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Abstract. We show that the soundness proof for the De Feo–Jao–Plût identification scheme (the basis for
supersingular isogeny Diffie–Hellman (SIDH) signatures) contains an invalid assumption, and we provide
a counterexample for this assumption—thus showing the proof of soundness is invalid. As this proof was
repeated in a number of works by various authors, multiple pieces of literature are affected by this result. Due to
the importance of being able to prove knowledge of an SIDH key (for example, to prevent adaptive attacks),
soundness is a vital property.

Surprisingly, the problem of proving knowledge of a specific isogeny turns out to be considerably more difficult
than was perhaps anticipated. The main results of this paper are a sigma protocol to prove knowledge of a walk
of specified length in a supersingular isogeny graph, and a second one to additionally prove that the isogeny
maps some torsion points to some other torsion points (as seen in SIDH public keys). Our scheme also avoids
the SIDH identification scheme soundness issue raised by Ghantous, Pintore and Veroni. In particular, our
protocol provides a non-interactive way of verifying correctness of SIDH public keys, and related statements, as
protection against adaptive attacks.

Post-scriptum: Some months after this work was completed and made public, the SIDH assumption was broken
in a series of papers by several authors. Hence, in the standard SIDH setting, some of the statements studied
here now have trivial polynomial time non-interactive proofs. Nevertheless our first sigma protocol is unaffected
by the attacks, and our second protocol may still be useful in present and future variants of SIDH that escape the
attacks.
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1 Introduction

While Supersingular Isogeny Diffie-Hellman (SIDH) [20, 9] is a fast and efficient post-quantum key exchange
candidate, it has been hampered by the existence of practical adaptive attacks on the scheme—the first of these
given by Galbraith, Petit, Shani, and Ti [13] (the GPST attack), followed by other variations [12, 29]. These attacks
mean it is not safe to re-use a static key across multiple SIDH exchanges without other forms of protection. As
such, various countermeasures have been proposed—though each with its unique drawbacks.

The first of these is to require one participant to use a one-time ephemeral key in the exchange, accompanied by
a Fujisaki–Okamoto-type transform [19] revealing the corresponding secret to the other party. This allows the
recipient to verify the public key is well-formed, ensuring an adaptive attack was not used. This is what was done
in SIKE [1], and converts the scheme to a secure key encapsulation mechanism (KEM). But it is of limited use in
cases where both parties wish to use a long-term key.

The second countermeasure is to use many SIDH exchanges in parallel, combining all the resulting secrets into
a single value, as proposed by Azarderakhsh, Jao, and Leonardi [2]. This scheme is known as k-SIDH, where k
is the number of keys used by each party in the exchange. The authors suggest k = 92 is required for a secure
key exchange. Dobson, Galbraith, LeGrow, Ti, and Zobernig [10] demonstrate how the GPST adaptive attack
can be ported to k = 2 and above. Note that the number of SIDH instances grows as k2, so this scheme is very
inefficient. Urbanik and Jao’s [31] proposal attempted to improve the efficiency of this protocol by making use of
the special automorphisms on curves with j-invariant 0 or 1728, but it was shown by Basso, Kutas, Merz, Petit,
and Weitkämper [3] that Urbanik and Jao’s proposal is vulnerable to a more efficient adaptive attack and actually
scales worse in efficiency than k-SIDH itself (although the public keys are approximately 4/5 of the size, it requires
around twice as many SIDH instances for the same security).



Finally, adaptive attacks can also be prevented by providing a non-interactive proof that a public key is well-formed
or honestly generated. Generic NIZK techniques would make this possible, but in a very inefficient manner. Urbanik
and Jao [31] claim a method for doing so using a similar idea to their k-SIDH improvement mentioned above. Their
scheme is based on the SIDH-based identification scheme by De Feo, Jao, and Plût [9], which is a fairly simple
proof with single bit challenges.

We briefly recall the De Feo, Jao, and Plût proof here, for full details see Section 4.1. Let ϕ : E0 → E1

be the isogeny of degree ℓe11 we wish to prove knowledge of. Let P0, Q0 be a basis of the torsion subgroup
E0[ℓ

e2
2 ], and let (P1, Q1) = (ϕ(P0), ϕ(Q0)). The prover chooses a pair of integers (a, b), and sends to the verifier

E2 = E0/⟨[a]P0 + [b]Q0⟩ and E3 = E1/⟨[a]P1 + [b]Q1⟩. The verifier sends a single bit challenge chall. When
chall = 0 the prover responds with (a, b), and when chall = 1 the prover responds with an isogeny ϕ′ : E2 → E3

of degree ℓe11 . The protocol is repeated until the verifier is satisfied.

We show a counterexample to the soundness of the original De Feo–Jao–Plût scheme. Because this scheme (and
proof) has since been used to build an undeniable signature by Jao and Soukharev [21], a signature scheme by Yoo,
Azarderakhsh, Jalali, Jao, and Soukharev [33], and also by Galbraith, Petit, and Silva [14], all of these subsequent
papers suffer from the same issue. Our counterexample does not immediately apply to Urbanik and Jao’s scheme,
but we show other problems with that scheme in Section 4.4.

Ghantous, Pintore, and Veroni [17] have demonstrated that the soundness property for the De Feo–Jao–Plût scheme
(and those based on it) fails for a different reason—namely the existence of multiple isogenies of the same degree
between some curves. The protocols we propose in this paper are not vulnerable to the same issue, as we briefly
discuss in Remark 2.

We stress that the flaw in the De Feo–Jao–Plût soundness argument does not mean, per se, that previous isogeny
signature schemes [33, 14] are insecure. Forgery for these schemes still requires an attacker to compute an isogeny
between two given elliptic curves, which, in full generality, is believed to be a hard problem. However, a recent
series of pre-prints [6, 23, 26] has shown that the isogeny problem underlying SIDH itself can be solved in (classical)
polynomial time. As a consequence, SIDH, SIKE, the derived signature schemes, and several other protocols are all
subject to very efficient key recovery attacks.

Nevertheless, the variation on the SIDH problem we study in Section 5 (specifically in Figure 3 of Section 5.3),
by virtue of not revealing any torsion point information to the attacker, is still widely believed to be secure. In
particular, our sigma protocol can be converted into a secure signature scheme using the Fiat-Shamir transform.
Additionally, the problem of computing a secret isogeny from some torsion point information is still believed to
be secure in some settings other than standard SIDH/SIKE; for example when the order of the known torsion is
much smaller than the degree of the isogeny, when the degree of the secret isogeny is unknown [25], or when the
action on the torsion basis is masked [11]. Thus the protocol we introduce in Section 6 may still be adapted to prove
non-trivial statements.

1.1 Our contributions

We present three new sigma protocols for SIDH. They all prove, for a pair (E0, E1) of publicly known supersingular
curves, knowledge of an isogeny ϕ : E0 → E1 of the correct degree (the private key or witness). But they have
some key differences we summarize next.

First, in Section 5.1, we propose a modification to the De Feo–Jao–Plût scheme that ensures that there is an extractor
for the witness ϕ : E0 → E1. The first key idea in this protocol is the provision of bases (P2, Q2) for E2[ℓ

e2
2 ] and

(P3, Q3) for E3[ℓ
e2
2 ]. This allows the verifier to check that (P3, Q3) = (ϕ′(P2), ϕ

′(Q2)) in the chall = 1 case, and
in the chall = 0 case, to check that the isogenies from E2 to E0 and E3 to E1 are “parallel”. The second key idea
is, in the 2-special soundness proof, to view the transcript as an SIDH square where E2 is treated as the “base curve”
(instead of E0), and where E0 and E3 play the roles of the participants’ two public-key curves in SIDH. It then
follows that there is a witness ϕ as required.

This protocol is simple, and sound, but there is a minor problem with zero-knowledge: In the chall = 0 case,
contrary to the De Feo–Jao–Plût scheme, the data (E2, P2, Q2, E3, P3, Q3) appears to be difficult to simulate
without knowledge of the secret witness. We solve this issue in Section 5.3 by moving from binary to ternary
challenges, thus making the protocol 3-special sound: The chall = 0 case is split into two different challenges,
so that only one of (E2, P2, Q2) or (E3, P3, Q3) needs to be revealed at a time. Plugging a statistically hiding
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commitment scheme in, we obtain a zero-knowledge Proof of Knowledge for what we call the weak SIDH relation,
i.e. the existence of ϕ : E0 → E1 of degree ℓe11 . Ternary challenges and commitment schemes have been used in
this context by Boneh, Kogan and Woo [5] for a variant of SIDH with three coprime subgroups.

Finally, in Section 6, we give a new sigma protocol that convinces a verifier not only that there is an isogeny
ϕ : E0 → E1 of the correct degree, but also that the torsion points provided in an SIDH public key are the correct
images of the public parameter points under ϕ. We call this stronger relation the SIDH relation. Boneh, Kogan and
Woo [5] also give a solution to this problem in the non-standard case of SIDH with three coprime subgroups. Our
scheme works with any base elliptic curve, rather than being restricted to the two curves with j-invariant 0 or 1728
as in [31].

The SIDH relation was recently proven to be decidable in polynomial time [6, 23, 26], when parameters are set like
in standard SIDH/SIKE. Thus our last protocol has arguably lost most of its usefulness. Nevertheless, more general
variants of the SIDH relation are still believed to be secure [25, 11]. Adapting our sigma protocol and making it
non-interactive using the Fiat-Shamir heuristic gives a secure method for proving well-formedness of public keys,
which is needed if one wants to prevent adaptive attacks.

The scheme in Section 6 builds on the protocols of Section 5. However, it requires assurance that the ephemeral
isogenies used in the commitments by the prover are “independent enough”. To achieve this, we “double” the
protocol, by essentially running two sessions of the protocol from Section 5.3 for each challenge bit. The prover
shows that the two instances are consistent with each other by providing images of a random torsion basis in both
squares, which the verifier can check are correct. The verifier also checks that the two instances are independent.
This allows us to construct an extractor that outputs a correct witness.

Because both of our two protocols are 3-special sound, the probability of successful cheating is 2/3—indeed a
forger who does not know the witness can simultaneously construct valid responses to any two challenges. This
would have implications on tightness if they were used for signature schemes. We do not recommend our protocols
as bases for signatures.

Commitments in the original De Feo–Jao–Plût scheme were just j-invariants of curves, but our new proofs require
committing to various points on curves as well. This makes the proofs considerably larger. As with the original De
Feo–Jao–Plût scheme, it is non-trivial in the chall = 1 case to simulate valid protocol transcripts without knowing
the witness and so we only achieve computational zero-knowledge.

We explain in Section 7 that our scheme gives an asymptotically more efficient non-interactive key exchange
(NIKE) than the k-SIDH proposal by Azarderakhsh, Jao and Leonardi [2]. But we stress that NIKE is not the only
application of our work.

1.2 Plan of the paper
Section 2 recalls the SIDH protocol and gives some useful lemmas that are used in our soundness proofs. Section 3
presents some isogeny-based hardness assumptions and reductions, including the new decisional assumptions we
need for our zero-knowledge proofs. We then recall the De Feo–Jao–Plût identification scheme in Section 4.1 and
outline the issue with its proof of soundness in Section 4.2. In Section 5 we present our protocols for the weak
SIDH relation: A sound but potentially insecure protocol first, then a zero-knowledge modification afterwards.
Section 6 presents a protocol to prove correctness of the points in the SIDH public key. In Section 7, we conclude
with some standard discussion on how a NIZK scheme which is a Proof of Knowledge (PoK) of an SIDH secret
key can be constructed from our last scheme—the first such scheme that is sound and proves correctness of the
points in the public key (a protection mechanism against adaptive attacks [13, 10]). Section 8 describes some open
problems and future directions.

1.3 Acknowledgements
We thank David Jao, Jason LeGrow, and Yi-Fu Lai for useful discussion about this work. We also thank Paulo
Barreto for catching some typos in this paper, and Simon-Philipp Merz for valuable comments. We thank Javad
Doliskani for important observations that inspired significant improvements to this work. We thank the anonymous
reviewers for very helpful comments, including about the correct formulation of computational zero knowledge.
Finally, we would like to thank those involved with the BIRS Supersingular Isogeny Graphs in Cryptography
workshop for great discussion on some questions this work raised—especially Lorenz Panny and his work analyzing
SIDH squares in small fields.
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2 Preliminaries

Notation. As a convention, we will use Kϕ to denote a point which generates the kernel of a cyclic isogeny ϕ. Let
[t] denote the set {1, . . . , t}. All isogenies in this paper are assumed to be separable. The notation ψ̂ denotes the
dual isogeny of ψ.

2.1 SIDH

We now provide a brief refresher on the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange protocol
[20, 9] by De Feo, Jao, and Plût.

As public parameters, we have a prime p = ℓe11 · ℓ
e2
2 · f ± 1, where ℓ1, ℓ2 are small primes, f is an integer

cofactor, and ℓe11 ≈ ℓ
e2
2 . We work over the finite field Fp2 . Additionally we fix a base supersingular elliptic curve

E and bases {P1, Q1}, {P2, Q2} for both the ℓe11 and ℓe22 -torsion subgroups of E(Fp2) respectively (such that
E[ℓeii ] = ⟨Pi, Qi⟩). Typically ℓ1 = 2 and ℓ2 = 3.

It is well known that knowledge of an isogeny (up to isomorphism) and knowledge of its kernel are equivalent,
and we can convert between them at will, via Vélu’s formulae [32]. In SIDH, the secret keys of Alice and Bob are
isogenies ϕA : E(Fp2)→ EA(Fp2), ϕB : E(Fp2)→ EB(Fp2) of degree ℓe11 and ℓe22 , respectively. These isogenies
are generated by randomly choosing secret integers ai, bi ∈ Z/ℓeii Z (not both divisible by ℓi) and computing the
isogeny with kernel generated by Ki = [ai]Pi + [bi]Qi. We thus unambiguously refer to the isogeny, its kernel,
and such integers a, b, as “the secret key.”

E EA

EB EAB

ϕA

ϕB

ϕBA

ϕAB

Fig. 1: Commutative diagram of SIDH, where ker(ϕBA) = ϕB(ker(ϕA)) and ker(ϕAB) = ϕA(ker(ϕB)).

Figure 1 depicts the commutative diagram making up the key exchange. In order to make the diagram commute,
Alice and Bob are required to not only give their image curvesEA andEB in their respective public keys, but also the
images of the basis points of the other participant’s kernel on E. That is, Alice provides EA, P ′

2 = ϕA(P2), Q
′
2 =

ϕA(Q2) as her public key. This allows Bob to “transport” his secret isogeny to EA and compute ϕAB whose kernel
is ⟨[a2]P ′

2 + [b2]Q
′
2⟩. Both Alice and Bob will arrive along these transported isogenies at isomorphic image curves

EAB , EBA (using Vélu’s formulae, they will actually arrive at exactly the same curve [22]). Two elliptic curves are
isomorphic over Fp if and only if their j-invariants are equal, j(EAB) = j(EBA), hence this j-invariant may be
used as the shared secret of the SIDH key exchange.

Some cryptographic hardness assumptions related to isogenies and SIDH are discussed in Section 3.

2.2 Isogeny squares

We collect here some basic definitions and lemmas that we will use repeatedly throughout the paper. In the
statements below, all elliptic curves are defined over a field of characteristic p.

Definition 1 (Independent points, isogenies). Let E be an elliptic curve, let ℓ ̸= p be a prime and e an integer, let
(P,Q) be a basis of E[ℓe]. Let R = [a]P + [b]Q and S = [c]P + [d]Q. The following conditions are equivalent:

(a) (R,S) form a basis of E[ℓe].

(b) ℓ does not divide ad− bc, i.e., the matrix
(
a b
c d

)
is invertible modulo ℓe.

(c) The value of the ℓe-th Weil pairing ζ = e(R,S) has order ℓe, i.e., ζℓ
e−1 ̸= 1.
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When R,S satisfy any of these, we say they are independent of one another. Similarly, we say that two cyclic groups
of order ℓe are independent whenever any of their generators are. Finally, we say that two isogenies of degree ℓe

are independent if their kernels are.

Proof. (a) ⇒ (b): Both P,Q and R,S are bases of the same torsion subgroup E[ℓe]. Hence, A =
(
a b
c d

)
is a

change-of-basis from P,Q to R,S and there must be an inverse change-of-basis A−1 from R,S to P,Q. Then A is
necessarily invertible, and therefore, so too is its determinant ad− bc modulo ℓe.

(b)⇒ (c): We have that
ζ = e(R,S) = e([a]P + [b]Q, [c]P + [d]Q).

Then since e is bilinear, ζ = e(P,Q)ad−bc. Now e(P,Q) has order ℓe because e is surjective onto the group of
ℓe-th roots of unity (c.f. [27, Corollary III.8.1.1]), and since ℓ ∤ ad− bc, then ζ must also have order ℓe.

(c)⇒ (a): Recall that E[ℓe] ≃ Z/ℓeZ× Z/ℓeZ [27, Corollary III.6.4b]. Thus, in order for R,S to form a basis,
we must show ⟨R⟩ ∩ ⟨S⟩ = {OE}.

Suppose [w]R = [z]S ̸= OE for some integers w, z. By assumption, it must be that ℓe ∤ w and ℓe ∤ z. Now consider
e([w]R− [z]S, S) = 1, since e(OE , T ) = 1 for any T . By the bilinearity of the pairing, this gives

e([w]R− [z]S, S) = e(R,S)we(S, S)−z = 1.

Then, because e(S, S) = 1, we arrive at the conclusion e(R,S)w = 1, which is a contradiction since e(R,S) has
order ℓe and ℓe ∤ w. Thus, there can exist no such integers w, z, and therefore ⟨R⟩ ∩ ⟨S⟩ = {OE}. ⊓⊔

Lemma 1. Let ϕ : E → E/⟨R⟩ be an isogeny of kernel ⟨R⟩ and degree ℓe, let S be a point of order ℓe independent
to R. Then ϕ(S) has order ℓe and generates ker(ϕ̂).

Proof. Because R and S are independent (Definition 1), the subgroups generated by R and S intersect trivially.
Thus, since ϕ has kernel ⟨R⟩, no non-trivial point in ⟨S⟩ is in the kernel of ϕ. Furthermore, we know that ϕ̂◦ϕ = [ℓe]

has kernel E[ℓe], and that S ∈ E[ℓe]. Thus ϕ̂(ϕ(S)) = O, implying ϕ(S) is in the kernel of ϕ̂. The same holds
for all elements S′ = [λ]S ∈ ⟨S⟩, and since ϕ(S′) ̸= O for all non-trivial S′, ϕ(S) has order ℓe and generates
ker(ϕ̂). ⊓⊔

The following lemma is the main tool we are going to use, repeatedly, to design all proofs of knowledge.

Lemma 2. Let ℓ1, ℓ2 be distinct primes different from p, let e1, e2 be integers. Let ϕA : E → EA be an isogeny
of degree ℓe11 . Let ϕB : E → EB and ϕAB : EA → EAB be isogenies of degree ℓe22 such that ker(ϕAB) =
ϕA(ker(ϕB)). Then there exists an isogeny ϕBA : EB → EAB of degree ℓe11 .

Proof. Let KA be a generator of ker(ϕA). Then because the degrees of ϕA, ϕB are coprime, ϕB(KA) also has
order ℓe11 and generates the kernel of some isogeny

χ : EB → EB/⟨ϕB(KA)⟩.

Observe that EAB is defined as the codomain of ϕAB ◦ ϕA. We thus have that EAB ∼= E/⟨KA,K
′⟩ for a point K ′

of order ℓe22 such that ⟨ϕA(K ′)⟩ = ker(ϕAB). Because ker(ϕAB) = ϕA(ker(ϕB)), we conclude ⟨K ′⟩ = ker(ϕB).
Therefore, EB/⟨ϕB(KA)⟩ ∼= EAB as required. ⊓⊔

2.3 Sigma protocols

A sigma protocol ΠΣ for a relationR = {(X,W )} is a public-coin three-move interactive proof system consisting
of two parties: A verifier V and a prover P . Recall that public-coin informally means that there are no secret sources
of randomness—the verifier’s coin tosses are accessible to the prover. In practice this means the challenge sent by
the verifier to the prover is uniformly random. For our purposes, a witness W can be thought of as a secret key,
while the statement X is the corresponding public key. Thus, proving (X,W ) ∈ R is equivalent to saying that X
is a valid public key for which a corresponding secret key exists. We use the security parameter κ to parametrize
the length of the secret keys involved.
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Definition 2 (Sigma protocol). A sigma protocol ΠΣ for a family of relations {R}κ parametrized by security
parameter κ consists of PPT algorithms ((P1, P2), (V1, V2)) where V2 is deterministic and we assume P1, P2 share
states. The protocol proceeds as follows:

1. Round 1: The prover, on input (X,W ) ∈ R, returns a commitment com ← P1(X,W ) which is sent to the
verifier.

2. Round 2: The verifier, on receipt of com, runs chall← V1(1
κ) to obtain a random challenge, and sends this to

the prover.

3. Round 3: The prover then runs resp← P2(X,W, chall) and returns resp to the verifier.

4. Verification: The verifier runs V2(X, com, chall, resp) and outputs either ⊤ (accept) or ⊥ (reject).

A transcript (com, chall, resp) is said to be valid if V2(X, com, chall, resp) outputs ⊤. Let ⟨P, V ⟩ denote the
transcript for an interaction between prover P and verifier V . The main requirements of a sigma protocol are:

Correctness: If the prover P knows (X,W ) ∈ R and behaves honestly, then the verifier V accepts.

n-special soundness: There exists a polynomial-time extraction algorithm that, given a statement X and n valid
transcripts

(com, chall1, resp1), . . . , (com, challn, respn)

where challi ̸= challj for all 1 ≤ i < j ≤ n, outputs a witness W such that (X,W ) ∈ R with probability at least
1− ε for soundness error ε.

A sound sigma protocol forR is also called a Proof of Knowledge (PoK) forR.

Special Honest Verifier Zero-knowledge (SHVZK): If there exists a polynomial-time simulator that, given a
statement X and a challenge chall, outputs a valid transcript (com, chall, resp) that is indistinguishable from a real
transcript.

Definition 3. A sigma protocol (P, V ) is computationally special honest verifier zero-knowledge if there exists a
probabilistic polynomial time simulator Sim such that for all probabilistic polynomial time stateful adversaries A

Pr

A(com, chall, resp) = 1

∣∣∣∣∣∣∣
(X,W, chall)← A(1κ);
com← P1(X,W );

resp← P2(X,W, chall)


≈ Pr

[
A(com, chall, resp) = 1

∣∣∣∣∣ (X,W, chall)← A(1κ);(com, resp)← Sim(X, chall)

]
. (1)

Although SHVZK is not a particularly strong flavour of zero-knowledge, there exist efficient transformations to
full zero-knowledge that incur only a small overhead in communication and computation [8, 7, 16]. In particular,
it is well known that SHVZK is sufficient to obtain full non-interactive zero-knowledge in the random oracle
model [4].

An earlier version of our paper proposed schemes with binary challenges whose security required a certain
computational assumption. It turned out that with respect to Definition 3 this assumption did not hold. To resolve
this we have modified the schemes to use ternary challenges.

3 SIDH problems and assumptions

In this section, we recall some standard isogeny-based hardness assumptions of relevance to this work. We then
introduce a new decisional assumption which will be useful for the proof of zero-knowledge in Section 6. The first
two are computational isogeny-finding problems.

Definition 4 (General isogeny problem). Given j-invariants j, j′ ∈ Fp2 , find an isogeny ϕ : E → E′ if one exists,
where j(E) = j and j(E′) = j′.
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This is the foundational hardness assumption of isogeny-based cryptography, that it is hard to find an isogeny
between two given curves. Note the decisional version, determining whether an isogeny exists, is easy—an isogeny
exists if and only if #E(Fp2) = #E′(Fp2).

Definition 5 (Computational Supersingular Isogeny (CSSI) problem). For fixed SIDH prime p, base curve E0,
and ℓe22 -torsion basis P0, Q0 ∈ E0, let ϕ : E0 → E1 be an isogeny of degree ℓe11 . Given an SIDH public key (E1,
P1 = ϕ(P0), Q1 = ϕ(Q0)), find an isogeny ϕ′ : E0 → E1 of degree ℓe11 such that P1, Q1 = ϕ′(P0), ϕ

′(Q0).

This is problem 5.2 of [9] and essentially states that it is hard to find the secret key corresponding to a given public
key. This problem is also called the SIDH isogeny problem by [15, Definition 2]. The recent attacks [6, 23, 26]
show that this problem, as stated, can be solved in polynomial time. Some generalizations [25, 11] may still be
hard, though.

At the heart of the GPST adaptive attack is the problem that, given a public key (E1, P1, Q1), we cannot validate
that P1, Q1 are indeed the correct images of basis points P0, Q0 under the secret isogeny ϕ. The best we know how
to do is to check they are indeed a basis of the correct order, and use the Weil pairing check

eℓe22 (P1, Q1) = eℓe22 (P0, Q0)
deg ϕ.

Unfortunately this holds for many different choices of basis points. Indeed, if (P1, Q1) are the correct images, then
any pair ([a]P1 + [b]Q1, [c]P1 + [d]Q1) such that ad− bc = 1 mod ℓe22 also passes the check. So this is not enough
to uniquely determine ϕ, and, in particular, is insufficient to protect against the GPST adaptive attack.

The following decisional problem follows Definition 3 of [15] and is also very similar to the key validation
problem of Urbanik and Jao [30, Problem 3.4] (the key validation problem asks whether a ϕ of degree dividing ℓe11
exists). However, the previous definitions did not take the Weil pairing check into account, which would serve as a
distinguisher.

Definition 6 (Decisional SIDH isogeny (DSIDH) problem). The decisional SIDH problem is to distinguish
between the following two distributions:

– D0 = {(E0, P0, Q0, E1, P1, Q1)} such that E0 is a supersingular elliptic curve defined over Fp2 , P0, Q0

a basis such that E0[ℓ
e2
2 ] = ⟨P0, Q0⟩, ϕ : E0 → E1 is an isogeny of degree ℓe11 , and P1 = ϕ(P0) and

Q1 = ϕ(Q0).

– D1 = {(E0, P0, Q0, E1, P1, Q1)} such that E0 is a supersingular elliptic curve defined over Fp2 , P0, Q0 a
basis such that E0[ℓ

e2
2 ] = ⟨P0, Q0⟩, E1 is any supersingular elliptic curve over Fp2 with the same cardinality

as E0, and P1, Q1 is a basis of E1[ℓ
e2
2 ] satisfying the Weil pairing check eℓe22 (P1, Q1) = eℓe22 (P0, Q0)

ℓ
e1
1 .

As shown by Galbraith and Vercauteren [15], Thormarker [28], and Urbanik and Jao [30], being able to solve
this decisional problem is as hard as solving the computational (CSSI) problem, so, assuming CSSI is hard, key
validation is fundamentally difficult. This is done by testing ℓ1-isogeny neighboring curves of E1 and learning the
correct path one bit at a time.

Definition 7 (Decisional Supersingular Product (DSSP) problem). Given an isogeny ϕ : E0 → E1 of degree
ℓe11 , the decisional supersingular product problem is to distinguish between the following two distributions:

– D0 = {(E2, E3, ϕ
′)} such that there exists a cyclic subgroup G ⊆ E0[ℓ

e2
2 ] of order ℓe22 and E2

∼= E0/G and
E3
∼= E1/ϕ(G), and ϕ′ : E2 → E3 is a degree ℓe11 isogeny.

– D1 = {(E2, E3, ϕ
′)} such that E2 is a random supersingular curve with the same cardinality as E0, and E3

is the codomain of a random isogeny ϕ′ : E2 → E3 of degree ℓe11 .

This is problem 5.5 of [9] and intuitively states that it is hard to determine whether there exist valid “vertical sides”
to an SIDH square given the corners and the bottom horizontal side. It is not known to be affected by the recent
attacks on SIDH.
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3.1 Double variant

In Section 6, we propose a scheme which uses two independent SIDH squares in each round of the sigma protocol.
For the zero-knowledge proof in that section, we require a “double” variant of the DSSP problem.

The Double-DSSP problem differs from the “single” version by the introduction of two bases U ′
i , V

′
i of the ℓe11 -

torsion subgroups on E2,i, for i ∈ {0, 1}. As we shall see in Section 6, these extra points will be used to verify that
the two independent SIDH squares in the “double” protocol both use consistent isogenies ϕ′i.

Definition 8 (Double-DSSP Problem). Given an isogeny ϕ : E0 → E1 of degree ℓe11 , let D0 and D1 denote the
two distributions in the DSSP problem. The double decisional supersingular product problem is to distinguish
between the following two distributions:

– D′
0 = {(insti, U ′

i , V
′
i )i∈{0,1}} where insti = (E2,i, E3,i, ϕ

′
i) ← D0, and additionally, if ψi : E0 → E2,i are

the respective isogenies of degree ℓe22 , then ψ0 and ψ1 are independent and U ′
i , V

′
i = ψi(U), ψi(V ) where

{U, V } is a random (secret) basis of E0[ℓ
e1
1 ].

– D′
1 = {(insti, U ′

i , V
′
i )i∈{0,1}} where insti = (E2,i, E3,i, ϕ

′
i) ← D1, and U ′

i , V
′
i is a random basis of the ℓe11

torsion subgroup on E2,i such that eℓe11 (U ′
0, V

′
0) = eℓe11 (U ′

1, V
′
1) and for any generator Ki of ker(ϕ′i)

eℓe11 (U ′
0,K0)eℓe11 (K1, V

′
1) = eℓe11 (K0, V

′
0)eℓe11 (U ′

1,K1).

The extra points in Double-DSSP make its hardness more dubious than that of DSSP. Indeed, one strategy to
distinguish D′

0 from D′
1 is to compute the isogeny ψ1 ◦ ψ̂0 : E2,0 → E2,1 of degree ℓ2e22 from the knowledge

of its action on (U ′
0, V

′
0). As long as ℓ2e22 ≈ ℓe11 , Robert’s attack [26] applies, thus there exist parameter regimes

where DSSP is still thought to be hard but Double-DSSP is clearly not. At any rate, since Double-DSSP is meant
to be used in contexts where a variant of CSSI is hard, it is reasonable to assume the extra points do not affect
security.

4 Previous SIDH identification scheme and soundness issue

4.1 De Feo–Jao–Plût scheme

Let p be a large prime of the form ℓe11 · ℓ
e2
2 · f ± 1, where ℓ1, ℓ2 are small primes. We start with a supersingular

elliptic curve E0 defined over Fp2 with #E0(Fp2) = (ℓe11 ℓ
e2
2 f)

2. The private key is a uniformly random point
Kϕ ∈ E0(Fp2) of exact order ℓe11 . Define E1 = E0/⟨Kϕ⟩ and denote the corresponding ℓe11 -isogeny by ϕ : E0 →
E1.

Let P0, Q0 be a basis of the torsion subgroup E0[ℓ
e2
2 ] = ⟨P0, Q0⟩. The fixed public parameters are pp =

(p,E0, P0, Q0). The public key is (E1, ϕ(P0), ϕ(Q0)). The private key is the kernel generator Kϕ (equivalently,
the isogeny ϕ). The interaction goes as follows:

1. The prover chooses a random primitive ℓe22 -torsion point Kψ as Kψ = [a]P0 + [b]Q0 for some integers
0 ≤ a, b < ℓe22 not both divisible by ℓ2. Note that ϕ(Kψ) = [a]ϕ(P0) + [b]ϕ(Q0). The prover defines the
curves E2 = E0/⟨Kψ⟩ and E3 = E1/⟨ϕ(Kψ)⟩ = E0/⟨Kψ,Kϕ⟩, and uses Vélu’s formulae to compute the
following diagram.

E0 E1

E2 E3

ϕ

ψ′ψ

ϕ′

The prover sends commitment com = (E2, E3) to the verifier.
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2. The verifier challenges the prover with a uniformly random bit chall← {0, 1}.

3. If chall = 0, the prover reveals resp = (a, b) from which Kψ and ϕ(Kψ) = Kψ′ can be reconstructed. If
chall = 1, the prover reveals resp = (ψ(Kϕ) = Kϕ′).

In both cases, the verifier accepts the proof if the points revealed have the correct order and generate kernels of
isogenies between the correct curves. We iterate this process t times to reduce the cheating probability (where t is
chosen based on the security parameter κ). Note that in an honest execution of the proof, we have

ψ̂′ ◦ ϕ′ ◦ ψ = [ℓe22 ]ϕ.

Note that in this basic scheme (and all protocols known in the literature) honest transcripts involve responses
like Kψ and ϕ(Kψ). Hence it is natural to allow the proof to reveal ϕ(P0), ϕ(Q0) where {P0, Q0} is a basis for
E0[ℓ

e2
2 ].

4.2 Issue with soundness proofs for the De Feo–Jao–Plût scheme

A core component of the security proof of the De Feo–Jao–Plût identification scheme is the soundness proof. A
proof of soundness was given by multiple previous works [9, 33, 14]. A sketch of it is as follows:

Suppose A is an adversary that takes as input the public key and succeeds in the identification protocol (all t
iterations) with noticeable probability ϵ. Given a challenge instance (E0, E1, R0, S0, ϕ(R0), ϕ(S0)) for the CSSI
problem, we run A on the tuple (E1, ϕ(R0), ϕ(S0)) as the public key. In the first round, A outputs commitments
(Ei,2, Ei,3) for 1 ≤ i ≤ t. We then send a challenge b ∈ {0, 1}t to A and, with probability ϵ, A outputs a response
that satisfies the verification algorithm. Now, we use the standard replay technique: Rewind A to the point where it
had output its commitments and then respond with a different challenge b′ ∈ {0, 1}t. With probability ϵ, A outputs
a valid response. This gives exactly the 2-special soundness requirement of two valid transcripts with the same
commitment but different challenges.

Now, choose some index i such that bi ̸= b′i. We now restrict our focus to the components (E2, E3) for that index,
and the two responses. It means A sent E2, E3 and can answer both challenges b = 0 and b = 1 successfully.
Hence A has provided the maps ψ, ϕ′, ψ′ in the following diagram.

E0 E1

E2 E3

ϕ

ϕ̃

ψ′ψ

ϕ′

The argument proceeds as follows: We have an explicit description of an isogeny ϕ̃ = ψ̂′ ◦ ϕ′ ◦ ψ from E0 to
E1. The degree of ϕ̃ is ℓe11 ℓ

2e2
2 . One can determine ker(ϕ̃) ∩ E0[ℓ

e1
1 ] by iteratively testing points in E0[ℓ

j
1] for

j = 1, 2, . . . . Hence, one determines the kernel of ϕ, as desired.

However, the important issue with this argument which has so far gone unnoticed, is that it assumes ker(ϕ) =
ker(ϕ̃) ∩ E0[ℓ

e1
1 ]. This assumption has no basis, and we will provide a simple counterexample to this argument

in the following section. While we always recover an isogeny, it may not be ϕ at all—it is entirely possible the
isogeny we recover does not even have codomain E1 so this proof of 2-special soundness is not valid.

4.3 Counterexample to soundness

Fix a supersingular curve E0 as above. Generate a random ℓe22 -torsion point Kψ ∈ E0(Fp2) as Kψ = [a]P0+[b]Q0

for some integers 0 ≤ a, b < ℓe22 not both divisible by ℓ2. Let ψ : E0 → E2 have kernel generated by Kψ. Then
choose a random isogeny ϕ′ : E2 → E3 of degree ℓe11 with kernel generated by Kϕ′ . Then choose a random
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isogeny ψ′ : E3 → E1 of degree ℓe22 . Choose points P ′
0, Q

′
0 ∈ E1(Fp2) such that ker(ψ̂′) = ⟨[a]P ′

0 + [b]Q′
0⟩. Then

publish
(E0, E1, P0, Q0, P

′
0, Q

′
0)

as a public key. In other words, we have

E0
ψ−→ E2

ϕ′

−→ E3
ψ′

−→ E1

Now there is no reason to believe that there exists an isogeny from E0 to E1 of degree ℓe11 , yet we can respond
to both challenge bits 0 and 1 in a single round of the identification scheme. Pulling back the kernel of ϕ′ via ψ
to E0 will result in the kernel of an isogeny which, in general, will not have codomain E1 (but instead a random
other curve). This is because ψ′ is entirely unrelated to ψ in this case (they are not “parallel”), so we have no SIDH
square.

The key observation is that a verifier could be fooled into accepting this public key by a prover who always uses the
same curves (E2, E3) instead of randomly chosen ones. When chall = 0 the prover responds with the pair (a, b)
corresponding to the kernel of ψ and ψ̂′, and when chall = 1 the prover responds with Kϕ′ . The verifier will agree
that all responses are correct and will accept the proof.

It is true that the verifier could test whether the commitments (E2, E3) are being re-used, but this has never been
stated as a requirement in any of the protocol descriptions. To tweak the verification protocol we need to know how
“random” the pairs (E2, E3) (or, more realistically, the pairs (a, b)) need to be. One may think that the original
scheme seems to be secure despite the issue with the proof, as long as the commitment (E2, E3) is not reused
every time. However, in experiments with small primes, it is entirely possible to construct instances3 where even
with multiple different commitments, a secret isogeny of the correct degree between E0 and E1 does not exist. We
expect that this extrapolates to large primes too, although one could potentially argue that finding enough such
instances is computationally infeasible.

It is also true that repeating (E2, E3) means the protocol is no longer zero-knowledge. We emphasize that soundness
and zero-knowledge are independent security properties, which are proved separately (and affect different parties:
One gives an assurance to the verifier and the other to the prover). The counterexample we have provided is a
counterexample to the soundness proof. The fact that the counterexample is not consistent with the proof that the
protocol is zero-knowledge is irrelevant.

Finally, one could consider basing security of the protocol on the general isogeny problem (Definition 4) because,
even in our counterexample, an isogeny E0 → E1 exists and can be extracted—it just doesn’t have degree ℓe11 . We
find it interesting that none of the previous authors chose to do it that way. However, some applications may require
using the identification/signature protocols to prove that an SIDH public key is well-formed, implying the secret
isogeny has the correct degree. For such applications we need soundness to be rigorously proved.

The issue in the security proofs in the literature is not only that it is implicitly assumed that there is an isogeny of
degree ℓe11 between E0 and E1. The key issue is that it is implicitly assumed that the pullback under ψ of ker(ϕ′) is
the kernel of this isogeny. Our counterexample calls these assumptions into question, and shows that the proofs are
incorrect as written.

To make this very clear, consider the soundness proof from De Feo, Jao, and Plût [9]. The following diagram is
written within the proof. It implicitly assumes that the horizontal isogeny ϕ′ has kernel given by ψ(S), so that the
image curve is E/⟨S,R⟩.

E E/⟨S⟩

E/⟨R⟩ E/⟨S,R⟩

ψ

ϕ′

ψ′

This implicit assumption seems to have been repeated in all subsequent works, such as [33] and [14].

3 Thank you to Lorenz Panny for demonstrating this.
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4.4 Soundness of UJ20

Urbanik and Jao [31] give a variant of SIDH that exploits automorphisms and gets essentially three SIDH keys
out of single protocol messages. Section 5 of their paper claims an isogeny-based zero-knowledge identification
protocol that validates all elements of an SIDH key.

The statement being proved is (E,PB , QB , EA, P ′
B , Q

′
B) and the witness is an isogeny ϕ : E → EA = E/A with

P ′
B = ϕ(PB), Q

′
B = ϕ(QB). (Here the symbol A is overloaded to signify “Alice” and also Alice’s subgroup that

is the kernel of the isogeny.) Here the base curve E has a non-trivial automorphism η of order 6.

The proof works by sendingE/B such that there are three SIDH keys that can be computed by Alice and Bob:E1 =
E/⟨A,B⟩, E2 = E/⟨η(A), B⟩, E3 = E/⟨η2(A), B⟩. More precisely, the prover picks B = ⟨[a]PB + [b]QB⟩ and
commits to the three related squares. The verifier makes a challenge chall ∈ {0, 1, 2, 3}. When chall = 0 the prover
reveals (a, b), and the verifier can check all three isogenies E → EB , EA → Ei for i ∈ {1, 2, 3}. When chall ≥ 1
the prover reveals the kernel of an isogeny EB → Echall.

There is no formal proof of soundness given in [31].

First, it is easy to see that if P ′
B and Q′

B are the correct image points, then replacing them with [z]P ′
B and [z]Q′

B

for any invertible z modulo the order of P ′
B is also accepted by the verifier. So it is clear that the protocol is at most

giving an assurance of a weaker statement than claimed.

However, the protocol fails more drastically due to a similar issue to the problem discussed in Section 5.2. Briefly,
because (a, b) is chosen by the prover, the prover can “hide” their cheating. For example, suppose a dishonest
prover sets P ′

B = ϕ(PB), Q
′
B = ϕ(QB) + T where T is a point of order ℓ2 (a divisor of the order of PB and QB).

Then as long as b is chosen to be a multiple of ℓ2 we have

[a]P ′
B + [b]Q′

B = [a]ϕ(PB) + [b]ϕ(QB)

and so the cheating is not detected by the verifier.

5 Steps towards an SIDH proof – the weak SIDH relation

The purpose of this section is to present a protocol to prove in zero-knowledge a natural but weaker statement than
the knowledge of an SIDH secret key. In the next section we will augment this protocol to prove the full SIDH
statement.

5.1 A sound but insecure protocol

We start with a simple protocol which follows the blueprint of De Feo–Jao–Plût, but fixes its soundness issue.
Unfortunately, the fix breaks zero-knowledge, and we will need to change the protocol again to achieve our
goal.

Let public parameters pp = (p, ℓ1, ℓ2, e1, e2, E0) be such that #E0(Fp2) = (ℓe11 ℓ
e2
2 f)

2. As before, suppose a user
has a secret isogeny ϕ : E0 → E1 of degree ℓe11 with kernel ker(ϕ) = ⟨Kϕ⟩. In this section we are only interested
in proving knowledge of ϕ, thus we will not consider the public torsion basis (P0, Q0) and its image (P1, Q1) by
ϕ.

Our simple (but insecure) protocol is presented in Figure 2. It includes some basic functions:

– IsogenyFromKernel is a function taking a point S ∈ E and outputting a (normalised) isogeny with kernel ⟨S⟩
and codomain curve E/⟨S⟩.

– RandomBasisi is a function taking a curve and outputting a uniformly random pair of points U, V which
generate the ℓeii -torsion subgroup on the given curve, for i = 1, 2.

– DualKernel is a function taking an isogeny ψ and outputting a generator Kψ̂ of the kernel of the dual isogeny

ψ̂.
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round 1 (commitment)
1: Sample uniformly random ℓe22 -isogeny kernel ⟨Kψ⟩ ⊂ E0

2: ψ,E2 ← IsogenyFromKernel(Kψ)
3: P2, Q2 ← RandomBasis2(E2)
4: Kϕ′ ← ψ(Kϕ) ∈ E2

5: ϕ′, E3 ← IsogenyFromKernel(Kϕ′)
6: P3, Q3 ← ϕ′(P2), ϕ

′(Q2) ∈ E3

7: Prover sends com← (E2, P2, Q2, E3, P3, Q3) to Verifier.

round 2 (challenge)
1: Verifier sends chall← {0, 1} to Prover.

round 3 (response)
1: if chall = 1 then
2: resp← Kϕ′

3: else
4: Kψ̂ ← DualKernel(ψ)
5: Write Kψ̂ = [c]P2 + [d]Q2 for c, d ∈ Z/ℓe22 Z
6: resp← (c, d)

7: Prover sends resp to Verifier.

Verification
1: (E2, P2, Q2, E3, P3, Q3)← com
2: if chall = 1 then
3: Kϕ′ ← resp
4: Check Kϕ′ has order ℓe11 and lies on E2, otherwise output reject
5: ϕ′, E′

3 ← IsogenyFromKernel(Kϕ′)
6: Verify E3 = E′

3 and (P3, Q3) = (ϕ′(P2), ϕ
′(Q2)), otherwise output reject

7: else
8: (c, d)← resp
9: Kψ̂ ← [c]P2 + [d]Q2

10: K
ψ̂′ ← [c]P3 + [d]Q3

11: Check Kψ̂ , K
ψ̂′ have order ℓe22 , otherwise output reject

12: ψ̂, E′
0 ← IsogenyFromKernel(Kψ̂)

13: ψ̂′, E′
1 ← IsogenyFromKernel(K

ψ̂′)

14: Check E0 = E′
0 and E1 = E′

1, otherwise output reject
15: Output accept

Fig. 2: One iteration of the simple but insecure sigma protocol for SIDH. The public parameters are pp = (p, ℓ1, ℓ2, e1, e2, E0). The
public key is E1, and the corresponding secret isogeny is ϕ.

Intuitively, the sigma protocol follows Section 4.1, with a single bit challenge—if the challenge is 0, we reveal the
vertical isogenies ψ,ψ′, while if the challenge is 1, we reveal the horizontal ϕ′. The difference is the introduction of
additional points on E3 to the commitment, which force ψ,ψ′ to be, in some sense, “compatible” or “parallel”.
This restriction lets us prove 2-special soundness by extracting the secret ϕ from two accepting transcripts.

Theorem 1. The sigma protocol in Figure 2 for relation

RweakSIDH = {(E1, ϕ) | ϕ : E0 → E1,deg ϕ = ℓe11 }

is correct and 2-special sound. Repeated with κ iterations, it is thus a Proof of Knowledge for RweakSIDH with
knowledge error 2−κ.

Proof. We prove the properties of Theorem 1 separately below.

Correctness: Following the protocol honestly will result in an accepting transcript. This is clear for the chall = 1
case. For the chall = 0 case, observe that

ϕ′(Kψ̂) = ϕ′([c]P2 + [d]Q2) = [c]P3 + [d]Q3 = K
ψ̂′ ,

thus K
ψ̂′ generates the kernel of ψ̂′.
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2-special soundness: Without loss of generality, suppose we obtain two transcripts (com, 0, resp), (com, 1, resp′).
Then recover (c, d)← resp and Kϕ′ ← resp′, and let ϕ′ be an isogeny whose kernel is generated by Kϕ′ . Applying
Lemma 2, with (ϕA, ϕB , ϕAB) = (ϕ′, ψ̂, ψ̂′), we obtain an isogeny χ : E0 → E1 of degree ℓe11 . The conditions of
the lemma on the kernels of ψ̂ and ψ̂′ are satisfied because ϕ′(Kψ̂) = K

ψ̂′ , as above. This shows the protocol is
2-special sound, and that it is a Proof of Knowledge of an isogeny corresponding to the given public key curve. ⊓⊔

5.2 Why this protocol does not prove correctness of the points (P1, Q1)

We briefly explain why the protocol in this section does not convince a verifier that (P1, Q1) = (ϕ(P0), ϕ(Q0)).
The first observation is that Figure 2 does not actually use P1 or Q1 anywhere, so of course, nothing is proved.
But one could tweak the protocol in the chall = 0 case to use the isogenies ψ̂ : E2 → E0 and ψ̂′ : E3 → E1

to test the points. For example, using the duals of these isogenies, one could compute integers (a, b) such that
ker(ψ) = ⟨[a]P0 + [b]Q0⟩ and then test whether or not ker(ψ′) = ⟨[a]P1 + [b]Q1⟩.

The problem for the verifier is that this is not enough to deduce that (P1, Q1) = (ϕ(P0), ϕ(Q0)). For example, a
dishonest prover who wants to perform an attack might set (P1, Q1) = (ϕ(P0), ϕ(Q0) + T ) where T is a point of
order ℓ2. If the prover always uses integers b that are multiples of ℓ2 (and remember, the prover does choose (a, b))
then this cheating will not be detected by the verifier. Hence, the protocol needs to be changed so that the verifier
can tell that the kernels of the isogenies ψ̂ are sufficiently independent across the executions of the protocol. This is
the fundamental problem that we solve in Section 6.

5.3 Making the proof zero-knowledge

There is an obvious reason why the protocol is not zero-knowledge: We already noted that it is not sufficient to
prove that P1 = ϕ(P0) and Q1 = ϕ(Q0), even if we try some minor tweaks. However, a honest prover leaks
a random pair (Kψ, ϕ(Kψ)) every time it is challenged with chall = 0. Thus, after less than three iterations on
average, it leaks the action of ϕ on the full E0[ℓ

e2
2 ], and in particular it leaks P1 and Q1. This fact was already

observed by De Feo, Jao and Plût, who instead sketched a proof of how their protocol is zero-knowledge with
respect to the stronger SIDH relation, which includes (P1, Q1) in the language (see definition in Section 6).

But there is a second reason why our protocol fails to be zero-knowledge, even with respect to the SIDH relation.
When challenged with chall = 0 a simulator can perfectly simulate the isogenies ψ and ψ′, however it will not
be able to compute the associated ϕ′, and thus the correct points (P3, Q3). On the other hand, the adversary of
Definition 3 knows ϕ, and after seeing ψ and ψ′ it can easily compute ϕ′ and then P3 and Q3, thus unmasking the
simulator. We stress this is not an issue limited to SHVZK: All other definitions of computational zero-knowledge
we are aware of have the protocol fall, in one way or another, into the same trap.

We solve both issues at once by moving to ternary challenges {−1, 0, 1}, splitting the chall = 0 case into two
separate flows: chall = −1 corresponding to revealing ψ, and chall = 0 corresponding to revealing ψ′. However,
now the information on E2, E3 and the respective torsion bases may not be fully revealed when chall ∈ {−1, 0}:
To hide it but still commit to it, we introduce a binding and hiding commitment scheme that we denote by C(x; y).
We need statistical hiding, so that C(com; r), where r is a sufficiently long random string, can in principle be a
commitment to any of the possible values for com. We also need it to be (computationally) hard for a malicious
prover to open C(com; r) to a different value (com′; r′). As an example, we can take C(x; y) = H(x∥y) where H
is a cryptographic hash function and y is considerably longer than the output length of H (e.g., H hashes to n bits
and y is 2n bits, chosen uniformly at random at the time of the commitment). The resulting scheme is presented in
Figure 3.

Theorem 2. For a fixed security parameter κ, a proof consisting of κ iterations of the sigma protocol in Figure 3
is a computationally SHVZK Proof of Knowledge forRweakSIDH with knowledge error (2/3)κ, assuming the DSSP
problem is hard and the commitment scheme C() is computationally binding and statistically hiding.

Proof. Because the protocol only adds a few commitments to the protocol in Figure 2, correctness follows
immediately from Theorem 1.
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round 1 (commitment)
1: Run commitment from Figure 2, giving commitment com0 = (E2, P2, Q2, E3, P3, Q3)
2: Let ψ be the isogeny from Line 2 of Figure 2
3: Kψ̂ ← DualKernel(ψ)
4: Compute c, d ∈ Z/ℓe22 Z such that Kψ̂ = [c]P2 + [d]Q2 (and K

ψ̂′ = [c]P3 + [d]Q3)
5: Set comL = (E2, P2, Q2) and comR = (E3, P3, Q3)
6: Choose random nonces rL, rR, r
7: Output com← (CL = C(comL; rL),CR = C(comR; rR),C = C(c, d; r)).

round 3 (response)
1: if chall = 1 then
2: Let Kϕ′ be the kernel generator computed at Line 4 of Figure 2
3: Output resp← (comL, rL,Kϕ′ , comR, rR)
4: else
5: if chall = 0 then
6: Output resp← (comR, rR, c, d, r)
7: else
8: Output resp← (comL, rL, c, d, r)

Verification
1: (CL,CR,C)← com
2: if chall = 1 then
3: (comL, rL,Kϕ′ , comR, rR)← resp
4: Check that the commitments CL and CR are well-formed, if not output reject
5: com′ ← (E2, P2, Q2, E3, P3, Q3)
6: Verify (com′, chall,Kϕ′) as in Figure 2 verification
7: If verification fails, output reject.
8: else
9: (comX , rX , c, d, r)← resp

10: Check that the commitments C and CX are well-formed, if not output reject
11: if chall = −1 then
12: Kψ̂ ← [c]P2 + [d]Q2

13: Check Kψ̂ has order ℓe22 , otherwise output reject
14: ψ̂, E′

0 ← IsogenyFromKernel(Kψ̂)

15: Check E0 = E′
0, otherwise output reject

16: else
17: K

ψ̂′ ← [c]P3 + [d]Q3

18: Check K
ψ̂′ has order ℓe22 , otherwise output reject

19: ψ̂′, E′
1 ← IsogenyFromKernel(K

ψ̂′)

20: Check E1 = E′
1, otherwise output reject

21: Output accept if all the above conditions hold.

Fig. 3: Sigma protocol to prove the weak SIDH relationRweakSIDH.

Soundness: We prove 3-special soundness by reducing to the 2-special soundness of the simplified protocol. From
three transcripts (com,−1, resp−1), (com, 0, resp0) and (com, 1, resp1), we recover com0 = (E2, P2, Q2, E3, P3, Q3),
Kϕ′ and (c, d), like in the simplified protocol. Because C is binding, these values are (computationally) uniquely
determined by com, so they must be consistent across the three transcripts. Joining together the verifications of
cases chall = −1, 0, we see that the verifier does the exact same computations as in the simplified protocol. Hence,
Theorem 1 shows that there exists an isogeny χ : E0 → E1 of degree ℓe11 , and thus the protocol is sound.

A cheating prover has 1/3 chance of being caught, as they may prepare commitments in a way that lets them answer
any two out of the three challenges. We conclude that the protocol has knowledge error (2/3)κ.

Zero-knowledge: We only need to prove that a single execution of the protocol is SHVZK, then SHVZK of κ
repetition follows by the the hybrid technique of Goldreich, Micali, and Wigderson [18]. We define the simulator
Sim as follows.

Case chall = −1: Sim follows the honest protocol by choosing a random generator Kψ ∈ E0[ℓ
e2
2 ], then picking

P2, Q2 ← RandomBasis2(E2) and computing c, d such that ker(ψ̂) = ⟨[c]P2 + [d]Q2⟩. It finally commits to
CL = C(E2, P2, Q2; rL) and C = C(c, d; r), while taking a uniformly random value for CR. The responses are the
openings to CL and C, it is clear that this transcript is valid.

Observe that the commitments CL and C are identical to the honest commitments, thus the only way for an adversary
A to distinguish Sim from a real transcript is to distinguish CR from a commitment to (E3, P3, Q3), but this is
impossible since we assumed that C() is statistically hiding.
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Case chall = 0: This is nearly identical to the previous case. Sim chooses a random kernel generatorKψ′ ∈ E1[ℓ
e2
2 ],

picks a random basis (P3, Q3) of E3[ℓ
e2
2 ], and computes c, d such that ker(ψ̂) = ⟨[c]P3 + [d]Q3⟩. It then computes

the commitments CR and C like in the honest protocol, and takes a random value for CL.

We only need to observe that in the honest protocol both Kψ′ and (P3, Q3) are uniformly random, thus CR and C
are distributed identically to the honest protocol. We conclude again using the fact that C() is statistically hiding.

Case chall = 1: Sim chooses a random supersingular elliptic curve4 E2. It then chooses uniformly a random kernel
generator Kϕ′ ∈ E2 of order ℓe11 and computes the isogeny ϕ′ : E2 → E3. Next, Sim generates a basis P2, Q2 ←
RandomBasis2(E2) and computes P3, Q3 ← ϕ′(P2), ϕ

′
i(Q2). Finally, it commits to CL = C(E2, P2, Q2; rL) and

CR = C(E3, P3, Q3; rR), while taking a uniformly random value for C. The responses are the openings to CL and
CR, it is clear that this transcript is valid.

Like before, because C() is statistically hiding the adversary cannot use C to gain an advantage in distinguishing
Sim. But now the curves E2 and E3 and the isogeny ϕ′ are not distributed identically to the honest protocol, but
rather like in distribution D1 of the DSSP problem (Definition 7). It is then clear that an adversary that has a
non-negligible advantage in distinguishing Sim from the real protocol can be used as a distinguisher for DSSP. ⊓⊔

Remark 1. There are certainly improvements that can be made to increase efficiency and compress the size of
signatures, but these are standard and we will not explore them here. For example, in practice the information
(E2, P2, Q2) would be replaced with a triplet of x-coordinates, as in SIKE [1].

6 Correctness of the points in an SIDH public key

Section 5 gave a simple protocol, which can be shown to be a Proof of Knowledge of a degree ℓe11 isogeny from
E0 to E1. However, an SIDH public key (E1, P1, Q1) also consists of the two torsion points, and these points are
the cause of issues such as the adaptive attack [13], as discussed in Section 3. In this section, we show that the
choice of points P1, Q1 by a malicious prover is severely restricted if they must keep them consistent with “random
enough” values of a, b (i.e., random choices of ψ)—preventing adaptive attacks entirely.

Fix E0 and a basis {P0, Q0} for E0[ℓ
e2
2 ]. We define the strong5 SIDH relation to be

RSIDH =

{
((E1, P1, Q1), ϕ)

∣∣∣∣∣ ϕ : E0 → E1, deg ϕ = ℓe11 ,

P1 = ϕ(P0), Q1 = ϕ(Q0)

}
.

Figure 4 presents our protocol for proving this strong relation. We also provide a visual representation in Figure 5,
in the hope that it may help understand its algebraic structure.

This protocol is reminiscent of the one in Section 5 in that it “flips the SIDH square upside down”: We view E2 as
the “starting curve” in SIDH, and use the fact that the verifier can check ψ̂ : E2 → E0 and ϕ′ : E2 → E3. The
verifier also checks that ker(ψ̂′) = ϕ′(ker(ψ̂)), and from this the curve E1 is well-defined and the existence of an
isogeny ϕ : E0 → E1 with ker(ϕ) = ψ̂(ker(ϕ′)) follows.

But this is not enough, since there might be multiple isogenies from E0 to E1. The key idea we introduce here is to
require pairs of points R1,0, R1,1 = ϕ(R0,0), ϕ(R0,1) that are “independent” (in the sense that they generate the
full torsion). Hence the action of ϕ on the whole ℓe22 torsion is determined. This is why we “double” the protocol.
So in each round of our new sigma protocol, we commit to two SIDH squares rather than just one, and require that
the kernel generators of ψ in these two squares are independent from each other. We add this independence as an
extra check during verification. We also require an assurance that both squares use consistent isogenies ϕ′. For this
purpose we use a uniformly random ℓe11 -torsion basis (U, V ) on E0 and compute the image of this basis on both
curves E2,i—if both ϕ′i are the images of ϕ under the vertical isogenies ψi, then both should be representable in
terms of (ψi(U), ψi(V )) using the same coefficients. These extra checks achieve a 3-special sound protocol for the
strong SIDH relation above.

4 One way to do so is to take a random ℓ2-isogeny walk from E0. To ensure a distribution close to uniform, we take a walk of
length ≳ log(p) ≈ 2e2. However a walk of length e2 is sufficient to get a variant of DSSP that is also believed to be hard.

5 The word “strong” here indicates that we confirm not only the correctness of the degree of the isogeny, but the correct images
of points.
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We stress that the points (U, V ) are not made public in the commitment. In the protocol the function RandomBasis1
is called many times on the same curve E0 during t rounds of the protocol and it is important that the outputs are
independent and not known to the verifier in the chall = 1 case.

round 1 (commitment)
1: Run commitment from Figure 3, giving commitment com0 = (C0

L = C(com0
L; r

0
L),C

0
R = C(com0

R; r
0
R),C

0 = C(c0, d0; r
0)).

2: Let ψ0 be the isogeny from Line 2 of Figure 3
3: Run commitment from Figure 3 again, subject to one extra condition:

– If ψ1 is the isogeny from Line 2 of Figure 3, then ψ0 and ψ1 must be independent. Otherwise repeat the commitment phase.
Let com1 = (C1

L = C(com1
L; r

1
L),C

1
R = C(com1

R; r
1
R),C

1 = C(c1, d1; r
1)) be the commitment returned by this execution.

4: U, V ← RandomBasis1(E0)
5: for i ∈ {0, 1} do
6: Choose c′i, d

′
i ∈ Z/ℓe22 Z such that c′idi − d′ici is invertible modulo ℓe22

7: Set R0,i ← ψ̂i([c
′
i]P2,i + [d′i]Q2,i) and R1,i ← ψ̂′

i([c
′
i]P3,i + [d′i]Q3,i)

8: Compute ai, bi ∈ Z/ℓe22 Z such that, simultaneously, R0,i = [ai]P0 + [bi]Q0 and R1,i = [ai]P1 + [bi]Q1

9: Let U ′
i = ψi(U) and V ′

i = ψi(V )

10: Choose random nonces r0m, r1m
11: Output comi ← (U ′

i , V
′
i ,C

i
L,C

i
R,C

i,Cim = C(c′i, d
′
i, ai, bi; r

i
m)) for i ∈ {0, 1}.

round 3 (response)
1: if chall = 1 then
2: Write Kϕ = [e]U + [f ]V for e, f ∈ Z/ℓe11 Z
3: Output resp← ((e, f), com0

L, r
0
L, com

1
L, r

1
L, com

0
R, r

0
R, com

1
R, r

1
R)

4: else
5: if chall = 0 then
6: Output resp← (com0

R, r
0
R, com

1
R, r

1
R, c0, d0, r

0, c1, d1, r
1, c′0, d

′
0, a0, b0, r

0
m, c

′
1, d

′
1, a1, b1, r

1
m)

7: else
8: Output resp← (com0

L, r
0
L, com

1
L, r

1
L, c0, d0, r

0, c1, d1, r
1, c′0, d

′
0, a0, b0, r

0
m, c

′
1, d

′
1, a1, b1, r

1
m)

Verification
1: (U ′

0, V
′
0 ,C

0
L,C

0
R,C

0,C0
m), (U ′

1, V
′
1 ,C

1
L,C

1
R,C

1,C1
m)← com0, com1

2: if chall = 1 then
3: ((e, f), com0

L, r
0
L, com

1
L, r

1
L, com

0
R, r

0
R, com

1
R, r

1
R)← resp

4: for i ∈ {0, 1} do
5: com′

i ← (CiL,C
i
R,C

i)
6: Compute Kϕ′

i
= [e]U ′

i + [f ]V ′
i

7: resp′i ← (comi
L, r

i
L,Kϕ′

i
, comi

R, r
i
R)

8: Verify (com′
i, chall, resp

′
i) as in Figure 3 verification

9: If verification fails, output reject.
10: else
11: (com0

X , r
0
X , com

1
X , r

1
X , c0, d0, r

0, c1, d1, r
1, c′0, d

′
0, a0, b0, r

0
m, c

′
1, d

′
1, a1, b1, r

1
m)← resp

12: for i ∈ {0, 1} do
13: com′

i ← (CiL,C
i
R,C

i)
14: resp′i ← (comi

X , r
i
X , ci, di, r

i)
15: Verify (com′

i, chall, resp
′
i) as in Figure 3 verification

16: if chall = −1 then
17: R0,i ← ψ̂i([c

′
i]P2,i + [d′i]Q2,i)

18: Check R0,i = [ai]P0 + [bi]Q0, otherwise output reject
19: else
20: R1,i ← ψ̂′

i([c
′
i]P3,i + [d′i]Q3,i)

21: Check R1,i = [ai]P1 + [bi]Q1, otherwise output reject
22: If chall = −1 check ψ̂0(U

′
0) = ψ̂1(U

′
1) and ψ̂0(V

′
0 ) = ψ̂1(V

′
1 ), otherwise output reject.

23: Check that a0b1 − a1b0 and c′idi − d′ici (i ∈ {0, 1}) are invertible modulo ℓe22 , otherwise output reject.
24: Output accept if all the above conditions hold.

Fig. 4: Sigma protocol to prove the strong SIDH relationRSIDH.

Theorem 3. For a fixed security parameter κ, a proof consisting of κ iterations of the sigma protocol in Figure 4 is
a computationally SHVZK Proof of Knowledge forRSIDH with knowledge error (2/3)κ, assuming the Double-DSSP
problem is hard and the commitment scheme C() is computationally binding and statistically hiding.

Proof. We prove correctness, soundness, and zero-knowledge individually.

Correctness: The point R0,i will always be an invertible scalar multiple of the point Kψ used by the prover in the
commitment round (in the i-th SIDH square) of the protocol because both Kψ and R0,i are generators of the kernel
of ψ in the i-th SIDH square. Hence, because the honest prover will use commitments such that ψ0 and ψ1 are
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E0 E1

E2,0 E3,0

E2,1 E3,1

ϕ′
0

ϕ′
1

ψ0
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ψ′
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ψ′
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P1

Q1

P2,0

Q2,0

P3,0

Q3,0

P2,1

Q2,1

P3,1

Q3,1

(c0, d0)

(c0, d0)

(a1, b1)

(a1, b1)

E0 E1

E2,0 E3,0

E2,1 E3,1

ϕ′
0

ϕ′
1

ψ0

ψ1

U

V

U′
0

V ′
0

U′
1

V ′
1

(e, f)

(e, f)

(e, f)

Fig. 5: Visual representation of the protocol for the strong SIDH relation. Black arrows represent isogenies computed
by the prover; only the continuous arrows are revealed to the verifier. Dashed circles represent torsion subgroups,
the radial arrows within represent torsion generators. The torsion generators have the same order as the degree of
the continuous arrows, and are mapped consistently by the dashed arrows. Left: consistency checks performed
by the verifier in the cases chall = −1, 0: the red arrows represent isogenies recomputed by the verifier from the
opening of the torsion bases and of (ai, bi, ci, di, c′i, d

′
i). The blue arrows are checked implicitly. For readability, a

set of red arrows (associated to (c1, d1)) in the top square, and a set of blue arrows (associated to (a0, b0)) in the
bottom square are omitted. The verifier must also check that the bases (U ′

0, V
′
0) and (U ′

1, V
′
1) (see right) are mapped

consistently. Right: consistency checks in the case chall = 1: the verifier recomputes ϕ′i from the opening of the
torsion bases and of (e, f). The verifier must also check that the bases (P2,i, Q2,i) and (P3,i, Q3,i) (see left) are
mapped consistently.



independent, then ai, bi necessarily exist such that a0b1 − a1b0 is invertible in line 8 of commitment. Also note that
because Kϕ′,i = [e]U ′

i + [f ]V ′
i = [e]ψi(U) + [f ]ψi(V ) for both i ∈ {0, 1}, and U, V have order coprime to the

degree of ψi, the checks involving U ′
i , V

′
i , e, and f will also succeed. Correctness of the rest of the protocol can

also be verified in a straightforward way.

Zero-knowledge: We start from the simulator described in Theorem 2, and extend it to simulate the parts of the
transcript that are specific to Figure 4: Namely, the bases U ′

i , V
′
i and the coefficients c′i, d

′
i, ai, bi.

Case chall = −1: For i = 0, 1, Sim constructs Kψi ∈ E0[ℓ
e2
2 ], P2,i, Q2,i and ci, di like in Theorem 2, while

ensuring that ψ0 and ψ1 are independent.

Additionally, Sim samples U, V ← RandomBasis1(E0) and computes U ′
i = ψi(U) and V ′

i = ψi(V ). Then it takes
c′i, d

′
i such that c′idi − d′ici is invertible and computes R0,i, ai, bi like in the honest protocol. Finally it computes all

commitments like in the honest protocol, except for CiR which are taken at random.

It is clear that the distribution of U ′
i , V

′
i , c

′
i, d

′
i, ai, bi is identical to the honest protocol, thus this simulation is

indistiguishable following the same argument as in Theorem 2.

Case chall = 0: This case is similar to the previous one, however Sim needs to compute both ψi and ψ′
i in order to

simulate U ′
i , V

′
i . Because the image points P1 = ϕ(P0) and Q1 = ϕ(Q0) are part of the SIDH relation, Sim can

choose a′, b′ ∈ Z/ℓe22 Z and compute Kψi
= [a′]P0 + [b′]Q0 and Kψ′

i
= [a′]P1 + [b′]Q1.

It then proceeds like in Theorem 2, but also computes U, V, U ′
i , V

′
i as above using the knowledge of ϕi. After taking

c′i, d
′
i with the usual condition, it computes R1,i and then ai, bi. Finally, it computes all commitments honestly,

except for CiL. Again, the simulation is perfect except for CiL, and is thus indistinguishable thanks to the hiding
property of C().

Case chall = 1: The simulator twice chooses a random supersingular elliptic curve E2,i for i ∈ {0, 1}.

The simulator then chooses uniformly a random point Kϕ′
0
∈ E2,0 of order ℓe11 and computes the isogeny ϕ′0 :

E2,0 → E3,0 with kernelKϕ′
0
. Sim chooses a random basis {U ′

0, V
′
0} forE2,0[ℓ

e1
1 ], and writesKϕ′

0
= [e]U ′

0+[f ]V ′
0

for integers e, f .

Next, Sim will randomly generate a basis {U ′
1, V

′
1} of the ℓe11 -torsion subgroup on E2,1, such that eℓe11 (U ′

1, V
′
1) =

eℓe11 (U ′
0, V

′
0). It sets Kϕ′

1
= [e]U ′

1 + [f ]V ′
1 and lets ϕ′1 : E2,1 → E3,1 be an isogeny with kernel generated by Kϕ′

1
.

Next, the simulator generates basisP2,i, Q2,i ← RandomBasis2(E2,i), and computesP3,i, Q3,i ← ϕ′i(P2,i), ϕ
′
i(Q2,i).

Finally, Sim chooses random values for the commitments Ci,Cim, which will never be opened when chall = 1.

Like in Theorem 2, this is not a perfect simulation of the honest protocol. However, thanks to the hiding property of
C(), the adversary is reduced to solving precisely an instance of the Double-DSSP problem (Definition 8).6

3-special soundness: Suppose we obtain three accepting transcripts (com,−1, resp−1), (com, 0, resp0), and (com,
1, resp1). The secret isogeny corresponding to the public key X = (E1, P1, Q1) can be recovered as follows, hence
we can extract a valid witness W for the statement X such that (X,W ) ∈ RSIDH.

Consider just one of the isogeny squares (e.g., i = 0). We have (c, d) which defines a point Kψ̂ = [c]P2,0 + [d]Q2,0

and hence an isogeny ψ̂ : E2,0 → E0. We also have Kϕ′ ∈ E2,0 which defines an isogeny ϕ′ : E2,0 → E3,0

whose kernel is generated by Kϕ′ . Applying Lemma 2, with (ϕA, ϕB , ϕAB) = (ϕ′, ψ̂, ψ̂′), we obtain an isogeny
ϕ0 : E0 → E1 of degree ℓe11 . The conditions of the lemma on the kernels of ψ̂ and ψ̂′ are satisfied because
ϕ′(Kψ̂) = K

ψ̂′ , as above. Hence we have extracted an isogeny as required.

Repeating the argument for i = 1 provides another isogeny ϕ1 : E0 → E1 of degree ℓe11 . The next step is to prove
that these isogenies are equivalent (i.e., have the same kernel). This is where the points U ′

0, V
′
0 , U

′
1, V

′
1 are needed.

6 Note that the second pairing condition in Definition 8 is equivalent to the existence of K0,K1 such that K0 = [e]U ′
0 + [f ]V ′

0

and K1 = [e]U ′
1 + [f ]V ′

1 .
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We have

ker(ϕ0) = ψ̂0(ker(ϕ
′
0))

= ⟨ψ̂0([e]U
′
0 + [f ]V ′

0)⟩

= ⟨ψ̂1([e]U
′
1 + [f ]V ′

1)⟩

= ψ̂1(ker(ϕ
′
1)) = ker(ϕ1).

Therefore, we recover the same7 isogeny ϕ0 = ϕ1 = ϕ from both squares.

It remains to prove that the isogeny ϕ we have extracted does map (P0, Q0) to (P1, Q1) and so is a correct witness.

Recall we are provided with points Rj,i and integers ai, bi such that R0,i = [ai]P0 + [bi]Q0. Define

B =

(
a0 b0

a1 b1

)
.

Since B is invertible, ⟨R0,0, R0,1⟩ is another basis for ⟨P0, Q0⟩ = E0[ℓ
e2
2 ]. Recall that R0,i = ψ̂i([c

′
i]P2,i +

[d′i]Q2,i), R1,i = ψ̂′
i([c

′
i]P3,i + [d′i]Q3,i), and P3i , Q3,i = ϕ′(P2,i), ϕ

′(Q2,i). It follows from ϕ ◦ ψ̂i = ψ̂′
i ◦ ϕ′ that

ϕ(R0,i) = R1,i. Hence we have (
R0,0

R0,1

)
= B

(
P0

Q0

)
(
R1,0

R1,1

)
=

(
ϕ(R0,0)

ϕ(R0,1)

)
= B

(
ϕ(P0)

ϕ(Q0)

)
(
R1,0

R1,1

)
= B

(
P1

Q1

)
,

therefore

B

(
ϕ(P0)

ϕ(Q0)

)
= B

(
P1

Q1

)
,

and since B is invertible, we must have that P1 = ϕ(P0) and Q1 = ϕ(Q0), as required. ⊓⊔

Note that the protocol in Figure 4 runs the previous protocol (in Figure 3) twice, hence the transcripts produced by
this Proof of Knowledge forRSIDH will be (at least) twice the size. We expect that improvements to the efficiency
and size of the scheme are possible with more analysis, but leave this for future work.

Remark 2. Ghantous, Pintore, and Veroni [17] discuss issues with extraction of a witness in two different scenarios.
Their first scenario (“single collision”) involves two distinct isogenies ϕ′ : E2 → E3 in the SIDH square of the
identification scheme. Neither of our new identification schemes are impacted by such collisions because the
provision of points P3, Q3 ∈ E3 uniquely determines the isogeny ϕ′, as shown by Martindale and Panny [24].
Their second scenario (“double collision”) involves two distinct (non-equivalent) isogenies ϕ, ϕ̃ : E0 → E1, both
of degree ℓe11 and a point R ∈ E0 such that

E1/⟨ϕ(R)⟩ ∼= E1/⟨ϕ̃(R)⟩.

Our second protocol, for the relation RSIDH, ensures that the witness extracted is a valid witness for the public
key used (including the torsion points). Hence, this second collision scenario does not have any impact on the
soundness of our protocol either.

7 They could differ by an automorphism, but this does not matter. Fix one of them and call it ϕ.

19



7 Non-Interactive Proof of Knowledge

We conclude with some brief remarks about the use of the new protocols proposed above.

It is standard to construct a non-interactive Proof of Knowledge from an interactive protocol using the Fiat-Shamir
transformation (secure in the random oracle model). This works by making the challenge chall for the t rounds of
the ID scheme a random-oracle output from input the commitment com and a message M . That is, for message
M ,

V O
1 (com) = O(com ∥M).

In some situations one should include the instance (E0, P0, Q0, E1, P1, Q1) in the hash too. Thus the prover does
not need to interact with a verifier and can compute a non-interactive transcript. Because the sigma protocol
described in Section 6 not only proves knowledge of the secret isogeny between two curves, but also correctness of
the torsion points in the public key, we obtain a non-interactive Proof of Knowledge of the secret key corresponding
to a given SIDH public key, which proves that the SIDH public key is well-formed. This provides protection against
adaptive attacks.

Such a NIZK of an SIDH secret key can, among other applications, be used to achieve a secure non-interactive key
exchange scheme based on SIDH.

Currently the only other method known to get a NIKE from SIDH is the k-SIDH proposal by Azarderakhsh, Jao
and Leonardi [2]. This requires both parties to publish k SIDH keys and to compute O(k2) shared SIDH keys,
and so requires k2 isogeny computations to construct the shared key. It is known [10, 3] that one can attack the
scheme in Õ(16k) oracle queries and time. For a given security parameter λ it is therefore natural to suppose k
grows linearly in λ, in which case the complexity of the protocol grows quadratically in λ. In contrast, the soundess
of our NIZK protocol means the number of rounds grows linearly in λ, and the key exchange protocol itself is a
single SIDH exchange. So asymptotically the cost of our scheme will be less than k-SIDH.

8 Conclusions

We have shown a counterexample to the soundness of the De Feo–Jao–Plût sigma protocol. We have described a
new sigma protocol that addresses this issue, and also allows to prove that an SIDH key is correctly generated. Our
protocol also solves the soundness issue raised by Ghantous, Pintore and Veroni.

The problem of proving correctness of an isogeny turns out to be considerably more difficult than was anticipated
(at least, by us!), and there are several open problems for future work. First it would be good to have a protocol with
2-special soundness for the SIDH relation. The 3-special soundness and ternary challenges seem to be necessary
for the weak SIDH relation, preventing leakage of torsion point information, and thus protecting against the recent
attacks on SIDH.

However, in cases where the torsion point information is public, our protocols use ternary challenges only to bypass
the difficulty in simulating the torsion bases (P2, Q2) and (P3, Q3). A protocol with statistical zero-knowledge
instead of computational zero-knowledge would therefore help with this issue. Second, the protocol seems extremely
complex and it would be wonderful to have a simpler and more elegant one.

We have not considered ways to make the protocol more compact. There are some trivial modifications that would
reduce the communication (such as replacing pairs (ci, di) with projective points (ci : di)) and there is scope for
more sophisticated compression of the protocol messages. However, we feel that progress at the conceptual level to
reduce the communication cost is more relevant than applying standard implementation tricks.
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