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Abstract. A Multi-Client Functional Encryption (MCFE) scheme for set intersection is a
cryptographic primitive that enables an evaluator to learn the intersection from all sets of a
pre-determined number of clients, without having to learn the plaintext set of each individual
client. In this paper, we propose a flexible version of the MCFE schemes for the set intersec-
tion, called Flexible Multi-Client Functional Encryption for Set Intersection (FMCFE-SI). In
these schemes, the evaluator can learn the intersection from any flexible choice of sets (instead
of all sets). In this regard, we redefine syntax and security notions of the MCFE schemes for
the FMCFE schemes. In the literature, solving multi-client set intersection problem in polyno-
mial time, such that only the intersection result is revealed (without additional information),
is an open problem. In this paper, we propose a relaxed solution using FMCFE-SI schemes to
solve secure set intersection in polynomial time. We analyze that for practical use of secure
multi-client set intersection, this relaxation is necessary. We also show that our scheme has
the adaptive indistinguishability-based security under passive corruption. Our proof relies
on the Symmetric eXternal Diffie-Hellman (SXDH) assumption in the standard model.

Keywords: Functional Encryption · Set Intersection · Secure Computation, Multi-Client,
Flexible

1 Introduction

The dramatic growth of information, as well as increasing communications between different orga-
nizations to cover social activities in the digital world, has made the secure data sharing as a hot
topic in the academic and industrial community.

In secure data sharing, the organizations tend to share their data in a controllable way. In
other words, the organizations want the users to get only the information that is allowed, not more
information. Any real-world computational function can be considered as an authorized control by
a group of organizations that have shared their data. In the following, we describe three examples
of these functionalities in the practical environments:

– In order to track the prevalence of COVID-19 in European countries, an organization like
ECDC needs the personal information of COVID-positive patients from the testing centers and
hospitals where they were hospitalized, as well as the their relatives from the Civil Registry
Office.

– Corona virus vaccine production companies need to collect the genomic information of the
patients from different countries in order to know the effectiveness of their vaccines.

– A large-scale food advertising company needs to have information about consumer purchases
in the chain stores across the country to deliver targeted and intelligent advertising.

There are two naive solutions for secure data sharing: 1) trivial trusted party, and 2) trivial
trusted-storage party, which are explained below.
Trivial trusted party. In this setting, the organizations send their plain data to a trusted party.
Next, the trusted party employs the considered functionality in the plaintext scenario on the
received data to get the result, and shares it with the authorized parties.
Trivial trusted-storage party. In this setting, we assume that the trusted party has limited
storage resources. Therefore, the organizations first encrypt their data, and then sends their en-
crypted data (instead of plain data) to the storage party (instead of the trusted party). Then, when
needed, the trusted party downloads the encrypted data from the storage party, decrypts them,
and employs the considered functionality in the plaintext scenario on the downloaded data to get
the result. Finally, the trusted party shares the result with the authorized parties.
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However, we are looking for a solution that it has different settings for secure data sharing, and
aimed to reduce the overheads of the trusted party. In our expected settings, we assume that the
trusted party has limited storage and computation capabilities, and only performs the necessary
coordinations between parties for a secure evaluation. In such a setting, the organizations encrypt
their data using the parameters shared by the trusted party, and send their encrypted data to the
storage party. Then, each evaluator that wants to perform an evaluation function, first receives an
evaluation key from the trusted party and then downloads the considered encrypted data from the
storage party.

Table 1 provides an asymptotic comparison of different solutions for a secure evaluation in
terms of the storage, communication and computation overheads (for n organizations, each with m
data values). In Table 1, the highlighted rows show the difference between each solution compared
to the other solutions.

Table 1: An asymptotic comparison of the different solutions for secure evaluation

Overheads Party type Trivial trusted party Trivial trusted-storage party Our expected solution

Client O(nm) - -
Trusted - - -
Storage - O(nm) O(nm)

Storage

Evaluator - - -

Client O(nm) O(nm) O(nm)
Trusted O(m) O(nm) O(1)
Storage - - -

Communication

Evaluator - - O(nm)

Client - - -
Trusted O(nm) O(nm) -
Storage - - -

Computation

Evaluator - - O(nm)

n: the total number of clients, m: the maximum number of data values.

Functional Encryption (FE) schemes and their various types are the cryptographic tools that
meet our requirements for the expected settings. These schemes provide a new paradigm for en-
cryption which extends the traditional “all-or-nothing” requirement of the cryptosystems in a
much more flexible way. In the following, we briefly review this flexibility for different types of FE
schemes.

Functional Encryption (FE) schemes. A basic FE scheme [5, 17] is a cryptographic primitive
that extends the decryption algorithm of the symmetric/asymmetric encryption schemes in a much
more flexible way (from all-or-noting decryption of a ciphertext to the computation of a specific
function on the original message related to a ciphertext). More precisely, in the basic FE schemes,
the decryption algorithm requires a decryption key assigned to a 1-ary function f , and a cipher-
text ct computed for value x to output f(x) (instead of extracting the original value x from the
ciphertext ct).

Multi-Input Functional Encryption (MIFE) schemes. In the basic FE schemes, the function
f has only one input component (i.e., f is a 1-ary function). An extension on these schemes is to
support the n-ary functions. The MIFE schemes [12] cover such a setting. More precisely, in the
MIFE schemes, the decryption algorithm needs a decryption key assigned to an n-ary function f ,
and n ciphertexts ct1, · · · , ctn computed respectively for values x1, · · · , xn to output f(x1, · · · , xn).

Multi-Client Functional Encryption (MCFE) schemes. A strict subset of the MIFE schemes
are called the MCFE schemes [7, 12]. In these schemes, the input components for the n-ary function
f are labeled by a tag t (for every time-step), and are independently provided by n distinct clients.
More precisely, in this setting, the decryption algorithm requires a decryption key assigned to an
n-ary function f , and n ciphertexts ctt,1, · · · , ctt,n labeled for the same tag t (according to the
values xt,1, · · · , xt,n, respectively) to output f(xt,1, · · · , xt,n).
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In this paper, we specifically study the set intersection functionality as a function in the FE
schemes. In this regard, we consider a more flexible version of the MCFE schemes for set intersection,
that we call it Flexible Multi-Client Functional Encryption for set intersection (FMCFE-SI). These
schemes support a flexible choice of the clients involved in any set intersection functionality.

Figure 1 summarizes the computable results using an authorized function produced by each
of the FE schemes. As it can be seen, the FMCFE schemes have the most flexibility to issue the
desired function in addition to having the least peripheral information leakage for each requested
function.
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Computable functions using MIFE schemes

Computable functions
using FE schemes

xit is client data i
for tag t

Computable functions
using MCFE schemes

For L=(1,2)

For L=(1,3)

For L=(2,3)

For L=(1,2,3)

Computable functions are flexibility
determined by evaluator

using FMCFE schemes
(L={(1,2),(1,3),(2,3),(1,2,3)})

Fig. 1: The computable functions using different types of FE schemes

1.1 Contributions

The MCFE schemes proposed to support the set intersection have the following weaknesses:
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- For each new time-step or new evaluator, the set elements of each client must be available to
compute a set intersection functionality, and so clients must be online.

- The decryption key given to the evaluator is applicable to all sets and not an arbitrary subset
of them. As a result, this case causes more information to be leaked.

In this paper, we address both weaknesses by introducing a more flexible version of the MCFE
schemes for the set intersection (termed FMCFE-SI) that supports flexible choice of the clients
involved in any set intersection functionality, and also clients can securely share their sets on
a public bulletin board. To this end, we redefine the syntax and security notions of the MCFE
schemes for our new scheme. We also consider, based on corruption of clients, three variant security
definitions for our scheme: 1) dynamic corruptions, 2) static corruptions, and 3) passive corruption.
See Section 5.2 for more details on each security notion.

In literature, the computation of set intersection in polynomial-time complexity (for n sets
with an arbitrary polynomial size) such that no information is revealed except the intersection
result, is known as an open problem [14]. Also, Kamp et al. [13] investigated this problem from
a theoretical perspective. However, we propose an FMCFE-SI construction that computes the set
intersection in polynomial-time, but for a relaxed version (see Section 6). In the relaxed version,
we assume that the size of our universal set is polynomial in the security parameter. We show
that our construction, for an universal set of size m and the client sets with maximum size n,
computes the set intersection in time O(nm) (see Section 7.4). We also prove that our construction
has adaptive indistinguishability-based security under passive corruption. Our proof relies on the
Symmetric eXternal Diffie-Hellman (SXDH) assumption in the standard model (see Section 7.1).

We leave it as future work to propose the FMCFE-SI schemes under static and dynamic cor-
ruptions. Another natural open problem is to propose the FMCFE-SI scheme in polynomial-time
complexity in original setting (without constraint on size of the universal set).

1.2 Paper organization

The remaining of this paper is organized as follows. We discuss related work in Section 2. The
problem statement and the preliminaries are explained in Section 3 and Section 4, respectively. We
formalize the syntax and security of the FMCFE-SI schemes in Section 5. Our proposed FMCFE-SI
construction, and its security and performance analysis are presented in Section 6 and Section 7,
respectively. Finally, Section 8 concludes the paper and points out future directions.

2 Related work

Recently, Kamp et al. [13] proposed several multi-client functional encryption schemes for set
intersection functionality and its derivatives, such as: set intersection cardinality, threshold set
intersection, and set intersection with data transfer. In their settings, they consider n clients and
one evaluator. Each client labels his set with a tag, and then encrypts and holds it. The evaluator,
by having a decryption key and receiving encrypted sets from the clients, can learn the output
of considered operation on all sets without having to learn the plaintext set of each individual
client. The constructions proposed in [13], for set intersection and cardinality, are in both multi-
client setting (n ≥ 2) and 2-client setting (n = 2). However, both constructions support only
a set operation functionality, and therefore they do not need to define key generation algorithm
to produce a decryption key. In the literature, these MCFE schemes are called single-key MCFE
schemes1.

Lee and Seo [15] proposed a multi-client functional encryption scheme for set intersection in
multi-client setting. In their settings, they consider n clients and one evaluator (termed server).
Each client labels his set with a tag, and then encrypts and outsources it to the server. Next, the
server upon receiving a decryption key for a pair of sets, can evaluate the set intersection for this
pair2.

1 In the single-key MCFE schemes, the decryption key is usually initialized along with other parameters
used in the scheme in Setup algorithm.

2 It should be noted that the construction proposed in [15], despite being provided for multi-client settings,
its decryption key allow the set intersection for each pair of clients, and therefore it is different from the
standard MCFE schemes that computes the set intersection for all sets of the clients.
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In this paper, we are looking a solution for set intersection in multi-client setting that has the
following features:

– The evaluation of set intersection must be done non-interactively. It should be noted that this
feature is provided by FE schemes, and therefore the schemes described above also have this
feature.

– The evaluation of set intersection must be done in polynomial-time complexity, while no infor-
mation is revealed except the intersection result. This problem in [14] and [13] is investigated
from a theoretical point of view.

– Another feature is the ability to publicly share sets of clients on a public bulletin board. With
this feature, the clients can encrypt their sets in any time-step and share it on the public board
such that the evaluator can perform their evaluation at any time (without any online client).

– The last feature is the flexibility to compute the functions with arbitrary arity. In previous
works, the decryption key given to the evaluator is applicable to all sets and not an arbitrary
subset of them.

Table 2 summarizes a detailed overview of the discussed related works.

Table 2: A detailed overview of the different schemes for set intersection

Construction #Client Public Sharing
Intersection
Flexibility

Corruption Constraint Tool Assumption Security Model

Kamp et al. [13] n = 2 7 - - - Group-based DDH Standard

Lee et al. [15] n = 2 3 - - - Pairing-based Variant of XDH Random Oracle

Kamp et al. [13] n ≥ 2 7 7 Static - Group-based DDH Random Oracle

Our construction n ≥ 2 3 3 Passive |W| = poly(λ) Pairing-based SXDH Standard

n: the total number of clients, m: the maximum size of each set, W: the universal set of all possible
values available to clients.

2.1 Some similar schemes

In this subsection, we present some schemes that are somewhat similar to our multi-client settings.
In the following, each of these schemes are first explained and then their similarities and differences
with our scheme are provided.
Private Set Intersection (PSI) Protocols. The classic problem of Private Set Intersection
(PSI) protocols in the standard Multi-Party Computation (MPC) [10] are somewhat similar to
MCFE schemes for set intersection. The basic scenario model for these protocols includes several
parties who each hold a private set locally. These parties interact with each other and perform set
intersection. The goal is to compute the set intersection result in such a way that none of them is
able to acquire any additional information besides what can be inferred from their own input and
the computed result. A more advanced scenario model is delegated PSI [9]. This scenario model
considers a new party compared to previous model (termed provider). In this model, the parties
outsource their sets to the provider and take the advantages of its computational and storage
superiority. Similar to the previous model, goal is to compute the result in such a way that none
of parties is able to obtain any additional information.
The similarities and differences. In a general view, both PSI protocols and MCFE schemes for
set intersection have several parties, and the goal is to evaluate the set intersection of their sets.
However, in the PSI scenario models, all parties learn the outcome of evaluated set intersection,
while in the MCFE schemes we require a dedicated evaluator to only learn this outcome.
Multi-adjustable Join (M-Adjoin) Schemes. The M-Adjoin scheme, first proposed by Khazaei
and Rafiee [14], is a symmetric-key primitive that supports the secure join queries for a list of
column labels on an encrypted database. The scenario model for this functionality consists of
two main parties: a user and a server. The user outsources a database to the server, where the
database contains a number of tables and each table includes several data records that are vertically
partitioned into columns. When the user wishes to issue a join query on the database, he generates
a join token and sends it to the server. A join query is formulated as a list of column labels. Finally,
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the server executes the requested join query on the encrypted database and returns the join result
to the user.
The similarities and differences. In here columns play the role of sets, and join queries play the
role of requested set intersection. However, this scenario model is intended for single-user cloud
scenarios (and no multi-user), all encrypted columns have the same tag, and its security notions [16]
are different from the standard security notions of the MCFE schemes. It is worth mentioning that
these schemes can provide the ability to perform flexible queries for every arbitrary subset of
columns.

3 System model and problem statement

In this section, we describe the system model, threat model, and problem statement for our pro-
posed scheme.

3.1 System model

Our system model considers four types of parties to securely evaluate the set intersection:

- Client Parties (CP): A group of parties who want to securely share their sets on a pub-
lic bulletin board, and allow to securely perform the set intersection functionality on every
arbitrary subset of their sets.

- Evaluator Parties (EP): The evaluators are the parties that allowed to compute the set
intersection for a subset of sets shared on the public bulletin board. To this end, the evaluators
download the considered sets and compute the outcome of the set intersection.

- Storage Provider (SP): The storage provider is a party that provides and manages the
required storage for the public bulletin board.

- Trusted Party (TP): The trusted party is a party that determines and distributes the
required parameters to securely share the sets of clients, and provides the required information
to compute the set intersection for the evaluator.

Remark 3.1 In our model, each of the parties introduced above can play the role of evaluator.
For example, the evaluator and storage provider responsibilities can be performed by one party,
simultaneously. This case is very similar to cloud scenario models where computation and storage
are outsourced to an external provider. Even if these responsibilities are considered separately, they
are similar to cloud scenarios where storage service is assigned to one provider and computation
service are assigned to one or more providers.

3.2 Threat model

In our scenario model, we consider that the clients, the evaluators, and storage provider are honest-
but-curious. We say that a party is the honest-but-curious if follow the scheme correctly, but plays
the role of an eavesdropper to infer additional information from encrypted sets, requested set
intersections and corresponding responses.

3.3 Problem statement

Let W is the universal set of all possible values available to the clients, and si ⊆ W is the set
belong to i-th client. Also, suppose that we have n clients, that each of them hold a private set
si ⊆ W. Our problem is to design a scheme, according to the scenario model and the threat model
described above, that enables the clients to securely share their sets, and to evaluate the outcome
of the set intersection for every arbitrary subset of their sets. Figure 2 summarizes the system
model and the problem statement of our scheme.

4 Preliminaries

In this section, we introduce some notations and basic cryptographic primitives that are used
throughout the paper. The readers familiar with these concepts can safely skip this section.



A Fast and Flexible Multi-Client Functional Encryption for Set Intersection 7

Fig. 2: An overview of the system model and problem statement of our scheme

4.1 Notation

Throughout the paper, we consider the symbol λ to denote the security parameter. We use [n]
to denote the set {0, 1, · · · , n}, where n is a positive integer. Let A is a (possibly) probabilistic
algorithm, y ← A(x) shows that y is the output of the algorithm A on x. We use the abbreviation
PPT for probabilistic polynomial-time. Suppose that S is a finite set, x ← S means that the
element x selected as uniform from the set S. We say that a function is negligible and denotes it by
negl, if it is smaller than the inverse of any polynomial in the security parameter λ for sufficiently
large values of λ. As a convention, we denote the output of a defined experiment by the experiment
name itself. We use the symbol | to denote the concatenation of bit strings (i.e., 010|101 = 010101).

4.2 Basic primitives

Pseudo-Random Function (PRF). Let X, Y be two sets. A polynomial-time computable
function F : {0, 1}λ×X → Y is a pseudo-random function, if for every PPT adversary A, we have:

|Pr[k ← {0, 1}λ : AFk(·)(1λ) = 1]−
Pr[f ← RF : Af(·)(1λ) = 1]| ≤ negl(λ),

where RF is the set of all the functions from X to Y.
Bilinear map: Let G1, G2, GT are cyclic groups of prime order q, and g1, g2 are generators for G1,
G2, respectively. A bilinear map is a map e : G1×G2 → GT , that satisfies the following properties:

1. Bilinearity: ∀x, y ∈ Zq : e(gx1 , g
y
2 ) = e(g1, g2)xy,

2. Non-degeneracy: e(g1, g2) 6= 1,
3. Computability: e can be computed efficiently.

We assume that we have an efficient bilinear map generator such as G that on the security
parameter λ as input, outputs a tuple Param = (G1,G2,GT , g1, g2, q, e).

5 FMCFE-SI scheme

In this section, we define the syntax and security notions of Flexible Multi-Client Functional
Encryption (FMCFE-SI) schemes. It should be noted that we define the FMCFE-SI schemes in
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private-key setting only, and leave the study of the FMCFE-SI schemes in the public-key setting for
future works. In the following, each of syntax and security definitions are first explained informally
and then the formal definitions are provided.

5.1 FMCFE-SI syntax

A private-key FMCFE-SI is a symmetric primitive that enables a group of pre-determined clients
to securely share their sets, and also enables an evaluator to learn the set intersection of these sets,
without having to learn the plaintext set of each individual client.

For n clients, the FMCFE-SI schemes are used as follows. At first, the trusted party generates
a set of public parameters mpk, a master secret key msk, and a list of user keys (cki)

n
i=1 using a

key generation algorithm denoted by Setup. Then, for every i ∈ [n], the trusted party sends cki to
the client with identifier i, and shares mpk on the public bulletin board. Next, each client encrypts
its set using an encryption algorithm denoted by Enc, and sends it to the storage provider. Later,
when the trusted party wants to send a functional decryption key to the evaluator, he calls the
key generation algorithm denoted by Keygen. Finally, the evaluator downloads the requested sets,
and computes the outcome of the set intersection using a decryption algorithm denoted by Dec.
Figure 3 summarizes the process of how to use our scheme.

(a) Generate the parameters by the trusted party (b) Encrypt sets and share them by each client

(c) Download encrypted sets and compute the set intersection by the evaluator.

Fig. 3: The process of how to use our scheme

In the following, we provide a formal syntax definition of our FMCFE-SI scheme.

Definition 5.1 (FMCFE-SI syntax) A flexible multi-client functional encryption scheme for set
intersection is a collection of four polynomial-time algorithms Π = (Setup,Enc,Keygen,Dec) such
that:
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–
(
mpk,msk, (cki)

n
i=1

)
← Setup(λ, n): takes as input a security parameter λ and a pre-determined

number of the clients n, and returns a set of public parameters mpk, a master secret key msk
and a list of client keys (cki)

n
i=1.

– ctt,i ← Enc(cki, si, t): takes as input the client key cki, a set si and a tag t, and returns a
ciphertext ctt,i.

– dkL ← Keygen(msk,L): takes as input the master secret key msk and a list of client identifiers
L, and outputs a functional decryption key dkL.

– y ← Dec(dkL, t, CT ): takes as input a functional decryption key dkL, a tag t, and a |L|-list
ciphertext CT . It returns as output y =

⋂
i∈L

si, if CT is a valid encryption of sets (si)i∈[L] for

tag t, or y = ⊥ otherwise.

Correctness. The scheme is said to be correct, if for any integer n ≥ 2, any list L ⊆ [n] with size
|L| ≥ 2, any tag t, and any list of sets (si)i∈L, it holds that:

Pr



(
mpk,msk, (cki)

n
i=1

)
← Setup(λ, n);

∀i ∈ [L] ctt,i ← Enc(cki, si, t);

dkL ← Keygen(msk,L) :

Dec(dkL, t, CT ) =
⋂
i∈L

si

 = 1 .

5.2 FMCFE-SI security

In this subsection, we formalize the security notions of FMCFE-SI schemes using indistinguishability-
based security games. To this end, we use the security definition ideas proposed in [1] to handle
the flexibility of the function arity, and also we use the security definition ideas presented in [7] to
handle the time-step in our FMCFE-SI schemes.

In our security game, we need that the encrypted values of the clients do not reveal any
information about the plaintext values. We also need that by having the evaluation key for a
subset of sets, only the intersection of this subset can be computed and no information beyond it
can be revealed. In addition, in our game we consider capabilities for the adversary such as: the
adaptive query to get the evaluation key for any desired subset, and adaptive query to encrypt any
value for any client in any time-step. In this game, we also consider the constraints that cause the
adversary to easily and trivially not be able to win the game. In the following, we provide a formal
definition of our game.

The adaptive indistinguishability-based (aIND) security game ExpaINDA,Π (λ):

1. Initialization phase: The challenger runs
(
mpk,msk, (cki)

n
i=1

)
← Setup(λ, n), and selects a

random bit b← {0, 1}. Also, the challenger considers a set HS of honest clients (initialized to
HS = [n]), and a set CS of corrupted clients (initialized to CS = ∅).

2. Pre-challenge query phase: The adversary A may adaptively issue Enc(·, ·, ·), Keygen(·) and
Corrupt(·) queries, which are defined as follows:
(a) Enc(i, si, t): The challenger computes and returns to the adversary A a ciphertext ctt,i ←

Enc(cki, si, t). For any given pair (i, t), only one query is allowed and later queries involving
the same pair (i, t) are ignored.

(b) Keygen(L): The challenger runs dkL ← Keygen(msk,L), and returns to the adversary the
decryption key dkL.

(c) Corrupt(i): The challenger adds i to CS (i.e., CS = CS ∪ {i}), removes i from the set HS
(i.e., HS = HS\{i}), and returns to the adversary A the client key cki.

3. Challenge query phase: The adversary A adaptively issues challenge queries of the form
Enc(i, s∗i,0, s

∗
i,1, t

∗), and as a response obtains a ciphertext ctt∗,i ← Enc(cki, s
∗
i,b, t

∗). It should be
noted that in this phase, only one tag t∗ can be queried, and also similar to the pre-challenge
phase, query for the same pair (i, t∗) will later be ignored.

4. Post-challenge query phase: Identical to the pre-challenge phase.
5. Finalize phase: The adversary A outputs a value b̂ ∈ {0, 1} which is defined as the output of

the experiment.
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Valid adversary. We say that the adversary A is a valid adversary for the game ExpaINDA,Π (λ), if for

every security parameter λ, in all transcripts of the game ExpaINDA,Π (λ), it holds that for every queried
list L = (i1, · · · , il), there does not exist two sequences (s∗i1,0, · · · , s

∗
il,0

) and (s∗i1,1, · · · , s
∗
il,1

) for tag
t∗ such that: ⋂

i∈L
s∗i,0 6=

⋂
i∈L

s∗i,1,

where for every i ∈ L, we have

- i ∈ CS, therefore there is no constraint on s∗i,0 and s∗i,1.

- There is a challenge query of the form Enc(i, s
′
, s
′′
, t∗) such that s∗i,0 = s

′
and s∗i,1 = s

′′
.

Definition 5.2 (FMCFE-SI security) A flexible multi-client functional encryption scheme for set
intersection such as Π = (Setup,Enc,Keygen,Dec) is aIND-secure if for every PPT valid adversary
A, there exists a negligible function negl such that

AdvaINDA,Π = |Pr[ExpaINDA,Π (λ) = 1]− 1

2
| ≤ negl(λ).

Weaker security notions. We can also consider two weaker security notions for our scheme:

- Passive security (P-aIND): No corruption queries (Corrupt) are issued in the game ExpaINDA,Π (i.e.,
CS = ∅).

- Static security (S-aIND): The corruption queries (Corrupt) are sent before the initialization
phase in the game ExpaINDA,Π .

6 Our FMCFE-SI construction

In this section, we propose an FMCFE-SI construction that supports a universal set of polynomial
size (in the security parameter λ), and in Section 7.1 we prove that it is aIND-secure under passive
corruption. Our construction use a bilinear group generator G that takes as input the security
parameter λ and returns a tuple (G1,G2,GT , g1, g2, q, e), where q is a λ-bit prime number, G1 ,
G2, GT are cyclic groups of order q, e : G1 ×G2 → GT is a non-degenerate efficiently computable
bilinear map, and g1, g2 are generators of G1 and G2, respectively. In addition, our construction
use a pseudo-random function F : {0, 1}λ × {0, 1}2λ → G1. The algorithms of our FMCFE-SI
construction are defined as follows:

–
(
mpk,msk, (cki)

n
i=1

)
← Setup(λ,n) : On input of the security parameter λ and a pre-determined

number of clients n, acts as follows:
1. Run bilinear map generator (G1,G2,GT , g1, g2, q, e)← G(λ),
2. Choose a word-key wk ∈ {0, 1}λ uniformly at random,
3. For every i ∈ [n], sample ki and define cki = (wk, ki),
4. Set the master secret key msk = (cki)

n
i=1, and the public parameters mpk = (G1,G2,GT ,

g1, g2, q, e).
– ctt,i ← Enc(cki, si, t) : Given the client key cki, a set si, and a tag t, it works as follows:

1. Parse cki as (wk, ki),
2. For every w ∈ W, compute ctt,i[w] as follows:

• if w ∈ si, then set ctt,i[w] = Fwk(w|t)ki ∈ G1,
• if w /∈ si, then select a random value r ← Z∗q and set ctt,i[w] = gr1 ∈ G1.

– dkL ← Keygen(msk,L): On input of the master secret key msk and a list of clients L, compute
dkL as follows:
1. Parse msk as

(
cki = (wk, ki)

)n
i=1

and L as (i1, · · · , il),
2. For every i ∈ L, sample zi ← Z∗q such that

∑
i∈L

zi = 0,

3. For every i ∈ L, compute ati ← g
zik
−1
i

2 , and finally define dkL = (ati)i∈L.
– y ← Dec(dkL, t, CT ): Given the decryption key dkL, a tag t, and a |L|-list ciphertext CT ,

compute y as follows:
1. Parse dkL as (ati)i∈L and CT as (ctt,i)i∈L,
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2. If
∏
i∈L

e(ctt,i[w], ati) = 1 then append w to y, for every w ∈ W.

Correctness. For any integer n ≥ 2, any list L ⊆ [n] with size |L| ≥ 2, any tag t, any list of sets
(si)i∈L, and any w ∈ W, it holds that:∏

i∈L
e(ctt,i[w], ati) =

∏
i∈L

e(g
ŵt,iki
1 , g

zik
−1
i

2 ) =
∏
i∈L

e(g1, g2)ŵt,izi (6.1)

where
(
mpk,msk, (cki)

n
i=1

)
is the output of Setup(λ, n), the ciphertext ctt,i is the output of

Enc(cki, si, t) for any i ∈ L, the decryption key dkL = (ati)i∈L is the output of Keygen(msk,L),
and (zi)i∈L are random values from Z∗q (s.t.

∑
i∈L

zi = 0).

Therefore, if w ∈
⋂
i∈L

si, using Equation 6.1 we have:

∏
i∈L

e(g1, g2)ŵt,izi = e(g1, g2)

∑
i∈L

ŵt,izi
= e(g1, g2)

ŵt,i
∑
i∈L

zi
, (6.2)

and since
∑
i∈L

zi = 0, we have e(g1, g2)
ŵt,i

∑
i∈L

zi
= 1, and finally w belongs to the result set.

Moreover, if there is i, j ∈ L such that w ∈ si and w /∈ sj , then with a overwhelming probability
Fwk(w, t)ki 6= gr1, where r is a random value from Z∗q . It is easy to show that the probability that

e(g1, g2)ŵt,i
∑

i∈L zi = 1 (i.e., w ∈ Dec(dkL, t, CT )) is at most 1
q + negl(λ), where negl(λ) is some

negligible function.

ut

7 Security and performance analysis

In this section, we first prove that our FMCFE-SI construction of Section 6 is P-aIND-secure. Then,
we provide an asymptotic comparison between the schemes presented in Section 2. We also provide
a concrete evaluation of the effective components of the different algorithms in our construction.

7.1 Security analysis

In this subsection, we first review a well-known computational hardness assumption that it is used
to prove the security of our FMCFE-SI construction. Then, we prove the security of our construction
in accordance with the security definition given in Section 5.2 under passive corruption.

7.2 Computational hardness assumption

The Symmetric External Diffie-Hellman (SXDH) assumption, formalized in [18, 3, 11, 4], is a com-
putational hardness assumption that underlies the security of several pairing-based cryptosystems
such as [2, 6]. Our FMCFE-SI construction is proved secure under a standard variant of the SXDH
assumption.

Assumption 7.1 (DDH1) Decisional Diffie-Hellman assumption in G1 (DDH1) for the bilinear
map generator G states that it is hard to distinguish gam1 from a random group element gr1, when
given g1, g2, and random group elements ga1 and gm1 .

The dual of Assumption 7.1 is Decisional Diffie-Hellman assumption in G2 (denoted by DDH2),
which is identical to above assumption with the roles of G1 and G2 reversed. We say that Symmet-
ric External Diffie-Hellman (SXDH) assumption holds for the bilinear map generator G, if DDH
problems are intractable in both G1 and G2.
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7.3 Security proof

In this subsection, we prove that the proposed FMCFE-SI construction of Section 6 is P-aIND-secure.

Theorem 7.2 If F be a secure pseudo-random function, and the DDH1 assumption holds relative
to G, then our FMCFE-SI construction of Section 6 is P-aIND-secure.

Proof. We need to show that advantage of every PPT valid adversary A in the game ExpP-aINDA,Π (λ) is

negligible. Let ExpP-aINDA,$F (λ) denotes the game obtained from ExpP-aINDA,Π (λ) by replacing the pseudo-
random function Fwk with truly random function f . By the pseudo-randomness property of Fwk, it
holds that advantage of the valid adversary A in distinguish between ExpP-aINDA,Π (λ) and ExpP-aINDA,$F (λ)
is negligible. Therefore, to prove P-aIND security of the scheme Π, it is sufficient to show that the
advantage of every PPT valid adversary A in the game ExpP-aINDA,$F (λ) is negligible.

In the following, we describe an algorithm that is able to break the DDH1 problem, if a PPT
valid adversary A has a non-negligible advantage in winning the game ExpP-aINDA,$F (λ).

The challenger handles to simulate the random function f and key values (ki)i∈L as follows
(without knowing values m and a explicitly):

f(t, w) =

{
(gm1 )ft,w if t = t∗

g
ft,w
1 o.w.

, (7.1)

ki = a · a
′

i, (7.2)

where ft,w and (a
′

i)i∈[n] are the random values from Z∗q . In the following, we describe the challenger
in details:

- Initialization phase. Given a bilinear group description (G1,G2,GT , g1, g2, q, e) and a tuple
ga1 , g

m
1 , g

s
1 from the DDH1 problem, where s = am or s = z, the challenger acts as follows:

1. The challenger defines a set of the public parameters as mpk = (G1,G2,GT , g1, g2, q, e).
2. For every i ∈ [n], the challenger samples a

′

i from Z∗q , and defines cki = (f, a · a′i).
3. Finally, the challenger samples b← {0, 1}, defines the master secret key msk = (cki)i∈[n],

and initializes HS = [n] and CS = ∅.
- Pre-challenge query phase. In the following, we determine how the challenger handles the

adversary’s queries in the pre-challenge:
• Enc(i, si, t) : The challenger computes ctt,i as follows:

1. For every w ∈ W acts as follows:
- For pair (t, w), the challenger selects ft,w ← Z∗q , unless it has already been sampled.

- If w ∈ si, then the challenger computes ctt,i[w] = (ga1 )a
′
ift,w .

- If w /∈ si, then challenger selects a random value r from Z∗q and computes ctt,i[w] =
gr1.

2. Finally, the challenger returns ctt,i to the valid adversary A.
• Keygen(L) : The challenger computes dkL as follows:

1. The challenger selects a list of random values (zi)i∈L from Z∗q such that
∑
i∈L

zi = 0.

2. For every i ∈ L, the challenger computes ati = (g
a
′−1

i
2 )ri , where ri = a−1zi.

3. Finally, the challenger returns dkL = (ati)i∈L.

- Challenge query phase. For every i ∈ [n], upon receiving the challenge queries Enc(i, s∗i,0, s
∗
i,1, t

∗),
the challenger computes ctt∗,i as follows:
1. For every w ∈ W, the challenger acts as follows:

- For tuple (t∗, w), the challenger selects ft∗,w ← Z∗q , unless it has already been sampled.

- If w ∈ s∗i,b, then the challenger computes ctt∗,i[w] = (gs1)a
′
ift∗,w .

- If w /∈ s∗i,b, then challenger selects a random value r from Z∗q and computes ctt∗,i[w] =
gr1.

2. Finally, the challenger returns ctt∗,i to the adversary A.

Note that if s = am, the ciphertext is distributed properly according the scheme, and if s = z
then the challenger returns a ciphertext of a randomly distributed set element.

- Post-challenge query phase. The challenger replies to the adversary’s queries similar to the
pre-challenge phase.

ut
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7.4 Performance analysis

In this subsection, we first present an asymptotic comparison of the schemes presented in Section 2,
and then provide a concrete evaluation of our scheme in the terms of time and space complexity.

Table 3 shows an asymptotic comparison of the schemes presented in Section 2, for comput-
ing set intersection in a time-step, in terms of the total number of the clients, the storage and
communication overheads of various parties (for n clients that each hold a set of size m), and the
intersection time (for n sets each of size m). For each of these schemes, according to the scenario
models described, the storage and computation overheads are clear. However, in the following we
only investigate the asymptotic time complexity for these schemes.
The set intersection method used in [13] and [15] for 2-client setting. Let S1 and S2

be two sets with cardinality m1 and m2, respectively. Also, assume that m1 ≥ m2. We can use a
hash table H as follows. We first store all of the elements of set m2 in H. Then, for every element
w ∈ m1, we investigate if w is in H. If the answer is yes, we append w to our result set. Therefore,
the time complexity for these schemes can be achieved in O(m1).
The set intersection method used in [13] for multi-client setting. Suppose that S1, · · · , Sn
be n sets, each of size m. For each combination of set elements, i.e.; (w1, · · · , wn) ∈ S1× · · ·×Sn),
we must investigate the equality of these elements. Therefore, the required time complexity to do
this is O(mn).
Our set intersection method for multi-client setting. Similar to the previous case, we have
sets S1, · · · , Sn each of size m, except that m is the size of the universal set (instead of the size
of the set). As mentioned before, we consider the set intersection problem for multiple clients for
a relaxed version in which the size of the universal set is polynomial in the security parameter.
In our settings, the size of each set is extend to the size of the universal set. To evaluate the set
intersection, for every element of the universal set, we need to check whether this element is in all
client sets. Therefore, the required time complexity to do this is O(mn).

Remark 7.3 It should be noted that using our scheme ideas, we can straightforwardly modify the
scheme proposed in [13] for multiple clients (n ≥ 2) in such a way that it solves the relaxed set
intersection problem in polynomial time. However, this new scheme still provides the possibility to
evaluate the set intersection for n sets and not any arbitrary subset.

Table 3: An asymptotic comparison for a time-step

Construction #Client
Storage Communication Intersection

Time
Client Evaluator

Storage
Provider

Central
Party

Client Evaluator
Storage
Provider

Central
Party

Kamp et al. [13] n = 2 2m 0 O(1)
2m 0 O(1) O(m)

Lee et al. [15] n = 2 0 2m 0 2m

Kamp et al. [13] n ≥ 2 mn 0
n+O(1)

mn 0
n+O(1)

O(mn)
Our construction n ≥ 2 0 mn 0 mn O(mn)

n: the total number of clients, m: the maximum size of each set.

Since that these schemes have different security notions compared to our scheme, and also our
scheme is based on bilinear maps (which has a moderate overhead compared to other cryptographic
primitives), our goals of performance analysis are:

– Finding a good view of the execution time of the effective components of the different algorithms
in our scheme,

– Highlighting the execution time of the set intersection to solve the problem in the original and
relaxed cases.

We implemented our scheme in Java, and used the jPBC library [8] for implementation of a
Type-D curve (parameter d159) for the pairing setting. The evaluations are done on an Ubuntu
17.04 desktop PC with an Intel Processor 2.9 GHz. Table 4 shows a concrete evaluation of our
construction in terms of the latency and the output size related to: the setup algorithm, the
encryption algorithm (for every set element), the key generation algorithm (for each set involved
in the set intersection), the bilinear map computation in the decryption algorithm, and the equality
test in the decryption algorithm (for any two elements in GT ).



14 Mojtaba Rafiee

Table 4: A concrete evaluation of our construction.

Algorithm Setup (Setup)
Encryption (Enc)

(for every set element)
Key generation (Keygen)
(for every selected set)

Adjust
(map computation in Dec)

Compare
(for any two elements in GT )

Time (milliseconds) 1124 0.4 3 3 2× 10−4

Size (byte) 979 40 120 120 240

In the following, based on the execution times given in Table 4 and for a specific setting,
we investigate a concrete efficiency analysis of the set intersection problem in both original and
relaxed versions. Remember that in the relaxed version we assumed that the size of universal set
W is polynomial in the security parameter.

Suppose we have 5 clients that each of them hold a set of size 1000. In such a setting, for a
relaxed version using our FMCFE-SI scheme we need to spend approximately 15 seconds while for
the original version using the scheme proposed in [13] it is approximately 2× 108 seconds (about
6 years). As a result, this relaxation is necessary to obtain the desired security as well as applying
it in practical applications.

8 Conclusions and future works

In this paper, we first introduced a more flexible version of the MCFE schemes for set intersection,
called the MCFE-SI scheme, where an evaluator can learn the outcome of the set intersection for
every arbitrary subset of a pre-determined number of clients (instead of all clients). In this regard,
we formalized syntax and security notions of the FMCFE-SI schemes, and proposed a construction
for a relaxed version of the set intersection that satisfies these notions. Additionally, we also showed
that for practical use of the FMCFE-SI schemes, this relaxation is necessary.

Future contributions can be made in aspects such as: introducing the FMCFE-SI schemes that
satisfy security notions under static and dynamic corruptions, developing the FMCFE-SI schemes
for a decentralized setting in which the trusted party is removed and the clients work together to
generate the decryption keys, and providing the FMCFE-SI schemes with polynomial-time com-
plexity for the original problem and not the relaxed version.
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