and the final result is obtained by reducing mod q. The FPGA implementation
of the countermeasure described in [ZBT19] showed reasonable overhead and promising
security properties in simulations. However, the redundant representation method may
also be appealing on a microcontroller where coefficients of typical lattice-based KEMs are
in the range of 12 bits (for Kyber [ABD+20b] in round 2/3), 13 bits (for Saber [DKRV19])
to 14 bits (for Newhope [AAB+20]) and thus do not fill a 16 or 32-bit register.

Besides side-channel attacks, it is also important to consider fault attacks, e.g., laser
fault injection, as an attacker might choose the path of least resistance or may even
combine semi-invasive and non-invasive attacks. In previous work, it was shown that
attacks on the control flow of reference implementations of lattice-based KEMs and
signature schemes or even simple faults in polynomial arithmetic can lead to powerful
attacks [BBK16, EFGT18, BP18, RJH+19, VOGR18]. In contrast to a large number of
attacks, an implementer currently has only a few effective tools and concepts available
to counter such attacks. For example, in [HKM+19] the authors propose noise samplers
with built-in fault protection. A generic method against simple fault attacks is double
computation and a comparison of both results. However, when combining masking with
double computations the performance overhead may become too high.

As a consequence, it currently seems to be an open question, how to efficiently combine
fault and side-channel countermeasures for arithmetic operations in lattice-based schemes,
while achieving low computational overhead. Moreover, a suitable fault countermeasure
should indicate faults in the arithmetic (e.g., a bit flip in a coefficient of a polynomial in



Daniel Heinz and Thomas Pöppelmann 3

Rq) but also faults in the control flow, e.g., where a fault onto a pointer leads to a mix-up
or exchange of a secret-key polynomial for an attacker-controlled value.

Contribution. In this work, we provide methods for the protection of arithmetic
operations1 in lattice-based cryptography against side-channel and fault attacks. We
evaluate the effectiveness of the redundant number representation (RNR) from [ZBT19]
and show that a naive instantiation of the RNR is unsafe. One caveat is the canceling of
randomization due to constant values and the other is the full canceling of randomization
due to adversarially chosen inputs. We then implement the updated RNR approach on
an ARM Cortex-M4 microcontroller and we show how it can be applied to fast software
implementations of Kyber using a state-of-the-art 32-bit NTT2. Our RNR-protected NTT
implementation achieves a low overhead with only 7 737 cycles compared to 6 829 cycles
for an unprotected NTT. In addition, we perform practical side-channel evaluations using
the t-test methodology to verify the approach. Furthermore, we present a novel method to
detect fault-attacks in lattice-based cryptography using the Chinese Remainder Theorem
(CRT) and evaluate it for common parameter sets of lattice-based cryptography (e.g.,
Kyber and Dilithium) and against different realistic fault models. For the first time we
then show how the fault countermeasure can be combined with the RNR for the linear
parts of Kyber decryption with lower overhead than masking and redundant calculation
to counter both side-channel and fault attacks. This is non-trivial as a careful parameter
selection for RNR and CRT is required to still be able to use the NTT for fast computation.

2 Preliminaries

In this section, we introduce notation for lattice-based cryptography, the Kyber scheme,
and previous work on fault and side-channel protection of implementations of lattice-based
cryptography.

2.1 Notation

For x ∈ R, we write ⌈x⌋ to mean the closest integer to x (where ⌈y + 1
2
⌋ := y + 1 for

y ∈ Z). For x ∈ R, define ⌈x⌋ = ⌊x + 1
2
⌋ ∈ Z. Let Zq denote the quotient ring Z/qZ for

an integer q > 1. Thus, Zq is the ring of cosets x + qZ with addition and multiplication
operations. For a, b ∈ Z, we write a mod(+) b for the unique integer â ≡ a mod b such
that 0 ≤ â < b. Let R = Z[X]/(f), where f is usually f = Xn + 1 for n being a power of
2, and Rq = R/(q) = Zq[X]/(f) for some positive integer q. Any element a ∈ Rq as well
as vectors of these elements are denoted as bold lower case letter. We use the notation
a[i] for i = 0, . . . , n− 1 to access the i-th coefficient of a. Matrices of elements in Rq are
denoted as bold upper case letters. For a given set S and a probability distribution D over
S, we use s

r←− D to mean s ∈ S sampled according to D using coins r. In addition, we
use s

$←− S to mean s ∈ S sampled uniformly at random from S. Hereby, U(q) denotes the
uniform distribution on Rq, whereas χ denotes an error distribution to be defined for the
specific algorithm. When covering our implementation we define the x mod q operation for
integers x, q to always produce an output in the range [0, q − 1]. Unless stated otherwise,
when we access an element a[i] of a polynomial a ∈ Rq, we always assume that a[i] is
reduced modulo q and in the range [0, q − 1].

1Of course, re-encryption, sampling, and decoding have to be appropriately protected in prac-

tice [OSPG18, BDK+20]. However, they are out of the scope of this work and require different techniques,

like the ones in [SPOG19, BPO+20, RRVV15].
2After publication of our work we will make the source code of our adapted NTT implementation

available to allow independent validation of our results.



4 Combined Fault and DPA Protection for Lattice-Based Cryptography

2.2 The NTT

Designers of lattice-based schemes can use the number-theoretic transform (NTT) to
reduce the computational cost of polynomial multiplications (see [Für09]). Exemplary, the
NIST round 3 finalists Dilithium [DKL+18] and Kyber [ABD+20b] as well as the round
2 scheme NewHope [AAB+20] have NTT-friedly parameter sets or even incorporate the
NTT into the definition of the scheme. The NTT enables relatively efficient and simple to
implement polynomial multiplication for suitably parameterized rings Rq. The product of
two polynomials a, b ∈ Rq can be computed as a · b = INTT(NTT(a)◦NTT(b)), where ◦
denotes coefficient-wise multiplication. However, a straightforward application of the NTT
to Rq and avoidance of any zero padding requires the existence of a 2n-th root of unity γ
in Rq, which is the square root of the n-th root of unity ω. This holds for Rq when n is a
power of 2 and q is a prime such that q ≡ 1 mod 2n.

For a polynomial g =
∑n−1

i=0 g[i]Xi ∈ Rq we define NTT(g) = ĝ =
∑n−1

i=0 ĝ[i]Xi

with ĝ[i] =
∑n−1

j=0 γjg[j]ωij mod q where ω is an n-th primitive root of unity and γ =
√

ω mod q. The inverse function INTT is defined as INTT(ĝ) = g =
∑n−1

i=0 giX
i with

g[i] =
(

n−1γ−i
∑n−1

j=0 ĝ[j]ω−ij
)

mod q [AAB+20]. In comparison to aforementioned NTT-
enabled schemes, some submissions to the NIST standardization process explicitly avoid
the NTT, e.g., due to setting q as a power of 2 [DKRV19] or by avoiding the existence of
roots of unity by choosing f = Xp −X − 1 [BBC+20]. As a side note, the NTT may be
used by an implementer to speedup schemes like Saber [CHK+20] that were not designed
with NTT-friendly parameters.

2.3 Kyber

The KEM Kyber is currently in the third round of the NIST PQC standardization
process [ABD+20b, BDK+18]. Kyber’s security is based on the hardness of solving the
learning-with-errors (LWE) problem in module lattice (see [LS15]). To achieve semantic
security with respect to an adaptive chosen ciphertext attack (CCA), Kyber internally
uses an IND-CPA secured public-key encryption (PKE) scheme and applies a variation of
the Fujisaki-Okamoto (FO) transform [HHK17, FO99]. Kyber instantiates the ring Rq

with the polynomial ring Zq[X]/(Xn + 1) with n = 256 and scales its security by using
the module structure.

2.3.1 Changes to the Kyber NTT in Round 2

In this work, we always refer to the third round version of Kyber. However, we would like
to highlight a tweak introduced in round 2 of the NIST process [ABD+20a] that has an
impact on the exact realization of the NTT.

Kyber updated the definition of the NTT to allow the choice of a smaller modulus
q = 3329 (n = 256 stays the same). This leads to smaller ciphertexts and public keys and
enables the usage of a smaller noise distribution, which in turn reduces the amount of
required pseudorandom bits.
Definition 1 (Number-Theoretic Transform of Kyber). Let Zq be a finite field and ζ be a

primitive n-th root of unity in Zq. Then the NTT of a vector x ∈ Rq computes a vector

y ∈ Rq via the map

y[2k] =
n/2−1∑

j=0

x[2j]ζ(2br7(i)+1)j , k ∈ {0, ..., n/2− 1}

y[2k + 1] =
n/2−1∑

j=0

x[2j + 1]ζ(2br7(i)+1)j , k ∈ {0, ..., n/2− 1}



Daniel Heinz and Thomas Pöppelmann 5

Hereby, br7(i) denotes the bitreversed number of a seven-bit integer. The inverse NTT

(INTT) is given by inverting both parts of the NTT individually as in Section 2.2.

Let ζ = 17 be the first primitive 256th root of unity in the case of Kyber. Then the
equality

X256 + 1 =
127∏
i=0

(X2 − ζ2i+1) =
127∏
i=0

(X2 − ζ2br7(i)+1) (1)

from [ABD+20b] holds. The Chinese remainder theorem (CRT) provides an isomorphism
such that the polynomial multiplication of degree 256 can be performed in 127 polynomial
multiplications of degree two. If not explicitly stated otherwise, all usages of the NTT
from now on refer to the updated definition of the NTT for Kyber introduced in round 2
and kept in round 3.

2.3.2 Simplified Kyber

For later reference we provide a simplified3 version of the public-key encryption scheme
Kyber.CPA = (Kyber.CPA.Gen, Kyber.CPA.Enc, Kyber.CPA.Dec) as in Algo-
rithms 1, 2 and 3. Define integers n = 256, q = 3329, η2 = 2 and let k, η1, dt, du, dv be
positive integers. We denote M = {0, 1}n as the plaintext space, where each message
m ∈M can be seen as a polynomial in R with coefficients in {0, 1}. Define the functions

Compressq(x, d) := ⌈(2d/q) · x⌋ mod(+) 2d ,

Decompressq(x, d) := ⌈(q/2d) · x⌋.

We set χη as the centered binomial distribution with support {−η, . . . , η}, and let χn,η

be the distribution of polynomials of degree n with entries independently sampled from
χη. When we apply the NTT to a vector of polynomials, the NTT gets applied to each
polynomial individually.

1 (ρ, σ) $←− {0, 1}256 × {0, 1}256 ;
2 A

ρ←− U(q)k×k ;
3 (s, e) σ←− χk

n,η1
× χk

n,η1
;

4 ŝ← NTT(s) ;
5 ê← NTT(e) ;
6 t̂← A◦ŝ + ê ;
7 return pkCP A := (t̂, ρ), skCP A := ŝ ;

Algorithm 1: Kyber.CPA.Gen.

Input: pkCP A = (t̂, ρ)
Input: m ∈M
Input: r

$←− {0, 1}256

1 A
ρ←− U(q)k×k ;

2 (r, e1, e2) r←− χk
n,η1
× χk

n,η2
× χn,η2 ;

3 r̂← NTT(r) ;
4 u← INTT(A◦r̂) + e1 ;
5 v← INTT(t̂◦r̂) + e2 + ⌈ q

2
⌋ ·m) ;

6 c1 ← Compressq(u, du) ;
7 c2 ← Compressq(v, dv) ;
8 return c := (c1, c2) ;
Algorithm 2: Kyber.CPA.Enc.

Input: skCP A = ŝ

Input: c = (u, v)
1 u← Decompressq(u, du) ;
2 v← Decompressq(v, dv) ;
3 return m = Compressq(v− INTT(ŝ◦NTT(u)), 1) ;

Algorithm 3: Kyber.CPA.Dec.

3Sampling procedures and encoding into byte arrays has been simplified as these operations are of less

importance to our work.



6 Combined Fault and DPA Protection for Lattice-Based Cryptography

2.4 Side-Channels in Lattice-Based Cryptography

Techniques like simple power analysis (SPA) [Koc96] and differential power analysis
(DPA) [KJJ99] use statistical methods to recover a secret key from a power trace or other
leakage information [MOP07]. They can also be applied to implementations of lattice-based
cryptography. Recent works that describe attacks on lattice-based cryptography or its
building-blocks are [BFM+18, ATT+18, KPP20, RRCB20, RBRC20, RPBC20, ACLZ20,
GJN20].

A common countermeasure against DPA attacks is the randomized splitting of secret
information into two (or more) arithmetic or Boolean shares, which is usually called
masking [CJRR99]. Before the RLWE/MLWE schemes became popular, previous work
aiming at the protection of lattice-based cryptography mainly focused on NTRU, e.g.,
[ABGV08, WZW13, MKSDG10, ZWW13]. Reparaz, Sinha Roy, Vercauteren, and Ver-
bauwhede then proposed the first masked implementation of an RLWE-based scheme in
[RRVV15] and analyzed its security against first-order attacks. They focus on the CPA-
secured decryption operation, which requires the computation of m = Decode(c1r2 + c2)
for ciphertexts c1, c2 ∈ Rq, secret key r2 ∈ Rq, and a decoding function Decode to
obtain the message m ∈ {0, 1}n (the scheme works similarly to Line 3 of Algorithm 3 for
k = 1). A very sensitive operation that is prone to DPA or SPA attacks is the computation
of c1r2 in which an attacker controlled polynomial c1 is multiplied by the fixed secret
polynomial r2. The strategy in [RRVV15] is to split the secret key r2 into two shares
and to compute r2 · c1 independently on both shares. Then, c2 is added to one share
and both shares are processed by a masked decoder. The optimization or analysis of
such decoders for various parameters (besides other improvements) has been addressed in
works like [OSPG18, RRdC+16, RdCR+16]. However, in [OSPG18] it is argued that the
protection of the CPA-secured decryption routine of common RLWE/MLWE schemes is
not sufficient. In a common DPA scenario, the attacker is assumed to have full control
over a device and is thus supposed to be able to craft arbitrary ciphertext that can be sent
to a device, which contains the secret key for decryption (see [BDH+19] for some so-called
misuse attacks). As a consequence, it is necessary to implement also a CCA conversion and
to prevent an attacker from carrying out a misuse attack with information obtained from
side-channel leakages. The first-order secured implementation of the RLWE-based encryp-
tion scheme from [OSPG18], which is similar to NewHope, thus additionally masks the
re-encryption mandated by the FO transformation. This includes polynomial arithmetic
but also the sampling of error vectors. Following a similar approach, a first-order secured
masked implementation of the medium-security version of Saber [BDK+20] was recently
provided. Saber does not rely on the NTT and uses a rounding assumption, which allows
the improved performance of building blocks in comparison to [OSPG18]. To achieve
protection against higher-order attacks, recent works have applied higher-order masking to
building blocks like a binomial sampler [SPOG19] or the masked comparison in the FO
transform [BPO+20]. In addition, recent works show how to protect lattice-based signature
schemes with masking [BBE+18, MGTF19, GR19]. In general, it appears that masking is
very straightforward to apply to the linear parts of lattice-based algorithms. Thus, masking
schemes protecting the arithmetic of the secret key operation in RLWE/MLWE-based
lattice-based cryptography appear to be considerably simpler than masking used to protect
highly non-linear functions in symmetric cryptography (see [RBN+15]).

2.5 Fault Attacks on Lattice-Based Cryptography

When injecting faults into a device that is computing a cryptographic algorithm, it may
be possible to derive information on a secret key from the behavior or output of the
device. Popular countermeasures are redundant computation, duplication, checksums, or
sensor-based countermeasures such as (laser) light detection or supply voltage monitoring



Daniel Heinz and Thomas Pöppelmann 7

(see the survey in [BCN+06, VKS11]). In practice, usually, a combination of different
countermeasures is applied to achieve reliable fault protection. Examples of very effective
fault attacks are the Boneh-DeMillo-Lipton Fault Attack on RSA-CRT [BDL01] or the
recovery of a DSA key as shown in [BCN+06]. A fault can be injected by various means,
e.g., using a laser, varying voltage, or manipulating an external clock to force glitches (see
[BCN+06]). As it may not be very obvious at first that a manipulated output can be used
to compromise secret information, it often appear to be worth to aim for detection of any
manipulated computation.

Some previous fault attacks on lattice-based cryptography succeed by using faults to
skip necessary validity checks in unprotected implementations or the sampling of random
elements [BBK16, EFGT18]. In a similar vein, loop-abort faults [EFGT18] can be used
to partially skip the generation of random elements to obtain weak instances of the
underlying lattice problem. The application of such attacks on lattice-based KEMs is
described in [VOGR18]. Other attacks target constant values, e.g., the domain separation
in hash functions and PRNGs of implementations of KEMs [RJH+19]. More complex
analysis of faulted data, e.g., using lattice-reduction, also allows fault attacks without the
requirement to affect a single bit precisely [BP18]. Further refinements of previous attacks
and experimental results for fault attacks on signature schemes in pqm4 [KRSS20] were
given in [RJH+19].

3 Redundant Number Representation

In this section, we analyze the applicability of the redundant number representation to
lattice-based schemes and show unexpected pitfalls and security issues for some parameter
choices. In their work Zijlstra, Bigou, and Tisserand [ZBT19] propose to randomize a
coefficient c ∈ Zq by adding r · q to it, where r ∈ [0, 2k) is a random number for some
integer k. The integer k denotes the number of bits of randomness. Then, all arithmetic
operations are performed in Z2kq. Therefore, in each execution, all adders, multipliers,
and decoders are handling randomized inputs. The redundant number representation
countermeasure is then analyzed by a simulated correlation power analysis (CPA) attack
for different redundancy levels, i.e. values of k = 0 to k = 8. Moreover, it is shown that
the overhead in an FPGA implementation is low.

In this work, we use q′ to denote the multiple of the modulus q, which is q′ = 2k

in [ZBT19]. Thus, when randomization is applied, all operations are performed mod q′q
and constants or intermediate values are randomized by adding rq with random r ∈ [0, q′).
Finally, to remove the randomization all values are reduced modulo q. To obtain a fast
and side-channel secured Kyber decryption (Kyber.CPA.Dec), the RNR can be applied
during the computation of INTT(ŝ◦NTT(u)). In addition, it can be used to protect the
linear parts of the Kyber re-encryption (Kyber.CPA.Enc). However, two issues arise in
a typical Kyber microcontroller implementation where the RNR should be used to protect
also the NTT. One is related to the incompatibility of a power-of-two q′ with typical NTT
implementations and the other with de-randomization caused by NTT constants or an
attacker.

3.1 Enabling of Fast Montgomery Reduction

An important techniques for efficient lattice-based cryptography in finite rings with prime
modulus is the usage of Montgomery reduction and representation for fast modular
reduction [Mon85]. The technique was first applied to a fast software implementation
of NewHope [ADPS16] where all precomputed constants used for the NTT are stored in
Montgomery representation and is widely used in other implementations as well. However,
this technique requires a Montgomery constant M of the form M = 2z for an integer z. In



8 Combined Fault and DPA Protection for Lattice-Based Cryptography

addition, this constant has to be relatively prime to the modulus of the finite ring. Hence,
the usage of q′ = 2k for Rq′q is excluded. A straightforward solution is to use an odd
integer q′ for the ring extension method to make Montgomery reduction work efficiently
with the RNR.

3.2 The NTT and (Adversarial) De-Randomization

To avoid unforeseen pitfalls when using the RNR method, a theoretic analysis of the
algebraic properties of the ring extension is required on top of the evaluation in [ZBT19].
Hereby, we focus on the case where q is a prime number. This parameter choice has
been made by the NIST finalist schemes Kyber [ABD+20b], Dilithium [DKL+20], and
Falcon [JKL+]. Note that the finalists Saber [DKRV19] and NTRU [CDH+20] select q as
a power of two. However, for these schemes, the RNR is not applicable, as for any q equal
to a power of two integer the value rq is equal to a bit shift to the left of r and does not
impact lower-order bits when added to a constant or intermediate value.

Now we recall a basic algebraic theorem concerning finite rings.

Theorem 1. Given a finite ring R, any element a ∈ R is either a unit in the ring, e.g.

there is an element b ∈ R with ab = 1R, or a zero divisor, e.g. there exists an element

b ∈ R with b ̸= 0R and ab = 0R.

In the case of a prime modulus q, the ring Rq is a finite field, e.g. Rq does not contain
any zero divisors. By using the RNR, the commutative ring Rq′q satisfies every property of
a field except for the existence of inverse elements. As stated in Theorem 1, the existence
of zero divisors in the ring Rq′q is given. Since the proposed method is based on arithmetic
operations, this poses the question if the randomness can be removed by multiplying with
a specific number. Indeed, during the NTT in the Kyber decryption, some precomputed
powers of ζ in Montgomery representation (see Section 2.3.1) are multiplied with secret
intermediate values. The powers of ζ are fixed and could eliminate randomness during
every execution of the decryption. This may enable SPA or DPA attacks. For instance, for
the choice of q′ = 257, the multiplication with ζ71 ·M mod q = 1799 = 7 · 257 (including
the Montgomery constant M = 216) removes the randomness part during every decryption.
For a coefficient c randomized by addition of rq for r ∈ [0, q′) it holds that

t = (c + r · q) · (ζ71 ·M mod q) mod q′q

= c · 1799 + r · (1799)q mod q′q

= c · 1799 + r · (7 · 257)q mod q′q

= c · 1799 + (r · 7)q′q mod q′q

= c · 1799 mod q′q.

To avoid processing any non-randomized values, the parameter choice q′ can be adjusted
such that no constants contain a multiple of q′. Additionally, an adversary might also
use this approach to remove the randomization during a side-channel attack, e.g., when
attacking an implementation as presented in [ZBT19]. For Kyber, an attacker could
create a ciphertext u such that coefficients of û = NTT(u) contain q′ as a factor. The
coefficient-wise multiplication of the secret ŝ by such a û would then trigger the removal
of the randomization of ŝ and might then cause Hamming weights leakage of the result
of the coefficient-wise multiplication or allow attacks on the INTT operation. Thus,
randomization of the input ciphertext coefficients is recommended. Additionally, the
option to randomize the twiddle factors, i.e. the powers of ζ, for every execution exists.
However, the second option is less favorable since it does not protect the coefficient-wise
multiplication against malicious ciphertexts.



Daniel Heinz and Thomas Pöppelmann 9

3.3 Validation in Hamming Weight Leakage Model

We now verify the effectiveness of the RNR in the commonly used Hamming weight
leakage model [MD99, KJJ99] for different choices of q and q′. Hereby, we assume that
an adversary can observe a leakage L(x) = HW(x) + N , where N denotes an additive
noise with mean µ = 0 and HW(x) the Hamming weight of x. We simulate an attack for
an adversary obtaining L(s′ · c mod (qq′)) with zero noise, where a fixed secret s ∈ Zq

is protected as s′ = s + r · q mod (qq′) for a random r ∈ Zq′ and a public and changing
coefficient c. This resembles a DPA attack on the decapsulation operation in Kyber
where a secret key s is multiplied coefficient-wise with ciphertext coefficients NTT(u)
controlled by the attacker. We simulate N = 100 traces for a fixed secret s ∈ Zq and
varying coefficients c and randomness r. We then make use of the maximum-likelihood
method [Sch06] that calculates the probability of occurrence for every possible value ŝ
based on the simulated leakage. This is an expensive yet very detailed brute-force approach
commonly used [CAB19, CS21]. We then choose the ŝ that makes the observations most
probable (commonly called the maximum likelihood estimate). If the chosen s is correct,
i.e. ŝ = s, the attack was a success.

First, we test the impact of the size of q′ in combination with q. In Figure 1, we plot
the success rate using maximum-likelihood estimation (MLE) depending on the size of
q′ and for different values of q. For each tested q′ we select 1000 different secrets s′ and
compute the success rate, i.e., cases where the MLE correctly predicted ŝ = s. Note that
the different values of q have a slightly different binary representation, including

• q = 8192 = 100000000000002 (Saber)

• q = 12289 = 110000000000012 (NewHope)

• q = 3329 = 1101000000012 (Kyber)

to capture the behavior of this method for different lattice-based schemes. As expected, the
RNR does not work well with the power-of-two modulus of Saber. Moreover, the success
rate for the Kyber modulus is smaller than for NewHope. Note that this experiment is
in line with correlation power simulations in the Hamming weight leakage model already
performed in [ZBT19]. However, they only tested for an uneven q′ and a prime number q.

0 50 100 150 200 250
Value of q'

20

40

60

80

100

Su
cc
es
s R

at
e

Attacks on RNR with N=100 traces per attack

Saber (q=2^13)
Kyber (q=3329)
NewHope (q=12289)

Figure 1: Comparison of success rates using maximum-likelihood estimation on the
Hamming weight of the result L(s′ · c mod (qq′)) for different lattice-based schemes.

As shown in Figure 1, we observed a different success rate for the RNR for the NewHope
and Kyber modulus. Thus, we ran experiments for different moduli shown in Figure 2.
From the experimental results we draw the following conclusions:



10 Combined Fault and DPA Protection for Lattice-Based Cryptography

0 50 100 150 200 250
Value of q'

20

40

60

80

100

Su
cc
es
s R

at
e

Attacks on RNR with N=100 traces per attack

1000000000012
1111000000012
1111100000012
1111111111012
1111111111112

(a) Success Rates for different Hamming

weights.

0 50 100 150 200 250
Value of q'

0

20

40

60

80

100

Su
cc
es
s R

at
e

Attacks on RNR with N=100 traces per attack

1100000000012
1010000000012
1000001000012
1000000010012
1000000000112

(b) Success Rates for different binary

structures with the same Hamming

weight.

Figure 2: Success rates for different settings with respect to q.

• Randomization of lower order bits: In order to randomize any value x ∈ [0, q)
properly, the least significant bit (LSB) should be one. Similar to the case where q is
a power of two, this prevents an early bit shift to the left. Hence, the least significant
bits of the sensitive value are always affected by randomization.

• Hamming weight of q: Not only a too sparse structure of q but also too many bits
equal to one can impede the effectiveness of this method as shown in Figure 2a. This
is because q = 1111111111112, for instance, can be written as q = 213 − 1. This
reduces the number of affected bits by randomization as the addition of r · 213 does
not have an impact on the 12 lower order bits.

• Structure of q in binary representation: As can be seen in Figure 2b, not only the
Hamming weight impacts the effectiveness of this method. Figure 2b shows the
results of the experiment for values of q with Hamming weight three. The values
of q which do not randomize every bit have significantly higher success rates. For
instance, the choice of q = 2051 = 1000000000112 will always leave the second most
significant bit unrandomized when a q′ with at most 8 bits is selected.

As a consequence, values of q that are less optimal in the context of the RNR need a larger
q′ and thus larger randomness r ∈ [0, q′) to increase entropy.

As mentioned in Section 3.2, the NTT itself consists of multiplications with fixed
values. The multiplication of a randomized coefficient with a known value should also be
randomly distributed. The pitfall of derandomization is not covered in the analysis of
[ZBT19]. It can be captured by a slightly modified version of the maximum-likelihood
attack for random but known coefficients c. In this version, we simulate a number of
N traces of the multiplication with a specific power of ζ. Let s be the correct subkey
guess. We can observe the Hamming weight HWobs of the result of the multiplication
(s + r · q) · ζi using the Hamming weight leakage model. Then, for every possible subkey ŝ
the probability P(HW((ŝ + r · q) · ζi) = HWobs) is calculated. We repeat this process for
each trace and sum up the probabilities for each ŝ. If the randomization has failed for the
specific power of ζ and q′, the correct subkey guess is among the most likely ones, e.g.

max
ŝ

N∑
j=1

P(HW((ŝ + rj · q) · ζi) = HWobs) =
N∑

j=1

P(HW((s + rj · q) · ζi) = HWobs).

This is then a successful attack as the adversary can narrow down the subkey possibilities
to all ŝ with HW(ŝ · ζi) = HWobs. We show the success rates for 100 attacks on every
multiplication with a power of ζ used in the NTT of Kyber in Figure 3 for q = 3329
different parameters q′ = 257 compared to q′ = 263 and the number of N = 100 traces.



Daniel Heinz and Thomas Pöppelmann 11

0 500 1000 1500 2000 2500 3000
Power of zeta

0

20

40

60

80

100
Su

cc
es
s R

at
e

q'=257

0 500 1000 1500 2000 2500 3000
Power of zeta

0

20

40

60

80

100

Su
cc
es
s R

at
e

q'=263

Figure 3: Success rates (correct subkey guess being among the most likely ones) of the
maximum-likelihood attack on multiplication with a constant containing q′ as factor (left)
and a parameter set where this is not the case (right).

4 Fault Protection with Chinese Remainder Theorem

As discussed in Section 2.5, several fault attacks on lattice-based schemes have already
been proposed and only a few works on effective countermeasures exist. Common counter-
measures are redundant calculations, checksums, or sensor-based countermeasures such as
light detection or supply voltage monitoring (see [BCN+06, KSV13, VKS11]). As some of
these techniques require a high computational overhead or changes to a device (e.g., light
sensors), they are often not cost-effective.

In this work, we propose a new technique for lattice-based cryptography. When applied
properly, it can be used to detect fault attacks on coefficients in data structures representing
polynomials in Rq in memory or during computations and also offers some protection of
the control flow. Basically, in our countermeasure we use the Chinese remainder theorem
(CRT) to combine elements of a lattice-based cryptosystem (e.g., secret keys, public
elements) in a ring modulo q with constants in a ring modulo q′ (as q′ has a similar effect
as in Section 3, we use the same notation). A function g consisting of operations like
polynomial addition, multiplication (including NTTs and coefficient-wise multiplication) is
then carried out over the combined ring modulo q̂ = qq′. After a sequence of computations
is finished, the two rings are split again and the results obtained in the ring modulo q′

are compared to predetermined checkvalues. The checkvalue is obtained by computing g
on the constants in the ring modulo q′. The intuition is, that faults introduced during
the modulo q̂ computations will also disturb the final result obtained in the ring modulo
q′. Our method is related to CRT codes [GRS99], the Residue Number System used for
ECC [PFPB19] and Shamir’s Countermeasure for RSA and its analog method for elliptic
curves in [Joy19]. However, we do not aim at error correction and work on fundamentally
different data structures and constraints imposed by ring parameters. We would also like
to note that an attacker might use any fault detection method, like the one provided, to
carry out safe-error attacks (see [FGM+10] for such attacks on ECC) or other attacks that
exploit the presence of an error detection mechanism. A countermeasure that makes some
safe-error attacks harder, is randomization of the processed data. A topic that we consider
in Section 5 in combination with fault protection.

4.1 Formal Description

More formally, given the factor ring Rq = Zq[X]/(f) for a suitable f , e.g., f = Xn + 1,
we introduce two new factor rings Rq′ = Zq′ [X]/(f) and Rq̂ = Zq̂[X]/(f) with q being
relatively prime to q′ and q · q′ = q̂. In this case the CRT yields an isomorphism

Zq̂[X]/(f) ∼= Zq′ [X]/(f)× Zq[X]/(f) (2)



12 Combined Fault and DPA Protection for Lattice-Based Cryptography

in which coefficients r[j] of r ∈ Rq′ are associated with coefficients v[j] of input data
v ∈ Rq for j = 1, ..., n.

We can achieve fault protection when carrying out a function gR : Rl → Rk with l ring
elements from a ring R as inputs that produces k ring elements from R as output. As an
example, the function t1 = gRq (a, e, s) = a · e + s computes a sample from the RLWE
distribution [LPR13] with l = 3 inputs and one output (k = 1) in Rq.

Our countermeasure is initialized by fixing suitable values for n, q, q′, f that define the
rings Rq, Rq′ , Rq̂ and by fixing a function g that then implies values of l and k. Without
our countermeasure implemented, the device would compute gRq

on input values vi for
i = 1, ..., l (e.g., decryption or encryption in Kyber). The first step (see Figure 4) is
performed offline before the device is deployed. In this step constants r1, ..., rl ∈ Rq′ are
sampled from a suitable distribution, like the uniform distribution or using a deterministic
pseudo-random generator (PRG) based on a seed. The checkvalues t1, ..., tk are computed
as gRq′ (r1, ..., rl) = (t1, ..., tk) and the constants (or seeds) and checkvalues are then stored
in the device’s ROM or non-volatile memory (NVM).

In the online phase, the attacker has access to the device. The function g is protected
by combining coefficients of the vi’s component-wise with the respective coefficients of the
ri’s as

zi[j] = (ri[j] · q · (q−1 mod q′) + vi[j] · q′ · (q′−1 mod q)) mod q̂ (3)

for i = 1, ..., l and j = 1, ..., n. Then, the function gRq̂
is applied to the lifted coefficients

which results in values (p1, . . . , pk) = g(z1, . . . , zl). The integrity of the results of the
calculation can now be checked by simply reducing all pi mod q′ and comparing the result
with the respective ti. Accordingly, the intended result of the function gRq

can then be
obtained by reducing all values pi modulo q as w = pi mod q. Of course, it is also possible
to set g(v, ŝ, u) = v−INTT(ŝ◦NTT(u)) to protect the linear parts of the Kyber decryption.
Note that our countermeasure does not interfere with the MLWE structure of Kyber and
has no dependency on n or f in Rq. Moreover, the computational overhead is rather
low as q · (q−1 mod q′) and q′ · (q′−1 mod q), which are used during the combination, are
constant. Thus, the overhead for combining for one coefficient is two multiplications and
one addition modulo q̂. The computation of the result and checksum requires reductions
modulo q and q′, respectively.

Precompute g(r1, ..., rl) = (t1, ..., tk) the checksums of the redundancy values

Calculate lifted polynomials z1, ..., zl

Perform the operation on the lifted polynomials: g(z1, ..., zl) = (p1, ..., pk)

Check the integrity of the obtained data by pi mod q′ == ti

Obtain the final result wi = pi mod q or handle error

Figure 4: Functionality of the fault countermeasure with CRT



Daniel Heinz and Thomas Pöppelmann 13

4.2 Evaluation and Analysis

In this work, we aim for an appropriate fault protection on a standard microcontroller using
a realistic fault model [KSV13, MDH+13] that is also related to attack classes presented
in [BBK16]. We consider an attacker who is able to precisely control the injection of one
fault out of the three categories into a coefficient in Zq̂ in a data processing or storage part
of the device during the execution of the function g:

• Bit-flipping fault: An attacker may flip (bit-flip fault) or set a certain amount of bits
(stuck-at fault) of data in a device under attack. This may be achieved by using
optical fault injection with a laser that shoots into the register file.

• Random fault: An attacker may disturb a computation or a memory access so that
the device proceeds with a random or pseudo random data element. This may be
achieved by under-powering, power spiking, or clock glitching during multiplication
or readout of data from RAM.

• Zeroization fault: An attacker may introduce a fault so that a zero value is processed,
e.g., by enabling an internal power gate.

Intuitively, an attacker has to induce a fault such that the result modulo q is changed
(to make the attack effective) and where the checksum modulo q′ is the same. Thus, while
storing or processing a coefficient x ∈ Zq′ in a suitable representation (e.g., as integer
reduced in 0 to q′ − 1), the attacker needs to introduce a fault e ∈ {0, 1}⌈log2(q′)⌉ in a
binary bit flipping model such that x mod q′ = x⊕ e mod q′ and x mod q ̸= x⊕ e mod q.

For example, for q = 7 and q′ = 3 we get q̂ = 21, q−1 mod q′ = 1, and q′−1 mod q = 5.
When combining all values v ∈ Zq with all values r ∈ Z′

q into a value z ∈ Zq̂ we get the
representations modulo q̂ as depicted in Table 1 in hexadecimal notation.

Table 1: Encoding of r ∈ Z3 and v ∈ Z7 with q̂ = 7 · 3 using the CRT.
v = 0 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6

r = 0 0x00 0x03 0x06 0x09 0x0c 0x0f 0x12
r = 1 0x07 0x0a 0x0d 0x10 0x13 0x01 0x04
r = 2 0x0e 0x11 0x14 0x02 0x05 0x08 0x0b

In each class modulo q′, the minimum distance is two and thus, to introduce a bit-
flipping fault that will not get detected, an attacker has to flip at least two bits in each
class. For example, by flipping bit 0 and bit 2 in 0x09=9 the value becomes 0x0c=12.
The checksum stays the same as 9 mod q′ = 0 and 12 mod q′ = 0 while the encoded value
changes from 9 mod q = 2 to 12 mod q = 5. The detection of a zeroization fault is more
problematic. In cases where an element in q̂ encoding r = 0 is faulted, an attacker likely
succeeds with a zeroization fault. With such a fault, the attacker can change the 0x03 to
0x12 representations (second line of Table 1) encoding r = 0 to zero without detection.

We now analyze the properties of parameters sets q, q′ that one would commonly
encounter in lattice-based cryptosystems. For this we enumerate all representations and
compute the minimum distance using brute-force. This gives the number of bits an attacker
would need to flip in a bit-flipping attack. In addition, we estimate the success probability
of a random value attack as (q − 1)/q̂. In this attack, the attacker has to hit one of the
q − 1 values that represent a target r with a different v out of the q̂ possibilities4. If we
assume no special care is taken to counter the zeroization attack and a uniform distribution
of coefficients of pi’s and ri’s, then the probability of being successful is (q − 1)/q̂ as

4This calculation may slightly differ in practice depending on the implementation and representation of

elements in Zq̂ and how the implementation handles a fault (e.g., randomization of a full 32-bit register)

that may cause a value larger than q̂.



14 Combined Fault and DPA Protection for Lattice-Based Cryptography

the attack succeeds when a coefficient is hit that encodes r = 0 and z ̸= 0. In Table 2
we provide our results. Increasing q′ does naturally result in better protection against a
random value attack and zeroization attack. However, the resistance to bit flipping does
not necessarily increase and depends highly on a particular choice of q′. It is also important
to consider that our method only protects the function g and additional protection may
be required for the combination of data and checksum as well as extraction and validation
of the correct computation (e.g., skipping faults).

Table 2: Analysis of our countermeasure for different parameters
Scheme q q′ overhead in bits min. dist prob rand val.
Example 7 3 2 (40 %) 2 0.285714
Example 17 3 1 (33 %) 2 0.313725
Example 17 5 2 (43 %) 2 0.188235
Kyber [ABD+20b] 3329 257 8 (45 %) 2 0.00389
Kyber 3329 1699 11 (48 %) 4 0.000588
Kyber 3329 7681 13 (52 %) 3 0.000130
NTRU Prime [BBC+20] 4621 257 8 (42 %) 2 0.003890
NTRU Prime 4621 1699 10 (48 %) 4 0.000588
NTRU Prime 4621 7681 13 (50 %) 3 0.000130
NewHope [AAB+20] 12289 257 8 (41 %) 2 0.003891
NewHope 12289 1699 11 (44 %) 4 0.000588
NewHope 12289 7681 13 (48 %) 3 0.000130

4.3 Optimization and Control Flow Protection

With our approach it is not only possible to detect faults on single coefficients but also
to check that the correct sequence of addition and multiplication operations in Rq was
carried out. If the wrong computations are performed, this is reflected in a mismatch of
the final checkvalue. Thus, our method can be used to prevent an attacker from using an
instruction skipping fault (see [MDP+20]) to suppress, e.g., the addition of a noise vector
e to an RLWE sample a · s + e to yield a trivially solvable RLWE instance [BBK16]. To
improve efficiency, constant values, e.g., public-keys or secret keys, can already be stored in
the ring Rq̂ during personalization of a device. This may additionally prevent an attacker
from changing a pointer to a key to a data structure that contains only zero coefficients in
Rq as the checksum will then not match with a very high probability.

As mentioned, it is not necessary to store the ri’s as a constant. To reduce memory
consumption, it is possible to generate them on-the-fly based on a seed using a suitable
PRNG like AES in counter mode or even a linear-feedback shift register (LFSR) or any
other non-cryptography PRNG. Moreover, it is also not required to store the values
ti. They can be compressed using an appropriate hash function h, e.g., to check that
h(pi mod q′) is equal to h(ti). Moreover, even a combination of all checksums can be used
such that h(p1 mod q′, . . . , pl mod q′) is equal to h(t1, . . . , tl) so that only the short digest
h(t1, . . . , tl) has to be stored.

5 Combination of RNR and CRT Countermeasures

Many lattice-based cryptography algorithms depend on efficient polynomial arithmetic
using the NTT (see Section 2.2). Therefore, the technique of efficiently transforming
polynomials into the NTT domain, multiplying them coefficient-wise and transforming
them back to normal domain should remain applicable in a new ring Rq̂ = Rqq′ mandated
by the RNR or CRT countermeasure. This can be achieved by choosing a ring Rq′ that



Daniel Heinz and Thomas Pöppelmann 15

Computation of g 

mod qq‘

De-Lifting

result

 mod q

Computation of g 

mod qq‘

De-Lifting

result 

mod q
checkvalue

precomputed checkvalue

= fault?

randomness

Lifting and 

Combination

data

Computation of g 

mod qq‘

Computation 

of g mod q‘

De-Lifting

result

 mod q

= fault?

a) RNR-based randomization b) CRT-based fault check c) Combination of RNR and 

CRT methods

checkvalue

constant

Lifting and 

Combination

dataconstant

Lifting and 

Combination

data

Figure 5: Overview on our RNR and CRT-based countermeasures as well as their combi-
nation with DPA protected parts within a dashed red line and fault protected parts within
a solid red line.

contains a suitable primitive root of unity ωq′ . We can then combine the roots of unity
and its powers as

ωq̂ = ωq · q′ · (q′−1 mod q) + ωq′ · q · (q−1 mod q′)
ω−1

q̂ = ω−1
q · q′ · (q′−1 mod q) + ω−1

q′ · q · (q−1 mod q′)

to obtain roots of unity in Rq̂.
For the NTT as defined in Kyber (see Section 2.3.1) with q = 3329, we need a primitive

256-th root of unity. By choosing q′ = 7681, this property is fulfilled with ωq′ = 198 and
the Kyber NTT only needs to be adapted to the larger modulus which also results in an
update of constants used in the Montgomery reduction.

To combine both countermeasures, it is helpful to consider that Equation 3 in Section 4
is just a different way of generating a redundant number representation for elements in
Zq by multiplying the value r[j] not just with q but also with the constant q−1 mod q′

(see a) and b) in Figure 5). The two countermeasures can thus be combined by using
random inputs r1, ..., rl that randomize the computation of gRq̂

for each execution (see
c) in Figure 5). To be able to check the result, it is of course also necessary to compute
gRq′ (r1, ..., rl) = (t1, ..., tk). Moreover, the NTT constants (i.e., ζi) have to be taken into
account as well (see Section 3). An attacker can now either attack gRq̂

or gRq′ according to
the analysis and assumptions in Section 4.2. However, using random constants implies that
the danger of zeroing attacks might be prevented by explicitly avoiding values r[j] = 0.

6 Evaluation

In this section we evaluate the countermeasures from Section 3, Section 4, and Section
5 with regard to their performance and effectiveness. We focus on protecting arithmetic
operations of the decryption algorithm of Kyber (see Algorithm 3).



16 Combined Fault and DPA Protection for Lattice-Based Cryptography

Table 3: Cycle counts of our Kyber NTT protected by the RNR on a Cortex-M4.
Implementation Cycle Count % of unprotected NTT
Unprotected NTT (reference) [ABCG20] 6 829 -
Masked NTT (2× unprot.) [ABCG20] 2 · 6829 = 13 658 200%
NTT with RNR This work 7 737 113%

6.1 Performance of the RNR Countermeasure

We perform our evaluation on an ARM Cortex-M4 32-bit microcontroller. The ARM
Cortex-M4 was chosen due to its popularity when evaluating PQC [BKS19, KRSS20,
ABCG20] and due to the availability of already highly optimized code for comparison.

As development environment we use the Keil Toolchain MDK Plus 5.29/µVision 5.29
with the ARM Compiler Version 5. Our measurements for the Cortex-M4 architecture
are performed using a STM32F4-DISCOVERY board with an STM32F407 that can run
with up to 168 MHz with 1 Mbyte of flash memory and 192 kByte of RAM. For our
measurements, we set the clock frequency to 24 MHz. The Cortex-M4 architecture features
an instruction set extension - namely ARMv7E-M with instructions uadd16, usub16, sasx,
and ssax - that makes a very fast NTT possible as proposed in [BKS19]. The target device
includes the system timer (SysTick) which is used for measuring cycle counts.

In Table 3, we provide measured cycle counts of side-channel protected (see Section 3)
implementations of the NTT of round 3 Kyber [ABD+20b]. The NTT implementation
in [ABCG20] is constant-time but does not contain further countermeasures and is taken
from the PQM4 library [KRSS20] as reference. This is a highly optimized NTT for the
specific architecture. For reference, we provide cycle counts for a masked implementation in
Table 3. It requires the computation of the NTT on two shares and thus consumes twice as
many cycles as the reference implementation. Our implementation of the NTT protected by
the RNR is realized in assembly and uses the concept of the 32-bit assembly NTT from the
Dilithium implementation in [GKS20]. We adapted the Dilithium NTT, which is originally
using the modulus q = 223− 213 + 1, to the Kyber case (see Section 2.3.1 for details on the
specific NTT used by Kyber) and changed the modulus to qq′ = 3329 · 7681 = 25570049.

For masking and the RNR approach, the same number of random bits are used. As a
consequence, we do not include the time required for sampling these values in our cycle
counts. As mentioned, we set q′ = 7681 and use 12 bits of randomness for each coefficient.
It is not necessary to randomize the NTT constants, as for our parameters no constant
contains q′ as a factor and thus no de-randomization happens (see Section 3.3). The RNR,
therefore, requires a total of n ·12 = 3072 random bits. For the masking, we use 12 random
bits per coefficient and thus need n · 12 = 3072 bits of randomness as well.

6.2 Performance of the CRT and Combined Countermeasure

For the evaluation of our CRT-based fault detection mechanism (see Section 4) we use
the Kyber parameter q = 3329 and set the same q′ = 7681 that we used to evaluate the
RNR. This allows us to reuse the NTT code and Montgomery reduction. The protection
level obtained by this parameter set is detailed in Table 2. We measured the cost of the
combination operation from Section 4 and the NTT in the larger combined ring Rq̂. The
results of the fault countermeasures are listed in Table 4. We compare its performance
to the state-of-the-art method of redundant computation. All in all, an NTT protected
by our CRT-based method results in a smaller computational overhead compared to the
state-of-the-art redundant computation. In addition, we note that the performance of the
CRT approach gets more favorable when a large number of operations is performed in the
lifted domain.

The evaluation of the combined countermeasure (see Section 5) is performed in a similar



Daniel Heinz and Thomas Pöppelmann 17

Table 4: Cycle counts for our Kyber NTT protected against faults by the CRT counter-
measure on a Cortex-M4.

Implementation Cycle Count % of unprotected NTT
Redundant NTT (2× unprot.) [ABCG20] 2 · 6829 = 13 658 200%
NTT with CRT This work 11 619 170%
→ Combination 3 882
→ NTT in Rq̂ 7 737

Table 5: Cycle counts for our Kyber NTT combining the RNR and CRT-based counter-
measure on a Cortex-M4.

Implementation Cycle Count % of unprotected NTT
Redundant and masked NTT [ABCG20] 4 · 6829 = 27 316 400%
NTT with CRT and RNR This work 18 448 270%
→ Combination 3 882
→ NTT in Rq′ 6 829
→ NTT in Rq̂ 7 737

manner. A state-of-the-art implementation with protection against both, side-channel and
fault attacks, is assumed to be realized with a redundant computation of a secret split
into two shares. This leads to a larger overhead as can be seen in Table 5. The CRT and
RNR methods provide a significant speedup to this state-of-the-art method. The combined
method differs from the CRT method as the checksum can not be precomputed anymore.
This leads to an additional computation of an NTT in Rq′ .

6.3 Effectiveness against Side-Channel Attacks

To evaluate the effectiveness of the RNR and our implementation, we performed a power
analysis using the ChipWhisperer [OC14] Lite platform with a STM32F303 target that
is based on a Cortex-M4 processor core. We captured the power consumption of the
NTT variants evaluated in Section 6.1 and Section 6.2 and use q = 3329 and q′ = 7681
unless otherwise stated. Due to the usage of the ChipWhisperer platform [OC15] and its
synchronous capture method, all traces are well synchronized. Thus, a lower number of
traces is required in comparison to traditional side-channel setups. The main goal of our
experiments is mainly to identify possible caps between theory and practice. Therefore, we
apply the non-specific t-test evaluation methodology [SM15]. Hereby, we detect possible
leakages that are not part of any specific leakage model. At each time point, we calculate
the t-test statistic

t = µ0 − µ1√
s2

0
n0

+ s2
1

n1

where µ0, s0, and n0 are the sample mean, variance, and sample size of the power traces
with fixed input and µ1, s1, and n1 those of the power traces with random input respectively.
If the power traces of a constant-time implementation cause such a value at a specific time
to exceed an absolute value of 4.5, we can detect a power difference between the usage
of a fixed input or a random one and therefore the implementation is considered as not
sufficiently secured.

For the initial tests, we use the down-sampling feature of the Chipwhiserer to capture
the entire NTT with at most 24 400 samples for each execution. First, we verify our setup
and t-test implementation by measuring our Kyber NTT protected by the RNR but with
RNG off as shown in Figure 6. As expected, the test clearly shows leakage as data was
processed without sufficient randomization.



18 Combined Fault and DPA Protection for Lattice-Based Cryptography

0 2000 4000 6000 8000 10000 12000 14000 16000

−60

−40

−20

0

20

40

60

80

Figure 6: t-values of non-specific t-test for our Kyber NTT protected by the RNR with
1 000 traces and RNG off (q′ = 7681)

Figure 7: t-values of non-specific t-test for our Kyber NTT protected by the RNR with
1 000 traces and parameters leading to derandomization due to NTT constants (here,
q′ = 257 as discussed in Section 3.2)

In Section 3.2 we discussed that a naive instantiation of the RNR countermeasure
could lead to a rather insecure implementation. To practically verify this observation we
measured the Kyber NTT protected by the RNR with inappropriately chosen parameters
(q′ = 257 as in Section 3.2) and show the results in Figure 7. The peak at the end of
the Figure shows the position where a multiplication by an NTT constant is performed,
which is a multiple of q′ = 257. As expected, the randomization is not sufficient and the
threshold of the t-test is exceeded.

We additionally evaluated the NTT for q′ = 7681 and where 12 random bits are used
to randomize every input coefficient. The result of this test for 10 000 traces is shown in
Figure 8. It does not show any leakage beyond the threshold.

0 2000 4000 6000 8000 10000 12000 14000 16000

−4

−2

0

2

4

Figure 8: t-values of non-specific t-test for our Kyber NTT protected by the RNR with
10 000 traces (q′ = 7681, 12 bits of randomness for every coefficient)

To verify our recommended implementation in more detail, we disable the downsampling
feature of the Chipwhisperer to obtain more information from each trace. As a consequence,



Daniel Heinz and Thomas Pöppelmann 19

0 2000 4000 6000 8000

−4

−2

0

2

4

0 1000 2000 3000 4000 5000 6000

−4

−2

0

2

4

Figure 9: t-values of non-specific t-test for our Kyber NTT protected by the RNR with
10 000 traces for the first and second (left) and last round (right) of the NTT (q′ = 7681,
12 bits of randomness for every coefficient)

we cannot capture a full NTT anymore. In Figure 9, we show the result of the t-test on the
power traces of the first, second, and last round of the Cooley-Tukey NTT implementation
(see Appendix A.1 where each round is equal to one iteration in the outer for-loop) using the
same parameter setting. In none of these traces leakage beyond the threshold is captured.
This verifies the assumption that the RNR can be used to randomize computations in
lattice-based cryptography if parameters are chosen correctly (see Section 3.2).

We used the same setup and methodology as for the RNR to verify the combination of
the RNR with the CRT as introduced in Section 5. We split the NTT into different parts
and did not use the downsampling feature to obtain more detailed t-test values. However,
we increased the range of random checkvalues in comparison to the RNR evaluation from
[0, 4096) to [0, 7681). In this case, the t-test with 100 000 traces for (exemplary) the first,
second, and last round of the NTT, i.e. the diagram in Figure 10, shows indeed no leakage,
like its analogue from Figure 9. It should be noted that q′ is chosen larger than in the
theoretical analysis of Section 3.3. This is presumably the reason why even with 100 000
traces and the low noise level for the ChipWhisperer Lite, we cannot identify any leakage.

0 2000 4000 6000 8000

−4

−2

0

2

4

0 1000 2000 3000 4000 5000 6000

−4

−2

0

2

4

Figure 10: t-values of non-specific t-test for our Kyber NTT protected by the RNR and
CRT with 100 000 traces for the first and second (left) and last round (right) of the NTT
(q′ = 7681, 13 bits of randomness for every coefficient)

6.4 Kyber Decryption

For combined protection, the overhead factor of four on the Cortex-M4, obtained from
masking and redundant computations is reduced to around 2.7 for one execution of the
NTT (see Table 5). We also applied the combined countermeasures to the arithmetic part

v− INTT(ŝ◦NTT(u))

of the Kyber768.CPA decryption in Algorithm 3. The cycle counts in Table 6 therefore
only include the arithmetic operations of the decryption in the implementation [KRSS20]



20 Combined Fault and DPA Protection for Lattice-Based Cryptography

on the Cortex-M4. However, we manage to reduce the computational overhead factor
for leakage and fault-protected implementation from 2.9 to around 2.2 on the Cortex-M4.
The pseudocode of the algorithms and the measurements is given in Appendix A.2 and
A.3. If more shared operations are needed, the RNR and CRT method will gain additional
performance compared to redundant computations of the shares.

Table 6: Cycle counts for v− INTT(ŝ◦NTT(u)) in Kyber768.CPA.Dec decryption on
Cortex-M4

Implementation Protection Source Cycle Count
Unprotected none [KRSS20, ABCG20] 79 509
Masking & Redundancy DPA & Fault [KRSS20, ABCG20] 229 922
RNR & CRT DPA & Fault This work 174 858

7 Conclusion and Future Work

In this work, we have analyzed the redundant number representation (RNR) and proposed
the application of the Chinese remainder theorem (CRT) techniques to protect arithmetic
operations in lattice-based cryptography. A combination of both methods leads to a
speed-up factor of roughly 1.3 compared to the straightforward approach of masking
and redundant calculation for the protection of linear parts of Kyber decryption on the
ARM Cortex-M4. Both the RNR and CRT offer a security-time trade-off that can be
adjusted according to the specific use-case by changing the parameter q′. Moreover, due
to the low performance overhead of only 13 percent of an RNR protected NTT, the RNR
approach could be used as an additional countermeasure in a masked implementation to
possibly achieve higher order protection or some resistance against single-trace attacks. A
combination of the methods with masking countermeasures would be an interesting topic
for future work. Additional future work may consist of the optimization of the NTT for
32-bit coefficients on other architectures than the Cortex-M4.It may also be interesting to
evaluate the impact of using the RNR to protect against single trace attacks as it increases
the amount of possible intermediate values. Moreover, a practical evaluation of the CRT
countermeasure using laser fault injection could further substantiate our theoretical model
and analysis but is considered out of the scope of this work. The provided strength against
multiple faults is also still open in theory and in practice. And even though ring extension
methods seem more suitable for microcontroller implementations due to the fixed size of
the ALU, it might still be interesting to implement them in hardware. As already shown
in [ZBT19], it is for example possible on FPGAs to chose parameters that fit into the
width of DPS or RAM hard macros. Another interesting avenue for future work might
be the search for optimal parameters for the CRT and an improvement of the brute-force
method to compute the minimum distance for larger moduli often used in lattice-based
digital signatures.

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research
(BMBF) under the project “Aquorypt"(16KIS1017). Presented project results were partly
supported by the project that has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 830927. The authors
would like to thank the Chair for Communication Systems and Network Security as well
as the research institute CODE at the Bundeswehr University in Munich, headed by Prof.
Dreo, for their comments and improvements.



Daniel Heinz and Thomas Pöppelmann 21

References

AAB+20. Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra, Thomas
Pöppelmann, Peter Schwabe, Douglas Stebila, Martin R. Albrecht, Emmanuela
Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and Nigel P. Smart.
NewHope: Algorithm specification and supporting documentation. Submission
to the NIST Post-Quantum Cryptography Standardization Project, 2020. https:
//newhopecrypto.org/data/NewHope_2020_04_10.pdf.

ABCG20. Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-M4
optimizations for {R, M} LWE schemes. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(3):336–357, 2020.

ABD+20a. Roberto Avanzi, Joppe Bos, Láo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, , and Damien Stehlé.
CRYSTALS–Kyber (version 2.0) – submission to round 2 of the nist post-quantum
project. Submission to the NIST Post-Quantum Cryptography Standardization Project,
2020. https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf.

ABD+20b. Roberto Avanzi, Joppe Bos, Láo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, , and Damien Stehlé.
CRYSTALS–Kyber (version 3.0) – submission to round 3 of the nist post-quantum
project. Submission to the NIST Post-Quantum Cryptography Standardization Project,
2020. https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf.

ABGV08. AC Atici, Lejla Batina, Benedikt Gierlichs, and Ingrid Verbauwhede. Power analysis on
NTRU implementations for RFIDs: First results. In The 4th Workshop on RFID

Security, July 9th -11th, Budapest, 2008.

ACLZ20. Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden. Defeating
NewHope with a single trace. In Jintai Ding and Jean-Pierre Tillich, editors, Post-

Quantum Cryptography - 11th International Conference, PQCrypto 2020, Paris, France,

April 15-17, 2020, Proceedings, volume 12100 of Lecture Notes in Computer Science,
pages 189–205. Springer, 2020.

ADPS16. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange - A new hope. In Thorsten Holz and Stefan Savage, editors, 25th USENIX

Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages
327–343. USENIX Association, 2016.

ATT+18. Aydin Aysu, Youssef Tobah, Mohit Tiwari, Andreas Gerstlauer, and Michael Orshansky.
Horizontal side-channel vulnerabilities of post-quantum key exchange protocols. In 2018

IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2018,

Washington, DC, USA, April 30 - May 4, 2018, pages 81–88. IEEE Computer Society,
2018.

BBC+20. Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok Chuengsatiansup,
Tanja Lange, Christine van Vredendaal, Adrian Marotzke, Bo-Yuan Peng, Nicola
Tuveri, and Bo-Yin Yang. NTRU Prime: round 3, 2020. https://ntruprime.cr.yp.
to/nist/ntruprime-20201007.pdf.

BBE+18. Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire,
Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based signature scheme at
any order. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology

- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018

Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science, pages
354–384. Springer, 2018.

https://newhopecrypto.org/data/NewHope_2020_04_10.pdf
https://newhopecrypto.org/data/NewHope_2020_04_10.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf


22 Combined Fault and DPA Protection for Lattice-Based Cryptography

BBK16. Nina Bindel, Johannes A. Buchmann, and Juliane Krämer. Lattice-based signature
schemes and their sensitivity to fault attacks. In 2016 Workshop on Fault Diagnosis

and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA, August 16, 2016,
pages 63–77. IEEE Computer Society, 2016.

BCN+06. Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan.
The sorcerer’s apprentice guide to fault attacks. Proc. IEEE, 94(2):370–382, 2006.

BDH+19. Ciprian Baetu, F. Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan, and
Serge Vaudenay. Misuse attacks on post-quantum cryptosystems. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, volume 11477 of Lecture

Notes in Computer Science, pages 747–776. Springer, 2019.

BDK+18. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS - Kyber:
A CCA-secure module-lattice-based KEM. In 2018 IEEE European Symposium on

Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018,
pages 353–367. IEEE, 2018.

BDK+20. Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch,
and Ingrid Verbauwhede. A side-channel resistant implementation of SABER. IACR

Cryptol. ePrint Arch., 2020:733, 2020.

BDL01. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptology, 14(2):101–119, 2001.

BFM+18. Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn
Stam. Assessing the feasibility of single trace power analysis of Frodo. In Carlos Cid
and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC 2018 - 25th

International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected

Papers, volume 11349 of Lecture Notes in Computer Science, pages 216–234. Springer,
2018.

BKS19. Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-efficient high-speed
implementation of Kyber on Cortex-M4. In Johannes Buchmann, Abderrahmane Nitaj,
and Tajje-eddine Rachidi, editors, Progress in Cryptology - AFRICACRYPT 2019 - 11th

International Conference on Cryptology in Africa, Rabat, Morocco, July 9-11, 2019,

Proceedings, volume 11627 of Lecture Notes in Computer Science, pages 209–228.
Springer, 2019.

BP18. Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on deterministic
lattice signatures. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):21–43, 2018.

BPO+20. Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim Güneysu.
High-speed masking for polynomial comparison in lattice-based KEMs. IACR Trans.

Cryptogr. Hardw. Embed. Syst., 2020(3):483–507, 2020.

CAB19. Jérôme Courtois, Lokman A. Abbas-Turki, and Jean-Claude Bajard. Resilience
of randomized RNS arithmetic with respect to side-channel leaks of cryptographic
computation. IEEE Trans. Computers, 68(12):1720–1730, 2019.

CDH+20. Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld,
John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito,
Takashi Yamakawa, and Keita Xagawa. NTRU algorithm specifications and supporting
documentation, 2020. https://ntru.org/f/ntru-20190330.pdf.

CHK+20. Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor Seiler,
Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for ntt-unfriendly rings. IACR

Cryptol. ePrint Arch., 2020:1397, 2020.

https://ntru.org/f/ntru-20190330.pdf


Daniel Heinz and Thomas Pöppelmann 23

CJRR99. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards sound
approaches to counteract power-analysis attacks. In Michael J. Wiener, editor, Advances

in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture

Notes in Computer Science, pages 398–412. Springer, 1999.

CS21. Nicolas Costes and Martijn Stam. Redundant code-based masking revisited. IACR

Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):426–450, 2021.

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature
scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):238–268, 2018.

DKL+20. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS–Dilithium algorithm specifications
and supporting documentation, 2020. https://pq-crystals.org/dilithium/data/
dilithium-specification-round3.pdf.

DKRV19. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. SABER: Mod-LWR based KEM (round 3 submis-
sion), 2019. https://csrc.nist.gov/CSRC/media/Projects/post-quantum-
cryptography/documents/round-3/submissions/SABER-Round3.zip.

EFGT18. Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. Loop-abort
faults on lattice-based signature schemes and key exchange protocols. IEEE Trans.

Computers, 67(11):1535–1549, 2018.

FGM+10. Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and
Ingrid Verbauwhede. State-of-the-art of secure ECC implementations: A survey on
known side-channel attacks and countermeasures. In Jim Plusquellic and Ken Mai,
editors, HOST 2010, Proceedings of the 2010 IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST), 13-14 June 2010, Anaheim Convention

Center, California, USA, pages 76–87. IEEE Computer Society, 2010.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology -

CRYPTO ’99, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of LNCS, pages 537–554. Springer, 1999.

Für09. Martin Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–1005, 2009.

FV12. Junfeng Fan and Ingrid Verbauwhede. An updated survey on secure ECC implementa-
tions: Attacks, countermeasures and cost. In David Naccache, editor, Cryptography and

Security: From Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater

on the Occasion of His 65th Birthday, volume 6805 of Lecture Notes in Computer

Science, pages 265–282. Springer, 2012.

GJN20. Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing attack on
post-quantum primitives using the fujisaki-okamoto transformation and its application
on frodokem. IACR Cryptol. ePrint Arch., 2020:743, 2020.

GKS20. Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Compact
Dilithium implementations on Cortex-M3 and Cortex-M4. Cryptology ePrint Archive,
Report 2020/1278, 2020. https://eprint.iacr.org/2020/1278.

GR19. François Gérard and Mélissa Rossi. An efficient and provable masked implementation
of qTESLA. In Sonia Belaïd and Tim Güneysu, editors, Smart Card Research and

Advanced Applications - 18th International Conference, CARDIS 2019, Prague, Czech

Republic, November 11-13, 2019, Revised Selected Papers, volume 11833 of Lecture Notes

in Computer Science, pages 74–91. Springer, 2019.

https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/SABER-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/SABER-Round3.zip
https://eprint.iacr.org/2020/1278


24 Combined Fault and DPA Protection for Lattice-Based Cryptography

GRS99. Oded Goldreich, Dana Ron, and Madhu Sudan. Chinese remaindering with errors. In
Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton, editors,
Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May

1-4, 1999, Atlanta, Georgia, USA, pages 225–234. ACM, 1999.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, Theory

of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA,

November 12-15, 2017, Proceedings, Part I, volume 10677 of Lecture Notes in Computer

Science, pages 341–371. Springer, 2017.

HKM+19. James Howe, Ayesha Khalid, Marco Martinoli, Francesco Regazzoni, and Elisabeth
Oswald. Fault attack countermeasures for error samplers in lattice-based cryptography.
In IEEE International Symposium on Circuits and Systems, ISCAS 2019, Sapporo,

Japan, May 26-29, 2019, pages 1–5. IEEE, 2019.

JKL+. Pierre-Alain Fouque Jeffrey, Hoffstein Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei
Zhang. Falcon: Fast-fourier lattice-based compact signatures over NTRU. https:
//falcon-sign.info/falcon.pdf.

Joy19. Marc Joye. Protecting ECC against fault attacks: The ring extension method revisited.
IACR Cryptol. ePrint Arch., 2019:495, 2019.

KJJ99. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual

International Cryptology Conference, Santa Barbara, California, USA, August 15-19,

1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

Koc96. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th

Annual International Cryptology Conference, Santa Barbara, California, USA, August

18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages
104–113. Springer, 1996.

KPP20. Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks on
keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):243–268, 2020.

KRSS20. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. PQM4:
Post-quantum crypto library for the ARM Cortex-M4, 2020. https://github.com/
mupq/pqm4, accessed 12/16/2020.

KSV13. Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware designer’s
guide to fault attacks. IEEE Trans. Very Large Scale Integr. Syst., 21(12):2295–2306,
2013.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. J. ACM, 60(6):43:1–43:35, 2013.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

MD99. Thomas S. Messerges and Ezzy A. Dabbish. Investigations of power analysis attacks on
smartcards. In Scott B. Guthery and Peter Honeyman, editors, Proceedings of the 1st

Workshop on Smartcard Technology, Smartcard 1999, Chicago, Illinois, USA, May 10-11,

1999. USENIX Association, 1999.

MDH+13. Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and Emmanuelle
Encrenaz. Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller. In Wieland Fischer and Jörn-Marc Schmidt, editors, 2013 Workshop on

Fault Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20,

2013, pages 77–88. IEEE Computer Society, 2013.

https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4


Daniel Heinz and Thomas Pöppelmann 25

MDP+20. Alexandre Menu, Jean-Max Dutertre, Olivier Potin, Jean-Baptiste Rigaud, and
Jean-Luc Danger. Experimental analysis of the electromagnetic instruction skip fault
model. In 15th Design & Technology of Integrated Systems in Nanoscale Era, DTIS

2020, Marrakech, Morocco, April 1-3, 2020, pages 1–7. IEEE, 2020.

MGTF19. Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. Masking
Dilithium - efficient implementation and side-channel evaluation. In Robert H. Deng,
Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors, Applied Cryptography

and Network Security - 17th International Conference, ACNS 2019, Bogota, Colombia,

June 5-7, 2019, Proceedings, volume 11464 of Lecture Notes in Computer Science, pages
344–362. Springer, 2019.

MKSDG10. LEE Mun-Kyu, Jeong Eun Song, and HAN Dong-Guk. Countermeasures against
power analysis attacks for the NTRU public key cryptosystem. IEICE transactions on

fundamentals of electronics, communications and computer sciences, 93(1):153–163,
2010.

Mon85. Peter L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44:519–521, 1985.

MOP07. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -

revealing the secrets of smart cards. Springer, 2007.

Mos18. Michele Mosca. Cybersecurity in an era with quantum computers: Will we be ready?
IEEE Secur. Priv., 16(5):38–41, 2018.

Nat16. National Institute of Standards and Technology. Submission requirements
and evaluation criteria for the post-quantum cryptography standardization
process, 2016. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

NDR+19. Hamid Nejatollahi, Nikil D. Dutt, Sandip Ray, Francesco Regazzoni, Indranil Banerjee,
and Rosario Cammarota. Post-quantum lattice-based cryptography implementations: A
survey. ACM Comput. Surv., 51(6):129:1–129:41, 2019.

NIS20. NIST. Post-quantum cryptography - round 3 submissions, 2020. https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions.

OC14. Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source platform
for hardware embedded security research. In Emmanuel Prouff, editor, Constructive

Side-Channel Analysis and Secure Design - 5th International Workshop, COSADE 2014,

Paris, France, April 13-15, 2014. Revised Selected Papers, volume 8622 of Lecture Notes

in Computer Science, pages 243–260. Springer, 2014.

OC15. Colin O’Flynn and Zhizhang Chen. Synchronous sampling and clock recovery of
internal oscillators for side channel analysis and fault injection. J. Cryptogr. Eng.,
5(1):53–69, 2015.

OSPG18. Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practical
CCA2-secure and masked ring-LWE implementation. IACR Trans. Cryptogr. Hardw.

Embed. Syst., 2018(1):142–174, 2018.

Pes16. Peter Pessl. Analyzing the shuffling side-channel countermeasure for lattice-based
signatures. In Orr Dunkelman and Somitra Kumar Sanadhya, editors, Progress in

Cryptology - INDOCRYPT 2016 - 17th International Conference on Cryptology in India,

Kolkata, India, December 11-14, 2016, Proceedings, volume 10095 of Lecture Notes in

Computer Science, pages 153–170, 2016.

PFPB19. Louiza Papachristodoulou, Apostolos P. Fournaris, Kostas Papagiannopoulos, and Lejla
Batina. Practical evaluation of protected residue number system scalar multiplication.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):259–282, 2019.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


26 Combined Fault and DPA Protection for Lattice-Based Cryptography

PP19. Peter Pessl and Robert Primas. More practical single-trace attacks on the number
theoretic transform. In Peter Schwabe and Nicolas Thériault, editors, Progress in

Cryptology - LATINCRYPT 2019 - 6th International Conference on Cryptology and

Information Security in Latin America, Santiago de Chile, Chile, October 2-4, 2019,

Proceedings, volume 11774 of Lecture Notes in Computer Science, pages 130–149.
Springer, 2019.

PPM17. Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks on
masked lattice-based encryption. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International

Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of
Lecture Notes in Computer Science, pages 513–533. Springer, 2017.

RBN+15. Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Verbauwhede.
Consolidating masking schemes. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa

Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture

Notes in Computer Science, pages 764–783. Springer, 2015.

RBRC20. Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay. Drop by
drop you break the rock - exploiting generic vulnerabilities in lattice-based PKE/KEMs
using EM-based physical attacks. IACR Cryptol. ePrint Arch., 2020:549, 2020.

RdCR+16. Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid
Verbauwhede. Additively homomorphic ring-lwe masking. In Tsuyoshi Takagi, editor,
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka,

Japan, February 24-26, 2016, Proceedings, volume 9606 of Lecture Notes in Computer

Science, pages 233–244. Springer, 2016.

RJH+19. Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay, and
Shivam Bhasin. Exploiting Determinism in Lattice-based Signatures: Practical Fault
Attacks on PQM4 Implementations of NIST Candidates. In Steven D. Galbraith,
Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin Kirda, and Zhenkai Liang,
editors, Proceedings of the 2019 ACM Asia Conference on Computer and Communications

Security, AsiaCCS 2019, Auckland, New Zealand, July 09-12, 2019, pages 427–440.
ACM, 2019.

RPBC20. Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopadhyay. On
configurable SCA countermeasures against single trace attacks for the NTT - A
performance evaluation study over kyber and dilithium on the ARM Cortex-M4. IACR

Cryptol. ePrint Arch., 2020:1038, 2020.

RRCB20. Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. Generic
side-channel attacks on cca-secure lattice-based PKE and kems. IACR Trans. Cryptogr.

Hardw. Embed. Syst., 2020(3):307–335, 2020.

RRdC+16. Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and Ingrid
Verbauwhede. Masking ring-LWE. J. Cryptographic Engineering, 6(2):139–153, 2016.

RRVV15. Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. A
masked ring-lwe implementation. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International

Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of
Lecture Notes in Computer Science, pages 683–702. Springer, 2015.

Saa18. Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermeasures for
lattice signatures - engineering a side-channel resistant post-quantum signature scheme
with compact signatures. J. Cryptographic Engineering, 8(1):71–84, 2018.

Sch06. F. W. Scholz. Maximum Likelihood Estimation. American Cancer Society, 2006.
ISBN: 9780471667193, Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/0471667196.ess1571.pub2.

https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess1571.pub2
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess1571.pub2


Daniel Heinz and Thomas Pöppelmann 27

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New

Mexico, USA, 20-22 November 1994, pages 124–134. IEEE Computer Society, 1994.

SM15. Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International

Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of
Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

SPOG19. Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Efficiently
masking binomial sampling at arbitrary orders for lattice-based crypto. In Dongdai
Lin and Kazue Sako, editors, Public-Key Cryptography - PKC 2019 - 22nd IACR

International Conference on Practice and Theory of Public-Key Cryptography, Beijing,

China, April 14-17, 2019, Proceedings, Part II, volume 11443 of LNCS, pages 534–564.
Springer, 2019.

TE15. Mostafa Taha and Thomas Eisenbarth. Implementation attacks on post-quantum
cryptographic schemes. IACR Cryptol. ePrint Arch., 2015:1083, 2015.

VKS11. Ingrid Verbauwhede, Dusko Karaklajic, and Jörn-Marc Schmidt. The fault attack
jungle - A classification model to guide you. In Luca Breveglieri, Sylvain Guilley,
Israel Koren, David Naccache, and Junko Takahashi, editors, 2011 Workshop on Fault

Diagnosis and Tolerance in Cryptography, FDTC 2011, Tokyo, Japan, September 29,

2011, pages 3–8. IEEE Computer Society, 2011.

VOGR18. Felipe Valencia, Tobias Oder, Tim Güneysu, and Francesco Regazzoni. Exploring the
vulnerability of R-LWE encryption to fault attacks. In John Goodacre, Mikel Luján,
Giovanni Agosta, Alessandro Barenghi, Israel Koren, and Gerardo Pelosi, editors,
Proceedings of the Fifth Workshop on Cryptography and Security in Computing Systems,

CS2 2018, Manchester, United Kingdom, January 24, 2018, pages 7–12. ACM, 2018.

WZW13. An Wang, Xuexin Zheng, and Zongyue Wang. Power analysis attacks and coun-
termeasures on NTRU-based wireless body area networks. TIIS, 7(5):1094–1107,
2013.

ZBT19. Timo Zijlstra, Karim Bigou, and Arnaud Tisserand. FPGA implementation and
comparison of protections against SCAs for RLWE. In Feng Hao, Sushmita Ruj,
and Sourav Sen Gupta, editors, Progress in Cryptology - INDOCRYPT 2019 - 20th

International Conference on Cryptology in India, Hyderabad, India, December 15-18,

2019, Proceedings, volume 11898 of Lecture Notes in Computer Science, pages 535–555.
Springer, 2019.

ZWW13. Xuexin Zheng, An Wang, and Wei Wei. First-order collision attack on protected
NTRU cryptosystem. Microprocessors and Microsystems - Embedded Hardware Design,
37(6-7):601–609, 2013.



28 Combined Fault and DPA Protection for Lattice-Based Cryptography

A Appendix

A.1 Pseudo Code of Cooley-Tukey FFT Algorithm

Input: Array p representing a polynomial with n coefficients where n
is a power of 2

Output: Discrete Fourier Transform of p
1 j, k = 1;
2 for len = 128; len >= 2; len >>= 1 do

3 for start = len; start < 256; start = j + len do

4 ζ ← zetas[k++] ;
5 for j = start; j < start + len; ++j do

6 t← ζ · p[j + len] mod q ;
7 p[j + len]← p[j]− t ;
8 p[j]← p[j] + t ;
9 end

10 end

11 end

12 return p
Algorithm 4: Cooley-Tukey FFT in PQCLEAN



Daniel Heinz and Thomas Pöppelmann 29

A.2 Pseudo Code of Kyber.CPA.Dec with RNR and CRT

Input: Ciphertext c, randomized secret key sk with random polynomial
rsecret

Output: Message m
1 Generate KY BER_K random polynomials in random[KY BER_K];
2 /*Start cycle count*/;
3 poly_unpackdecompress(mp, c, 0);
4 combined = poly_combine(random[0], mp);
5 poly_nttQPrime(random[0]);
6 poly_nttQHat(combined);
7 poly_frombytes_mulQPrime(random[0],rsecret);
8 poly_frombytes_mulQHat(combined,sk);
9 for i = 1; i < KY BER_K; i + + do

10 poly_unpackdecompress(bp, c, i);
11 combined2 = poly_combine(random[i], bp);
12 poly_nttQPrime(random[i]);
13 poly_nttQHat(combined2);
14 poly_frombytes_mulQPrime(random[i],

rsecret + i ·KY BER_POLY BY TES);
15 poly_frombytes_mulQHat(combined2, sk + i ·KY BER_POLY BY TES);
16 poly_addQPrime(random[0], random[0], random[i]);
17 poly_addQHat(combined, combined, combined2);
18 end

19 poly_invnttQPrime(random[0]);
20 poly_invnttQHat(combined);
21 poly_decompress(v, c + KY BER_POLY V ECCOMPRESSEDBY TES);
22 poly_subQHat(combined, v, combined);
23 poly_subQPrime(random[0],v, random[0]);
24 /*Stop cycle count*/;
25 Check for faults;
26 Calculate output message m;
27 return m



30 Combined Fault and DPA Protection for Lattice-Based Cryptography

A.3 Pseudo Code of Kyber.CPA.Dec with Redundancy and Masking

Input: Ciphertext c, Redundantly shared secret key sk = ski[0] + ski[1]
Output: Message m

1 for j = 0; j < 2;j + + do

2 /*Start cycle count*/;
3 poly_unpackdecompress(mp, c, 0);
4 mp[0]= mp[1] = poly_ntt(mp);
5 poly_frombytes_mul(mp[0],skj [0]);
6 poly_frombytes_mul(mp[1],skj [1]);
7 for i = 1; i < KY BER_K; i + + do

8 poly_unpackdecompress(bp, c, i);
9 bp[0] = bp[1] = poly_ntt(bp);

10 poly_frombytes_mul(bp[0], skj [0] + i ·KY BER_POLY BY TES);
11 poly_frombytes_mul(bp[1], skj [1] + i ·KY BER_POLY BY TES);
12 poly_add(mp[0], mp[0], bp[0]);
13 poly_add(mp[1], mp[1], bp[1]);
14 end

15 poly_invntt(mp[0]);
16 poly_invntt(mp[1]);
17 poly_decompress(v,

c + KY BER_POLY V ECCOMPRESSEDBY TES);
18 poly_sub(mp[0], v, mp[0]);
19 poly_sub(mp[1],v, mp[1]);
20 /*Stop cycle count*/;
21 Calculate output messages mj;
22 end

23 Check for faults;
24 return m


	Introduction
	Preliminaries
	Notation
	The NTT
	Kyber
	Side-Channels in Lattice-Based Cryptography
	Fault Attacks on Lattice-Based Cryptography

	Redundant Number Representation
	Enabling of Fast Montgomery Reduction
	The NTT and (Adversarial) De-Randomization
	Validation in Hamming Weight Leakage Model

	Fault Protection with Chinese Remainder Theorem
	Formal Description
	Evaluation and Analysis
	Optimization and Control Flow Protection

	Combination of RNR and CRT Countermeasures
	Evaluation
	Performance of the RNR Countermeasure
	Performance of the CRT and Combined Countermeasure
	Effectiveness against Side-Channel Attacks
	Kyber Decryption

	Conclusion and Future Work
	Appendix
	Pseudo Code of Cooley-Tukey FFT Algorithm
	Pseudo Code of Kyber.CPA.Dec with RNR and CRT
	Pseudo Code of Kyber.CPA.Dec with Redundancy and Masking


