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Abstract

We demonstrate the soundness proof for the De Feo, Jao and Plût identification scheme (the basis
for SIDH signatures) contains an invalid assumption and provide a counterexample for this assumption
- thus showing the proof of soundness is invalid. As this proof was repeated in a number of works by
various authors, multiple pieces of literature are affected by this result. Due to the importance of being
able to prove knowledge of an SIDH key (for example, to prevent adaptive attacks), soundness is a vital
property. We propose a modified identification scheme fixing the issue with the De Feo, Jao and Plût
scheme, and provide a proof of security of this new scheme. We also prove that a modification of this
scheme allows the torsion points in the public key to be verified too, which previous schemes did not
cover. This results in a secure proof of knowledge for SIDH keys and a secure SIDH-based signature
scheme. In particular, these schemes provide a non-interactive way of verifying that SIDH public keys
are well formed as protection against adaptive attacks, more efficient than generic NIZKs.

1 Introduction

De Feo, Jao and Plût [DJP14] introduced an identification protocol based on SIDH. This was used to build
an undeniable signature by Jao and Soukharev [JS14], and was also used to build a signature scheme by Yoo,
Azarderakhsh, Jalali, Jao and Soukharev [YAJ+17] and also by Galbraith, Petit and Silva [GPS20]. All these
papers claim that the scheme has the soundness property based on the SIDH assumption. In this paper we
show that these claims are not rigorously proved, and provide a counterexample to all such previous proofs.
The issue may also affect some subsequent work, such as that by Urbanik and Jao [UJ20].

Soundness of the identification scheme is especially important considered in the light of adaptive attacks
on the SIDH scheme, given by Galbraith et al. [GPST16] and extended in Dobson et al. [DGL+20]. Being
able to successfully complete an identification protocol for a given public key should prove knowledge of the
corresponding secret which should allow the verifier to check that the key is well-formed and not maliciously
modified. Unfortunately, without a proof of soundness, we cannot rely on this assumption. Additionally, the
original SIDH identification and signature schemes did not provide any guarantees about the torsion points
in the public key - only verifying the elliptic curve itself - and it is precisely these points that allow adaptive
attacks.

Without an efficient method of proving that SIDH public keys are honestly formed, inefficient protocols
such as k-SIDH have been proposed as the best known solution to allow static keys to be used in a key
exchange without risk of adaptive attack. The k-SIDH protocol runs many instances of SIDH in parallel and
combines the parallel secrets into the final shared secret. The authors suggest k = 92 is required for a secure
key exchange. Urbanik and Jao [UJ20]’s proposal attempted to improve the efficiency of this protocol by
making use of the special automorphisms on curves with j-invariant 0 or 1728, but it was shown by Basso
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et al. [BKM+20] that Urbanik and Jao’s proposal is vulnerable to adaptive attack and actually scales worse
than k-SIDH itself. Thus, while key exchange with a non-static key is possible á la SIKE [ACC+17], we do
not have an efficient way of obtaining static-static key exchange from isogenies to date.

In this work we examine the issue with the existing soundness proofs and propose a new SIDH-based
identification scheme which we prove does satisfy special soundness. This gives the first sound proof of
knowledge protocol of a secret isogeny for a given public key. We then propose a modification to the scheme
which allows the two torsion points in the public key to be proved correct, thus giving a secure method for
proving well-formedness of SIDH public keys. This scheme is much more efficient than using generic NIZKs
for the task, and has important applications in all areas where SIDH key exchanges could be used with static
keys. By providing an accompanying proof of well-formedness for static public keys, they can safely be used
in SIDH exchanges without the need for inefficient protocols like k-SIDH (while the size of our NIZK proof is
larger than a k-SIDH public key of the same security level, it is much more efficient to verify than computing
a k-SIDH exchange, which requires k2 isogeny computations).

1.1 Outline

This work begins in Section 2 with revision of some preliminary background material. We then recall the
De Feo-Jao-Plût identification scheme in Section 3.1 and outline the issue with its proof of soundness (given
in multiple previous works) in Section 3.2. Subsequently, we present a new SIDH identification scheme in
Section 4 which modifies the De Feo-Jao-Plût scheme and allows us to prove soundness (and thus security).
We then show how the points in the SIDH public key can also be verified under this identification scheme
in Section 5. From this, we construct a secure signature scheme which is a Proof of Knowledge (PoK) of an
SIDH secret key, and is the first such scheme to prove correctness of the points in the public key (a protection
mechanism against adaptive attacks [GPST16, DGL+20]) in Section 6.

1.2 Acknowledgements

Thank you to David Jao, Jason LeGrow, and Yi-Fu Lai for useful discussion about this work.

2 Preliminaries

Notation. We begin with some notation and conventions that we will use throughout this paper. We will
use Kφ to denote a point which generates the kernel of an isogeny φ. Let [t] denote the set {1, . . . , t}.

2.1 SIDH

We now provide a brief refresher on the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange protocol
[JD11, DJP14] by De Feo, Jao, and Plût.

As public parameters, we have a prime p = `e11 · `
e2
2 · f ± 1, where `1, `2 are small primes, f is an integer

cofactor, and `e11 ≈ `e22 . We work over the finite field Fp2 . Additionally we fix a base supersingular elliptic
curve E0 and bases {P1, Q1}, {P2, Q2} for both the `e11 and `e22 torsion subgroups of E0(Fp2) respectively
(such that E0[`eii ] = 〈Pi, Qi〉). Typically `1 = 2 and `2 = 3.

It is well known that knowledge of an isogeny and knowledge of its kernel are equivalent, and we can convert
between them at will, via Vélu’s formulae [Vél71]. In SIDH, the secret key of Alice (respectively Bob) is an
isogeny φ : E(Fp2) → EA(Fp2) of degree `e11 (respectively `e22 ). These isogenies are generated by randomly
choosing secret integers ai, bi ∈ Z/`eii Z (not both divisible by `i) and computing the isogeny with kernel
Ki = 〈[ai]Pi + [bi]Qi〉. We thus unambiguously refer to the isogeny, its kernel, and such integers a, b, as “the
secret key.” Figure 1 depicts the commutative diagram making up the key exchange.
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Figure 1: Commutative diagram of SIDH, where ker(φBA) = φB(ker(φA)) and ker(φAB) = φA(ker(φB)).

In order to make the diagram commute, Alice and Bob are required to not just give their image curves EA
and EB in their respective public keys, but also the images of the basis points of the other participant’s
kernel on E. That is, Alice provides EA, P ′2 = φA(P2), Q′2 = φA(Q2) as her public key. This allows Bob to
“transport” his secret isogeny to EA and compute φAB whose kernel is 〈[a2]P ′2 +[b2]Q′2〉. Both Alice and Bob
will arrive along these transported isogenies at isomorphic image curves EAB , EBA (using Vélu’s formulae,
they will actually arrive at exactly the same curve). Two elliptic curves are isomorphic over Fp2 if and only
if their j-invariants j(EAB) = j(EBA), hence this j-invariant may be used as the shared secret of the SIDH
key exchange.

Remark 1. Galbraith et al. [GPST16, Lemma 2.1] formally presented the idea of “equivalent keys” (which
were previously implicit in some previous work including Costello et al. [CLN16]). Two secret keys (a, b) and
(a′, b′) are equivalent if they generate the same subgroup for any basis of the `eii torsion subgroup. This is
true when (a′, b′) = (θa, θb) for θ ∈ Z∗`i . Because we have the condition that at least one of a, b is not divisible
by `i (assume for now this is a), a is invertible modulo `eii . Thus we can choose θ ≡ a−1 (mod `eii ). This
gives an equivalent key (1, b′). Similarly, if b was not divisible by `i, we can invert it and obtain equivalent
key (a′, 1). Hence we obtain a shorter representation of secret keys without loss of generality, to a single
element and one extra bit.

2.2 SIDH assumptions

We shall recall the standard isogeny-based hardness assumptions of relevance to this work.

Definition 1 (General isogeny problem). Given j-invariants j, j′ ∈ Fq, find an isogeny φ : E → E′ if one
exists, where j(E) = j and j(E′) = j′.

This is the foundational hardness of assumption of isogeny-based cryptography, that it is hard to find an
isogeny between two given curves. Note the decisional version, determining whether an isogeny exists, is
easy - an isogeny exists if and only if the cardinality #E(Fq) = #E′(Fq).

Definition 2 (Computational Supersingular Isogeny (CSSI) problem). For fixed SIDH public parameters
(p,E0, P1, Q1, P2, Q2), let φ : E0 → EA be an isogeny of degree `e11 . Given the SIDH public key (EA, P =
φ(P2), Q = φ(Q2)), find an isogeny φ′ : E0 → EA of degree `e11 such that P,Q = φ′(P2), φ′(Q2).

This is problem 5.2 of [DJP14], and essentially states that it is hard to find the secret key corresponding to
a given public key.

Definition 3 (Decisional Supersingular Product (DSSP) problem). Let E0, E1 be supersingular elliptic
curves such that there exists an isogeny φ : E0 → E1 of degree `e11 between them. Let P2, Q2 ∈ E0[`e22 ] be a
fixed basis of the `e22 torsion subgroup. Suppose we have the following two distributions:

- (E2, E3, φ
′) such that there exists a cyclic subgroup G ⊆ E[`e22 ] of order `e22 and E2

∼= E0/G and
E3
∼= E1/φ(G), and φ′ : E2 → E3 is a degree `e11 isogeny.

- (E2, E3, φ
′) such that E2 is a random supersingular curve with the same cardinality as E0, and E3 is

the codomain of a random isogeny φ′ : E2 → E3 of degree `e11 .
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The Decisional Supersingular Product problem is, given E0, E1 as well as the points P2, Q2, φ(P2), φ(Q2), and
given a tuple (E2, E3, φ

′) drawn randomly with probability 1/2 from the above two distributions, to determine
which of the two distributions it was drawn from.

This is problem 5.5 of [DJP14] and intuitively states that it is hard to determine whether there exists valid
“vertical sides” to an SIDH square given the corners and the bottom horizontal side.

2.3 Sigma protocols

A sigma protocol ΠΣ for a relation R = {(X,W )} is a public-coin three-move interactive proof system
consisting of two parties - a verifier V and a prover P .

Definition 4 (Sigma protocol). A sigma protocol ΠΣ for a family of relations {R}κ parametrized by security
parameter κ consists of PPT algorithms ((P1, P2), (V1, V2)) where V2 is deterministic and we assume P1, P2

share states. The protocol proceeds as follows:

1. Round 1: The prover, on input (X,W ) ∈ R, returns a commitment com ← P1(X,W ) and sends com
to the verifier.

2. Round 2: The verifier, on receipt of com, runs chall← V1(1κ) to obtain a random challenge, and sends
this to the prover.

3. Round 3: The prover then runs resp← P2(X,W, chall) and returns resp to the verifier.

4. Verification: The verifier runs V2(X, com, chall, resp) and outputs either > (accept) or ⊥ (reject).

A transcript (com, chall, resp) is said to be valid if V2(X, com, chall, resp) outputs >. Let 〈P, V 〉 denote the
transcript for interaction between prover P and verifier V . Relevant properties of a sigma protocol are:

Correctness: If the prover P knows (X,W ) ∈ R and behaves honestly, then the verifier V accepts.

2-special soundness: There exists a polynomial time extraction algorithm Extract, which given a statement
X and access to any prover P ∗, outputs a witness W such that (X,W ) ∈ R with probability at least
Pr[〈P ∗, V 〉 = 1]− ε for soundness error ε.

Zero Knowledge (ZK): There exists a polynomial time simulator Sim, which given a statement X, and
for any (cheating) verifier V ∗, outputs transcripts (com, chall, resp) that are indistinguishable from valid
interactions between a prover P and V ∗.

3 Previous SIDH identification scheme and soundness issue

3.1 De Feo-Jao-Plût scheme

Let p be a large prime of the form `e11 ·`
e2
2 ·f±1, where `1, `2 are small primes. We start with a supersingular

elliptic curve E0 defined over Fp2 with #E0(Fp2) = (`e11 `
e2
2 f)2. The private key is a random point Kφ ∈

E0(Fp2) of exact order `e11 . Define E1 = E0/〈Kφ〉 and denote the corresponding `e11 -isogeny by φ : E0 →
E1.

Let P0, Q0 be a basis of the torsion subgroup E0[`e22 ] = 〈P0, Q0〉. The fixed public parameters are pp =
(p,E0, P0, Q0). The public key is (E1, φ(P0), φ(Q0)). The private key is the kernel generator Kφ (equivalently,
the isogeny φ). The interaction goes as follows:

1. The prover chooses a random primitive `e22 -torsion point Kψ as Kψ = [a]P0 + [b]Q0 for some integers
0 ≤ a, b < `e22 not both divisible by `2. Note that φ(Kψ) = [a]φ(P0) + [b]φ(Q0). The prover defines the
curves E2 = E0/〈Kψ〉 and E3 = E1/〈φ(Kψ)〉 = E0/〈Kψ,Kφ〉, and uses Vélu’s formulae to compute
the following diagram.
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E0 E1

E2 E3

φ

ψ′ψ

φ′

The prover sends commitment com = (E2, E3) to the verifier.

2. The verifier challenges the prover with a random bit chall← {0, 1}.

3. If chall = 0, the prover reveals resp = (Kψ, φ(Kψ) = Kψ′).

If chall = 1, the prover reveals resp = (ψ(Kφ) = Kφ′).

In both cases, the verifier accepts the proof if the points revealed have the correct order and generate kernels
of isogenies between the correct curves. We iterate this process t times to reduce the cheating probability
(where t is chosen based on the security parameter κ).

Note that in an honest execution of the proof, we have

ψ̂′ ◦ φ′ ◦ ψ = [`e22 ]φ.

3.2 Issue with soundness proofs for the De Feo-Jao-Plût scheme

A core component of the security proof of the De Feo-Jao-Plût identification scheme is the soundness proof.
A proof of soundness was given by multiple previous works [DJP14, YAJ+17, GPS20] based on the CSSI
problem in Definition 2. A sketch of this soundness proof is as follows:

Suppose A is an adversary that takes as input the public key and succeeds in the identification protocol (all
t iterations) with noticeable probability ε. Given a challenge instance (E0, E1, R2, S2, φ(R2), φ(S2)) for the
CSSI problem, we run A on the tuple (E1, φ(R2), φ(S2)) as the public key. In the first round, A outputs
commitments (Ei,2, Ei,3) for 1 ≤ i ≤ t. We then send a challenge b ∈ {0, 1}t to A and, with probability ε,
A outputs a response that satisfies the verification algorithm. Now, we use the standard replay technique:
Rewind A to the point where it had output its commitments and then respond with a different challenge
b′ ∈ {0, 1}t. With probability ε, A outputs a valid response. This gives exactly the 2-special soundness
requirement of two valid transcripts with the same commitment but different challenges.

Now, choose some index i such that bi 6= b′i. We now restrict our focus to the components (E2, E3) for that
index, and the two responses. It means A sent E2, E3 and can answer both challenges b = 0 and b = 1
successfully. Hence A has provided the maps ψ, φ′, ψ′ in the following diagram.

E0 E1

E2 E3

φ

φ̃

ψ′ψ

φ′
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The argument proceeds as follows: We have an explicit description of an isogeny φ̃ = ψ̂′ ◦ φ′ ◦ ψ from E0 to
E1. The degree of φ̃ is `e11 `

2e2
2 . One can determine ker(φ̃)∩E0[`e11 ] by iteratively testing points in E0[`j1] for

j = 1, 2, . . . . Hence, one determines the kernel of φ, as desired.

However, the important issue with this argument which has so far gone unnoticed, is that it assumes ker(φ) =
ker(φ̃)∩E0[`e11 ]. This assumption has no basis, and we will provide a simple counterexample to this argument
in the following section. While we always recover an isogeny, it may not be φ at all - it is entirely possible the
isogeny we recover does not even have codomain E1 so this proof of 2-special soundness is not valid.

3.3 Counterexample to soundness

Fix a supersingular curve E0 as above. Generate a random `e22 -torsion point Kψ ∈ E0(Fp2) as Kψ =
[a]P2 + [b]Q2 for some integers 0 ≤ a, b < `e22 not both divisible by `2. Let ψ : E0 → E2 have kernel
generated by Kψ. Then choose a random isogeny φ′ : E2 → E3 of degree `e11 with kernel generated by
Kφ′ . Then choose a random isogeny ψ′ : E3 → E1 of degree `e22 . Choose points P ′2, Q

′
2 ∈ E1(Fp2) such that

ker(ψ̂′) = 〈[a]P ′2 + [b]Q′2〉. Then publish

(E0, E1, P2, Q2, P
′
2, Q

′
2)

as a public key. In other words, we have

E0
ψ−→ E2

φ′

−→ E3
ψ′

−→ E1

Now there is no reason to believe that there exists an isogeny from E0 to E1 of degree `e11 , yet we can respond
to both challenge bits 0 and 1 in a single round of the identification scheme. Pulling back the kernel of φ′

via ψ to E0 will result in the kernel of an isogeny which, in general, will not have codomain E1 (but instead
a random other curve). This is because ψ′ is entirely unrelated to ψ in this case (they are not “parallel”),
so we have no SIDH square.

The key observation is that a verifier could be fooled into accepting this public key by a prover who always
uses the same curves (E2, E3) instead of randomly chosen ones. When b = 0 the prover responds with the

pair (a, b) corresponding to the kernel of ψ and ψ̂′, and when b = 1 the prover responds with Kφ′ . The
verifier will agree that all responses are correct and will accept the proof.

The reader may immediately have several thoughts:

1. This is not the correct protocol description, since the isogenies ψ and ψ′ are supposed to be random.
The verifier can check if the same commitments (E2, E3) are always being re-used.

2. This scheme would not be zero-knowledge. If the protocol is repeated many times with the same pair
(E2, E3) then the composition ψ′ ◦φ′ ◦ψ will be revealed to the verifier, leaking an isogeny from E0 to
E1 and therefore allowing the verifier to impersonate the prover in the future.

3. Proving identity (or forging signatures) still requires knowledge of some isogeny from E0 to E1. So we
can rescue the security proof by basing security on the general isogeny problem (Definition 1) instead
of the SIDH problem.

4. The SIDH assumption as stated claims that an isogeny from E0 to E1 of degree `e11 exists, and asks to
compute it. So surely that prevents the “attack” as well.

In response we say:

1. It is true that the verifier could test if the commitments (E2, E3) are being re-used, but this has never
been stated as a requirement in any of the protocol descriptions. To tweak the verification protocol we
need to know how “random” the pairs (E2, E3) (or, more realistically, the pairs (a, b)) need to be.
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2. It is true that repeating (E2, E3) means the protocol is no longer zero knowledge. But soundness and
zero-knowledge are independent security properties that are proved separately (and affect different
parties: one gives an assurance to the verifier and the other to the prover). Our counterexample is a
counterexample to the soundness proof. The fact that the counterexample is not consistent with the
proof that the protocol is zero knowledge is irrelevant.

3-4. It is true that we could instead base security of the protocol on the general isogeny problem. Inter-
estingly, none of the previous authors chose to do it that way. But some applications may require
using the identification/signature protocols to prove that an SIDH public key is well-formed. For such
applications we need soundness to be rigorously proved. The issue in the security proofs in the liter-
ature is not only that it is implicitly assumed that there is an isogeny of degree `e11 between E0 and
E1. The key issue is that it is implicitly assumed that the pullback under ψ of ker(φ′) is the kernel of
this isogeny. Our counterexample calls these assumptions into question, and shows that the proofs are
incorrect as written down.

To make this very clear, consider the soundness proof from De Feo, Jao and Plût [DJP14]. The following
diagram is written within the proof. It implicitly assumes that the horizontal isogeny φ′ has kernel given by
ψ(S), so that the image curve is E/〈S,R〉.

E E/〈S〉

E/〈R〉 E/〈S,R〉

ψ

φ′

ψ′

This implicit assumption seems to have been repeated in all subsequent works, such as [YAJ+17] and
[GPS20].

Note: we conjecture the original scheme to be secure despite the issue with the proof, as long as the
commitment E2, E3 is not reused every time (point 1. above). This simple check can be added into the
original scheme.

Conjecture 1. The De Feo-Jao-Plût identification scheme with t rounds (for appropriately chosen t) is sound,
assuming the CSSI problem is hard, when the additional requirement that commitments (E2, E3) are not
reused between rounds.

We leave proof of this conjecture for future work.

4 New SIDH identification scheme

Let public parameters pp = (p,E0, P0, Q0) such that E0(Fp)[`e22 ] = 〈P0, Q0〉. As before, suppose a user has
a secret isogeny φ : E0 → E1 with kernel kerφ = Kφ. Without loss of generality we assume that the secret
isogeny has degree `e11 . We propose a new sigma protocol to prove knowledge of this isogeny given the public
key (E1, P1 = φ(P0), Q1 = φ(Q0)). The protocol is presented in Figure 3. IsogenyFromKernel() is a function
taking a kernel point and outputting an isogeny and codomain curve with said kernel. CanonicalBasis() is a
function taking a curve and outputting a canonical `e22 torsion basis on the given curve. Figure 2 shows the
commutative diagram of the sigma protocol.

Intuitively, the identification scheme follows 3.1, with a single bit challenge - if the challenge is 0, we
reveal the vertical isogenies ψ,ψ′, while if the challenge is 1, we reveal the horizontal φ′. The difference
is the introduction of additional points on E3 to the commitment, which force ψ,ψ′ to be, in some sense
“compatible” or “parallel”. This restriction allows the proof of 2-special soundness to work.
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We then repeat the identification scheme t times in parallel (where t is chosen based on the security parameter
κ) and set com to be the concatenation of all individual [comi]i∈[t] for each iteration i, chall = [challi]i∈[t]

and resp = [respi]i∈[t].

E0 E1

E2 E3

φ

ψ

φ′

ψ′

Figure 2: Commutative diagram of SIDH identification scheme

Note: Verification requires checking that there exists integers c, d generating the kernels of dual isogenies
ψ̂, ψ̂′. This computation can be offloaded to the prover by requiring them to send the correct integers. In
fact, these integers uniquely determine the horizontal isogenies so they could be sent as resp by the prover
without needing Kψ,Kψ′ , but this would require more computation to verify.

Remark 2. There are certainly improvements that can be made to improve efficiency and compress the size
of signatures, but these are standard and we will not explore them here. For example, in practice the com-
mitment information (E3, P3, Q3) would be replaced with a triplet of x-coordinates, as in SIKE [ACC+17].

Theorem 1. The sigma protocol in Figure 3 is complete, 2-special sound, and zero knowledge, assuming the
CSSI and DSSP problems are hard.

Proof. We prove the three properties of Theorem 1 separately below.

Completeness: It is clear that following the protocol honestly will result in an accepting transcript.

2-special soundness: Suppose we have an adversarial prover P ∗ which, given a public key, succeeds in the
identification protocol (with t parallel rounds) with noticeable probability ε. By rewinding P ∗ after obtaining
an output, and providing a different commitment, we can obtain two accepting transcripts (com, chall, resp)
and (com, chall′, resp′) with chall 6= chall′. Note that the probability of two random challenges of length t-bits
being equal is 1/2t which is the soundness error. Consider one of the t rounds i where the challenge bit challi
differs. The secret isogeny corresponding to the public key (E1, P1, Q1) can be recovered as follows, hence
Extract, given access to P ∗, can extract a valid witness (and break the CSSI problem).

Without loss of generality, suppose challi = 0 and chall′i = 1. Then recover (a, b) and thus (Kψ,Kψ′) from

respi, and Kφ′ from resp′i. Compute the dual isogeny ψ̂ and use this to pull the kernel Kφ′ back to E0 (this

works because the degrees of Kφ′ and ψ̂ are coprime). Let ϕ be the isogeny with kernel 〈Kϕ = ψ̂(Kφ′)〉, so
that ϕ : E0 → E0/〈Kϕ〉.

We first demonstrate that E0/〈Kϕ〉 ∼= E1. This follows by considering the diagram of Figure 2 as an SIDH
square starting from base curve E2. We have that E1

∼= E2/〈Kφ′ , G〉 for subgroup G of order `e22 such

that φ′(G) = ker ψ̂′. However, note that the restriction on the kernels of ψ̂, ψ̂′ force ker ψ̂′ = φ′(ker ψ̂) so
G = Kψ̂. Thus, E0

∼= E2/〈G = Kψ̂〉 and commutativity implies ϕ exists and has the correct degree, and

E1
∼= E0/〈Kϕ〉 as required. A perhaps simpler argument is that ψ̂′ ◦ φ′ ◦ψ is an isogeny from E0 to E1 that

kills the entire `e22 torsion E0[`e22 ] so must factor through [`e22 ]. Hence there is a degree `e11 isogeny from E0

to E1.

The correctness of the points P1, Q1 is, however, much more subtle. Unfortunately we know of no efficient
way to prove the points are exactly the image of the public parameter points. What we can show, though,
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round 1

1: a, b← Z/`e22 Z . N.B. we can use equivalent keys (Rem. 1) for compactness WLOG
2: Kψ = [a]P0 + [b]Q0 ∈ E0

3: Kψ′ = φ(Kψ) = [a]φ(P0) + [b]φ(Q0) ∈ E1

4: ψ,E2 ← IsogenyFromKernel(Kψ)
5: P2, Q2 ← CanonicalBasis(E2)
6: Kφ′ ← ψ(Kφ) ∈ E2

7: φ′, E3 ← IsogenyFromKernel(Kφ′)
8: P3, Q3 ← φ′(P2), φ′(Q2) ∈ E3

9: Prover sends com = (E2, E3, P3, Q3) to Verifier.

round 2

1: c← {0, 1}
2: Verifier sends chall← c to Prover.

round 3

1: c← chall
2: if c = 1 then
3: resp← Kφ′

4: else
5: resp← (a, b)

6: Prover sends resp to Verifier.

Verification

1: (E2, E3, P3, Q3, c)← (com, chall)
2: if c = 1 then
3: Kφ′ ← resp
4: Check Kφ′ has order `e11 and lies on E2, otherwise output reject
5: P2, Q2 ← CanonicalBasis(E2)
6: φ′, E′3 ← IsogenyFromKernel(Kφ′)
7: Verify E3 = E′3 and P3, Q3 = φ′(P2), φ′(Q2), otherwise output reject
8: Verifier outputs accept
9: else

10: (a, b)← resp
11: Check that P1, Q1 ∈ E1

12: Kψ,Kψ′ = [a]Pi + [b]Qi for i = 0, 1 resp.
13: Check Kψ and Kψ′ have order `e22 , otherwise output reject
14: ψ,E′2 ← IsogenyFromKernel(Kψ)
15: ψ′, E′3 ← IsogenyFromKernel(Kψ′)
16: Check E2 = E′2 and E3 = E′3
17: P2, Q2 ← CanonicalBasis(E2)
18: Check there exists c, d ∈ Z/`e22 Z such that, simultaneously,

- ker ψ̂ = [c]P2 + [d]Q2

- ker ψ̂′ = [c]P3 + [d]Q3

19: Verifier outputs accept if the preceding conditions hold, otherwise reject

Figure 3: One iteration of the sigma protocol for our new SIDH identification scheme. The public parameters
are pp = (p, `1, `2, e1, e2, E0, P0, Q0). The public key is (E1, P1, Q1), and the corresponding secret isogeny is
φ.
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is that the choice of points P1, Q1 by the adversary is severely restricted if they must keep them consistent
with “random enough” values of a, b (i.e., random choices of ψ). So while the choice of points is certainly not
unique, we show in Section 5 that the adversary is still prevented from choosing the points in the malicious
way required for known adaptive attack methods.

Thus we recover an isogeny ϕ of correct degree `e11 such that the codomain is isomorphic to E1 and the
points in the public key are correct up to scalar. This shows the protocol is 2-special sound when the CSSI
problem is hard, and that it is a Proof of Knowledge of an isogeny corresponding to the given public key
(which also proves the public key is honestly generated).

Zero-knowledge: Proof of ZK follows as in [DJP14]. Let V ∗ be a cheating verifier, which shall be used as
a black box by the simulator Sim. We shall show that Sim can generate a valid transcript for t iterations of
the protocol. At each step, Sim makes a guess what the next challenge bit chall will be, and then proceeds
as follows.

- If chall = 0, Sim simulates correctly by choosing a, b← Z/`e22 Z and computing the two vertical isogenies
ψ : E0 → E2, ψ

′ : E1 → E3 from kernels Kψ = [a]P0 + [b]Q0 and Kψ′ = [a]P1 + [b]Q1. Also compute
the kernels of the corresponding dual isogenies, and the canonical basis P2, Q2 ← CanonicalBasis(E2).
Write Kψ̂ in terms of this basis as [c]P2 + [d]Q2, then choose a torsion basis on E3 as P3, Q3 ∈ E3

such that K
ψ̂′ = [c]P3 + [d]Q3. We set the commitment to com = (E2, E3, P3, Q3) and the response to

resp = (a, b) as required.

- If chall = 1 we choose a random curve E2 and a random point point K ∈ E2 of correct order `e11 . Then
compute the isogeny φ′ : E2 → E3 with kernel K with IsogenyFromKernel. Finally generate a canonical
basis P2, Q2 ← CanonicalBasis(E2) and compute P3, Q3 ← φ′(P2), φ′(Q2) and set the commitment to
(E2, E3, P3, Q3).

After providing com to V ∗, if the challenge V ∗ outputs is not the same as Sim’s guess, simply discard that
iteration and run again. Sim stops whenever V ∗ rejects or after t successful rounds. Suppose the probability
of V ∗ not choosing the same bit as Sim’s guess is noticeably different from 1/2. Then V ∗ can be used as a
distinguisher for the DSSP problem. So the probability Sim guesses correctly each round is exponentially
close to 1/2 if the DSSP problem is hard. Thus Sim will run in polynomial time.

To prove indistinguishability of simulated transcripts from true interactions of a prover P with V ∗, it is
enough to show that one round of the sigma protocol is indistinguishable (by the hybrid technique of
Goldreich et al. [GMW91]).

When chall = 0, the outputs of the simulator are identical to those generated according to the protocol, so
the distributions are perfectly indistinguishable. Note that P3, Q3 are uniquely determined to be the points
from the true protocol up to scalar multiple, which is possible despite not knowing φ′ because P1, Q1 allow
us to “jump” the gap.

When chall = 1, we consider the distribution of (E2, E3, φ
′). While this distribution is not correct a priori, the

computational assumption in Definition 3 implies it is computationally hard to distinguish the simulation
from the real game (as in the proof in [GPS20]). Because providing the action of φ′ on canonical basis
P2, Q2 ∈ E2 cannot reveal more information than providing φ′ itself, the distribution of (E2, E3, P3, Q3) must
also be indistinguishable between simulation and real transcripts. Hence the scheme has computational zero
knowledge assuming the DSSP problem is hard.

Computing a compatible basis. In the proof of ZK, we require choosing a basis P3, Q3 for the torsion
E3[`e22 ] such that for a fixed K ∈ E3[`e22 ] and fixed integers c, d, K = [c]P3 + [d]Q3. This can be done
efficiently due to the ease of computing discrete logarithms when p is very smooth [Tes99]. For example,
simply choose any basis P ′, Q′ and write K = [c′]P ′ + [d′]Q′ by solving discrete logarithms with respect to
P ′, Q′. The shift between bases P ′, Q′ and P3 = [w]P ′ + [x]Q′, Q3 = [y]P ′ + [z]Q′ must be linear, so we can
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write K = [c]P3 + [d]Q3 = [cw + dy]P ′ + [cx + dz]Q′. Then simply solve the linear system cw + dy = c′,
cx+ dz = d′ for w, x, y, z and compute P3, Q3.

5 Correctness of the points in an SIDH public key

We have shown in Section 4 that successful completion of the new sigma protocol indeed proves knowledge
of a degree `e11 isogeny from E0 to E1. However, an SIDH public key also consists of the two torsion points,
and these points are the cause of issues such as the adaptive attack [GPST16].

We have that kerψ = 〈Kψ〉 = 〈[a]P0 + [b]Q0〉 for the fixed points P0, Q0. This choice of ψ also fixes ψ̂. Now,

ker ψ̂′ = φ′(ker ψ̂) as before, so ψ̂′ is also fixed, and by extension ψ′. Finally then, to ensure verification
succeeds, the adversary must choose P ′, Q′ ∈ E1 such that 〈[a]P ′+[b]Q′〉 = 〈Kψ′〉 for the same a, b as before.
For a single choice of a, b, there are many ways to decompose kerψ′ in terms of two basis points. The key
observation though, is that once these points have been fixed in the first iteration of the sigma protocol, all
future iterations must use the same two points, but answer with different (a, b) values. If the verifier checks
that these (a, b) values are “random enough” whenever they are revealed (challenge bit 0), the prover is
restricted in their choice of points as we will see below.

So, as stated above, the prover is in a position where they have a fixed kernel 〈Kψ′〉. Obviously, the “honest”
behaviour will give kernel generator Kψ′ = [a]φ(P0) + [b]φ(Q0). Two generators generate the same kernel
if and only if they are (invertible) scalar multiples of each other. Hence, we consider the case where the
adversary wishes to decompose any arbitrary kernel generator K ′ such that [λ]K ′ = Kψ′ in terms of a, b,
that is, [a]φ(P0) + [b]φ(Q0) = [a][λ]P ′ + [b][λ]Q′. For ease of notation, let P = φ(P0), Q = φ(Q0).

Because both P,Q and P ′, Q′ are bases of the same torsion subgroup, we can represent P ′, Q′ in terms of
P,Q with a change-of-basis matrix. This matrix must be invertible, so cf − de must be invertible modulo
`e22 .

P ′
Q′

 =

c d

e f

 ·
P
Q

 (1)

Now because P andQ are linearly independent, we can match coefficients (modulo the order of the generators)
and obtain the following two congruences:

a ≡ aλc+ bλe (mod `e22 )

b ≡ aλd+ bλf (mod `e22 )

Giving:

0 ≡ a(λc− 1) + bλe (mod `e22 ) (2)

0 ≡ aλd+ b(λf − 1) (mod `e22 ) (3)

Because P ′, Q′ are published by the prover before beginning the protocol, c, d, e, f are all fixed. We now
add the restriction that the verifier confirms the a, b’s cover the following three congruency classes modulo
`2 (note that at least one of a, b must not be divisible by `2 for the kernel to have the correct order):

a ≡ 0, b 6≡ 0 (mod `2)

a 6≡ 0, b ≡ 0 (mod `2)

a, b 6≡ 0 (mod `2)
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For ease of notation, we will denote these three cases as (0, ?), (?, 0), and (?, ?) respectively. It is clearly
implied that `2 - ?.

From here forward, for ease of notation, we will treat all values modulo `e22 as integers in the range 0, . . . , `e22 −
1. If the prover convinces the verifier that with overwhelming probability (in the security parameter κ) they
can answer queries using all three classes of a, b above, then it must be the case that e = d = 0 and c = f
invertible. This indeed proves that the points P ′, Q′ are simply an invertible scalar multiple of the original
points P ′ = [λ]P,Q′ = [λ]Q. This is sufficient to ensure there is no possibility of an adaptive attack being
performed. In fact, using the Weil pairing check from Galbraith et al. [GPST16] as well, we can force the
only choices for this scalar to be λ = ±1 (but we don’t need this extra restriction so we won’t discuss this
further).

To set some notation, we use `n ‖ x to denote that `n divides x, but `n+1 does not divide x. That is, `n is
the highest power of ` dividing x. In this case, we say `n exactly divides x.

Theorem 2. For a fixed security parameter κ and SIDH public key (E,P,Q), if the prover is able to
successfully complete 3κ iterations of the identification scheme sigma protocol in Figure 3 as follows:

• κ iterations where the prover uses non-repeating challenges (a, b) for a, b 6≡ 0 (mod `2) - case (?, ?),

• κ iterations where the prover uses non-repeating challenges (a, b) for a 6≡ 0, b ≡ 0 (mod `2) - case
(?, 0), and

• κ iterations where the prover uses non-repeating challenges (a, b) for a ≡ 0, b 6≡ 0 (mod `2) - case (0, ?)

then with probability 1− 2−κ the points P,Q are of the form [λ]φ(P0), [λ]φ(Q0) for some invertible scalar λ
(where φ is a secret `e11 -isogeny E0 → E).

Proof. We fix c, d, e, f and suppose the prover is able to commit to and successfully answer challenges for
(a, b) tuples in all three of the classes above.

If a ≡ 0, b 6≡ 0 (mod `2), then Equation 2 implies that e ≡ 0 (mod `2), while Equation 3 requires f 6≡ 0
(mod `2). Similarly, if Equations 2 and 3 are able to be satisfied by a, b where a 6≡ 0, b ≡ 0 (mod `2), we get
that d ≡ 0 (mod `2) and c 6≡ 0 (mod `2).

In the simplest case, e = d = 0. Requiring Equations 2 and 3 to have solutions of the form (?, ?) (i.e. a, b 6≡ 0
(mod `2)) immediately implies that λc− 1 ≡ λf − 1 ≡ 0 (mod `e22 ). Hence, c = f . This case is the “honest
prover” scenario where the points P ′, Q′ the prover provides in the public key are the same as the correct
image points φ(P0), φ(Q0) under the prover’s secret isogeny, up to (co-prime) scalar multiple.

It remains to show, then, that being able to satisfy Equations 2 and 3 with (a, b) pairs across all three of
the equivalence classes above force e = d = 0 - that they cannot be non-zero multiples of `2. We therefore
proceed with a proof by contradiction. Let

d = d′`g2

e = e′`h2

where g, h are the greatest powers of `2 dividing d, e (respectively infinite if d or e is 0). Without loss of
generality, we can assume that h ≥ g, because otherwise we can swap the variables (a, c, e) ↔ (b, f, d).
Because we assume that at least one of e, d are non-zero, then this convention implies d (and so too d′) is
non-zero, while e (and e′) may or may not be zero. Note that by definition, `2 - d′ and if e′ 6= 0, then `2 - e′.

If (a, b) tuples of the form (a, b) ≡ (?, ?) (mod `2) are able to satisfy Equation 3, then

`g2 ‖ 1− λf
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By considering Equation 2, we also get that
`h2 | 1− λc

(if e 6= 0 this divisibility is exact, while if e = 0, 1 − λc must also be 0). Because g ≤ h, clearly `g2 | 1 − λc.
Then,

1− λf ≡ 0 (mod `g2)

1− λc ≡ 0 (mod `g2)

(1− λf)− (1− λc) ≡ 0 (mod `g2)

λf ≡ λc (mod `g2)

so we have that c ≡ f (mod `g2).

Now suppose Equations 2 and 3 can be satisfied by (a, b) ≡ (?, 0) (mod `2) as well. Because `2 - aλd′,
Equation 3 gives:

`g2 ‖ b(1− λ′f) (4)

We also obtain from Equation 2 that:
`h2 | 1− λ′c

From this, using the fact that c ≡ f (mod `g2) from the (?, ?) case, and that g ≤ h, we get

`g2 | 1− λ′c
`g2 | 1− λ′c− λ(f − c)

`g2 | 1− λ′f

However, if `g2 | 1− λ′f and `2 | b, then
`g+1
2 | b(1− λ′f)

Which contradicts Equation 4 by definition of exact divisibility.

Thus, if (a, b) tuples of both forms (?, ?) and (?, 0) modulo `2 are able to satisfy Equations 2 and 3, then
necessarily d = 0 (and by extension of our assumption h ≥ g, e = 0). To remove the assumption that h ≥ g,
we simply require that tuples of the form (0, ?) are also satisfiable (due to the (a, c, e) ↔ (b, f, d) variable
swap). This concludes the proof. The probability given in the theorem follows trivially from the fact that, as
in the original SIDH identification scheme, κ iterations convinces the verifier that the prover can answer each
type of case except with probability 2−κ each time. Hence, we treat each of the three cases as independent
proofs and require 3κ iterations overall.

Remark 3. While 3κ is the trivial requirement to ensure the prover can indeed answer all three forms of
(a, b) with overwhelming probability, we believe κ-bit security can be achieved with a more efficient choice.
However, more thorough analysis is needed. We leave this for future work.

Because 3κ iterations of the sigma protocol are used rather than κ, this protocol will result in transcripts 3
times larger than those from Figure 3, when proving the correctness of the points is important.

In terms of the protocol in Figure 3, verification only requires on extra check: in the case that c = 0 (the
else clause of the verification algorithm), after extracting (a, b) from resp, the verifier simply keeps track of
how many of each case (?, ?), (?, 0) and (0, ?) are seen, and accepts overall only if the number of each case
is roughly equal (or perhaps, for example, the first κ iterations must match (?, ?), the second (?, 0) and the
third (0, ?) if 3κ iterations are used).
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6 SIDH signatures and Non-Interactive Proof of Knowledge

We conclude with some brief, standard remarks about the use of the new protocol proposed above.

It is standard to construct a non-interactive signature scheme from an interactive protocol using the Fiat-
Shamir transformation (secure in the (quantum) random oracle model [LZ19]). This works by making the
challenge chall for the t rounds of the ID scheme a random-oracle output from input the commitment com
and a message M . That is, for message M ,

V O1 (com) = O(com ‖M)

Thus the prover does not need to interact with a verifier and can compute a non-interactive transcript.
Because the sigma protocol described in the preceding sections not only proves knowledge of the secret
isogeny between two curves, but also correctness of the torsion points in the public key, we obtain a signature
scheme that is also a proof of knowledge of the secret key corresponding to a given SIDH public key, and
proves that the SIDH public key is well-formed. For example, simply signing the public key with its own
secret key using the new scheme gives a simple NIZK proof of well-formedness for the public key which
ensures against adaptive attacks.
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