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Abstract. We consider the problem of a client querying an encrypted
binary tree structure, outsourced to an untrusted server. While the server
must not learn the contents of the binary tree, we also want to prevent
the client from maliciously crafting a query that traverses the tree out-
of-order. That is, the client should not be able to retrieve nodes outside
one contiguous path from the root to a leaf. Finally, the server should not
learn which path the client accesses, but is guaranteed that the access
corresponds to one valid path in the tree. This is an extension of protocols
such as structured encryption, where it is only guaranteed that the tree’s
encrypted data remains hidden from the server.

To this end, we initiate the study of Iterative Oblivious Pseudoran-
dom Functions (iOPRFs), new primitives providing two-sided, fully ma-
licious security for these types of applications. We present a first, efficient
iOPRF construction secure against both malicious clients and servers in
the standard model, based on the DDH assumption. We demonstrate
that iOPRFs are useful to implement different interesting applications,
including an RFID authentication protocol and a protocol for private
evaluation of outsourced decision trees. Finally, we implement and eval-
uate our full iOPRF construction and show that it is efficient in practice.

1 Introduction

Structured encryption allows a data owner to encrypt data arranged in a data
structure and store it at an untrusted server [9]. The crucial property of struc-
tured encryption is that the data owner can later compute a special decryption
key for the server which permits the server to decrypt and parse a well defined
component of the data structure. A typical example for structured encryption is
data arranged in a graph, encrypted and outsourced to a server, and the owner
computing keys for decryption of sub-graphs. Computation of decryption keys is
possible despite the owner retaining only a constant-sized master key. Keyword-
searchable encryption is also a special-case of structured encryption where the
graph is composed of many linked lists, one for each keyword, containing all the
documents that match that keyword.



New Applications In this paper, we introduce a twist to the standard application
scenario of structured encryption. A third party, separate from the data owner
and server, which we call the client, can ask the data owner for permission to
retrieve a specific component of the owner’s data structure. The owner is said
to delegate access to this portion of his data to the client. However, the data
owner and client do not trust each other, and the client does not want to reveal
to the (potentially) malicious owner which part of the data structure they are
interested in. At the same time, the owner wants some guarantee that the client
is restricted to a specific component of their data structure and might even
put constraints on that component, e.g., where it begins, how many elements it
contains, etc.

We focus on tree data structures, but in return offer more powerful con-
finement control for the data owner than standard structured encryption. In
addition to decryption keys enabling decryption of a sub-tree for the client, the
data owner can also compute keys which enable the client to access only one
path, from the root of the tree to a leaf. Moreover, the client can ask to decrypt
a path in an iterative, adaptive fashion instead of querying the owner for the
whole path at once. Adaptive queries are necessary to support iterative scenarios
where the client will parse the tree node by node, obliviously asking the owner
to decrypt the next node in the tree only after fetching and decrypting the pre-
vious node. For example, after decrypting one node of a binary tree, the client
can obliviously query the owner for the decryption key of either the left or right
child, depending on the current node’s data content. At the same time, the data
owner wants to ensure that the client can only ask to decrypt one single node
which is a child of the current node, so that the client is confined to decrypting
exactly one path and cannot arbitrarily “jump around” in the data structure.

This new setting of mutually untrusted data owner, server, and client has
several interesting real-world applications. While we later focus on two specific
applications, one for RFID authentication and one for privacy-preserving de-
cision tree evaluation, we stress that techniques in this paper are general and
useful in other scenarios, too. As soon as data is tree-structured (XML data,
databases using B+ trees or hash maps, hash trees, search trees, heaps, . . . ) and
should be adaptively parsed, our techniques will be required.

Technical Challenges A straightforward, intuitive approach to providing such
adaptive queries might be for the data owner to apply an Oblivious Pseudo-
Random Function (OPRF) as the PRF to encrypt nodes. For a tree of height `,
owner and client then run ` instances of the OPRF such that the client always
learns the key for the next node on the path they are interested in, and the owner
learns nothing. To actually fetch the next node from the server in an oblivious
fashion, the client could employ standard PIR or OT protocols. However, this
approach is only secure against semi-honest clients that stick to the rule of asking
for the decryption key of one child node of the current node. The difficulty lies in
making parsing the tree structure secure against a fully-malicious client without
reverting to general, yet expensive techniques like maliciously secure two-party
computation and expensive general Zero-Knowledge Proofs.
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This Paper Consequently, we introduce the notion of iterative Oblivious Pseudo-
Random Functions (iOPRFs) and introduce first candidate constructions. An
iOPRF is an ` round two party protocol between a sender and a receiver. Its
definition captures the intuition that the receiver can adaptively query ` input
bits xi in ` rounds such that in the end they learn outputs PRFK(x1), . . . ,
PRFK(x1 . . . x`) for key K chosen by the sender, and the sender learns nothing.
If such an iOPRF is used to encrypt the nodes, then fetching a wrong node is
useless for the client, as they cannot decrypt it anyways.

Our new candidate iOPRF construction is based on a careful adaptation of the
PRF by Naor and Reingold [35]. We first augment the Naor and Reingold PRF
to become an iterative Pseudo-Random Function (iPRF) which has the property
that, for input strings with the same prefix, its generated output also shares the
same prefix. As a warm-up, we then use a similar trick as Freedman et al. [16]
to convert the iPRF to an iOPRF. This first iOPRF is OT-based and elegant,
yet it only offers one-sided security [21] against a malicious receiver and semi-
honest sender. We then present our main construction, an iOPRF which is secure
against malicious sender and malicious receiver. We achieve malicious security by
using efficient zero-knowledge proofs for DH-based statements over elliptic curves
and avoid costly maliciously secure oblivious transfer (OT). We implement and
benchmark our new iOPRF construction to show that it is practical and efficient.

In summary, our main contributions are:

– The definition of the new cryptographic primitives of iPRF and iOPRF which
extends repeated OPRF constructions with security constraints on the client’s
input.

– A candidate construction which is efficient and provably secure under the
Decisional Diffie-Hellman assumption in the standard model. To show its
practicality, we implement our construction and evaluate its performance.
The implementation is available for download [1].

– The integration of our primitive into several example applications, such as
RFID authentication and privacy-preserving decision tree evaluation.

2 Background and Related Work

Before introducing iPRFs, iOPRFs, and their constructions, we briefly revisit
seminal PRF and OPRF schemes and some useful security definitions. They will
be helpful in understanding the intuition behind iPRFs and iOPRFs.

PRFs and OPRFs While there exist many different PRFs [3, 11, 15, 18, 32, 35]
and OPRFs [4, 10, 16, 23, 25, 31], we present the DH-based techniques by Naor
and Reingold [35] and Freedman et al. [16], as our constructions are build on
their main idea.

Let G be a group of prime order p where the DDH assumption holds, and g
is a random generator of G. For a security parameter λ, we set |p| = poly(λ).

Construction 1 (Naor and Reingold Function). For any ` ∈ N, consider func-
tion family (ensemble) FK(x) : (Zp)`+1 × {0, 1}` → G, where key K is defined
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as sequence K = (α0, . . . , α`) of ` + 1 random elements αi from Zp. For any `
bit input x = x1 . . . x`, function FK is defined by

FK(x) = (gα0)
∏
xi=1 αi .

Function Fk holds the following important randomness property. We will
come back to it later in the proof of our own construction.

Definition 1 (Naor and Reingold Pseudo-Randomness). For any ` ∈ N,
function family FK(x) : (Zp)`+1 × {0, 1}` → G has pseudo-random output, iff
for every PPT distinguisher D, there exists a negligible function ε such that for
sufficiently large λ

|Pr[DFK(·)(1λ) = 1]− Pr[DR(·)(1λ) = 1]| = ε(λ),

where K
$← (Zp)`+1, and R is a randomly chosen function from the set of func-

tions with domain {0, 1}` and image G.

Theorem 1 (Theorem 4.1 of [35]). If the DDH-Assumption holds, then FK
from Construction 1 has pseudo-random output.

Observe that FK from Construction 1 is not a pseudo-random function. The
standard PRF textbook definition (which we omit here) requires indistinguisha-
bility of PRF output from output of a random function which FK does not
provide. However, FK can trivially be converted into a PRF. If Hλ is a family

of pairwise independent hash functions, and h
$← Hλ, then F̂K(·) = h(FK(·))

is a PRF by a standard argument of the leftover hash lemma [19]. We will use
the same argument later for our techniques and thus concentrate only on the
pseudo-randomness property of Definition 1.

Definition 2 (OPRF). Let FK be a pseudo-random function family. An OPRF
is a 2-party protocol between a sender and a receiver realizing the following ideal
functionality. A trusted third party receives a key K ∈ {0, 1}λ from the sender
and input x ∈ {0, 1}` from the receiver and sends FK(x) to the receiver.

Construction 2 (OPRFK(x) from [16]). During initialization, sender S chooses

key K = (α0, . . . , α`) by randomly sampling `+ 1 scalars αi
$← Zp. To evaluate

receiver R’s input x = (x1 . . . x`), parties perform the following steps.

1. S randomly selects (r1, . . . , r`), ri
$← Zp.

2. S and R engage in ` rounds of
(
2
1

)
-OT. In round i, the server’s input to OT

is (ri, ri ·αi), and the receiver’s input is xi. So, depending on xi, the receiver
gets either zi = ri or zi = ri · αi.

3. S sends ĝ = g
1∏`

i=1
ri to R.

4. R outputs OPRFK(x) = ĝ
∏`
i=1 zi .
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Freedman et al. [16] present a sketch for a proof of Construction 2. Effectively,
this OPRF assembles the Naor and Reingold function FK on input x in ` rounds.
So, if the DDH assumptions holds, and if the underlying OT is secure and does
not simultaneously leak ri and ri · αi at the same time, then Construction 2 is
a secure OPRF (in the semi-honest model).

3 iPRF and iOPRF Definition

In this paper we introduce the notion of iterative pseudo-random functions
(iPRF) and iterated oblivious pseudo-random functions (iOPRF).

Informally, an iPRF is a keyed function with bit strings x = (x1 . . . x`) of
length ` as input. It outputs ` bit strings vi, each of length λ. Besides that each
vi is indistinguishable from a randomly chosen bit string, the crucial property
which we target is that, for two bit strings x and x′ sharing the same length k
bit prefix, the first k outputs (v1, . . . , vk) of iPRF will be the same.

Similar to OPRFs, an iOPRF is a two party protocol, where a receiver gets
iPRFK(x) for their input x, and the sender with input key K does not learn
x. However, unlike standard OPRFs, iOPRFs run in ` rounds as required by
the application scenarios we consider. In round i, the receiver adaptively inputs
xi such that eventually they receive all ` outputs from iPRFK(x), where x =
(x1 . . . x`) is as specified during the ` rounds.

3.1 iPRF

Definition 3 (iPRF). For inputs x = (x1 . . . x`) ∈ {0, 1}` and randomly chosen
keys K = (K1, . . . ,K`) ∈ {0, 1}`·λ, an iterative pseudo-random function family
iPRFK(x) is a sequence of function families

iPRFK(x) = (f1K1
(x1), . . . , f `K1,...,K`

(x1 . . . x`)),

where each f iK1,...,Ki
(x1 . . . xi) : {0, 1}i·λ × {0, 1}i → {0, 1}λ is a pseudo-random

function family with key (K1, . . . ,Ki) from K and input (x1 . . . xi) from x. Con-
catenated output Vλ = v1|| . . . ||v`, vi = f iK1,...,Ki

(x1 . . . xi) is a family of random
variables (a probability ensemble) of bit strings of length ` · λ.

Definition 3 implies that each probability ensemble vi = {(vi)λ}λ∈N of length
λ bit strings is computationally indistinguishable from an ensemble ui describing
uniformly random bit strings of length λ. However, probability ensemble Vλ =
v1|| . . . ||v` is not indistinguishable from an ensemble of uniformly random bit
strings of length λ · `. Instead, if any two inputs x and x′ share the same prefix
of length i, then the first i outputs (v1, . . . , vi) of iPRFK(x) will equal those of
iPRF(x′).

Besides being PRFs, we do not require anything else from underlying func-
tions f i. Note that, in general, PRFs do not need to be length-preserving [17].
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// Let iPRF be an iterative pseudo-random function family

1 for i = 1 to ` do
2 R→ TTP : xi;
3 S → TTP: Ki; // K = (K1, . . . ,K`)
4 TTP→ R : vi such that (v1, . . . , v`) = iPRFK(x1 . . . x`);

5 end

Fig. 1. Ideal Functionality FiOPRF

Strawman Constructions Observe that the hashed Naor and Reingold PRF F̂K
from Construction 1 is not an iPRF and cannot easily be converted into an
iPRF. First, to support λ · ` outputs, λ for each input bit xi, one might try and
create an iPRF out of (F̂K1

(x1), . . . , F̂K1,...,K`(x1 . . . x`)), where K1 = α1, . . . ,
K` = α`. However, this is in fact not an iPRF, as exemplified by inputs like
x = (10 . . . 0). There, we have F̂K1

(1) = F̂K1,K2
(10) = . . . = F̂K1,...,K`(10 . . . 0),

so the output repeats starting from the 2nd invocation of F̂K . In general, for any
input x = PREFIX||0 . . . 0 ending with a sequence of zeros, F̂K(x) will be equal
to F̂K(PREFIX) in violation of Definition 3.

A simple construction from existing symmetric key PRFs for an iPRF could
be based on variable input length PRFs such as HMAC and a collision resis-
tant hash function H. For example, consider iPRFK(x) = (HMACH(K1)(x1), . . . ,
HMACH(K1||...||K`)(x1 . . . x`)). While this HMAC-based setup, and probably also
adoptions of others PRFs like PRG-based PRFs [18], might result in valid iPRFs,
we dismiss them in favor of our new construction Construction 3 (Section §4.1).
Construction 3 offers several advantages: first, it builds on the Naor and Rein-
gold pseudo-randomness which allows an elegant, formal security reduction from
DDH to the iPRF property of Construction 3. More importantly, its key advan-
tage is that you can use it as a building block to construct an efficient iOPRF
which moreover supports, delegation, verifiability, and malicious security as we
will see below.

3.2 iOPRF

Definition 4 (πiOPRF). Let iPRFK be an iterative pseudo-random function fam-
ily. An iterative oblivious pseudo-random function is an `-round probabilistic
protocol πiOPRF between a sender S with input key K ∈ {0, 1}λ·` and receiver R
with input bit string x = (x1 . . . x`) ∈ {0, 1}` with the following properties.

– Protocol πiOPRF realizes the ideal functionality FiOPRF shown in Figure 1. This
is a reactive functionality allowing queries from R in a total of ` rounds.
After ` rounds, R has received (v1, . . . , v`) = iPRFK(x), |vi| = λ, from a
trusted third party TTP. Sender S sends Ki in round i, but receives nothing
from FiOPRF.
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– For all adversaries A in the real world, there exists a simulator SimR in
the ideal world such that R’s view REALπiOPRF,A,R(x,K) in the real world is
computationally indistinguishable from R’s view IDEALFiOPRF,SimR(x)(x,K) in
the ideal world.

– For all adversaries A in the real world, there exists a simulator SimS in
the ideal world such that S’s view REALπiOPRF,A,S(K) in the real world is
computationally indistinguishable from S’s view IDEALFiOPRF,SimS (K) in the
ideal world.

The crucial difference of iOPRFs in contrast to regular OPRFs [4, 10, 16, 23,
25, 31] is that at the end of the protocol execution, R has received not one but
` PRF values vi with (v1, . . . , v`) = iPRF(x). For two inputs x and x′ with the
same length i bit prefix, values v1, . . . , vi will be the same. Note that receiver
R can specify their input adaptively during ` rounds. Before sending xi, R has
learned vi−1 from FiOPRF. Still, R receives output strings matching an iPRF,
so they cannot combine outputs from different iOPRF executions with different
input. For example, knowledge of iOPRFK(10 . . .) and iOPRFK(01 . . .) should
not allow R to learn anything about iOPRFK(11 . . .). Against a fully-malicious
receiver, this cannot be accomplished easily with regular OPRFs. One might try
and run ` instances of the OPRF, but the challenge is that one would have to
force R to link their input during the ith instance of the OPRF to the (i− 1)th

instance. Our iOPRF in Section §4.3 offers a solution to this challenge.

Verifiability An important aspect of OPRFs which we also require for iOPRFs is
that of verifiablity , see Jarecki et al. [25] for technical details. Essentially, verifi-
ablity implies that S proves to R that R’s output (v1, . . . , v`) has been computed
correctly. Towards providing malicious security, verifiability is especially impor-
tant when the iOPRF is run multiple times, as S could cheat by using different
keys for different protocol runs.

We refer to [25] for a treatment with more formal definitions in the context of
OPRFs which also hold for iOPRFs. For our constructions, we will prove that R’s
output has been correctly computed by using a key which S has been committed
to before.

Observe that the original Freedman et al. [16] OPRF (Construction 2) is not
maliciously secure and thus does not offer verifiablity. Even if OT as a building
block would be secure against a malicious adversary, it is unclear how to verify
that the sender has used the same key K for different OPRF protocol runs.

Efficiency The last crucial property we require is that iOPRFs are efficient with
respect to their communication and computational complexity. Efficiency is im-
portant in practice, as a client can perform q ≥ 1 queries to decrypt q paths
in the owner’s data structure. For each query, after all ` rounds, an iOPRF has
output ` bit strings of length security parameter, so the data exchanged between
S and R and the number of computations involved to realize the iOPRF should
be linear in `.
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The communication and computational complexities of an iOPRF are asymp-
totically optimal if, after any q queries, they are both in O(q · `). Our main con-
tribution (Construction 5, §4.3) has optimal communication and computational
complexities.

3.3 Delegation for iPRFs and iOPRFs

Informally, a PRF F with domain D is delegatable, if for some subset D′ ⊂ D
you can (efficiently) compute a sub-key K ′ from key K and another PRF F ′

from F , such that F ′K′ equals FK on all x ∈ D′, but is random everywhere else.
There exists a rich theory on delegatable PRFs, see Kiayias et al. [28] for details.

In the context of iPRFs, we are particularly interested in delegating iterative
PRF computation for strings x = (x1 . . . x`) sharing the same fixed prefix. That
is, a party P1 knowing key K specifies a prefix x∗ = (x∗1 . . . x

∗
i ), computes K ′ and

iPRF′, and gives (iPRF′,K ′) to party P2. Party P2 is then capable of computing
iPRFK(x) for all bit strings x having the same prefix x∗. At the same time,
for all bit strings x with a different prefix than x∗, K ′ does not help P2 in
distinguishing the first i outputs of iPRFK(x) from the output of random bit
strings. We formalize this intuition in Definition 5.

Definition 5. Let iPRF be an iterative pseudo-random function on length ` bit
input strings with random key K. We call an iPRF delegatable, iff

1. There exists a PPT transformation algorithm T , which on input (iPRF,K,
x∗1 . . . x

∗
i ) outputs (iPRF′,K ′), where iPRF′ : {0, 1}λ·(`−i) × {0, 1}`−i → {0,

1}λ·(`−i) and ∀x′ = (x′1 . . . x
′
`−i) : iPRF′K′(x

′) = iPRFK(x∗1 . . . x
∗
i x
′
1 . . . x

′
`−i).

2. For all PPT distinguishers D and randomly chosen K, there exists a negli-
gible function ε such that for sufficiently large λ we have

∀x∗ = (x∗1 . . . x
∗
i ),∀x = (x1 . . . x`), x1 . . . xi 6= x∗1 . . . x

∗
i :

|Pr[(v1, . . . , v`) = iPRFK(x) : D(1λ, iPRF′,K ′, x, v1, . . . , vi) = 1]−

Pr[(r1, . . . , ri)
$← Uλ : D(1λ, iPRF′,K ′, x, r1, . . . , ri) = 1]| = ε(λ),

where Uλ is the probability ensemble of random bit strings of length λ, K is
a randomly chosen key for iPRF, and (iPRF′,K ′) are output by T (iPRF,K,
x∗1 . . . x

∗
i ).

Along the same lines, a delegatable iOPRF is an iOPRF where the underlying
iPRF supports delegation.

Discussion Note that knowledge of K ′ and the first i values of the output (vi,
. . . , vi) of iPRFK(x) does permit P2 to enumerate all suffixes of strings x which
share the same length i prefix as x. At first, this property might look like a severe
restriction to the value of this type of delegation, but we will show in Section 6
that it has very interesting real-world applications.
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We implicitly require non-triviality (bandwidth efficiency [28]) of delegation.
For example, P1 could delegate the capability to evaluate all strings with prefix
x∗ by simply computing iPRFK(x) for all strings x with prefix x∗ and send-
ing the output to P2. So, tuple (iPRF′,K ′) should be smaller in size than the
concatenation of all strings with prefix x∗.

Finally, we point out that delegation can be extended from iPRFs to iOPRFs
in the natural way. If P1 gives (iPRF′,K ′) to P2, then P2 is also able to run a 2-
party protocol with another party P3, where P3 correctly receives iOPRF′K′(x

′) =
iPRF′K′(x

′) for input x′ with prefix x∗ while P2 learns nothing about x′.

4 New Constructions

We present our new constructions for both iPRF and iOPRF. To ease readability,
we omit an important technicality in the description and proofs: our iPRF and
iOPRF constructions do not output sequences of pseudo-random bit strings of
length λ, but pseudo-random elements of DDH group G. Yet, converting elements
to bit strings follows from a standard application of the leftover hash lemma [19].
As |p| ≥ λ, we have |G| ≥ 2λ, and we silently assume in the following that
each party implicitly hashes the output of iPRF and iOPRF using any pairwise
independent family of hash functions.

4.1 iPRF Construction

Construction 3 (Our iPRF). For any ` ∈ N, choose a random generator g and

a key K = (K1, . . . ,K`) by sampling ` pairs of random scalars Ki = (αi, βi)
$←

(Zp)2. For any ` bit input x = x1 . . . x`, we define function family iPRFK(x1, . . . ,
x`) = (f1(α1,β1)

(x1), . . . , f `(α1,β1),...,(α`,β`)
(x1, . . . , x`)), where

f i(α1,β1),...,(αi,βi)
(x1 . . . x`)

def
= g

∏
xi=1 αi

∏
xi=0 βi = g

∏i
j=1 α

xj
j ·β

1−xj
j .

Observe that you can also rewrite expression g
∏i
j=1 α

xj
j ·β

1−xj
j as g

∏i
j=1(αjxj+βj(1−xj)).

This representation of f i will be very useful during the presentation of our new
techniques later.

iPRF Analysis To show that Construction 3 is actually an iPRF according to
Definition 3, it is sufficient to show that each f i is still a pseudo-random function.

Theorem 2. If the DDH-Assumption holds, then for every i ≤ ` and for every
PPT distinguisher D, there exists a negligible function ε such that for sufficiently
large λ

|Pr[Df
i
(α1,β1),...,(αi,βi)

(·) = 1]− Pr[DR
i(·) = 1]| = ε(λ),

where the (α1, . . . , β1), . . . , (αi, βi) are chosen randomly as in Construction 3,
and Ri is a randomly chosen function from the set of functions with domain
{0, 1}i and image G.
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Proof. This follows because f i is essentially taking the output from the PRF in
Construction 1 and adding additionally adding extra random exponents, which
maintains its character as a PRF. We can show this via reduction.

First, fix any i ≤ ` and consider f i. We prove the claim by reduction, showing
that if D exists which can distinguish between f i and a random function Ri, then
we can build D′ which can distinguish between FK from Construction 1 (on i
bit inputs and i element keys) and a random function R (on i bit inputs). This
would violate FK ’s pseudo-random output property of Definition 1.

Assume that D exists that can violate the inequality from Theorem 2. We
create D′ as follows. First, D′ creates and stores a uniformly random sequence
(β1, . . . , β`) as in Construction 3. Additionally, it queries its oracle for g′ =
PRF (0) which is gα0 if it is interacting with the real instance. This will be given
to D as the generator so that D′ can use results from its oracle, which will always
include α0, to satisfy queries from D.
D′ then runs D as a subroutine. Each time D queries the oracle for an eval-

uation on input y ∈ {0, 1}i, D′ does the following:

1. Query their own oracle on input y and receive back z.

2. Calculate z′ = z
∏
yi=0 βi .

3. Return z′ to D.

Eventually, D′ outputs the same as D. If D′ is interacting with PRF FK , then
the z′ values D′ gives to D will be identical to function f i, due to D′ being able
to multiply in the extra β components. If D′ is interacting with a real random
function, then the responses they give to D will be distributed identically to a
random function, since z is the result of a random function and D′ is raising it
to fixed powers. Therefore, if D has a distinguishing advantage, so will D′. D′
has the same advantage that D does, rendering the reduction tight.

Delegation We achieve delegation for Construction 3 using the following trans-
formation algorithm T .

On input: (g, ((α1, β1), . . . , (α`, β`)), x
∗
1 . . . x

∗
i ),

T outputs: (g′, ((αi+1, βi+1), . . . , (α`, β`))),

where g′ = g
∏i
j=1 α

xj
j ·β

1−xj
j .

Observe that g′ is effectively a precomputed partial-iPRF for input (x∗1 . . . x
∗
i ).

So, if party P1 sends (g′, ((αi+1, βi+1), . . . , (α`, β`))) to P2, P2 can then com-
pute iPRF outputs (vi+1, . . . , v`) for any input string x = (x1 . . . x`) which has

(x∗1 · · ·x∗i ) as a prefix by computing vk = g′
∏k
j=i+1 α

xj
j ·β

1−xj
j .

Lemma 1. Construction 3 with transformation T is a delegatable iPRF.

Proof. We prove this by straightforward reduction. Let iPRFK be Construction 3

for inputs x of length ` + 1 bits, and let îPRFK̂ be Construction 3 for inputs
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x of length ` bits. Let prefix x∗ be any length ` bit string, and K and K̂ are
randomly chosen keys.

Assume there exists distinguisher D which can distinguish the first ` outputs
from iPRFK with a prefix different from x∗ with non-negligible probability from
` random bit strings.

We build distinguisher D′ who will be able to distinguish the ` outputs from

îPRFK̂ from ` randomly chosen bit strings.

1. If D queries for delegation of length ` prefix x∗, D′ will query their challenger
for x∗ and will get back z which is either (v1, . . . , v`) = iPRFK(x∗) or `
random bit strings (r1, . . . , r`).

2. D′ generates a random pair (α`+1, β`+1)
$← (Zp)2. It computes transforma-

tion (g′ = z, (α`+1, β`+1)) and sends it to D.

3. When D queries for x with a different prefix than x∗, D forwards x to their
challenger, forwards the response to D and outputs whatever D outputs.

If D′ is receiving the output of a îPRFK̂ , then the values it gives to D will
be identifically distributed to correct outputs of a delegated iPRF, with the
effective key of K concatenated with the random (α`+1, β`+1). If D′ is receiving
random strings (r1, . . . , r`), then D is also getting random strings. Therefore,
D’s view is distributed identically to its distinguishing game. If D has a non-
negligible advantage in distinguishing, then D′ will have the same advantage in
distinguishing iPRF output from random strings.

4.2 Warm-Up: iOPRF with One-Sided Security

Our iPRF from Construction 3 can be computed as an iOPRF with only one-sided
security, i.e., malicious receiver or semi-honest (or malicious, but only focusing
on violating privacy [20]) sender, using a similar approach as the OPRF by Freed-
man et al. (Construction 2). Let OT(b, y0, y1) denote any

(
2
1

)
oblivious transfer

protocol which is one-sided simulatable [20] or even maliciously secure [2, 6].
Sender S holds y0 and y1 from Zp, receiver R holds b ∈ {0, 1}, and R oblivi-
ously retrieves yb from S. Let x = (x1, . . . , x`) be R’s input. Our first OT-based
construction for a πiOPRF protocol gives an iOPRF with one-sided security and
works as follows.

Construction 4 (One-Sided Secure iOPRF).

– S generates ` random scalars ri
$← Zp.

– For each 1 ≤ i ≤ `, R and S execute OT(xi, riβi, riαi), and R stores the
result as zi.

– S sends to R the sequence C = (C1, . . . , C`) where Ci = g
1∏i

j=1
rj .

– R recovers iPRF output sequence (v1, . . . , v`) by calculating vi = C
∏i
j=1 zj

i .

11



Correctness: For all 1 ≤ i ≤ `, we have

vi = C
∏i
j=1 zi

i = g
1∏i

j=1
rj
·
∏i
j=1 zj

= g
1∏i

j=1
rj
·
∏i
j=1(αjrj)

xj (βjrj)
1−xj

= g
∏i
j=1 α

xi
j β

1−xi
j .

(1)

To prove security for Construction 4, we could make a similar argument as
Freedman et al. [16], but rely on a one-sided simulatable OT. However, we refrain
from presenting more details, as this iOPRF anyways provides only one-sided
security and conversion to malicious security would be difficult. One would need
to prove correct computation of the Ci and expensive maliciously secure OT with
ZK proofs that the sender’s input (riβi, riαi) matches previous commitments to
αi and βi. This is very different from standard committed or verifiable OT [13,
24, 29].

4.3 Construction 5: DH-based iOPRF

We now present a new πiOPRF protocol which realizes the ideal iOPRF function-
ality FiOPRF from Figure 1.

High-Level Intuition In round i of the ` rounds, sender S will receive two
ciphertexts Vi and Di from receiver R. During the course of the protocol, one of
these ciphertexts will contain the iOPRF output and one acts as a “dummy”, to
keep S from learning input bits xi of R. They are interchanged between rounds
depending on the input bits.

For each round, using the ith round’s keys (αi, βi), S will then “apply” αi to
Vi and βi to Di, and send the results back to R. In preparation for the next round
(i+ 1), if xi+1 6= xi, R will swap Vi and Di for the next round. After ` rounds,
V` will have the keys applied which correspond to the input bits of R, and D`

will have the complementary combination of keys applied. V0 is initialized as
an encryption of 1, so V` will contain the correct iOPRF output, whereas D0 is
initialized as an encryption of 0 so it will not contain any information.

We now turn to technical details.

Preliminaries Let there be two generators g1, g2 of prime order p group G where
the DDH assumption holds. Neither party should know the discrete log of one
generator gi to the basis of the other generator gj 6=i, which is true with high
probability if they are chosen at random.

Elgamal Encryption We will use additive Elgamal encryption with private keys
sk ∈ Zp and public keys pk = gsk1 . Ciphertext c to encrypt m ∈ Zp is c = (c[0],

c[1]) = (gr1, pk
r · gm2 )← Encpk(m), where r

$← Zp.

Pedersen Commitments A Pedersen commitment com(m) ∈ G to message m ∈
Zp is defined as com(m) = gr1 · gm2 , where r

$← Zp. To open com(m), reveal
tuple (m, r). Pedersen commitments are perfectly hiding and computationally
binding.
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For some input string x = (x1 . . . x`), we define the output of πiOPRF for the

receiver as (v1, . . . , v`) with vi = g
∏i
j=1(αjxj+βj(1−xj))

2 .
We describe details of Construction 5 by its formal πiOPRF interface (Defini-

tion 4), i.e., first its initialization and then its iterative processing.

πiOPRF Initialization Sender S randomly chooses secret key K = ((α1, β1),

. . . , (α`, β`)), (αi, βi)
$← (Zp)2. Receiver R computes a random Elgamal private

key sk
$← Zp and public key pk = gsk1 , and sends pk to S. Receiver R proves

knowledge of sk using a standard Schnorr ZK proof of knowledge (see §4.4).
Receiver R computes V0 ← Encpk(1) and D0 ← Encpk(0), sends them to S

and proves that these are encryptions of 1 and 0 (see §4.4 below).

πiOPRF Iterative Processing in ` Rounds In round i ∈ {1, . . . , `}, for S’
input bit xi:

1. Receiver shuffles:
(a) For input bit xi, R computes Pedersen commitment com(xi) and proves

that xi ∈ {0, 1} (see §4.4). Similarly, R computes com(1−xi) and proves
that (1 − xi) ∈ {0, 1} (see §4.4). Finally, R proves that the sum of
plaintexts behind com(xi) and com(1− xi) equals 1 (see §4.4).

(b) Receiver R chooses r, r′, r′′, r′′′
$← Zp and computes Elgamal ciphertexts

ci = (gr1 · Vi−1[0]xi , pkr · Vi−1[1]xi)

c′i = (gr
′

1 · Vi−1[0]1−xi , pkr
′
· Vi−1[1]1−xi)

di = (gr
′′

1 ·Di−1[0]xi , pkr
′′
·Di−1[1]xi)

d′i = (gr
′′′

1 ·Di−1[0]1−xi , pkr
′′′
·Di−1[1]1−xi)

and sends (ci, c
′
i, di, d

′
i) to S.

(c) Receiver R proves correctness of the above computations in ZK. Specifi-
cally, (ci, c

′
i, di, d

′
i) result from correct exponentiation with xi (or 1−xi)

from com(xi) (or com(1− xi)), and multiplication with a random power
of g1 and pk, i.e., re-randomization (homomorphic addition of encryption
of 0). See §4.4 below for details.
Both parties compute

Ti = (ci[0] · d′i[0], ci[1] · d′i[1]) Ui = (c′i[0] · di[0], c′i[1] · di[1]).

In the first round, after this step, T1 is an encryption of 1 and U1 is an
encryption of 0 iff x1 = 1. Iff x1 = 0, then T1 is an encryption of 0 and U1

is an encryption of 1. However, sender S does not know which of the two is
the case.

2. Sender commits: Sender S computes Pedersen commitments (com(αi),
com(β`)), sends them to R, and proves knowledge of plaintexts in ZK (see
§4.4).
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3. Sender computes PRF: For r, r′
$← Zp, S computes the two Elgamal

ciphertexts

Xi = (gr1 · Ti[0]αi , pkr · Ti[1]αi) Yi = (gr
′

1 · Ui[0]βi , pkr
′
· Ui[1]βi),

sends (Xi, Yi) to R, and proves correct exponentiation (scalar multiplication
of plaintexts) with αi and βi coming from previous commitments com(αi),
com(βi) and re-randomization of ciphertexts (see §4.4).

4. Receiver shuffles back: For r, r′, r′′, r′′′
$← Zp, R computes

Pi = (gr1 ·Xi[0]xi , pkr ·Xi[1]xi) P ′i = (gr
′

1 ·Xi[0]1−xi , pkr
′ ·Xi[1]1−xi)

Qi = (gr
′′

1 · Yi[0]xi , pkr
′′ · Yi[1]xi) Q′i = (gr

′′′

1 · Yi[0]1−xi , pkr
′′′ · Yi[1]1−xi)

and sends (Pi, P
′
i , Qi, Q

′
i) together with ZK proofs of correct computation

(see §4.4) to S.

Both S and R compute Vi = (Pi[0]·Q′i[0], Pi[1]·Q′i[1]) and Di = (P ′i [0]·Qi[0],
P ′i [1] ·Qi[1]).

In round i, after this step, Vi is an encryption of iPRFK(x1, . . . , xi), and Ui
is an encryption of 0. When computing Ti+1 and Ui+1, these values will be
used instead of the encryptions of 0 and 1 and the iterative computation of
the PRF continues. Since both parties compute Vi and Ui, R cannot cheat
and substitute for a value of his choice.

5. Receiver R computes and outputs one iPRF value vi = Vi[1]
Vi[0]sk

.

Discussion Observe that, in the last step, R can never decrypt additively homo-
morphic Elgamal ciphertext (Vi[0], Vi[1]) and thus compute an αi or βi. As αi
or βi are in the exponent and due to the hardness DLOG, R can only compute
vi = g...αi...2 or vi = g...βi...2 .

If R wants to run several execution of Construction 5 and wants that S uses
the same key, then R will verify that commitments sent by S in Step (2) do not
change between executions. This leads to verifiability.

Also note that communication complexity and computational complexity are
both in O(`) per query, i.e., they are asymptotically optimal.

4.4 Security Analysis

We prove security of Construction 5 using simulation in the standard model.
The simulation uses several efficient Zero-Knowledge Proofs of Knowledge hy-
brids introduced first. To ease readability, we actually present Honest-Verifier
Zero-Knowledge (HVZK) versions of the proofs, but one can convert these to
maliciously verifier Zero-Knowledge proofs of knowledge using the following two
general transformations [21]. We stress that we have evaluated and benchmarked
the full malicious verifier ZK proofs of knowledge in Section 5, i.e., including the
two transformations.
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Zero Knowledge (instead of Honest-Verifier ZK) All our efficient ZK
proofs below are three-move (“Sigma”) ZK proofs. Recall that a three-move ZK
proof comprises messages (t, e, s), where first message t is a commitment from
P sent to V , e is V ’s challenge sent to P , and s is the final message sent from
P to V .

To make these proofs zero-knowledge instead of only HVZK, we send an
additional message before first message t of the regular three-move proof. In this
new first message, V sends a Pedersen commitment com(e) = gr1 · ge2 to their
random challenge e to V . The proof then continues with V sending their regular
commitment t of the regular three-move proof and V opening com(e) by sending
(e, r). If com(e) matches (e, r), P finally sends last message s of the regular proof.
Verifier V accepts, if t and s of the regular proof match e.

This technique allows a simulator Sim simulating P to cheat in the ZK proof.
More specifically, after receiving com(e), Sim internally computes a valid ZK
proof (t′, e′, s′), assuming a random challenge e′. Sim sends t′ to V and receives
(e, r). If (e, r) matches com(e), Sim rewinds V to the point after V has sent
com(e). Knowing e, Sim computes a t and s, such that (t, e, s) will be accepted
by V . How exactly t and s are chosen depends on the statement we want to prove,
but are typically straightforward for the Schnorr-style proofs we use below. We
show an example in §4.4.

Witness Extraction for Pedersen Commitments To transform our ZK
proofs to ZK proofs of knowledge, we rely on the extractability of commitments.
Pedersen commitments are trapdoor commitments which means that a party
knowing a trapdoor ρ can open a commitment com(·) to any plaintext they
want (equivocable). We use this property for witness extraction in three-move
ZK proofs as follows.

Before starting the actual ZK proof by the first message t from the prover to
the verifier, we send the following two messages.

1. Prover P sends to verifier V : ĝ = gρ1 for random ρ
$← Zp.

2. Verifier V will use this ĝ instead of g2 for the computation of the commitment
to challenge e. That is, V computes and sends back commitment com(e) =
gr1 · ĝ e for their random challenge e ∈ Zp as in the previous section.

The ZK proof then continues as usual with P sending t and V opening com(e)
by sending (e, r). If (e, r) match com(e), P sends final message s and ρ to V .
Only if both is correct, the last ZK proof message s matches P ’s commitment t
and challenge e, and ρ matches ĝ = gρ1 , V accepts.

This setup enables a simulator Sim simulating V to extract the witness from
P . After receiving trapdoor ρ from P , Sim rewinds P until after the point were
P sends t to V . Knowing trapdoor ρ, Sim can open com(e) to any e′ 6= e they
want by solving r+ ρ · e = r′+ ρ · e′ for r′, i.e., they compute r′ = r+ ρ · (e− e′).
Running two executions of the ZK proof with the same input and messages from
P but different challenges extracts the witness of the ZK proof. Details on which
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e to send in each execution again depend on the exact three-move ZK proof, but
are typically obvious. We refer to Hazay and Lindell [21] for more details.

In conclusion, these two transformation will render our three-move ZK proofs
below into (fully-maliciously secure) ZK proofs of knowledge. We name each
proof below with a hybrid which we will use in the main proof later. So, for
example, the hybrid for the proof of encryption is called f enczk .

f enc
zk : Proof of Encryption/Commitment to m To prove that an encryption
c = (c[0], c[1]) = (gr1, pk

r)← Encpk(0) is an encryption of m = 0, P proves that
(g1, c[0], pk, c[1]) is a DDH tuple. You can prove that tuple (u1 = g1, u2 = gr1,
u3 = gsk1 , u4 = gsk·r1 ) is a DDH tuple using the Chaum and Pedersen [12] protocol
as follows.

1. P sends (t1 = uρ1, t2 = uρ3) for ρ
$← Zp to V .

2. V sends e
$← Zp to P .

3. P sends s = ρ+ e · r to V .
4. V accepts if us1 = ue2 · t1 and us3 = ue4 · t2.

This proof has an important property. Instead of showing that some cipher-
text encrypts m = 0, we can easily generalize it to show encryption of arbitrary

m. Specifically, we set c′[1] = c[1]
gm2

and run the proof with m = 0 for new Elgamal

ciphertext (c[0], c′[1]).
Finally, observe that Pedersen commitments are similarly structured as the

right-hand side c[1] of an Elgamal ciphertext, just without the secret key. Thus,
to prove a Pedersen commitment com(m) to m, parties divide com(m) by gm2
and run a Schnorr proof for r used in the commitment (P sends t = gρ1 , V sends

e, P sends s = ρ+ e · r, and V accepts if gs1
?
= com(m)e

gm2
· t.)

fpop
zk : Proof for Knowledge of Plaintext For com(m) = gr1 · gm2 , prover P

can prove that they know m.

1. P sends t = gρ11 · g
ρ2
2 for ρ1, ρ2

$← Zp to V .

2. V sends e
$← Zp to P .

3. P sends s1 = ρ1 + e · r and s2 = ρ2 + e ·m to V .

4. V checks whether gs11 · g
s2
2

?
=com(m)e · t.

fbit
zk : Proof of Plaintext Bit For a commitment com(xi), prover P can prove

that xi is a bit, i.e., xi ∈ {0, 1}. This is an application of the one-out-of-two (OR)
technique [22]. Essentially, P proves that either xi = 1 which implies proving
that com(xi) equals gr11 · g2 for some r1, or xi = 0 which implies proving that
com(xi) equals gr21 for some r2. Proving that com(xi) equals gr11 · g2 is equivalent

to proving that com(xi)
g2

equals gr11 .
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P will prove that they know (I) an r such that gr1 = com(xi)
g2

or (II) an r

such that gr1 = com(xi). These are essentially two standard Schnorr proofs. The
trick is that P chooses e1 and e2 such that, for the verifier’s challenge e, we
have e = e1 + e2. Prover P proves knowledge of r1 for (I) using challenge e1
and knowledge of r2 for (II) using challenge e2. Thus, P can choose either e1
or e2 before sending their first message of the ZK proof and cheat in one proof.
Without loss of generality, let xi = 1, so P will cheat in proof (II). This works
as follows.

1. P sends t1 = gρ11 and t2 = com(xi)
−e2 · gs21 , where ρ, s2

$← Zp, to V .

2. V sends e
$← Zp to P .

3. P calculates e1 = e− e2, sends e1, e2, s1 = ρ1 + e1 · r, and s2 to V .

4. V checks e
?
=e1 + e2, gs11

?
=
(

com(xi)
g2

)e1
· t1 and gs21

?
=com(xi)

e2 · t2.

f sum
zk : Proof of Sum of Plaintexts equals 1 For commitments com(x) =

gr1 · gx2 and com(1− x) = gr
′

1 · g1−x2 , P shows that the sum of plaintexts equals 1.

1. P and V compute com(1) = com(x) · com(1− x) = gr+r
′

1 · g2.
2. P proves that com(1) is a commitment to 1 (see §4.4).

fExR
zk : Proof of Exponentiation and Re-Encryption One can efficiently

prove correctness of combinations of linear operations in one step. We present
the example for the correctness of exponentiation of two elements (A,B) from
group G with a committed value x and then multiplying Ax by gr

′

1 and Bx by
pkr

′
from our protocol. So, this can be used to prove correct exponentiation

(homomorphic scalar multiplication) of an Elgamal ciphertext by a previously
committed scalar x and subsequent re-randomization of the result (homomorphic
addition of Elgamal encryption of 0).

Specifically, given two group elements (A,B) and commitment com(x) =
gr1 · gx2 , prove correctness that (C = gr

′

1 · Ax, D = pkr
′ · Bx) are the result of

exponentiation with x and multiplying with gr
′

1 and pkr
′
, r′

$← Zp, known to P .

1. P sends t1 = gρ11 ·Aρ2 , t2 = pkρ1 ·Bρ2 , t3 = gρ31 · g
ρ2
2 to V .

2. V sends e
$← Zp to P .

3. P sends s1 = ρ1 + e · r′, s2 = ρ2 + e · x, and s3 = ρ3 + e · r to V .

4. V checks whether gs11 ·As2
?
=Ce ·t1, pks1 ·Bs2 ?

=De ·t2, and gs31 ·g
s2
2

?
=com(x)e ·t3.

Proof of Construction 5 We now turn to our main proof, showing that Con-
struction 5 is a secure iOPRF. We prove in the hybrid model, using ZK hybrids
with their abbrevations as introduced in the previous section. Recall that, in
the hybrid model, ZK hybrids are run by separate trusted third parties. Yet,
during simulation, it is the simulator who takes the role of the TTP and thus
automatically gets the adversary’s inputs and can also cheat, see Lindell [33] for
details.
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Theorem 3. Assume that Construction 3 is an iterative pseudo-random func-
tion family iPRFK(·). Then, Construction 5 is an iOPRF, realizing functionality
FiOPRF in the

(
f enczk , f

pop
zk , fbitzk , f

sum
zk , fExRzk

)
hybrid-model.

Proof. First, observe that Construction 5 is correct. Let x be the receiver’s input,
and K the key chosen by the sender. If both sender and receiver are honest, then
the sender outputs nothing, and the receiver outputs (v1, . . . , v`) = iPRFK(x).
Thus, we focus on proving security and build simulators for two cases: one where
S is compromised, and one where R is compromised.

We will show that a simulator Sim can be constructed from both the per-
spective of S and R such that the adversary A’s view is indistinguishable from
real executions of the protocol. Thus we show that neither a compromised S
nor a compromised R learn anything from the real execution of Construction 5
beyond what is specified by the ideal functionality in Figure 1.

In our presentation below, we will use the term “Sim aborts” as a shorthand
for Sim sending abort to the TTP, simulating its party aborting to A, and then
outputting whatever A outputs.

In both cases below, the simulator will faithfully act as a verifier for ZKPs
when interacting with A as necessary, aborting if the proof does not verify cor-
rectly. We omit these messages for readability since they require no special knowl-
edge or behavior from the simulator. Our strategy will broadly be to:

– Replace Elgamal ciphertexts sent by R with encryptions of zero (arbitrar-
ily chosen). Due to Elgamal’s IND-CPA property, these ciphertexts will be
indistinguishable from the real protocol for A. Since S reveives no output
from the real execution of the protocol, ciphertexts do not have to conform
to any expectations.

– Replace computation of Xi and Yi by S in the real protocol with an en-
cryption of the output of the iOPRF received from the TTP. Sim does not
know Ki = (αi, βi) and so cannot faithfully compute Xi or Yi, but it knows
from the TTP what output vi should. Consequently, Sim crafts these values
accordingly to simulate the real protocol and “cheat” in ZKPs where Sim
acts as the prover (see, e.g., § 4.4).

Together, this will allow the simulator to generate a view which is indistin-
guishable from a real execution, thus proving that our construction is secure
according to Definition 4.

Note that also for all ZKPs with Sim as a prover, Sim acts as the TTP and
“cheats” to convince A. In many instances, Sim could honestly prove to A, so
“cheating” is not really. Yet, for ease of exposition, we assume that all proofs
are simulated this way.

Case 1: We assume that A has compromised S and build simulator Sim taking
the role of S in the ideal world, internally simulating a receiver to A which it
only has black box access to.

Sim starts A and generates an Elgamal key pair (sk, pk), sends pk to A, and
simulates f enczk . Also, Sim generates V0 = Encpk(0) and D0 = Encpk(0), sends
them to A, and simulates f enczk .
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During the ith round,

1. Sim sends two independent commitments of zero and simulates fbitzk and f sumzk .
2. Sim also computes and sends (ci, c

′
i, di, d

′
i), all encryptions of zero, to A and

simulates fExRzk .
3. Sim receives (com(αi), com(βi) from A. Sim also receives (αi, βi) together

with random coins from fpopzk sent from A to fpopzk . If these do not match the
commitments, Sim aborts.

4. Sim receives (Xi, Yi) from A as well as (α′i, β
′
i) and random coins from fExRzk .

If αi 6= α′i or βi 6= β′i or if random coins do not match computations specified
in Construction 5, then Sim aborts. If they match, Sim forwards Ki = (αi, βi)
to the TTP.

5. Sim sends Pi, P
′
i , Qi, Q

′
i, encryptions of zero, to A and simulates fExRzk .

Sim outputs what A outputs.
During simulation, whenever A aborts, Sim also aborts.

Indistinguishable views In the protocol, there are three types of messages that
Sim sends toA: Pedersen commitments, Elgamal ciphertexts, and ZKP messages.
All of the Elgamal ciphertexts are freshly encrypted (or re-encrypted) using fresh
randomness. They are thus indistinguishable from any other Elgamal encryption,
regardless of any a priori knowledge that A might have. As stated above, the
ZKPs are simulated and are thus also indistinguishable from a real execution.
Finally, the commitments are perfectly hiding and are never revealed during
the protocol, so they are also indistinguishable from the commitments of a real
execution.

Case 2: We assume that A has compromised R and build simulator Sim as
follows.

Sim starts A and receives pk from A and (sk′, pk′) from f enczk which A has

sent. If pk 6= pk′ or gsk
′

1 6= pk, Sim aborts. Also, Sim receives (V0, D0) from A
and A’s random coins from f enczk . If random coins do not match encryptions of 1
(V0) or 0 (D0), Sim aborts.

During the ith round,

1. Sim receives (com(xi), com(1−xi)) from A and (x′i, 1−y′i) with the commit-
ments’ random coins from fbitzk . If x′i or 1−y′i and random coins do not match
commitments, Sim aborts. In the same way, Sim receives z and a random coin
for the commitment from sum hybrid f sumzk . If z 6= 1 or z 6= x′i + 1 − y′i or
the random coin does not match the commitment, Sim aborts. If everything
matches, Sim knows A’s input (xi, 1− xi).
Sim receives (ci, c

′
i, di, d

′
i) from A and random coins and (x′i, 1 − y′i) from

fExRzk . If (x′i, 1 − y′i) do not match the ones from the previous step or if any
of the computations do not match (ci, c

′
i, di, d

′
i), Sim aborts.

Sim computes (Ti, Ui) as in Construction 5.

2. Sim selects random (α′i, β
′
i)

$← (Zp)2, commits to them, sends them to A,
and proves knowledge of (α′i, β

′
i) using fpopzk .
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Table 1. Cost breakdown

`
CPU (ms) Communication (kB) Total runtime (ms)

Sender Receiver Sender Receiver LAN1 WAN1
5 44 41 11.7 26.1 171 2425
10 88 81 23.2 51.4 325 4571
15 126 123 34.6 76.6 512 6707
20 174 162 46.1 101.9 679 8873
25 218 202 57.5 127.1 836 10987
30 267 248 69.0 152.4 968 13128

3. Sim queries the TTP for x′i and gets back vi. If xi = 1, Sim sets Xi ←
Encpk(vi) and Yi ← Encpk(0). If xi = 0, Sim sets Xi ← Encpk(0) and Yi ←
Encpk(vi). Sim sends (Xi, Yi) to A and cheats in fExRzk , convincing A that (Xi,
Yi) are the result of raising Ti and Ui to α′i and β′i and then re-encrypting.

4. Finally, Sim receives (Pi, P
′
i , Qi, Q

′
i) from A and random coins and (x′i, 1−y′i)

from fExRzk . Again, Sim verifies correct computation of (Pi, P
′
i , Qi, Q

′
i) and

whether (x′i, 1 − y′i) match previously received values. If anything does not
match, Sim aborts.
Sim computes (Vi, Di) as in Construction 5.

Sim outputs what A outputs.
During simulation, whenever A aborts, also Sim aborts.

Indistinguishable views As before, the commitments are perfectly hiding and are
not revealed and so are indistinguishable from commitments of a real protocol
execution. ZKPs are also simulated as before and are indistinguishable for the
same reason.

The only part that is different in this case is the returned values of Xi and Yi,
which have to decrypt to the correct output of the iOPRF in order to match the
real protocol. Fortunately, Sim can query the TTP for the correct output and
generate encryptions that match that output. In the real protocol, S reencrypts
Xi and Yi before returning them to R, and so they are indistinguishable from
the fresh encryptions generated by Sim.

As R verifies whether S sends the same commitments to (αi, βi) during multiple
executions of Construction 5, we trivially achieve verifiability.

5 Implementation

To show practicality of Construction 5 including its ZK proofs, we have imple-
mented and benchmarked its performance in several realistic network settings.
We stress that our implementation is a full implementation of Construction 5,
with all Zero-Knowledge Proofs of Knowledge of Section 4.4, i.e., including wit-
ness extractability and security against fully malicious verifiers. Sender and re-
ceiver instances communicate via standard TCP sockets.
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Fig. 2. Total runtime of Construction 5

Our implementation is done in C and uses OpenSSL for elliptic curve oper-
ations on NIST curve secp224r1. The source code is available for download [1].
We benchmark our implementation on a 4.1 GHz Core i5-10600k. As network
latency is typically the bottleneck in multi-round secure two-party computation
protocols, we benchmark Construction 5 in different settings with different net-
work latencies. To precisely control network latency between sender and receiver
instances, we use Linux’ standard tc-netem tool. Figure 2 shows benchmark
results averaged over 50 executions, and Table 1 presents the cost breakdown.

We measure total run time for values of ` ranging from 1 to 32. Note that
` = 32 would support binary tree data structures with 232 different paths and a
total of 233 − 1 (≈ 8.6 billion) nodes. We vary latency assuming LAN scenarios
with standard Gigabit Ethernet (0.5 ms RTT) or WiFi (2 ms RTT) and WAN
scenarios for intra-continental communication (30 ms RTT) and inter-continental
communication (70 ms RTT) [36]. We also show an evaluation with 0 ms RTT,
however even this number is still dominated by the TCP communication over-
head. We found that the computation alone in our protocol, including all EC
computation and ZKPs, is approximately 3 ms per iOPRF iteration.

Each iOPRF evaluation for a tree data structure with 220 nodes needs about
170 ms of CPU time per party with our (unoptimized) implementation. As soon
as we introduce higher latency, CPU time contributes very little to total run-
time and communication latency becomes the main performance obstacle. For
example, in the WAN1 scenario with intra-continental communication between
sender and receiver, total runtime is about 9 s of which less than 4% is spent
with actual computation, and the remainder is consumed by network latency.
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We conclude from Figure 2 that even for large values of ` and for high latency
network connections, Construction 5 has only a few seconds of runtime which is
practical for many scenarios.

Discussion: Performance of related approaches iOPRFs must be interactive, re-
quiring an interaction per iteration, and interactivity turns out to be the runtime
bottleneck. Yet, we argue that such interaction is still more efficient than alter-
natives.

For example, we could construct a single round iOPRF protocol using fully
homomorphic encryption (FHE). However, we would then have to evaluate `
one-way functions inside the FHE circuit and prove their correct computation.
We expect such computations would be too long to be practical even on very
powerful hardware. Another alternative would be general cryptographic primi-
tives which allow iterative one-way functions. Recent Multi-Linear Maps could
be used for this purpose. However, there exist no secure multi-linear map for
generic constructions, let alone efficient ones. Lastly, the sender could compute
the iPRF for all possible inputs by the receiver and the receiver could select
one using oblivious transfer. Another example of obliviously evaluating such a
function are distributed point functions [5] which would avoid oblivious transfer.
However, in both cases the server would need to evaluate 2` functions rendering
this approach quickly infeasible. In conclusion, our iOPRF avoids the pitfalls of
non-interactive design alternatives providing practical performance.

Finally, one could envision realizing an iOPRF using general maliciously MPC
frameworks such as MP-SPDZ [27] or efficient maliciously secure 2PC [37]. How-
ever, it is sender-receiver interactivity which turns out to be the main challenge.
Evaluation of an arithmetic (SPDZ) or Boolean (2PC) circuit cannot be stopped,
its output revealed, and then continued with new input. Instead, sender and re-
ceiver would need to securely evaluate ` different circuits. After evaluating circuit
i, the receiver learns the ith output, and specifies the (i + 1)st input, and both
parties evaluate another circuit. Inside the circuit, the sender and receiver would
need to somehow prove to each other that they continue the evaluation with cor-
rect data which is not trivial. For example, the circuit would need to output an
(encrypted) state to the sender after each iteration which the circuit then verifies
in the next round based on additional information output to the receiver. The
sender would also need to prove that they are using the same key as one they
have committed to, previously. Recall that evaluation of cryptographic primi-
tives inside a circuit is very expensive, even using fast maliciously secure 2PC.
For example, Wang et al. [37] report 85 ms for the evaluation of a single SHA2
circuit (amortized over 1024 circuits) in a scenario with latency comparable to
LAN1. This is already more expensive than one full round of Construction 5.

6 Applications

An immediate application of our iOPRF is to force correct compliance of clients
in structured encryption by allowing them to only query a contiguous path in
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the graph data. This can be accomplished by adding a layer of encryption inside
of existing structured encryption solutions such that each data element is also
encrypted with a key derived from one iteration of the iOPRF. After the struc-
tured encryption protocol is complete, an iOPRF protocol is executed which will
allow for final decryption of the results only if they are on a contiguous path.

To hide from the server which path is queried, the client can fetch each node
using Private Information Retrieval or maliciously secure OT.

Also in scenarios with structured encryption, the iOPRF’s delegation feature
can be used to delegate control over well-specified sub-trees of the original data
to other parties. The delegate can then act as a data owner on their sub-tree,
serving requests from clients with the same security property as the original data
owner.

To understand specifically the usefulness of iOPRFs, we now consider a spe-
cific implementation of RFID tag authentication which uses a limited form of
structured encryption.

6.1 RFID

Radio Frequency IDentification (RFID) applications comprise a large quantity
of RFID tags attached to precious goods and RFID readers which are connected
to a central backend database. The goal is that readers can properly identify
tags using wireless communication in the presence of adversaries.

An adversary observing wireless tag-reader interaction or being able to in-
teract with tags themselves should not be able to identify or trace tags or even
fabricate new tags or clone tags to counterfeit goods. The main technical chal-
lenge is that RFID tags are extremely resource restricted and can merely com-
pute a cryptographic hash function. While readers can perform more powerful
operations, they typically feature low storage (no state), but have network con-
nectivity, e.g., to connect to a central database. RFID security has been a very
active area of research, see Juels [26] for an overview.

In a typical scenario, the reader wants to know whether a tag and therewith
the good it is attached to is valid, by interacting first with the tag and then with
the database. Typically, the tag stores a unique key, and the reader performs a
challenge-response type of authentication, using the database which knows all
tags’ keys. However, previous work has assumed that database and readers are
within the same trust domain, as the database learns which tag the reader is
querying for. This is an unnecessary strong and often unrealistic requirement.
To protect tag privacy and internal details of supply or distribution chains, the
database should not learn which tag the reader is querying for. For example, if
several readers successively query for the same tag, the database knows that a
specific tag has traveled between these readers. At the same time, the database
does not want to give unrestricted access to the reader or allow queries which
would leak more information than necessary for the identification of a single tag
per query. If the reader would receive more information, the danger would be
that a reader fabricates tags.
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To mitigate these problems, we show how we can extend a prominent RFID
security protocol from the literature, the one by Molnar et al. [34], by a simple
application of our iOPRF.

High-Level Idea In the original work by Molnar et al., the database prepares a
binary key tree of height ` storing random keys in nodes. Leaves in the tree are
enumerated by their path from the root to the leaf. For example, the left most
leaf is represented by the bit string of ` zero bits. A tag is uniquely identified by
its ID, a bit string x = (x1 . . . x`). During initialization, a tag with ID x receives
all keys from the root to the leaf represented by x. During tag identification,
the tag chooses a random r, “encrypts” r with each of their keys, and sends
the resulting sequence of ciphertexts to the reader. The reader can access the
database and query keys. The reader checks which path in the tree decrypts and
ends up with a specific ID (leaf). As you can see, this protocol does not protect
the tag from a prying database. A simple solution of just sending the whole key
tree to the reader might overburden the reader’s storage capabilities and also
impose a security risk: having access to all keys, the reader could fabricate an
arbitrary number of tags.

Our modification to the Molnar et al. protocol simply consists of exchanging
the way keys in the tree are computed. In our case, the keys are outputs of
the iOPRF which will allow the reader to query the database for exactly one
contiguous path. As a result, we hide from the database which tag the reader
is querying for, and the database knows that the reader only gets one path of
secrets from the tree and will be able to identify exactly one tag with it.

Technical Details Let N = 2` be the total number of tags in the system. Each
tag uniquely corresponds to a leaf of a height ` binary key tree. To identify a
tag, a reader can communicate with the database which stores all keys of the
key tree.

Preliminaries The database knows a secret key K and populates binary key tree
T as follows. First, nodes in this key tree are indexed by bit strings following the
intuitive notation that the left child (“0”) of some node indexed by bit string
γ1 . . . γi is index by γ1 . . . γi0, and the right child (“1”) is indexed by γ1 . . . γi1.
By convention, the root is indexed by empty bit string ε.

Database Initialization Root node ε stores random key Kε
$← {0, 1}λ. The left

child of the root stores key K0 = iOPRFK(0), and the right child stores key
K1 = iOPRFK(1). For a node γ1 . . . γi, the left child stores key Kγ1...γi0 =
iOPRFK(γ1 . . . γi0), and its right child stores key Kγ1...γi1 = iOPRFK(γ1 . . . γi1).

During authentication of tag x, the database will run iOPRFK(·) as the
sender, and the reader will be the receiver with input bit strings x = (x1 . . . x`)
as follows.
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Tag Initialization During initialization of a new tag x, the database stores a
sequence of (` + 1) keys K on the tag: one for each node on the path from the
root Kε of tree T to leaf Kx = Kx1...x` . The tag also stores its own ID x.

Secure Tag Identification Each tag identifies itself to a reader using a variation
of the Molnar et al. protocol:

– For security parameter λ, tag x chooses r
$← {0, 1}λ and sends r together

with a hash of r and each of their (`+ 1) keys and the next bit, respectively.
More formally, the tag sends

Trace = (r,T0 = H(r,Kε, x1), . . . , T` = H(r,Kx1...x`−1
, x`),

H(r,Kx1...x`)).

The difference to the original protocol is that we also include next bit xi
into each hash. This allows the reader to check which node to query for
during the next iteration. Otherwise, the reader would have to retrieve both
children of the current node, revealing “one more key” per level of the tree
to the reader.

– The reader uses the iOPRF as the receiver and the database as the sender
to identify the tag as follows.

• The database begins by sending Kε to the reader.
• The reader checks whether either H(r,Kε, 0) or H(r,Kε, 1) matches T0.
• Depending on the outcome, the reader iteratively continues and queries

either the left child (H(r,Kε, 0) matches) or the right child (H(r,Kε,
1) matches) of the root with the iOPRF, compute keys, checks which
matches etc.

As you can see, the security we are aiming for asks only for a (delegatable)
OPRF. Our iOPRF supports delegation, but can do more. We could also ask as
an additional security requirement that the reader should only learn “one path”,
i.e., one tag per interaction with the database.

Security Analysis To summarize security requirements, we briefly describe a
reactive, ideal functionality F . The database sends their input, keys Kε,K0,K1,
. . . ,K1...1, all (2N − 1) keys of the key tree, to a TTP, and the reader sends
an empty bit string. Then, the TTP sends Kε to the reader, and nothing to
the database. The internal state s of TTP is initialized to the empty bit string.
Then, the RFID reader and TTP additionally interact in a total of ` rounds. In
round i, let the internal state be bit string s = γ1 . . . γi−1. The reader sends bit
γi, and TTP responds with Kγ1...γi and updates its state to s = γ1 . . . γi.

Lemma 2. In the random oracle model, the modified Molnar et al. protocol
securely realizes ideal functionality F .

As the proof of Lemma 2 is straightforward, we only summarize it in a draft.
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Proof (Proof (Sketch)). We build a simulator for the case of a compromised
reader. The simulator for the case of a compromised database works accordingly.

1. Simulator Sim begins by preparing an initially empty key-value table RO to
implement a standard random oracle functionality H(·). During simulation,
whenever any party calls H(k) for some input k, this functionality will check
whether pair (k, v) is already in table RO and responds with v in that case.
Otherwise, H generates a random string v of length λ, sends v back to the
caller, and places (k, v) in RO.

2. Also, Sim generates a random key K = ((α1, β1), . . . , (α`, β`)) for iOPRF.
Sim sends ε to TTP and receives Kε which it forwards to A.

3. Sim and A run Construction 5 with Sim as the sender and A as the receiver.

During the ith iteration of Construction 5:

(a) Sim extracts A’s input xi from the Pedersen commitment, forwards it to
TTP, and receives back Kx1...xi .

(b) Sim adds key-value pair (g
∏i
j=1 α

xj
j β

1−xj
j

2 ,Kx1...xi) to table RO.

Observe that A’s view in the simulation is indistinguishable from their view in
a real protocol execution.

Note that A can perform an input-substitution attack, i.e., query for some path
which does not match the tag they are currently interacting with. Without the
ability to perform public key cryptography on the tag, the strongest security for
the database one can guarantee is that the reader can get one path, identifying
one tag and thus can fabricate or clone at most one tag per interaction.

Delegation As iOPRFs are delegatable, we also support scenarios where a main
database delegates the information to identify tags of, e.g., different countries or
regions to different sub-databases.

We abstain from presenting lengthy details, but such delegation with iOPRFs
would bring the advantage that if keys from one regional sub-database are stolen
and thus tags in that region can be fabricated, tags and their identification in
other sub-databases are still secure.

6.2 Private Decision Tree Evaluation

Another application where we can apply an iOPRF is in the area of private
evaluation of decision trees. There, the goal is to allow a client holding a feature
vector to query an outsourced decision tree held by a server, resulting in the client
receiving the machine learning classification of their feature vector without the
owner of the decision tree learning what their input was. We refer to Kiss et al.
[30] for an overview.

For example, the protocol by Wu et al. [38] accomplishes this with two main
techniques:
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1. Each node of the decision tree stores one value which will be compared
against one feature of the client’s feature vector. To enable this, the client
encrypts their feature vector with additively homomorphic encryption using
the client’s public key and sends ciphertexts to the server. For each node of
the tree, the server computes homomorphic DGK [14] comparisons “<” of
one of the client’s encrypted features with the specific node’s value and sends
encrypted comparison outcomes back to the client. Therewith, the client can
identify the path in the tree and the leaf node corresponding to their input.

2. Once the correct leaf node is identified, the client uses oblivious transfer to
retrieve it and compute the final classification.

This protocol works for a semi-honest client, however it does not prevent a
malicious client from retrieving leaf nodes which do not actually correspond to
the result of their classification. This is because the server is not able to verify
that the client traverses a contiguous path in the tree or that the OT they
perform corresponds to that path if they did.

Consequently, Wu et al. suggest an augmented version of the protocol that
can handle malicious clients using a new conditional oblivious transfer , but a
maliciously-secure version could also be constructed simply by replacing OT
with our iOPRF.

Each node in the tree could be encrypted using keys derived from the iOPRF
evaluation of their index, meaning that the client would have to traverse a path
in the tree all the way to the leaf in order to decrypt it. The only necessary
modification for this approach to work is a small number of additional ZKPs to
“bind” the results of the homomorphic evaluation to the input of the iOPRF.
When constructed this way, the client can use much more efficient (maliciously
secure) private information retrieval [8] instead of the expensive conditional OT
designed by Wu et al. [38]. For space reasons, we list only the main technical
modifications necessary (in Appendix A).

7 Conclusion

In this paper, we have introduced the concept of an iteratable oblivious pseudo-
random function and presented a construction which is provably secure in the
standard model under the DDH assumption. We have fully implemented and
evaluated this construction and shown that it is efficient in practice, compara-
ble to similar protocols. We have also presented several applications for iOPRF
protocols that demonstrate their usefulness, particularly in applications where
(two-sided) malicious security is necessary.
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A Decision Trees

As an alternative to their paper, we summarize here the changes necessary to
convert the semi-honest secure protocol from Wu et al. to a fully-malicious-secure
version using iOPRF. We will reference our modifications in contrast with their
protocol (Figure 1 in [38]).
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1. In step 1, the client proves that their input encryptions are bits. This also
happens in the maliciously-secure version from the original paper.

2. In step 2, the negation of the intended DGK comparisons [14] are also com-
puted. This way the client has a “successful” comparison one way or the
other to use in their proof to the server that they are behaving correctly.

3. In step 4, the server additionally encrypts each node of the tree with a sym-
metric key derived from an iOPRF. The keys are chosen such that each node
can be decrypted by an iOPRF evaluation that corresponds to that node’s
location in the binary tree, adjusted for the randomly flipped comparisons.
The goal here is to restrict the client to only being able to decrypt the
nodes corresponding to the contiguous path in the tree resulting from its
comparisons.

4. In step 5, the client uses PIR [8] to retrieve the target leaf node instead of
conditional OT. The client additionally runs an iOPRF protocol to retrieve
the symmetric key necessary to decrypt their chosen leaf node. In execution
of this protocol, they also prove in ZK that the input to the iOPRF corre-
sponds to the correct results of the comparison protocol (see Appendix A.1).

A.1 Binding Homomorphic Comparisons to iOPRF Input

Since the client now executes two DGK comparisons per level of the tree, the
original intended one and its negation, they now always have a “successful”
comparison at every level, which tells them which direction to go in the tree. The
main idea behind the proofs that will bind the client to the correct path is that
they can use the encryption of zero that results from a successful comparison as
evidence to the server that they are going in the direction they are supposed to.

At each level of the tree k ∈ [d], the client creates a ciphertext c← Encpk(0)
and generates a commitment com to xk = 1 if the comparison at that node was
true and xk = 0 if its negation was true. This corresponds to the direction their
comparison at level k in the shuffled tree tells them to go on the next level. They
then must prove that there exists an i such that c (the encryption of zero) is
plaintext-equivalent to either ctk,i or ct′k,i (the result of the negated comparison),
and that if it is ctk,i then com is 1, or if it is ct′k,i then com is 0. Then, comm
is used as the commitment in the iOPRF protocol. This binds the output of the
comparison to the input of the iOPRF, completing the proof.

Let a ≡ b signify that a and b are encryptions of the same value and a ≡ 0, 1
signify that a is an encryption of 0 or 1. The statement being proven can then
be writen as follows

[
(c ≡ ctk,1 ∨ . . . ∨ c ≡ ctk,t) ∧ com ≡ 1

]
∨[

(c ≡ ct′k,1 ∨ . . . ∨ c ≡ ct′k,t) ∧ com ≡ 0

]
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We do not produce a full ZK proof for this statement, as it can be efficiently
designed in the same way we design ZK proofs in Section 4.4 (plaintext equiv-
alence is equivalent to a proof of DDH tuple, one-out-of two technique for the
∨, parallel proofs for ∧ etc.). For more details on efficient composition of ZK
proofs, see also Camenisch and Stadler [7].
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