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Abstract

We demonstrate the soundness proof for the De Feo–Jao–Plût identification scheme (the basis for
SIDH signatures) contains an invalid assumption and provide a counterexample for this assumption—
thus showing the proof of soundness is invalid. As this proof was repeated in a number of works by
various authors, multiple pieces of literature are affected by this result. Due to the importance of being
able to prove knowledge of an SIDH key (for example, to prevent adaptive attacks), soundness is a vital
property. We propose a modified sigma protocol (and hence identification scheme) fixing the issue with
the De Feo–Jao–Plût scheme, and provide a proof of security of this new scheme. We also prove that a
modification of this scheme allows the torsion points in the public key to be verified too. This results
in a secure proof of knowledge for SIDH keys. It also avoids the SIDH identification scheme soundness
issue raised by Ghantous, Pintore and Veroni (ePrint 2021/1051). In particular, this protocol provides
a non-interactive way of verifying that SIDH public keys are well-formed as protection against adaptive
attacks, leading to more efficient SIDH-based non-interactive key exchange (NIKE).

1 Introduction

While Supersingular Isogeny Diffie-Hellman (SIDH) [JD11, DJP14] is a fast and efficient post-quantum key
exchange candidate, it has been hampered by the existence of practical adaptive attacks on the scheme—the
first of these given by Galbraith et al. [GPST16] (the GPST attack), followed by other variations [FP21,
UXT+22]. These attacks mean it is not safe to re-use a static key across multiple SIDH exchanges without
other forms of protection. As such, various countermeasures have been proposed—though each with its
unique drawbacks.

The first of these is to require one participant to use a one-time ephemeral key in the exchange, accompanied
by a Fujisaki–Okamoto-type transform [HHK17] revealing the corresponding secret to the other party. This
allows the recipient to verify the public key is well-formed, ensuring an adaptive attack was not used. This
is what was done in SIKE [ACC+17], and converts the scheme to a secure key encapsulation mechanism
(KEM). But it is of limited use in cases where both parties wish to use a long-term key.

The second countermeasure is to use many SIDH exchanges in parallel, combining all the resulting secrets
into a single value, as proposed by Azarderakhsh, Jao, and Leonardi [AJL17]. This scheme is known as
k-SIDH, where k is the number of keys used by each party in the exchange. The authors suggest k = 92 is
required for a secure key exchange, as Dobson et al. [DGL+20] demonstrate how the GPST adaptive attack
can be ported to k = 2 and above. Note that the number of SIDH instances grows as k2, so this scheme is
very inefficient. Urbanik and Jao’s [UJ20] proposal attempted to improve the efficiency of this protocol by
making use of the special automorphisms on curves with j-invariant 0 or 1728, but it was shown by Basso et
al. [BKM+20] that Urbanik and Jao’s proposal is vulnerable to a more efficient adaptive attack and actually
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scales worse in efficiency than k-SIDH itself (although the public keys are approximately 4/5 of the size, it
requires around twice as many SIDH instances for the same security).

Finally, adaptive attacks can also be prevented by providing a non-interactive proof that a public key is well-
formed or honestly generated. While generic NIZKs would make this possible in a very inefficient manner,
Urbanik and Jao [UJ20] claim a method for doing so using a similar idea to their k-SIDH improvement
mentioned above. Their scheme is based on the SIDH-based identification scheme by De Feo, Jao, and
Plût [DJP14], which is a fairly simple proof with single bit challenges.

Unfortunately, however, we show that the soundness of this original De Feo–Jao–Plût scheme is not rigor-
ously proved—specifically that it does not reduce to the computational assumption they claim—and give
a counterexample to this proof. Because this scheme (and proof) has since been used to build an unde-
niable signature by Jao and Soukharev [JS14], a signature scheme by Yoo, Azarderakhsh, Jalali, Jao, and
Soukharev [YAJ+17], and also by Galbraith, Petit, and Silva [GPS20], all of these subsequent papers suffer
from the same issue. Our counterexample does not apply to Urbanik and Jao’s scheme, but their soundness
proof nonetheless does not hold for the same reason.

Ghantous, Pintore, and Veroni [GPV21] have demonstrated that the soundness property for the De Feo–Jao–
Plût scheme (and those based on it) fails for a different reason—namely the existence of multiple isogenies
of the same degree between some curves. The protocols we propose in this paper are not vulnerable to the
same issue, as we briefly discuss in Remark 4.

1.1 Our contributions

We present two new proofs that an SIDH public key is well-formed—meaning that, for base curve E0 and
public-key curve E1, there is an isogeny φ : E0 → E1 of the correct degree (the private key or witness).

First, in Section 5, we propose a modification to the De Feo–Jao–Plût scheme that ensures that there is
an extractor for the witness φ : E0 → E1. We express this in terms of a relation we call the weak SIDH
relation. The first key idea in this protocol is the provision of bases (P2, Q2) for E2[`e22 ] and (P3, Q3) for
E3[`e22 ]. This allows the verifier to check that (P3, Q3) = (φ′(P2), φ′(Q2)) in the chall = 1 case, and in the
chall = 0 case, to check that the isogenies from E2 to E0 and E3 to E1 are “parallel”. The second key idea
is, in the 2-special soundness proof, to view the transcript as an SIDH square where E2 is treated as the
“base curve” (instead of E0), and where E0 and E3 play the roles of the participants’ two public-key curves
in SIDH. It then follows that there is a witness φ as required.

Second, in Section 6, we give a new scheme that convinces a verifier not only that there is an isogeny
φ : E0 → E1 of the correct degree, but also that the torsion points provided in an SIDH public key are the
correct images of the public parameter points under φ. We call this stronger relation the SIDH relation.
Making this non-interactive using the Fiat-Shamir heuristic gives a secure method for proving well-formedness
of SIDH public keys, which is needed if one wants to prevent adaptive attacks. This is the first such protocol
in the literature and has important applications in all areas where SIDH key exchange could be used with
static keys. Our scheme works with any base elliptic curve, rather than being restricted to the two curves
with j-invariant 0 or 1728 as in [UJ20].

The scheme in Section 6 builds on the protocol of Section 5. However, it requires assurance that the
ephemeral isogenies used in the commitments by the prover are “independent enough”. To achieve this, we
“double” the protocol, by essentially running two sessions of the protocol from Section 5 for each challenge
bit. The prover shows that the two instances are consistent with each other by providing images of a random
torsion basis in both squares, which the verifier can check are correct. The verifier also checks that the two
instances are independent. This allows us to construct a 2-special soundness extractor that outputs a correct
witness.

Commitments in the original De Feo–Jao–Plût scheme were just j-invariants of curves, but our new proofs
require committing to various points on curves as well. This makes the proofs larger. As with the original
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De Feo–Jao–Plût scheme, it is non-trivial to simulate valid protocol transcripts without knowing the witness
and so we only achieve computational zero-knowledge. We introduce some new assumptions to prove the
same for our schemes.

1.2 Plan of the paper

Section 2 recalls the SIDH protocol and gives some useful lemmas that are used in our soundness proofs.
Section 3 presents some isogeny-based hardness assumptions and reductions, including the new decisional
assumptions we need for our zero-knowledge proofs. We then recall the De Feo–Jao–Plût identification
scheme in Section 4.1 and outline the issue with its proof of soundness in Section 4.2. Our first new SIDH
proof is given in Section 5. We then show how the points in the SIDH public key can also be verified in
Section 6. Finally, we conclude with some standard discussion on how a secure signature scheme which is
a Proof of Knowledge (PoK) of an SIDH secret key can be constructed from our second scheme—the first
such scheme which is sound and proves correctness of the points in the public key (a protection mechanism
against adaptive attacks [GPST16, DGL+20]) in Section 7.

1.3 Acknowledgements

We thank David Jao, Jason LeGrow, and Yi-Fu Lai for useful discussion about this work. We also thank Paulo
Barreto for catching some typos in this paper, and Simon-Philipp Merz for valuable comments. We thank
Javad Doliskani for important observations that inspired significant improvements to this work. Finally, we
would like to thank those involved with the BIRS Supersingular Isogeny Graphs in Cryptography workshop
for great discussion on some questions this work raised—especially Lorenz Panny and his work analyzing
SIDH squares in small fields.

2 Preliminaries

Notation. As a convention, we will use Kφ to denote a point which generates the kernel of an isogeny φ. Let
[t] denote the set {1, . . . , t}.

2.1 SIDH

We now provide a brief refresher on the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange protocol
[JD11, DJP14] by De Feo, Jao, and Plût.

As public parameters, we have a prime p = `e11 · `
e2
2 · f ± 1, where `1, `2 are small primes, f is an integer

cofactor, and `e11 ≈ `e22 . We work over the finite field Fp2 . Additionally we fix a base supersingular elliptic
curve E and bases {P1, Q1}, {P2, Q2} for both the `e11 and `e22 -torsion subgroups of E(Fp2) respectively (such
that E[`eii ] = 〈Pi, Qi〉). Typically `1 = 2 and `2 = 3.

It is well known that knowledge of an isogeny (up to isomorphism) and knowledge of its kernel are equivalent,
and we can convert between them at will, via Vélu’s formulae [Vél71]. In SIDH, the secret keys of Alice
and Bob are isogenies φA : E(Fp2) → EA(Fp2), φB : E(Fp2) → EB(Fp2) of degree `e11 and `e22 , respectively.
These isogenies are generated by randomly choosing secret integers ai, bi ∈ Z/`eii Z (not both divisible by `i)
and computing the isogeny with kernel generated by Ki = [ai]Pi + [bi]Qi. We thus unambiguously refer to
the isogeny, its kernel, and such integers a, b, as “the secret key.”

Figure 1 depicts the commutative diagram making up the key exchange. In order to make the diagram
commute, Alice and Bob are required to not only give their image curves EA and EB in their respective
public keys, but also the images of the basis points of the other participant’s kernel on E. That is, Alice
provides EA, P ′2 = φA(P2), Q′2 = φA(Q2) as her public key. This allows Bob to “transport” his secret
isogeny to EA and compute φAB whose kernel is 〈[a2]P ′2 + [b2]Q′2〉. Both Alice and Bob will arrive along
these transported isogenies at isomorphic image curves EAB , EBA (using Vélu’s formulae, they will actually
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E EA
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Figure 1: Commutative diagram of SIDH, where ker(φBA) = φB(ker(φA)) and ker(φAB) = φA(ker(φB)).

arrive at exactly the same curve [Leo20]). Two elliptic curves are isomorphic over Fp2 if and only if their
j-invariants are equal, j(EAB) = j(EBA), hence this j-invariant may be used as the shared secret of the
SIDH key exchange.

Some cryptographic hardness assumptions related to isogenies and SIDH are discussed in Section 3.

2.2 Isogeny squares

We collect here some basic definitions and lemmas that we will use repeatedly throughout the paper. In the
statements below, all elliptic curves are defined over a field of characteristic p.

Definition 1 (Independent points, isogenies). Let E be an elliptic curve, let ` 6= p be a prime and e an
integer, let (P,Q) be a basis of E[`e]. Let R = [a]P + [b]Q and S = [c]P + [d]Q. The following conditions
are equivalent:

(a) (R,S) form a basis of E[`e].

(b) ` does not divide ad− bc, i.e., the matrix
(
a b
c d

)
is invertible modulo `e.

(c) The value of the `e-th Weil paring w = e(R,S) has order `e, i.e., w`
e−1 6= 1.

When R,S satisfy any of these, we say they are independent of one another. Similarly, we say that two
cyclic groups of order `e are independent whenever any of their generators are. Finally, we say that two
isogenies of degree `e are independent if their kernels are.

Proof. (a) ⇒ (b): Both P,Q and R,S are bases of the same torsion subgroup E[`e]. Hence, A =
(
a b
c d

)
is

a change-of-basis from P,Q to R,S and there must be an inverse change-of-basis A−1 from R,S to P,Q.
Then A is necessarily invertible, and therefore, so too is its determinant ad− bc modulo `e.

(b)⇒ (c): We have that
w = e(R,S) = e([a]P + [b]Q, [c]P + [d]Q).

Then since e is bilinear, w = e(P,Q)ad−bc. Now e(P,Q) has order `e because e is surjective onto the group
of `e-th roots of unity (c.f. [Sil09, Corollary III.8.1.1]), and since ` - ad− bc, then w must also have order `e.

(c) ⇒ (a): Recall that E[`e] ' Z/`eZ × Z/`eZ [Sil09, Corollary III.6.4b]. Thus, in order for R,S to form a
basis, we must show 〈R〉 ∩ 〈S〉 = {OE}.

Suppose [w]R = [z]S 6= OE for some integers w, z. By assumption, it must be that `e - w and `e - z. Now
consider e([w]R− [z]S, S) = 1, since e(OE , T ) = 1 for any T . By the bilinearity of the pairing, this gives

e([w]R− [z]S, S) = e(R,S)we(S, S)−z = 1.

Then, because e(S, S) = 1, we arrive at the conclusion e(R,S)w = 1, which is a contradiction since e(R,S)
has order `e and `e - w. Thus, there can exist no such integers w, z, and therefore 〈R〉∩〈S〉 = {OE}.
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Lemma 1. Let φ : E → E/〈R〉 be an isogeny of kernel 〈R〉 and degree `e, let S be a point of order `e

independent to R. Then φ(S) has order `e and generates ker(φ̂).

Proof. Because R and S are independent (Definition 1), the subgroups generated by R and S intersect
trivially. Thus, since φ has kernel 〈R〉, no non-trivial point in 〈S〉 is in the kernel of φ. Furthermore, we

know that φ̂ ◦ φ = [`e] has kernel E[`e], and that S ∈ E[`e]. Thus φ̂(φ(S)) = O, implying φ(S) is in the

kernel of φ̂. The same holds for all elements S′ = [λ]S ∈ 〈S〉, and since φ(S′) 6= O for all non-trivial S′, φ(S)

has order `e and generates ker(φ̂).

The following lemma is the main tool we are going to use, repeatedly, to design all proofs of knowledge.

Lemma 2. Let `1, `2 be distinct primes different from p, let e1, e2 be integers. Let φA : E → EA be
an isogeny of degree `e11 . Let φB : E → EB and φAB : EA → EAB be isogenies of degree `e22 such that
ker(φAB) = φA(ker(φB)). Then there exists an isogeny φBA : EB → EAB of degree `e11 .

Additionally, let S ∈ E be a point of order `e22 such that ker(φB) and 〈S〉 are independent, let SB = φB(S)

and let SAB = φAB(φA(S)). Then SB and SAB both have order `e22 and generate, respectively, ker(φ̂B) and

ker(φ̂AB). Moreover, φBA(SB) = SAB.

This is visualized in Figure 2.

Proof. Let KA be a generator of ker(φA). Then because the degrees of φA, φB are coprime, φB(KA) also
has order `e11 and generates the kernel of some isogeny

χ : EB → EB/〈φB(KA)〉.

Observe that EAB is defined as the codomain of φAB ◦ φA. We thus have that EAB ∼= E/〈KA,K
′〉 for a

point K ′ of order `e22 such that 〈φA(K ′)〉 = ker(φAB). Because ker(φAB) = φA(ker(φB)), we conclude 〈K ′〉 =
ker(φB). Therefore, EB/〈φB(KA)〉 ∼= EAB as required.

By the conditions on S, Lemma 1 shows that SB = φB(S) generates ker(φ̂B).

One can verify that using Vélu’s formula [Vél71], φAB(φA(P )) = φBA(φB(P )) for any point P ∈ E (see
[Leo20, Lemma 1]). Hence,

SAB = φAB(φA(S))

= φBA(φB(S)) = φBA(SB)

Finally, because 〈S〉 and ker(φB) are independent, and because ker(φAB) = φA(ker(φB)), then 〈φA(S)〉 and
ker(φAB) must also be independent. φA(S) must have order `e22 since the degree of φA is coprime to the order

of S. So by applying Lemma 1 again, we arrive at the conclusion that SAB generates ker(φ̂AB).

The lemma above suggests an algorithm to compute the points SB and SAB , even when the isogeny φA is
only known through its action on E[`e22 ]. We present such an algorithm in Figure 3.

2.3 Sigma protocols

A sigma protocol ΠΣ for a relation R = {(X,W )} is a public-coin three-move interactive proof system
consisting of two parties: a verifier V and a prover P . Recall that public-coin informally means that there
are no secret sources of randomness—the verifier’s coin tosses are accessible to the prover. In practice this
means the challenge sent by the verifier to the prover is uniformly random. For our purposes, a witness W
can be thought of as a secret key, while the statement X is the corresponding public key. Thus, proving
(X,W ) ∈ R is equivalent to saying that X is a valid public key for which a corresponding secret key exists.
We use the security parameter κ to parametrize the length of the secret keys involved.
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E,S ∈ E EA

EB
SB = φB(S)

EAB
SAB = φBA(SB)
= φAB(φA(S))

φA

φB φAB

φBA

Figure 2: Lemma 2, visualized. The lemma shows that φBA exists and the equality on SAB from both
directions holds.

Input: (E,P,Q,EA, PA, QA, φB , φAB) such that 〈P,Q〉 = E[`e22 ], φB : E → EB and φAB : EA →
EAB have degree `e22 , and for some isogeny φA : E → EA of degree `e11 , we have ker(φAB) = φA(ker(φB)),
PA = φA(P ), and QA = φA(Q).

Output: (S, φBA(S)) where S ∈ EB and φBA : EB → EAB is an isogeny such that
ker(φBA) = φB(ker(φA)).

1: Find a point S ∈ E such that SB = φB(S) generates the kernel of φ̂B . In fact, it suffices to have either
S = P or Q.

2: Write S = [a]P + [b]Q.
3: Compute SA = [a]PA + [b]QA Then SA = φA(S) despite φA being unknown.
4: Compute SAB = φAB(SA).
5: Output (SB , SAB).

Figure 3: Algorithm to compute image of a single point under hidden isogeny φBA, as per Lemma 2.

Definition 2 (Sigma protocol). A sigma protocol ΠΣ for a family of relations {R}κ parametrized by security
parameter κ consists of PPT algorithms ((P1, P2), (V1, V2)) where V2 is deterministic and we assume P1, P2

share states. The protocol proceeds as follows:

1. Round 1: The prover, on input (X,W ) ∈ R, returns a commitment com← P1(X,W ) which is sent to
the verifier.

2. Round 2: The verifier, on receipt of com, runs chall← V1(1κ) to obtain a random challenge, and sends
this to the prover.

3. Round 3: The prover then runs resp← P2(X,W, chall) and returns resp to the verifier.

4. Verification: The verifier runs V2(X, com, chall, resp) and outputs either > (accept) or ⊥ (reject).

A transcript (com, chall, resp) is said to be valid if V2(X, com, chall, resp) outputs >. Let 〈P, V 〉 denote the
transcript for an interaction between prover P and verifier V . Relevant properties of a sigma protocol
are:

Correctness: If the prover P knows (X,W ) ∈ R and behaves honestly, then the verifier V accepts.

2-special soundness: There exists a polynomial-time extraction algorithm Extract that, given a statement
X and two valid transcripts (com, chall, resp) and (com, chall′, resp′) where chall 6= chall′, outputs a witness
W such that (X,W ) ∈ R with probability at least 1− ε for soundness error ε.

Zero-knowledge (ZK): There exists a polynomial-time simulator Sim that, given a statement X for any
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(X,W ) ∈ R, and for any (cheating) verifier V ∗, outputs transcripts (com, chall, resp) that are indistinguish-
able from valid interactions between a prover P and V ∗.

Proof of Knowledge (PoK): There exists a polynomial-time extraction algorithm Extract that, given
an arbitrary statement X and access to any prover P ∗, outputs a witness W such that (X,W ) ∈ R with
probability at least Pr[〈P ∗, V 〉 = 1]− ε for knowledge error ε.

It is a known result (e.g. by Hazay and Lindell [HL10, Theorem 6.3.2]) that a correct and 2-special sound
sigma protocol with challenge length t is a Proof of Knowledge with knowledge error 2−t. In this paper, this
will generally be a single-bit challenge sigma protocol repeated with t iterations.

3 SIDH problems and assumptions

In this section, we recall some standard isogeny-based hardness assumptions of relevance to this work. We
then introduce a new decisional assumption which will be useful for the proof of zero-knowledge in Section 5.
The first two are computational isogeny-finding problems.

Definition 3 (General isogeny problem). Given j-invariants j, j′ ∈ Fp2 , find an isogeny φ : E → E′ if one
exists, where j(E) = j and j(E′) = j′.

This is the foundational hardness assumption of isogeny-based cryptography, that it is hard to find an isogeny
between two given curves. Note the decisional version, determining whether an isogeny exists, is easy—an
isogeny exists if and only if #E(Fp2) = #E′(Fp2).

Definition 4 (Computational Supersingular Isogeny (CSSI) problem). For fixed SIDH prime p, base curve
E0, and `e22 -torsion basis P0, Q0 ∈ E0, let φ : E0 → E1 be an isogeny of degree `e11 . Given an SIDH public
key (E1, P1 = φ(P0), Q1 = φ(Q0)), find an isogeny φ′ : E0 → E1 of degree `e11 such that P1, Q1 = φ′(P0),
φ′(Q0).

This is problem 5.2 of [DJP14] and essentially states that it is hard to find the secret key corresponding to
a given public key. This problem is also called the SIDH isogeny problem by [GV18, Definition 2].

At the heart of the adaptive attack is the problem that, given a public key (E1, P1, Q1), we cannot validate
that P1, Q1 are indeed the correct images of basis points P0, Q0 under the secret isogeny φ. The best we
know how to do is to check they are indeed a basis of the correct order, and use the Weil pairing check

e`e22 (P1, Q1) = e`e22 (P0, Q0)deg φ.

Unfortunately this holds for many different choices of basis points. Indeed, if (P1, Q1) are the correct images,
then any pair (aP1 + bQ1, cP1 + dQ1) such that ad − bc = 1 mod `e22 also passes the check. So this is not
enough to uniquely determine φ, and, in particular, is insufficient to protect against the GPST adaptive
attack.

The following decisional problem follows Definition 3 of [GV18] and is also very similar to the key validation
problem of Urbanik and Jao [UJ18, Problem 3.4] (the key validation problem asks whether a φ of degree
dividing `e11 exists). However, the previous definitions did not take the Weil pairing check into account, which
would serve as a distinguisher.

Definition 5 (Decisional SIDH isogeny (DSIDH) problem). The decisional SIDH problem is to distinguish
between the following two distributions:

• D0 = {(E0, P0, Q0, E1, P1, Q1)} such that E0 is a supersingular elliptic curve defined over Fp2 , P0, Q0

a basis such that E0[`e22 ] = 〈P0, Q0〉, φ : E0 → E1 is an isogeny of degree `e11 , and P1 = φ(P0) and
Q1 = φ(Q0).
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• D1 = {(E0, P0, Q0, E1, P1, Q1)} such that E0 is a supersingular elliptic curve defined over Fp2 , P0, Q0

a basis such that E0[`e22 ] = 〈P0, Q0〉, E1 is any supersingular elliptic curve over Fp2 with the same
cardinality as E0, and P1, Q1 is a basis of E1[`e22 ] satisfying the Weil pairing check e`e22 (P1, Q1) =

e`e22 (P0, Q0)`
e1
1 .

As shown by Galbraith and Vercauteren [GV18], Thormarker [Tho17], and Urbanik and Jao [UJ18], being
able to solve this decisional problem is as hard as solving the computational (CSSI) problem, so key validation
is fundamentally difficult. This is done by testing `1-isogeny neighboring curves of E1 and learning the correct
path one bit at a time.

Definition 6 (Decisional Supersingular Product (DSSP) problem). Let φ : E0 → E1 be an isogeny of degree
`e11 . Let P0, Q0 ∈ E0[`e22 ] be a fixed basis of the `e22 -torsion subgroup. Suppose we have the following two
distributions:

• D0 = {(E2, E3, φ
′)} such that there exists a cyclic subgroup G ⊆ E0[`e22 ] of order `e22 and E2

∼= E0/G
and E3

∼= E1/φ(G), and φ′ : E2 → E3 is a degree `e11 isogeny.

• D1 = {(E2, E3, φ
′)} such that E2 is a random supersingular curve with the same cardinality as E0, and

E3 is the codomain of a random isogeny φ′ : E2 → E3 of degree `e11 .

Let ODSSP be an oracle which behaves as follows. On setup, with public parameters (E0, P0, Q0, E1, φ(P0),
φ(Q0)), it chooses a uniformly random secret bit b← {0, 1}. Each time it is queried, ODSSP returns a tuple
from distribution Db. The DSSP problem is then, given access to such an oracle, to determine b.

This is problem 5.5 of [DJP14] and intuitively states that it is hard to determine whether there exist valid
“vertical sides” to an SIDH square given the corners and the bottom horizontal side.

3.1 A new hardness assumption

We define a new decisional isogeny assumption which will be useful for the proof of zero-knowledge in Sec-
tion 5. This assumption can intuitively be seen as a “parallel” version of the DSIDH assumption above.

Definition 7 (Decisional Mirror SIDH (DMSIDH) problem). Let φ : E0 → E1 be an isogeny of degree `e11 .
Let P0, Q0 be a basis for the `e22 -torsion subgroup E0[`e22 ].

Define distributions D0 and D1 as follows. Construct a random SIDH square by letting ψ : E0 → E2 be a
random isogeny of degree `e22 , then ψ′ : E1 → E3 an isogeny of degree `e22 whose kernel is φ(ker(ψ)), and
φ′ : E2 → E3 an isogeny of degree `e11 whose kernel is ψ(ker(φ)). Construct a basis S, T of E2[`e22 ] with

〈S〉 = ker(ψ̂). Finally, the distributions are

• D0 = {(ψ,ψ′, S, T, φ′(S), T ′)} where T ′ = φ′(T )

• D1 = {(ψ,ψ′, S, T, φ′(S), T ′)} where T ′ = φ′(T + [r]S), and r is random.

Let ODMSIDH be an oracle which, on setup with public parameters (E0, P0, Q0, E1, φ(P0), φ(Q0)), chooses a
uniformly random secret bit b← {0, 1}, then each time it is queried returns a sample from Db. The DMSIDH
problem is, given access to ODMSIDH, to determine b. The problem is visualized in Figure 4.

In other words, (E1, φ(P0), φ(Q0)) is an SIDH public key, and the ψ,ψ′ are the vertical sides of an SIDH
square. The challenge is to determine whether a point T ′ is the actual image of T under the hidden horizontal
isogeny on the fourth (bottom) side of the SIDH square (which is guaranteed to exist).

Observe that, given an SIDH public key, one can already choose isogenies ψ,ψ′ such that ker(ψ′) = φ(ker(ψ)).
We can also obtain a point S and its image φ′(S) via these ψ and ψ′. This is possible due to Lemma 2 (and
achieved in practice using the algorithm in Figure 3). Thus, the only additional information provided in the
DMSIDH problem is a candidate image T ′ of one extra point T on E2 (independent to S).
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(E0, P0, Q0) (E1, φ(P0), φ(Q0))

(E2, S, T ) (E3, φ
′(S), T ′)

φ

ψ ψ′

does T ′ = φ′(T )?

Figure 4: The Decisional Mirror SIDH (DMSIDH) problem (Definition 7) visualized. Dashed lines are secret

and are not known by the adversary/distinguisher. S is such that 〈S〉 = ker(ψ̂).

3.2 Double variants

In Section 6, we propose a scheme which uses two independent SIDH squares in each round of the sigma
protocol. For the zero-knowledge proof in that section, we require “double” variants of the DSSP and
DMSIDH problems. We prove that the Double-DMSIDH problem is hard if the “single” version is. Hence,
this definition is only needed as a tool to simplify the security proof.

The Double-DSSP problem differs from the “single” version by the introduction of two bases U ′i , V
′
i of the

`e11 -torsion subgroups on E2,i, for i ∈ {0, 1}. As we shall see in Section 6, these extra points will be used
to verify that the two independent SIDH squares in the “double” protocol both use consistent isogenies φ′i.
These extra points, plus the requirement that the isogenies ψi used in each of the two squares should be
independent, mean a reduction from DSSP to the Double-DSSP problem is unlikely. We believe Double-
DSSP is a hard problem.

Definition 8 (Double-DSSP Problem). For public parameters (E0, P0, Q0, E1, φ(P0), φ(Q0)), let ODSSP be
a DSSP instance generator oracle (with secret bit b). The double-DSSP problem is to distinguish between the
following two distributions:

• D0 = {(insti∈{0,1}, U ′i , V ′i )} where insti = (E2,i, E3,i, φ
′
i) ← ODSSP with b = 0, and additionally, if

ψi : E0 → E2,i are the respective isogenies of degree `e22 , then ψ0 and ψ1 are independent and U ′i , V
′
i =

ψi(U), ψi(V ) where {U, V } is a random basis of E0[`e11 ].

• D1 = {(insti∈{0,1}, U ′i , V ′i )} where insti = (E2,i, E3,i, φ
′
i)← ODSSP, b = 1, and U ′i , V

′
i is a random basis

of the `e11 torsion subgroup on E2,i such that e`e11 (U ′0, V
′
0) = e`e11 (U ′1, V

′
1) and there is a pair (a, b) of

integers such that the kernel of φ′i is generated by [a]U ′i + [b]V ′i for both i ∈ {0, 1}.

Definition 9 (Double-DMSIDH Problem). For public parameters (E0, P0, Q0, E1, φ(P0), φ(Q0)), let ODMSIDH

be a DMSIDH instance generator oracle (with secret bit b). The double-DMSIDH problem is to distinguish
between the following two distributions:

• D0 = {insti∈{0,1}} where insti = (ψi, ψ
′
i, Si, Ti, φ

′
i(Si), T

′
i ) ← ODMSIDH, b = 0, and ψ0 and ψ1 are

independent.

• D1 = {insti∈{0,1}} where insti = (ψi, ψ
′
i, Si, Ti, φ

′
i(Si), T

′
i ) ← ODMSIDH, b = 1, and ψ0 and ψ1 are

independent.

Theorem 3. If there exists an adversary ADDMSIDH which makes n queries to a Double-DMSIDH oracle and
guesses its bit with advantage Advddmsidh, then there exists an adversary that solves the DMSIDH problem
(with oracle ODMSIDH) with the same advantage Advddmsidh, after making an expected n(`2 + 1)/`2 queries to
ODMSIDH.

Proof. Given a DMSIDH oracle ODMSIDH, we simulate a Double-DMSIDH oracle as follows. Any time

9



ADDMSIDH asks for a sample we query ODMSIDH for inst0 = (ψ0, ψ
′
0, S0, T0, φ

′
0(S0), T ′0), then we keep query-

ing ODMSIDH for inst1 = (ψ1, ψ
′
1, S1, T1, φ

′
1(S1), T ′1) until ψ0 and ψ1 are independent. Finally, we return

(inst0, inst1).

Write ker(ψi) = 〈[ai]P0 +[bi]Q0〉, and say that two pairs ai, bi (i ∈ {0, 1}) are conjugate if (a0, b0) = λ(a1, b1)
for some invertible scalar λ. There are `2 +1 different such conjugacy classes of (ai, bi), and being in different
conjugacy classes implies that a′0b

′
1 − a′1b′0 is invertible. Thus, with probability `2/(`2 + 1), any two random

choices of ψi will be independent.

Therefore, if ADDMSIDH makes n queries to the Double-DMSIDH oracle, the simulation makes an expected
number n(`2 +1)/`2 of queries to ODMSIDH. Because the simulation is perfect, whatever advantage ADDMSIDH

has against Double-DMSIDH carries over to DMSIDH.

4 Previous SIDH identification scheme and soundness issue

4.1 De Feo–Jao–Plût scheme

Let p be a large prime of the form `e11 ·`
e2
2 ·f±1, where `1, `2 are small primes. We start with a supersingular

elliptic curve E0 defined over Fp2 with #E0(Fp2) = (`e11 `
e2
2 f)2. The private key is a random point Kφ ∈

E0(Fp2) of exact order `e11 . Define E1 = E0/〈Kφ〉 and denote the corresponding `e11 -isogeny by φ : E0 →
E1.

Let P0, Q0 be a basis of the torsion subgroup E0[`e22 ] = 〈P0, Q0〉. The fixed public parameters are pp =
(p,E0, P0, Q0). The public key is (E1, φ(P0), φ(Q0)). The private key is the kernel generator Kφ (equivalently,
the isogeny φ). The interaction goes as follows:

1. The prover chooses a random primitive `e22 -torsion point Kψ as Kψ = [a]P0 + [b]Q0 for some integers
0 ≤ a, b < `e22 not both divisible by `2. Note that φ(Kψ) = [a]φ(P0) + [b]φ(Q0). The prover defines the
curves E2 = E0/〈Kψ〉 and E3 = E1/〈φ(Kψ)〉 = E0/〈Kψ,Kφ〉, and uses Vélu’s formulae to compute
the following diagram.

E0 E1

E2 E3

φ

ψ′ψ

φ′

The prover sends commitment com = (E2, E3) to the verifier.

2. The verifier challenges the prover with a random bit chall← {0, 1}.

3. If chall = 0, the prover reveals resp = (a, b) from which Kψ and φ(Kψ) = Kψ′ can be reconstructed. If
chall = 1, the prover reveals resp = (ψ(Kφ) = Kφ′).

In both cases, the verifier accepts the proof if the points revealed have the correct order and generate kernels
of isogenies between the correct curves. We iterate this process t times to reduce the cheating probability
(where t is chosen based on the security parameter κ). Note that in an honest execution of the proof, we
have

ψ̂′ ◦ φ′ ◦ ψ = [`e22 ]φ.

10



4.2 Issue with soundness proofs for the De Feo–Jao–Plût scheme

A core component of the security proof of the De Feo–Jao–Plût identification scheme is the soundness proof.
A proof of soundness was given by multiple previous works [DJP14, YAJ+17, GPS20] based on the CSSI
problem in Definition 4. A sketch of this soundness proof is as follows:

Suppose A is an adversary that takes as input the public key and succeeds in the identification protocol (all
t iterations) with noticeable probability ε. Given a challenge instance (E0, E1, R0, S0, φ(R0), φ(S0)) for the
CSSI problem, we run A on the tuple (E1, φ(R0), φ(S0)) as the public key. In the first round, A outputs
commitments (Ei,2, Ei,3) for 1 ≤ i ≤ t. We then send a challenge b ∈ {0, 1}t to A and, with probability ε,
A outputs a response that satisfies the verification algorithm. Now, we use the standard replay technique:
Rewind A to the point where it had output its commitments and then respond with a different challenge
b′ ∈ {0, 1}t. With probability ε, A outputs a valid response. This gives exactly the 2-special soundness
requirement of two valid transcripts with the same commitment but different challenges.

Now, choose some index i such that bi 6= b′i. We now restrict our focus to the components (E2, E3) for that
index, and the two responses. It means A sent E2, E3 and can answer both challenges b = 0 and b = 1
successfully. Hence A has provided the maps ψ, φ′, ψ′ in the following diagram.

E0 E1

E2 E3

φ

φ̃

ψ′ψ

φ′

The argument proceeds as follows: We have an explicit description of an isogeny φ̃ = ψ̂′ ◦ φ′ ◦ ψ from E0 to
E1. The degree of φ̃ is `e11 `

2e2
2 . One can determine ker(φ̃)∩E0[`e11 ] by iteratively testing points in E0[`j1] for

j = 1, 2, . . . . Hence, one determines the kernel of φ, as desired.

However, the important issue with this argument which has so far gone unnoticed, is that it assumes ker(φ) =
ker(φ̃)∩E0[`e11 ]. This assumption has no basis, and we will provide a simple counterexample to this argument
in the following section. While we always recover an isogeny, it may not be φ at all—it is entirely possible the
isogeny we recover does not even have codomain E1 so this proof of 2-special soundness is not valid.

4.3 Counterexample to soundness

Fix a supersingular curve E0 as above. Generate a random `e22 -torsion point Kψ ∈ E0(Fp2) as Kψ =
[a]P0 + [b]Q0 for some integers 0 ≤ a, b < `e22 not both divisible by `2. Let ψ : E0 → E2 have kernel
generated by Kψ. Then choose a random isogeny φ′ : E2 → E3 of degree `e11 with kernel generated by
Kφ′ . Then choose a random isogeny ψ′ : E3 → E1 of degree `e22 . Choose points P ′0, Q

′
0 ∈ E1(Fp2) such that

ker(ψ̂′) = 〈[a]P ′0 + [b]Q′0〉. Then publish

(E0, E1, P0, Q0, P
′
0, Q

′
0)

as a public key. In other words, we have

E0
ψ−→ E2

φ′−→ E3
ψ′−→ E1

Now there is no reason to believe that there exists an isogeny from E0 to E1 of degree `e11 , yet we can respond
to both challenge bits 0 and 1 in a single round of the identification scheme. Pulling back the kernel of φ′

via ψ to E0 will result in the kernel of an isogeny which, in general, will not have codomain E1 (but instead
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a random other curve). This is because ψ′ is entirely unrelated to ψ in this case (they are not “parallel”),
so we have no SIDH square.

The key observation is that a verifier could be fooled into accepting this public key by a prover who always
uses the same curves (E2, E3) instead of randomly chosen ones. When b = 0 the prover responds with the

pair (a, b) corresponding to the kernel of ψ and ψ̂′, and when b = 1 the prover responds with Kφ′ . The
verifier will agree that all responses are correct and will accept the proof.

It is true that the verifier could test whether the commitments (E2, E3) are being re-used, but this has never
been stated as a requirement in any of the protocol descriptions. To tweak the verification protocol we need
to know how “random” the pairs (E2, E3) (or, more realistically, the pairs (a, b)) need to be. One may think
that the original scheme seems to be secure despite the issue with the proof, as long as the commitment
(E2, E3) is not reused every time. However, in experiments with small primes, it is entirely possible to
construct instances1 where even with multiple different commitments, a secret isogeny of the correct degree
between E0 and E1 does not exist. We expect that this extrapolates to large primes too, although one could
potentially argue that finding enough such instances is computationally infeasible.

It is also true that repeating (E2, E3) means the protocol is no longer zero-knowledge. We emphasize that
soundness and zero-knowledge are independent security properties, which are proved separately (and affect
different parties: one gives an assurance to the verifier and the other to the prover). The counterexample
we have provided is a counterexample to the soundness proof. The fact that the counterexample is not
consistent with the proof that the protocol is zero-knowledge is irrelevant.

Finally, one could consider basing security of the protocol on the general isogeny problem (Definition 3)
because, even in our counterexample, an isogeny E0 → E1 exists and can be extracted—it just doesn’t have
degree `e11 . We find it interesting that none of the previous authors chose to do it that way. However, some
applications may require using the identification/signature protocols to prove that an SIDH public key is
well-formed, implying the secret isogeny has the correct degree. For such applications we need soundness to
be rigorously proved.

The issue in the security proofs in the literature is not only that it is implicitly assumed that there is an
isogeny of degree `e11 between E0 and E1. The key issue is that it is implicitly assumed that the pullback
under ψ of ker(φ′) is the kernel of this isogeny. Our counterexample calls these assumptions into question,
and shows that the proofs are incorrect as written.

To make this very clear, consider the soundness proof from De Feo, Jao, and Plût [DJP14]. The following
diagram is written within the proof. It implicitly assumes that the horizontal isogeny φ′ has kernel given by
ψ(S), so that the image curve is E/〈S,R〉.

E E/〈S〉

E/〈R〉 E/〈S,R〉

ψ

φ′

ψ′

This implicit assumption seems to have been repeated in all subsequent works, such as [YAJ+17] and
[GPS20].

1Thank you to Lorenz Panny for demonstrating this.
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5 First new SIDH proof

Let public parameters pp = (p, `1, `2, e1, e2, E0, P0, Q0) be such that E0(Fp2)[`e22 ] = 〈P0, Q0〉. As before,
suppose a user has a secret isogeny φ : E0 → E1 of degree `e11 with kernel ker(φ) = 〈Kφ〉.

We propose a new sigma protocol to prove knowledge of this isogeny given the public key (E1, P1 =
φ(P0), Q1 = φ(Q0)). The protocol is presented in Figure 6. IsogenyFromKernel is a function taking a
kernel point and outputting an isogeny and codomain curve with said kernel. CanonicalBasis2 is a determin-
istic function taking a curve and outputting a `e22 -torsion basis on the given curve. DualKernel is a function

taking an isogeny ψ and outputting a generator Kψ̂ of the dual isogeny ψ̂. Figure 5 shows the commutative
diagram of the sigma protocol.

Intuitively, the identification scheme follows Section 4.1, with a single bit challenge—if the challenge is 0,
we reveal the vertical isogenies ψ,ψ′, while if the challenge is 1, we reveal the horizontal φ′. The difference
is the introduction of additional points on E3 to the commitment, which force ψ,ψ′ to be, in some sense
“compatible” or “parallel”. This restriction allows the proof of 2-special soundness to work.

We then repeat the identification scheme t times in parallel (where t is chosen based on the security parameter
κ) and set com to be the concatenation of all individual [comi]i∈[t] for each iteration i, chall = [challi]i∈[t]

and resp = [respi]i∈[t].

E0 E1

E2 E3

φ

ψ

φ′

ψ′

Figure 5: Commutative diagram of SIDH identification scheme

Remark 1. There are certainly improvements that can be made to improve efficiency and compress the size
of signatures, but these are standard and we will not explore them here. For example, in practice the com-
mitment information (E3, P3, Q3) would be replaced with a triplet of x-coordinates, as in SIKE [ACC+17].

Theorem 4. The sigma protocol in Figure 6 for relation

RweakSIDH = {((E1, P1, Q1), φ) | φ : E0 → E1,deg φ = `e11 }

is correct, 2-special sound, and computationally zero-knowledge assuming the DMSIDH and DSSP problems
are hard. Repeated with κ iterations, it is thus a Proof of Knowledge for RweakSIDH with knowledge error 2−κ.

Proof. We prove the three properties of Theorem 4 separately below.

Correctness: Following the protocol honestly will result in an accepting transcript. This is clear for the
chall = 1 case. For the chall = 0 case, observe that

φ′(Kψ̂) = φ′([c]P2 + [d]Q2) = [c]P3 + [d]Q3 = K
ψ̂′
,

thus K
ψ̂′

generates the kernel of ψ̂′.
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round 1 (commitment)

1: Sample random `e22 -isogeny kernel 〈Kψ〉 ⊂ E0

2: Write Kψ = [a]P0 + [b]Q0 ∈ E0 for a, b ∈ Z/`e22 Z
3: Kψ′ ← φ(Kψ) = [a]φ(P0) + [b]φ(Q0) ∈ E1

4: ψ,E2 ← IsogenyFromKernel(Kψ)
5: P2, Q2 ← CanonicalBasis2(E2)
6: Kφ′ ← ψ(Kφ) ∈ E2

7: φ′, E3 ← IsogenyFromKernel(Kφ′)
8: P3, Q3 ← φ′(P2), φ′(Q2) ∈ E3

9: Prover sends com← (E2, E3, P3, Q3) to Verifier.

round 2 (challenge)

1: Verifier sends chall← {0, 1} to Prover.

round 3 (response)

1: if chall = 1 then
2: resp← Kφ′

3: else
4: Kψ̂ ← DualKernel(ψ)

5: Write Kψ̂ = [c]P2 + [d]Q2 for c, d ∈ Z/`e22 Z
6: resp← (c, d)

7: Prover sends resp to Verifier.

Verification

1: (E2, E3, P3, Q3)← com
2: if chall = 1 then
3: Kφ′ ← resp
4: Check Kφ′ has order `e11 and lies on E2, otherwise output reject
5: P2, Q2 ← CanonicalBasis2(E2)
6: φ′, E′3 ← IsogenyFromKernel(Kφ′)
7: Verify E3 = E′3 and P3, Q3 = φ′(P2), φ′(Q2), otherwise output reject
8: else
9: (c, d)← resp

10: P2, Q2 ← CanonicalBasis2(E2)
11: Kψ̂ ← [c]P2 + [d]Q2

12: K
ψ̂′
← [c]P3 + [d]Q3

13: Check Kψ̂, K
ψ̂′

have order `e22 , otherwise output reject

14: ψ̂, E′0 ← IsogenyFromKernel(Kψ̂)

15: ψ̂′, E′1 ← IsogenyFromKernel(K
ψ̂′

)

16: Check E0 = E′0 and E1 = E′1, otherwise output reject

17: Output accept

Figure 6: One iteration of the sigma protocol for our new SIDH identification scheme. The public parameters
are pp = (p, `1, `2, e1, e2, E0, P0, Q0). The public key is (E1, P1, Q1), and the corresponding secret isogeny is
φ.

2-special soundness: Without loss of generality, suppose we obtain two transcripts (com, 0, resp), (com,
1, resp′). Then recover (c, d)← resp and Kφ′ ← resp′, and let φ′ be an isogeny whose kernel is generated by

Kφ′ . Applying Lemma 2, with (φA, φB , φAB) = (φ′, ψ̂, ψ̂′), we obtain an isogeny χ : E0 → E1 of degree `e11 .
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The conditions of the lemma on the kernels of ψ̂ and ψ̂′ are satisfied because φ′(Kψ̂) = K
ψ̂′

, as above. This
shows the protocol is 2-special sound, and that it is a Proof of Knowledge of an isogeny corresponding to
the given public key curve. Because this protocol does not guarantee correctness of the points P1, Q1 in the
public key (as briefly discussed in Section 5.1), this is only a proof for the weakSIDH relation. In the next
section, we will modify this protocol further to also include these torsion points in the relation.

Zero-knowledge: Proof of ZK follows as in [DJP14]. Let V ∗ be a cheating verifier, which shall be used
as a black box by the simulator Sim. We show that Sim can generate a valid transcript for t iterations of
the protocol. At each step, Sim makes a guess what the next challenge bit chall will be, and then proceeds
as follows.

• If chall = 0, Sim simulates as per the honest protocol by choosing a random kernel 〈Kψ〉 on E0 of
order `e22 , writing Kψ = [a]P0 + [b]Q0 for a, b ∈ Z/`e22 Z, and setting Kψ′ = [a]P1 + [b]Q1 on E1.
Sim computes the two vertical isogenies ψ : E0 → E2, ψ

′ : E1 → E3 from these kernel generators
respectively. The simulator then computes the corresponding dual isogenies and the canonical basis
P2, Q2 ← CanonicalBasis2(E2). Let Kψ̂ and K

ψ̂′
be generators of the kernels of ψ̂ and ψ̂′ respectively.

The simulator writes Kψ̂ in terms of the canonically-generated basis on E2 as [c]P2+[d]Q2, then chooses
a torsion basis on E3 as P3, Q3 ∈ E3 in such a way that these points P3, Q3 are indistinguishable from
points chosen in an honest protocol transcript:

1. Obtain a point S ∈ E2 and its image S′ = φ′(S2) via the algorithm in Figure 3 despite φ′ being
unknown (c.f. Lemma 2).

2. Choose any T ∈ E2 of order `e22 such that E2[`e22 ] = 〈S, T 〉.

3. Choose a point T ′ ∈ E3 such that E3[`e22 ] = 〈S′, T ′〉, and such that e`e22 (S, T )`
e1
1 = e`e22 (S′, T ′).

4. Solve discrete logarithms of P2, Q2 with respect to S, T on E2 to obtain a change-of-basis matrix,
and apply the same change of basis to S′, T ′ on E3 to obtain points P3, Q3.

Note that the above operations are efficient due to the ease of computing discrete logarithms when the
group order is very smooth [Tes99].

• If chall = 1, the simulator chooses a random supersingular elliptic curve2 E2 and a random point
Kφ′ ∈ E2 of order `e11 . Sim then computes an isogeny φ′ : E2 → E3 with kernel Kφ′ . Finally, the
simulator generates a canonical basis P2, Q2 ← CanonicalBasis2(E2), computes P3, Q3 ← φ′(P2), φ′(Q2),
and sets the commitment to (E2, E3, P3, Q3) and the response to Kφ′ .

After providing com to V ∗, if the challenge V ∗ outputs is not the same as Sim’s guess, Sim simply discards
that iteration and runs again. Sim stops whenever V ∗ rejects or after t successful rounds. Suppose the
probability of V ∗ not choosing the same bit as Sim’s guess is noticeably different from 1/2. Then V ∗ can
be used as a distinguisher for the DSSP problem (in fact, an even harder problem than the DSSP where,
instead of the isogeny φ′, only its action on E2[`e22 ] is given). We show this below, in the chall = 1 case of
this proof. So the probability Sim guesses correctly each round is exponentially close to 1/2 if the DSSP
problem is hard. Thus, Sim will run in polynomial-time.

To prove indistinguishability of simulated transcripts from true interactions of a prover P with V ∗, it is
enough to show that one round of the sigma protocol is indistinguishable (by the hybrid technique of
Goldreich et al. [GMW91]).

When chall = 0, the choice of ψ and ψ′ is done exactly as in the honest protocol, so the curves E2, E3 in the
commitment are perfectly indistinguishable from those in honest transcripts. We show that the points P3, Q3

are also indistinguishable, assuming the DMSIDH problem is hard. Suppose B0 is a PPT adversary which
can distinguish between the simulation and the real transcripts for chall = 0 with advantage Adv0. Let ((E0,

2One way to do so is to take a random `2-isogeny walk from E0. To ensure a distribution close to uniform, we take a walk
of length & log(p) ≈ 2e2. However a walk of length e2 is sufficient to get a variant of DSSP that is also believed to be hard.
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P0, Q0), (E1, φ(P0), φ(Q0)), ψ, ψ′, S, T, φ′(S), T ′) be a challenge instance of the DMSIDH problem. Denote
by E2 the codomain of ψ, and E3 the codomain of ψ′. Set P2, Q2 ← CanonicalBasis2(E2), and proceed as in
Step 4 of the simulation to obtain points P3, Q3 from S′, T ′ using a change of basis matrix A = (ai) derived
from (P2, Q2) and (S, T ): (

P2

Q2

)
=

(
a0 a1

a2 a3

)
·

(
S

T

)
(1)

Write the kernel of ψ̂ as ker(ψ̂) = [c]P2+[d]Q2 for scalars c, d. Finally, give transcript com = (E2, E3, P3, Q3), chall =
0, resp = (c, d) to B0.

If T ′ = φ′(T ) in the challenge instance of the DMSIDH problem (i.e. from distribution D0), then we
necessarily have that P3 = [a0]φ′(S)+[a1]φ′(T ) = φ′(P2), and similarly Q3 = φ′(Q2). Hence, the distribution
of transcripts will be identical to the honest protocol. On the other hand, the transcript simulator selects
a random T ′ such that E3[`e22 ] = 〈S′, T ′〉 and e`e22 (S, T )`

e1
1 = e`e22 (S′, T ′). Let T ′ = [q]φ′(T ) + [r]φ′(S) =

[q]φ′(T ) + [r]S′. The pairing condition gives e`e22 (S′, [q]φ′(T ) + [r]S′) = e`e22 (S′, φ′(T ))q implying q = 1.

Hence T ′ = φ′(T + [r]S). Then, because the transcript simulator behaves identically to the reduction in
computing P3, Q3 (via applying the same change of basis matrix to S′, T ′), the transcript distribution in the
reduction will be identical to the transcripts generated by the simulator. Therefore, the response from B0

will solve the DMSIDH problem with advantage Adv0.

Remark 2. If there was an efficient solution to the computational version of the DMSIDH problem—that
is, the problem of finding the correct image of T under the secret φ′—then we could obviously simulate
perfectly. Moreover, if there did exist an efficient distinguisher for the DMSIDH problem, then integrating
it into the verification step of the protocol in Figure 6 would be enough to prove the strong relation that we
will define in Section 6. A surprising situation would only materialize if there were a gap between DMSIDH
and its computational analogue, leading to an efficient, but disturbingly not zero-knowledge, protocol for
both the weak and the strong relation. Our intuition tells us that such a gap should not exist, but a proof
seems to be out of reach.

When chall = 1, we consider the distribution of (E2, E3, φ
′). While this distribution is not correct a priori,

the DSSP computational assumption in Definition 6 implies it is computationally hard to distinguish the
simulation from the real game (as in the proof in [GPS20]). Because the action of φ′ on canonical basis
P2, Q2 ∈ E2 can be computed by any party who knows φ′, the distribution of (E2, E3, P3, Q3) must also be
indistinguishable between simulation and real transcripts.

Suppose B1 is a PPT adversary which can distinguish between the simulation and the real transcripts for
chall = 1 with advantage Adv1. Given an instance of the DSSP problem, (E2, E3, φ

′), compute P2, Q2 ←
CanonicalBasis2(E2). Then let P3 = φ′(P2) and Q3 = φ′(Q2), and set com = (E2, E3, P3, Q3), chall =
1, resp = (ker(φ′)). B1, given (com, chall, resp), will then solve the DSSP with the same advantage Adv1. It
is for this same reason that a cheating verifier V ∗ is unable to distinguish based on com alone whether the
simulator is attempting a chall = 0 or chall = 1 simulation with non-negligible advantage, if it cannot solve
the DSSP problem with non-negligible advantage.

Hence, the scheme is computationally zero-knowledge assuming the DSSP and DMSIDH problems are hard.

Remark 3. We note that the points P1, Q1 are not actually used in the verification algorithm, so could be
omitted entirely in practice if desired. After observing just two iterations of the sigma protocol on average
the verifier would be able to reconstruct (P1, Q1).
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5.1 Why this protocol does not prove correctness of the points (P1, Q1)

We briefly explain why the protocol in this section does not convince a verifier that (P1, Q1) = (φ(P0), φ(Q0)).
The first observation is that Figure 6 does not actually use P1 or Q1 anywhere, so of course, nothing is proved.
But one could tweak the protocol in the chall = 0 case to use the isogenies ψ̂ : E2 → E0 and ψ̂′ : E3 → E1

to test the points. For example, using the duals of these isogenies, one could compute integers (a, b) such
that ker(ψ) = 〈[a]P0 + [b]Q0〉 and then test whether or not ker(ψ′) = 〈[a]P1 + [b]Q1〉.

The problem for the verifier is that this is not enough to deduce that (P1, Q1) = (φ(P0), φ(Q0)). For example,
a dishonest prover who wants to perform an attack might set (P1, Q1) = (φ(P0), φ(Q0) + T ) where T is a
point of order `2. If the prover always uses integers b that are multiples of `2 then this cheating will not be
detected by the verifier. Hence, the protocol needs to be changed so that the verifier can tell that the kernels
of the isogenies ψ̂ are sufficiently independent across the executions of the protocol. This is the fundamental
problem that we solve in the next section.

6 Correctness of the points in an SIDH public key

We have shown in Section 5 that successful completion of the new sigma protocol indeed proves knowledge of
a degree `e11 isogeny from E0 to E1 (as per the relation RweakSIDH in Theorem 4). However, an SIDH public
key (E1, P1, Q1) also consists of the two torsion points, and these points are the cause of issues such as the
adaptive attack [GPST16], as discussed in Section 3. In this section, we show that the choice of points P1, Q1

by a malicious prover is severely restricted if they must keep them consistent with “random enough” values
of a, b (i.e., random choices of ψ)—preventing adaptive attacks entirely. This gives the following stronger
SIDH relation:

RSIDH =

{
((E1, P1, Q1), φ)

∣∣∣∣∣ φ : E0 → E1, deg φ = `e11 ,

P1 = φ(P0), Q1 = φ(Q0)

}

Figure 7 shows the modified protocol proving this strong relation.

Let us reconsider the protocol in Figure 6 for a moment. We have that ker(ψ̂′) = φ′(ker(ψ̂)) by the 2-special

soundness of Theorem 4. Applying the algorithm in Figure 3 to (E2, P2, Q2, E3, P3, Q3, E0, E1, ψ̂, ψ̂′) gives

us a pair (R0, R1 = χ(R0)) for χ : E0 → E1, where ker(χ) = ψ̂(ker(φ′)). Note that φ in the algorithm
and Lemma 2 corresponds to φ′ here because we have “flipped the SIDH square upside down.” Because the
degrees of φ′ and ψ̂ are coprime, we can translate this to ψ(ker(χ)) = ker(φ′). Note that R0 and R1 will be
scalar multiples (by the same scalar) of the Kψ and Kψ′ used by the prover in the commitment round of the
protocol.

Consequently, two (honest) answers to chall = 0 reveal two pairs of points R1,0, R1,1 = φ(R0,0), φ(R0,1).
If these are independent, they fix the action of φ on the whole `e22 torsion (as a basis for the `e22 torsion
subgroups on both curves). The easiest way to enforce two such honest answers is to “double” the protocol.
Thus, in each round of our new sigma protocol, we shall commit to two SIDH squares rather than just one,
and require that the kernel generators of ψ in these two squares are independent from each other. We add
this independence as an extra check during verification. We also require an assurance that both squares
use consistent isogenies φ′. For this purpose we use a random `e11 -torsion basis (U, V ) on E0 and compute
the image of this basis on both curves E2,i—if both φ′i are the images of φ under the vertical isogenies
ψi, then both should be representable in terms of (ψi(U), ψi(V )) using the same coefficients. These extra
checks achieve a 2-special sound protocol for the stronger SIDH relation above. We stress that (U, V ) are
not made public in the commitment. In the following protocol, RandomBasis1 is a function taking a curve
and outputting a random pair of points U, V which generate the `e11 -torsion subgroup on the given curve.
The function RandomBasis1 is called many times on the same curve E0 during t rounds of the protocol and
it is important that the outputs are independent and not known to the verifier in the chall = 1 case.
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round 1 (commitment)

1: Run commitment from Figure 6, giving commitment com0 = (E2,0, E3,0, P3,0, Q3,0). Let a0, b0 be the coefficients used in
Line 2 and ψ0 be the isogeny from Line 4 (of Figure 6) of this execution.

2: Run commitment from Figure 6 again, subject to one extra condition:
• If a1, b1 are the coefficients used in Line 2 (of Figure 6) of this execution, then require a0b1 − a1b0 invertible modulo
`e22 . Otherwise repeat Line 1 (of Figure 6).

Let com1 = (E2,1, E3,1, P3,1, Q3,1) be the commitment returned by this execution, and ψ1 be the isogeny from Line 4.
3: U, V ← RandomBasis1(E0)
4: for i ∈ {0, 1} do
5: Let U ′i = ψi(U) and V ′i = ψi(V )

6: Output commitment (com0, U
′
0, V

′
0 , com1, U

′
1, V

′
1).

round 3 (response)

1: if chall = 1 then
2: Write Kφ = [e]U + [f ]V for e, f ∈ Z/`e11 Z
3: Output resp← (e, f)
4: else
5: for i ∈ {0, 1} do
6: Kψ̂ ← DualKernel(ψ)

7: Write Kψ̂ = [ci]P2 + [di]Q2 for ci, di ∈ Z/`e22 Z
8: respi ← (ci, di)

9: Output resp← (resp0, resp1).

Verification

1: if chall = 1 then
2: (e, f)← resp
3: for i ∈ {0, 1} do
4: (E2, E3, P3, Q3, U

′
i , V

′
i )← comi

5: Recover Kφ′,i = [e]U ′i + [f ]V ′i
6: Verify (comi, chall,Kφ′,i) as in Figure 6 verification
7: If verification fails, output reject.

8: else
9: for i ∈ {0, 1} do

10: (E2, E3, P3, Q3, U
′
i , V

′
i )← comi

11: (c, d)← respi
12: P2, Q2 ← CanonicalBasis2(E2)
13: Kψ̂ ← [c]P2 + [d]Q2

14: K
ψ̂′
← [c]P3 + [d]Q3

15: Check Kψ̂, K
ψ̂′

have order `e22 , otherwise output reject

16: ψ̂i, E
′
0 ← IsogenyFromKernel(Kψ̂)

17: ψ̂′i, E
′
1 ← IsogenyFromKernel(K

ψ̂′
)

18: Check E0 = E′0 and E1 = E′1, otherwise output reject
19: Choose (c′, d′) such that c′d− d′c is invertible modulo `e22

20: R0,i ← ψ̂i([c
′]P2 + [d′]Q2)

21: R1,i ← ψ̂′i([c
′]P3 + [d′]Q3)

22: Check there exist a′i, b
′
i ∈ Z/`e22 Z such that, simultaneously,

i. R0,i = [a′i]P0 + [b′i]Q0,
ii. R1,i = [a′i]P1 + [b′i]Q1,

otherwise output reject

23: Check ψ̂0(U ′0) = ψ̂1(U ′1) and ψ̂0(V ′0) = ψ̂1(V ′1), otherwise output reject.
24: Check that a′0b

′
1 − a′1b′0 is invertible modulo `e22 , otherwise output reject.

25: Output accept if all the above conditions hold.

Figure 7: Modification of the Sigma protocol in Figure 6 to prove the stronger relation RSIDH. Round 2, and lines in gray, are
unchanged from Figure 6.
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Theorem 5. For a fixed security parameter κ and SIDH public key (E,P,Q), a proof consisting of κ
iterations of the sigma protocol in Figure 7 is a computationally zero-knowledge Proof of Knowledge for
RSIDH with knowledge error 2−κ, assuming the DMSIDH and Double-DSSP problems are hard.

Proof. Again we prove correctness, soundness, and zero-knowledge individually.

Correctness: As mentioned above, the point R0,i will always be an invertible scalar multiple of the point
Kψ used by the prover in the commitment round (in the i-th SIDH square) of the protocol because both
Kψ and R0,i are generators of the kernel of ψ in the i-th SIDH square. This implies the pair (a′i, b

′
i) is

an invertible scalar multiple of (ai, bi). Hence, because the honest prover will use commitments such that
a0b1−a1b0 is invertible, then a′i, b

′
i necessarily exist such that a′0b

′
1−a′1b′0 is invertible in line 22 of verification.

Also note that because Kφ′,i = [e]U ′i + [f ]V ′i = [e]ψi(U) + [f ]ψi(V ) for both i ∈ {0, 1}, and U, V have order
coprime to the degree of ψi, the checks involving U ′i , V

′
i , e, and f will also succeed. Correctness of the rest

of the protocol can also be verified in a straightforward way.

Zero-knowledge: Let V ∗ be a cheating verifier. Sim will generate a valid transcript for t iterations of the
protocol as follows. At each step, Sim will make a guess on what the next challenge bit chall will be, and
proceeds appropriately:

• If chall = 0, Sim will behave as in the proof of Theorem 4 to generate the first SIDH square arbitrarily.
The simulator will then generate a second SIDH square in almost the same way, but ensuring that
the second ψ chosen uses kernel coefficients independent to those used in the first square (just like the
honest prover would do in the commitment round of Figure 7). Sim will also randomly generate a basis
(U, V ) of the `e11 torsion on E0 and compute the images U ′i , V

′
i = ψi(U), ψi(V ) exactly as in Figure 7.

The commitment and response will be formed exactly as in the honest protocol.

• When chall = 1, the behaviour of Sim is similar to the chall = 1 simulation in the proof of Theorem 4,
but repeated twice. First, Sim will choose two random curves E2,i, for i ∈ {0, 1}. Sim will then choose
a random point Kφ′,0 ∈ E2,0 of order `e11 , and a random basis 〈U ′0, V ′0〉 = E2,i[`

e1
1 ], and write Kφ′,0 =

[e]U ′0 + [f ]V ′0 for integers e, f . Next, Sim will randomly generate a basis (U ′1, V
′
1) of the `e11 -torsion

subgroup on E2,1 such that e`e11 (U ′0, V
′
0) = e`e11 (U ′1, V

′
1), and let Kφ′,1 = [e]U ′1 + [f ]V ′1 . Let φ′0, φ

′
1 be

isogenies with respective kernels Kφ′,0,Kφ′,1, and let E3,i be the codomain of φ′i. Finally, the simulator
generates canonical bases P2,i, Q2,i ← CanonicalBasis2(E2,i), computes P3,i, Q3,i ← φ′i(P2,i), φ

′
i(Q2,i),

and sets

com←
(
(E2,i, E3,i, P3,i, Q3,i, U

′
i , V

′
i )i∈{0,1}

)
,

resp← (e, f).

After providing com to V ∗, if the challenge which V ∗ outputs is not the same as Sim’s guess, Sim simply
discards that iteration and runs again. Sim stops whenever V ∗ rejects or after t successful rounds. Suppose
the probability of V ∗ not choosing the same bit as Sim’s guess is noticeably different from 1/2. Then V ∗

can be used as a distinguisher for (a harder variant of) the Double-DSSP problem, as we again show in the
chall = 1 case of this proof. So the probability Sim guesses correctly each round is exponentially close to 1/2
if the DSSP problem is hard. Thus Sim will run in polynomial-time.

Correctness of the simulator: We first show that the simulator will successfully generate valid transcripts
with the additional R0, R1 check in the protocol. Suppose the verifier arbitrarily chooses c′, d′ such that
c′d − d′c is invertible modulo `e22 , where c, d were used in the response of either square i ∈ {0, 1}. We have
that

R2 =
(
c′ d′

)(P2

Q2

)
=
(
c′ d′

)
A

(
S

T

)
(2)
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where the matrix A is the same change-of-basis matrix as in Equation 1. So,

R0 = ψ̂(R2) =
(
c′ d′

)
A

(
ψ̂(S)

ψ̂(T )

)
=
(
c′ d′

)
A

(
OE0

ψ̂(T )

)
(3)

because S is in the kernel of ψ̂. Similarly,

R3 =
(
c′ d′

)(P3

Q3

)
=
(
c′ d′

)
A

(
φ′(S)

φ′(T + [r]S)

)
(4)

from the simulator in the proof of Theorem 4. In the case of an honest prover (or a D0 DMSIDH instance
where T ′ = φ′(T )), r here would be zero. Then,

R1 = ψ̂′(R3) =
(
c′ d′

)
A

(
ψ̂′(φ′(S))

ψ̂′(φ′(T + [r]S))

)

=
(
c′ d′

)
A

(
OE0

ψ̂′(φ′(T ))

) (5)

because again, φ′(S) is in the kernel of ψ̂′. Hence, we must have that R1 = φ(R0) in either of the two
DMSIDH instance distributions (and hence also in the two Double-DMSIDH distributions). This implies
that the coefficients a′i, b

′
i in each SIDH square of the protocol exist and can be used to satisfy the verification

algorithm regardless of whether a simulator or honest prover has generated the transcript.

Indistinguishability of the simulator: Suppose B0 is a PPT adversary which can distinguish between the
simulation and the real transcripts for chall = 0 with advantage Adv0. We show that B0 can then also
solve the Double-DMSIDH problem with the same advantage Adv0. Let (ψi, ψ

′
i, Si, Ti, φ

′(Si), T
′
i )i∈{0,1} be

an instance of the Double-DMSIDH problem. For both i ∈ {0, 1}, we proceed as in the proof of Theorem 4 to
create a transcript com = (E2,i, E3,i, P3,i, Q3,i)i∈{0,1}, chall = 0, resp = (ci, di)i∈{0,1}. We also compute the
images U ′i , V

′
i = ψi(U), ψi(V ) of the random basis (U, V ), exactly as above. We then provide this transcript

to B0. This will produce an identical distribution of transcripts as those produced by the simulator because
the steps are the same. Therefore, the response from B0 will solve the Double-DMSIDH problem with
advantage Adv0.

Now coming to the chall = 1 case, we similarly suppose B1 is a PPT adversary which can distinguish between
the simulation and the real transcripts for chall = 1 with advantage Adv1. Let (E2,i, E3,i, φ

′
i, U
′
i , V

′
i ), i ∈

{0, 1} be an instance of the Double-DSSP problem. As in the proof of Theorem 4, compute P2,i, Q2,i ←
CanonicalBasis2(E2,i), and let P3,i, Q3,i = φ′i(P2,i), φ

′
i(Q2,i). Finally, write ker(φ′i) = [e]U ′i + [f ]V ′i and set

com = (E2,i, E3,i, P3,i, Q3,i, U
′
i , V

′
i )i∈{0,1}, chall = 1, and resp = (e, f), and give (com, chall, resp) to B1. If

B1 outputs 1, then we respond to the Double-DSSP instance with 1, and win with advantage Adv1. For
the same reason that this chall = 1 case is hard to distinguish, a cheating verifier V ∗ given only com is
also unable to distinguish whether Sim is attempting a chall = 0 or chall = 1 simulation with non-negligible
probability if the Double-DSSP problem is hard.

Hence, assuming the Double-DSSP and DMSIDH problems are hard, transcripts generated by the simulator
are indistinguishable from honest transcripts generated as per the protocol in Figure 7.

2-special soundness: Suppose we obtain two accepting transcripts (com, 0, resp) and (com, 1, resp′). The
secret isogeny corresponding to the public key X = (E1, P1, Q1) can be recovered as follows, hence Extract can
extract a valid witness W for the statement X such that (X,W ) ∈ RSIDH. From such a pair of commitments
and responses, for each of the two SIDH squares committed to in Figure 7, we can recover φi : E0 → E1 of
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degree `e11 by the proof of Theorem 4. Now,

ker(φ0) = ψ̂0(ker(φ′0))

= 〈ψ̂0([e]U0 + [f ]V0)〉

= 〈ψ̂1([e]U1 + [f ]V1)〉

= ψ̂1(ker(φ′1)) = ker(φ1).

Therefore, we recover the same isogeny φ0 = φ1 = φ from both squares. For each of these two squares
i ∈ {0, 1}, the verifier will choose an R0,i and also learn its image R1,i under φ. This follows from Lemma 2,
with S := [c′]P2 + [d′]Q2.

Now, because the two R0,i = [a′i]P0 + [b′i]Q0 are independent, 〈R0,0, R0,1〉 forms another basis for 〈P0, Q0〉 =
E0[`e22 ], with change-of-basis matrix

B =

(
a′0 b′0
a′1 b′1

)
.

We can then see that (
R0,0

R0,1

)
= B

(
P0

Q0

)
(
φ(R0,0)

φ(R0,1)

)
=

(
R1,0

R1,1

)
= B

(
φ(P0)

φ(Q0)

)
(
R1,0

R1,1

)
= B

(
P1

Q1

)
,

therefore

B

(
φ(P0)

φ(Q0)

)
= B

(
P1

Q1

)
,

and since B is invertible, we must have that P1 = φ(P0) and Q1 = φ(Q0), as required.

Note that the protocol in Figure 7 essentially runs the previous protocol (in Figure 6) twice, hence the
transcripts produced by this Proof of Knowledge for RSIDH will be twice the size.

Remark 4. Ghantous et al. [GPV21] discuss issues with extraction of a witness in two different scenarios.
Their first scenario (“single collision”) involves two distinct isogenies φ′ : E2 → E3 in the SIDH square
of the identification scheme. Neither of our new identification schemes are impacted by such collisions
because the provision of points P3, Q3 ∈ E3 uniquely determines the isogeny φ′, as shown by Martindale and
Panny [MP19]. Their second scenario (“double collision”) involves two distinct (non-equivalent) isogenies
φ, φ̃ : E0 → E1, both of degree `e11 and a point R ∈ E0 such that

E1/〈φ(R)〉 ∼= E1/〈φ̃(R)〉.

Our second protocol, for the relation RSIDH, ensures that the witness extracted is a valid witness for the
public key used (including the torsion points). Hence, this second collision scenario does not have any impact
on the soundness of our protocol either.
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7 SIDH signatures and Non-Interactive Proof of Knowledge

We conclude with some brief, standard remarks about the use of the new protocol proposed above.

It is standard to construct a non-interactive signature scheme from an interactive protocol using the Fiat-
Shamir transformation (secure in the (quantum) random oracle model [LZ19]). This works by making the
challenge chall for the t rounds of the ID scheme a random-oracle output from input the commitment com
and a message M . That is, for message M ,

V O1 (com) = O(com ‖M)

Thus the prover does not need to interact with a verifier and can compute a non-interactive transcript.
Because the sigma protocol described in the preceding sections not only proves knowledge of the secret
isogeny between two curves, but also correctness of the torsion points in the public key, we obtain a signature
scheme that is also a proof of knowledge of the secret key corresponding to a given SIDH public key, and
proves that the SIDH public key is well-formed. For example, simply signing the public key with its own
secret key using the new scheme gives a simple NIZK proof of well-formedness for the public key, which
provides protection against adaptive attacks. The unforgeability of such a scheme is additionally based on
the CSSI assumption.

Such a NIZK proof of knowledge of an SIDH secret key can, among other applications, be used to achieve a
secure non-interactive key exchange scheme based on SIDH. Specifically, it would enable both participants
to verify non-interactively that the other participant’s key is honestly formed and safe to use without fear
of adaptive attack.
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