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Abstract. The Learning with Rounding (LWR) problem is an impor-
tant variant of the Learning with Errors (LWE) problem. Recently, Liu et
al. proposed a comprehensive study of LWR problems defined over alge-
braic number fields in CRYPTO 2020. However, their search-to-decision
reductions of LWR problems depend heavily on the existence of the so-
called Normal Integral Basis (NIB). Meanwhile, the aesthetic deficiency
is a lack of discussions of choices of secret s, and one may could not show
the worst-case hardness of decision LWR problems strictly even for fields
with NIB. In this paper, we give a more refined analysis of reductions
between different LWR problems. Our contributions are summarized as
follows: (1) We give a search-to-decision reduction of ring/module LWR
problems defined over any number field K = Q[x]/(Φ(x)) which is Ga-
lois over Q with suitable parameters, regardless of the existence of NIB.
(2) To the best of our knowledge, we give the first reduction from search
ring/module LWE problems to corresponding search/decision LWR prob-
lems. Hence, combining known hardness results of LWE problems, we
could reduce worst-case ideal/module lattices problems to search/decsion
LWR problems strictly. (3) For the first time, we show the worst-case
hardness of search/decision polynomial LWR problems defined over poly-
nomial rings Zq[x]/(Φ(x)) with comparable small parameters, which could
be regarded as a theoretical support for some ring/module LWR based
crypto-systems, e.g. the NIST Round 3 candidate - Saber. As a finish,
we also give some hardness results of middle product polynomial LWR
problems.

Keywords: Lattice-based Cryptography · Ring/Module LWR Problems
· Polynomial LWR Problems · Hardness Reduction

1 Introduction

Cryptographic primitives based on hard lattice problems play a key role
in the area of post-quantum cryptographic researches, due to their abilities of
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resisting attacks by quantum computers [28] and their versatility. Till now, we
could design almost all crypto-primitives based on hard lattices problems [22],
and some of them are very closed to practical applications [10, 15, 16]. In the final
round competitions (Round 3) of post-quantum cryptography standardization
called by NIST, 7 out of 15 candidates are lattice-based.

The Learning with Rounding problem was first proposed by Banerjee et al.
in [8], and was used as a building block in constructing efficient, low-depth
pseudo-random functions. Later, there have been a number of further applica-
tions [4, 5, 7, 15, 17]. LWR could be regarded as a “deterministic” LWE without
sampling error e, thereby enjoying the advantage that, e is usually sampled from
some discrete Gaussians, and such sampling procedure is in general costly, diffi-
cult to implement and vulnerable to side-channel attacks. In [8], Banerjee et al.
showed a reduction from LWE to LWR (including its ring variant) with arbitrar-
ily many samples. However, this reduction requires the modulus q to be at least
super-polynomial. Alwen et al. [4] reduced the modulus q to polynomial sizes
by imposing some certain number theoretical restrictions on it. Later, Bogdanov
et al. removed the number theoretical restrictions on modulus q, and provide
new search-to-decision reduction of LWR problems over Euclidean lattices by
using Rényi divergence and the tool called learning heavy Fourier coefficients in
[9]. Alperin-Sheriff et al. [3] further improved the parameter sets for reductions
from LWE to LWR. In particular, their reduction is dimension-preserving with
a polynomial-sized modulus.

The above hardness results of LWR problems with polynomial bounded
parameters are all limited in Euclidean lattices. While practical lattice-based
crypto-systems are usually designed over ring/module LWR problems [5, 15]. To
overcome the lack of provably hardness for decisional ring/nodule LWR prob-
lems, computational learning with rounding over rings assumption are proposed
[6, 12]. However, the relations between computational LWR problems and deci-
sional Ring/Module LWR problems remain unclear, and it seems that decisional
LWR problems are much more powerful in many applications.

In CRYPTO 2020, Liu et al. [19] conducted a comprehensive study on estab-
lishing hardness reductions for Ring/Module LWR problems. Their results con-
firmed that similar algebraic framework as LWE proposed in [23] also fits to LWR
problems. They also give the first search-to-decision reduction of Ring/Module
LWR problems by using a similar route as Ring/Module LWE problems [18, 20].
Ring/module LWR problems with leaky secrets are also considered. Both nega-
tive results of ring LWR and positive results of module LWR are given. However,
their search-to-decision reductions of Ring/Module LWR problems rely heavily
on the existence of normal integral basis of number field K. Also, their reduc-
tion only works for some special set of secret s, which is only a negligible part
of O∨k /qO∨K 4. As a result, we could not deduce a strictly worst-case to average-
case reductions from worst-case ideal/module lattice problems to decisional LWR
problems by simply combining reductions form search LWE problems to search
LWR problems and reductions from search LWR problems to decisional LWR

4 Here, O∨K is the dual of the ring of integers R of a number field K.
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problems. Finally, whether similar reductions and hardness results can be ex-
tended to polynomial LWR problems is still open. Since it is more natural and
convenient to use polynomial rings in applications, we believe that it’s mean-
ingful and instructive to investigate hardness reductions of polynomial LWR
problems, as well.

1.1 Our Contributions

In this paper, we make a detailed analysis of reductions between Ring/Module
LWR problems and Polynomial LWR problems.

We give a search-to-decision reduction of Ring/Moulde LWR problems over
any number filed K = Q[x]/(Φ(x)) which is Galois over Q, regardless of the
existence of NIB. More precisely, we also use rounding functions with respect
to some basis B to define LWR problems, but our reductions do not depend on
the basis we use. So, under some necessary conditions, our results show that if
search ring/module LWR problems are one-way with respected to some basis B,
then decision ring/module LWR problems are pseudo-random with respected to
the same basis.

We then give an efficient attack for search ring/module LWR problems with
secrets in some special sets (which cover the cases proposed in [19]). By combin-
ing this attack, reductions from search ring/module LWE problems to search
ring/module LWR problems with secrets in (R∨q )× 5, a proper intermediate
problem which we called extended search ring/modul LWR problems, and our
search-to-decision reduction of Ring/Moulde LWR problems, we propose reduc-
tions from search ring/module LWE problems, hence worst-case ideal/module
lattices problems, to decision ring/module LWR problems with secrets in (R∨q )×.

For the first time we prove the hardness of search/decision polynomial LWR
problems defined over any polynomial ring Z[x]/(Φ(x)), as long as the corre-
sponding filed K = Q[x]/(Φ(x)) is Galois over Q. For suitable modulus q, we
first give an isomorphism Zq[x]/(Φ(x)) ∼= R∨q , then show the equivalences be-
tween search/decision polynomial LWR problems and corresponding LWR prob-
lems (with respect to some Zq basis). These, combining our reductions from
search ring/module LWE problems to search ring/module LWR problems, give
connections between search ring/module LWE problems and search/decision
polynomial LWR problems with comparable small parameters. For example, if
K = Q(ζl) is power-of-2 cyclotomic field and the number of samples L = Õ(1),
we could get a reduction from worst-case SIVP

Õ(n
9
4 )

to search polynomial LWR

problems with modulus q ≈ Õ(n2). We also give some results (maybe not very
satisfactory) about hardness of decision middle-product polynomial LWR prob-
lems.

5 Here, R = OK is the ring of integers of K, R∨ is the dual fractional ideal of R,
R∨q = R∨/qR∨, and (R∨q )× denotes the subset of R∨q consisting of R-invertible
elements via the R-module isomorphism Rq ∼= R∨q .
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1.2 Technique Overviews

For simplicity, we set K = Q[x]/(Φ(x)) = Q(ζ) to be a Galois extension
over Q with dimension n, R = OK and take ring LWR problems as examples.
Assume B is a set of basis, we also define the rounding function beB,q,p for some
modulus q = p ·Q 6 with respect to B = (b1, · · · , bn): baeB,q,p =

∑n
i=1baieq,p · bi,

where a =
∑n
i=1 ai · bi and bxeq,p = bpq · xe. Assume further p,Q are different

primes and pR = p1 · · · pg with g = Ω(n). An instance of ring LWR problems
with respect to basis B is of the form (a, b = ba · seB,q,p) for some fixed secret
s. Recall that, the search-to-decision reduction road-map of [19] is as following:

S-LWR 7→ pi-S-LWR 7→ W-D-LWRi 7→ D-LWR,

which is also used in [18, 20] for proving the pseudo-randomness of ring/module
LWE problems. For some s ∈ R∨q , the pi-S-LWR problem is to find s mod p∨i , and

the W-D-LWRi problem is to distinguish (a, ba·seB,q,p+hi−1) and (a, ba·seB,q,p+
hi), where hi is sampled uniformly at random modulo pj for j ∈ {1, · · · , i − 1}
and is 0 modulo pj for j ∈ {i, · · · , g}. The main thoughts can be summa-
rized as follows. Since K/Q is Galois, actions of element σi in the Galois group
Gal(K/Q) are transitive on the set {p1, · · · , pg}. To solve pj-S-LWR problem,
one could transfer instance (a, b) to (σj,i(a), σj,i(b)), and use the pi-S-LWR ora-
cle to find solution σj,i(s) mod piR

∨, then σi,j(σj,i(s)) is the required solution.
Here, σj,i(pj) = pi. Via the Chinese Remainder Theorem (CRT), one could
recover s mod pR∨. The reason why we need NIB is that we have

σi(ba · se)B,q,p = bσi(a) · σi(s)eσi(B),q,p (1)

for any σi ∈ Gal(K/Q). Since we only assume the oracle has ability to find s
with respect to B, we must require σi(B) = B. Meanwhile, we could only recover
b mod pR∨ by using the above method. For modulus p|q, there are ( qp )n many

possible elements in R∨q correspond to the same s mod pR∨. So the authors of
[19] choose to restrict s ∈ R∨p .

For simplicity, we assume all the problems, except D-LWR, are worst-case
in the sense that O should solve corresponding problem with probability ≈ 1.
Reductions from pi-S-LWR to W-D-LWRi could be done via transferring (a, b)
to (a+ q

py, b+h+x ·y) with suitable h, y by trying all the possible x ∈ R∨/piR∨
if we require p to split “well” in the sense that N(pi) ≤ Poly(n). Reductions
from W-D-LWRi to D-LWR can be divided into two parts: a reduction from
W-D-LWRi to worst-case D-LWR through a standard hybrid discussion, and a
reduction from worst-case D-LWR to D-LWR by using the secret re-randomizing
technique and a similar analysis proposed in [25]. The secret re-randomizing
technique needs to require s to be invertible, so authors of [19] choose to restrict
the secret s in the set R∨p ∩ (R∨q )×.

Choices of Secret Sets: Elements of R∨p are different form those of R∨q (since
they are different cosets in mathematics). The published version of [19] does

6 Condition p|q seems to be a common requirement [4, 6, 9, 12, 19].
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not specify the formal definition of the set R∨p ∩ (R∨q )×, while the full version
seems to be unavailable now. We note that assume q = Q · p with gcd(p,Q) = 1,
which is also the parameter set used in [19], we have R∨q

∼= R∨Q × R∨p by CRT.

If we identity elements of R∨p via this isomorphism, then R∨p ∩ (R∨q )× is an
empty set, since any invertible element a of R∨q must satisfy a 6= 0 mod QR∨

and a 6= 0 mod pR∨. We choose to constrain s in the set

(R∨q ∩R∨p )× := {x ∈ R∨q : x = 0 mod Q ·R∨, x 6= 0 mod pi ·R∨ for all i ∈ [g]}

remove the need of NIB in the search-to-decision reduction of LWR problems
first. Then, we discuss how to give similar reduction with secret set (R∨q )×.

Removing dependence of NIB: Both sets (R∨q ∩ R∨p )× and (R∨q )× is σi-
invariant for all σi ∈ Gal(K/Q). To get rid of the dependence of NIB, a vital
observation is that solving (both search and decisional, worst-case and average-
case) LWR problems with respect to basis B is equivalent to solving LWR prob-
lems with respect to any basis B′ in the set SB := {σi(B) : σi ∈ Gal(K/Q)}.
This follows easily from equation (1) and the fact σi do not change the distribu-
tion of s, when s obeys to the uniform distribution over (R∨q ∩R∨p )×. Therefore,
we could use the following reduction road-map:

S-LWR 7→ pi-S-LWRSB 7→ W-D-LWRi
SB 7→ D-LWR.

Here, symbol SB represents that we require the oracle O to solve corresponding
problems with respect to any basis in SB . Then, S-LWR could be reduced to
pi-S-LWRSB for arbitrary basis B, as we have “enhance” the ability of corre-
sponding oracles.

Notice that remaining reductions are basis-preserving. The above vital obser-
vation is used in the reduction form W-D-LWRi

SB to worst-case D-LWR, since
the “enhanced” ability is just the original ability of the worst-case D-LWR solver
O. In fact, we do not add any additional requirements on corresponding O.

Attacks on LWR problems with secrets in (R∨q ∩R∨p )×: A natural question
is that if we could reduce search LWE problems to search LWR problems with
these special secrets by using a Rényi divergence argument as before? Though
one may deduce the hardness results of search LWE problems with secrets in
(R∨q ∩ R∨p )× via a similar discussion as in [20], the resulted parameters are too
large and we can’t reduce search LWE problems to search LWR problems with
these special secrets. In fact, though the number of secret in (R∨q ∩ R∨p )× is
exponential, LWR problems with these parameter settings are easy to solve.

Assume r1, r2 ∈ Zq are the “CRT basis” of the isomorphism Zq ∼= ZQ × Zp,
i.e. a = r1 · a1 + r2 · a2 for a ∈ Zq, a1 ∈ ZQ and a2 ∈ Zp. Since Z ⊆ R ⊆ R∨, we
could represent a ∈ Rq and s ∈ R∨q via r1 and r2 as following: a = r1 ·a1 + r2 ·a2

and s = r1 · s1 + r2 · s2 for a ∈ Rq, s ∈ R∨q and a1 ∈ RQ, a2 ∈ Rp, s1 ∈
R∨Q, s2 ∈ R∨p . Then, elements in (R∨q ∩R∨p )× correspond to the cases s1 = 0 and

s2 ∈ (R∨p )×. For any a = r1 · a1 + r2 · a2 and s = r2 · s2 and any basis B, we
have b = ba ·seB,q,p = Q−1

p ·a2 ·s2 (see Lemma 7), where Q−1
p is the integer such



6 Y. Wang et al.

that r2 = Q · Q−1
p mod q. Since a2 ∈ R×p with high probability, we could solve

s2 ∈ R∨p and recover s = r2 · s2 mod qR∨ easily.
This simple attack also means that for q = p · Q with gcd(p,Q) = 1, when

given samples of the form (a, ba · seB,q,p), the secret s := r1 · s1 + r2 · s2 ∈ R∨q
should at least be chosen from some subset of R∨q with the s1-component having
enough entropy. Otherwise, the corresponding search LWR problems are easy.

Worst-Case Hardness of LWR Problems: To show the worst-case hardness
of decision LWR problems, we choose secret set to be R∨q . If so, how to recover the
whole s, not just s mod pR∨ is the biggest obstacle. To overcome this, we define
the extended search LWR problem (denoted by Ext-S-LWR), whose instance is
of the form (a1, a2, ba1 · seB,q,Q, ba2 · seB,q,p), as an intermediate problem. Next,
we define the weak search LWR problems, denoted by Weak-S-LWR, in which
we only require to recover s mod pR∨ when given (a, ba · seB,q,p). Then, if one
could solve Weak-S-LWR problem, we could use the recovered s2 := s mod pR∨,
partial information (a1, ba1 · seB,q,Q) and similar algorithm as the above attack
to recover full s mod qR∨ and solve Ext-S-LWR problem.

The reason we choose to define Ext-S-LWR problem as (a1, a2, ba1·seB,q,Q, ba2·
seB,q,p), not the seemed more natural form (a, ba ·seB,q,Q, ba ·seB,q,p), is that we
could easily bound the Rényi distance between two LWE samples (a1, a2, a1 ·s+
e1, a2 · s+ e2) and one Ext-S-LWR sample (a1, a2, ba1 · seB,q,Q, ba2 · seB,q,p) due
to the somewhat independent of a1 · s and a2 · s. Hardness of Ext-S-LWR could
be guaranteed by search LWE problem, and our search-to-decision reductions
could be modified to this situation. These gives a reduction from search LWE
problem to decision LWR problem.

Connecting Polynomial LWR and Ring LWR: Similar to LWE problems
[27], we could also define polynomial/primal/dula LWR problems wit secrets
in Zq[x]/(Φ(x)), Rq, R

∨
q . To relate these LWR problems, a crucial observation

is that the rounding function we use also transfers basis of R∨q to basis R∨p
(from B mod qR∨ to B mod pR∨) implicitly. We could regard it as a Z-module
homomorphism. Meanwhile, the above search-to-decision reduction also works
for any Zq-basis B of R∨q , since by CRT, B mod pR∨ is a Zp-basis of R∨p .

To connect Polynomial LWR problem and Ring LWR problem, our tech-
niques are as follows:
(1) The isomorphism ϕR,R∨ : Rq ∼= R∨q and its inverse (which is denoted by
ϕR∨,R) are also Z-module isomorphisms, since Z ⊆ R. Then, the primal LWR
problem with respect to some Zq-basis B is equivalent to the (dual) LWR prob-
lem with respect to Zq basis ϕR,R∨(B). That is to say, there is a correspondence
between primal LWR problem and LWR problems via Zq basis.
(2) For prime modulus p such that p - ∆k and p - |R/Z[ζ]|, we have a ring isomor-
phism ϕp,R : Zp[x]/(Φ(x)) ∼= Rp via the sequence of isomorphism Zp[x]/(Φ(x)) ∼=
Zp[x]/(Φ1(x))× · · · × Zp[x]/(Φg(x)) ∼= Z[x]/(p, Φ1(x))× · · · × Z[x]/(p, Φg(x)) ∼=
R/p1× · · · ×R/pg ∼= Rp, where Φ(x) = Φ1(x) · · ·Φg(x) mod p. Then, if q = Q · p
with p,Q different primes such that gcd(q,∆k) = 1 and gcd(q, |R/Z[ζ]|) = 1, Rq
admits a Zq power basis, namely ζ̄ := ϕq,R(x mod Φ(x) · Zq[x]). Meanwhile, the
ring isomorphism ϕq,R is also a Z-module, since each component appeared in
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the sequence of isomorphism is a Z-module. Then, we could show that Polyno-
mial LWR problem is equivalent to primal LWR problem with respect to basis
B := {1, ζ̄, · · · , ζ̄n−1} (hence is equivalent to LWR problem with respect to basis
B′ = ϕR,R∨(B)).

Combining our reductions from S-LWE problem to D-LWR problem with
respect to Zq basis B′ = ϕR,R∨(B), we could show the hardness of polynomial

LWR problems. For cyclotomic field K = Q(ζl) = Q[x]/(Φl(x)) with ζl = e2πi· 1l ,
one could get reduction from S-LWE problems to polynomial LWR problems
directly without using facts showed in (2). However, parameters depend on the
Zq basis we use. A good choice for cyclotomic fields is the decoding basis of R∨

and the powerful basis of R [21]. Only for l to be a prime-power, the usual power
basis B of R equals to its powerful basis, and the decoding basis does not equal
to ϕR,R∨(B). So, to save loss of parameters, we first show a compact reduction
from S-LWE problem to primal-S-LWE problem for cyclotomic field. Then, we
could apply our discussions to primal variant S-LWE/Ext-S-LWR/Weak-S-LWR
problems, and get a tight hardness result of polynomial LWR problem defined
over polynomial ring Zq[x]/(Φl(x)) with l a prime-power.

1.3 Organizations

We will introduce some useful definitions and results in Section 2. Search-to-
decision reductions of Ring/Module LWR problems are put in Section 3. We will
discuss the worst-case hardness of (extended) Ring/Module LWR problems in
Section 4. Hardness of polynomial LWR problems, as well as some results about
middle-product polynomial LWR problems, is discussed in Section 5

2 Preliminaries

Throughout this paper, symbol [n] represents the set {1, · · · , n} for any posi-
tive integer n. When we write X ←↩ ξ, we mean the random variable X obeys to
the distribution ξ. For a finite set S, we will use |S| to denote its cardinality and
U(S) to denote the uniform distribution over S. For two positive integers p ≤ q,
we define b·eq,p : Zq 7→ Zp by bxeq,p = bpq · xe. We will use column vectors by

default, unless specified. For a matrix M ∈ Rn×n, we use s1(M) ≥ · · · ≥ sn(M)
to represent its singular values.

2.1 Number Fields and Lattices

We consider number field K = Q(ζ) ∼= Q[x]/(Φ(x)), which is Galois over Q.
Here, Φ(x) ∈ Q[x] is the “defining polynomial” of K, it is also the minimum
polynomial of ζ. Assume [K : Q] = n := r1 + 2r2 for some positive integers r1, r2
(for Galois extensions, either r1 or r2 is zero), there are n embeddings {σi}’s,
which are also Q-isomorphism of K, from K to C. We set Gal(K/Q) = {σi :
i = 1, · · · , n} and use the canonical embedding σ on K, who maps x ∈ K to
(σ1(x), · · · , σn(x)) ∈ H, where H = {(x1, · · · , xn) ∈ Rr1 × C2r2 : xn+1−i =
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xr1+i, ∀i ∈ [r2]}. The space H is isomorphic to Rn as an R vector space [20, 30].
As usual, we set R := O to be the ring of integers of K. The discriminant of
K is defined as ∆K = det((σi(αj))1≤i,j≤n)2, where {αi}’s is any basis of R.
A lattice is defined as a discrete additive subgroup of H. The dual lattice of
Λ ⊆ H is defined as Λ∨ = {y ∈ H : ∀ x ∈ Λ, < x,y >=

∑n
i=1 xi · yi ∈ Z}.

An integral ideal I ⊆ R is a usual ideal defined in the ring R, and a fractional
ideal J ⊆ K is a set such that dJ ⊆ R is an integral ideal for some d ∈ R. It
is well known that both I and J admit Z-basis and we can require d ∈ Z. So,
for any (fractional) ideal I, σ(I) is a lattice of H. The dual of I is defined as
I∨ = {a ∈ K : Tr(a ·I) ⊆ Z}, where Tr(a) =

∑n
i=1 σi(a) and N(a) =

∏n
i=1 σi(a)

for a ∈ K. The norm of an integral ideal I is defined as N(I) = |R/I|.
For any rational prime q, we have prime ideal decomposition qR = qe1 · · · qeg

with positive integers e·f·g = n. Here, N(qi) = qf for i ∈ [n]. For our discussions,
we say a prime q is split-well, if gcd(q,∆K) = 1 (i.e. e = 1, prime q is non-
ramified) and N(q) = qf ≤ poly(n). For any modulus q, there is an efficiently
computable R module isomorphism ϕR,R∨ : Rq ∼= R∨q [20, Lemma 2.15]. We
define R×q to be the set consisting of invertible elements (under multiplication)
of Rq. Though R∨q is not a ring, we could define the set (R∨q )× as {s ∈ R∨q :
∃ a ∈ Rq, s.t. a · s = 1 mod qR∨}. Then, we have ϕR,R∨(R×q ) = (R∨q )×.

For any s > 0, c ∈ H, which is taken to be s = 1 or c = 0 when omitted,

define the (spherical) Gaussian function ρs,c : H → (0, 1] as ρs,c(x) = e−π
||x−c||2

s2 .
By normalizing this function, we obtain the continuous Gaussian probability
distribution Ds,c of parameter s, whose density function is given by s−n ·ρs,c(x).

2.2 Definition of LWR/LWE Problems

Let’s recall the definition of the (dual) Ring/Module LWR problems [19].

Definition 1. Let K = Q(ζ) be a number field with [K : Q] = n, R = OK ,
q ≥ p ≥ 2 be two integers, M = Rd with d a positive integer, B = (b1, · · · , bn)
be some basis of R∨ and χ be some distribution over R∨q .

– The rounding function b·eB,q,p : R∨q 7→ R∨p with respect to basis B is defined
as baeB,q,p =

∑n
i=1baieq,p · bi ∈ R∨p for a =

∑n
i=1 ai · bi ∈ R∨q .

– For s := (s1, · · · , sd)T ∈ (R∨q )d, we define the LWR distribution with respect

to basis B as AMq,p,s(B) obtained by sampling a := (a1, · · · , ad)T ←↩ U(Rdq)

and returning the pair (a, b = b
∑d
i=1 ai · si mod qR∨eB,q,p) ∈ Rdq ×R∨p .

– The search LWR problem with respect to basis B, denoted by S-LWRM
B,q,p,χ,

consists in finding s with a polynomial number of samples sampled from
AMq,p,s(B) for some arbitrary s ∈ Supp(χd) ⊆ (R∨q )d.

– The decision LWR problem with respect to basis B, denoted by D-LWRM
B,q,p,χ,

consists in distinguishing a polynomial number of samples, which are sampled
either from AMq,p,s(B) or from U(Rdq×R∨p ), with non-negligible probability for

s = (s1, · · · , sd)T ←↩ χd.
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We remark that for some special modulus p and q (e.g. p|Q), it is possible to
change B to some Zq basis of R∨q in Definition 1. For d = 1, we get the Ring-LWR
problems. While d ≥ 2 corresponds to Module-LWR problems. The definition of
search variant LWR problems is worst-case in the sense that we require s to be
arbitrary in some set, and usually require to solve corresponding problems with
probability ≈ 1. While, the decision variants could be regarded as average-case,
since we just require s to obey some distributions (usually, s ←↩ U((R∨q )d), i.e.
χ = U(R∨q )) and require to solve corresponding problems with non-negligible
probability. Definitions of LWR problems are first formalized in [19], and are
closely related to the basis we used.

We will also use the primal LWR problems, which could be regarded as
the counterpart of primal LWE problems [27]. The difference between primal
LWR problems and (dual) LWR problems is that secrets are chosen from Rdq
and calculations are performed modulo qR (or pR). Correspondingly, we will
use symbols Primal-AMq,p,s(B), Primal-S-LWRM

B,q,p,χ and Primal-D-LWRM
B,q,p,χ

to denote primal LWR distributions and primal search/decision LWR problems.
The definition of LWE (dual) problems is given as follows.

Definition 2. Let K = Q(ζ) be a number field with [K : Q] = n, R = OK ,
M = Rd with d a positive integer, q ≥ 2 and ψ be some distribution over H.

– For s ∈ (R∨q )d, we define the LWE distribution AMq,s,ψ as the distribution

over Rdq × TR∨ obtained by sampling a := (a1, · · · , ad)T ←↩ U(Rdq), e ←↩ ψ
and returning the pair (a, b =

∑d
i=1 ai · si + e mod qR∨).

– The search LWE problem, denoted by S-LWEMq,Ψ , consists in finding s with

a polynomial number of samples sampled from AMq,s,ψ for some arbitrary

s ∈ (R∨q )d.

Similarly, the primal LWE problems are defined as s ∈ Rdq , and calculations
are carried out modqR. As a finish of this subsection, we give the definition of
polynomial LWR problems.

Definition 3. Let K = Q(ζ) = Q[x]/(Φ(x)) be a number field with [K : Q] = n,
q ≥ p ≥ 2 be two integers, d is a positive integer, and χ be some distribution
over R := Zq[x]/(Φ(x)). Set B = {1, x, · · · , xn−1}.

– For s ∈ Rd, we define the polynomial LWR distribution (with respect to basis
B) as Poly-Adq,p,s(B) obtained by sampling a ←↩ U(Rd) and returning the

pair (a, b = b
∑d
i=1 ai · si mod qReB,q,p) ∈ Rd × Zp[x]/(Φ(x)).

– The polynomial search LWR problem, denoted by Poly-S-LWRd
q,p,χ, con-

sists in finding s with a polynomial number of samples sampled from Poly-
Adq,p,s(B) for some arbitrary s ∈ Supp(χd) ⊆ Rd.

– The polynomial decision LWR problem, denoted by Poly-D-LWRd
q,p,χ, con-

sists in distinguishing a polynomial number of samples, which are sampled
either from Poly-Adq,p,s(B) or from U(Rd×Zp[x]/(Φ(x))), with non-negligible

probability for s←↩ χd.
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3 One-wayness versus Pseudo-randomness of LWR
Problems over Galois Extensions

As a warm up, we shall discuss the search-to-decision reductions of LWR
problems defined in any number field K that is Galois over Q with secrets s
belongs to some special sets in this section.

Throughout this section, we use the following setting of parameters, unless
otherwise specified. We let K = Q[x]/(Φ(x)) = Q(ζ) be a number field which
is Galois over Q with [K : Q] = n and Galois group Gal(K/Q) = {σ1, · · · , σn},
R = OK , and M = Rd with d a positive integer. We also set modulus q = Q · p
for simplicity, where gcd(Q, p) = 1, p is a split-well prime with prime ideal
decomposition pR = p1 · · · pg and gcd(p,∆k) = 1.

Our reduction works under any Zq-basis of R∨q , not necessarily the Z-basis
of R∨. Assume that (b1, · · · , bn) =: B = B mod qR∨ is any Zq-basis of R∨q , we
define the set SB as {σi(B) : σi ∈ Gal(K/Q)}. Since p|q and gcd(Q, p) = 1, we
have qR∨ ⊆ pR∨ ⊆ R∨, and R∨/qR∨ ∼= R∨/QR∨ × R∨/pR∨. Therefore, the
coset B mod pR∨ is also a Zp-basis of R∨p

7. Let χ0 be the uniform distribution
over (R∨q ∩R∨p )×. Here, the set (R∨q ∩R∨p )× is defined as {x ∈ R∨q : x = 0 mod Q ·
R∨, x 6= 0 mod pi · R∨ for all i ∈ [g]}. Notice that, the distribution χ0 of s is
σi-invariant (i.e. σi(χ0) = χ0) for any σi ∈ Gal(K/Q), since σi(pj) = pj for all
i ∈ [n] and j ∈ [g].

Our reduction route is similar as those used in [18–20], which is stated as
follows:

S-LWR
M
B,q,p,χ0

7→ pi-S-LWR
M
SB ,q,p,χ0

7→ W-D-LWR
M,i
SB ,q,p,χ0

7→ D-LWR
M
B,q,p,U((R∨q ∩R∨p )×).

Before starting reductions, let’s first give some supporting lemmas. Notice that
in the following lemma, we have already used the fact that changing of modulus
also changes the basis we use (i.e. from Zq basis to Zp basis).

Lemma 1. For any σi ∈ Gal(K/Q) with i ∈ [n], any a ∈ Rdq and s ∈ (R∨q )d,
we have

σi(baT · seB,q,p) = bσi(a)T · σi(s)eσi(B),q,p.

Proof. Fix an arbitrary σi ∈ Gal(K/Q), and set τ = σi for convenience. For
any a = (a1, · · · , ad)T ∈ Rdq and s = (s1, · · · , sd)T ∈ (R∨q )d, we denote baT ·
seB,q,p by b. Setting b′ =

∑d
i=1 ai · si =

∑n
i=1 xi · bi with xi ∈ Zq, we have

b =
∑n
i=1bxieq,p · bi and τ(b) =

∑n
i=1bxieq,p · τ(bi), since bxieq,p ∈ Zp and

τ(pR∨) = pR∨. On the other hand, τ(
∑d
i=1 ai ·si) = τ(b′) =

∑n
i=1 xi ·τ(bi) since

xi ∈ Zq and τ(qR∨) = qR∨. So, we have bτ(
∑d
i=1 ai ·si)eτ(B),q,p =

∑n
i=1bxieq,p ·

τ(bi), and the result of this lemma is concluded.

Our reduction uses the following simple but crucial obversion, that solving
LWR problems with respect to Zq-basis B is equivalent to solving LWR problems
with respect to Zq-basis σi(B) for all i ∈ [n].

7 In the followings, we will omit the symbol mod pR∨ if no ambiguity will be caused.
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Lemma 2. For any σi ∈ Gal(K/Q) with i ∈ [n], S/D-LWRM
B,q,p,χ0

is equiv-

alent to S/D-LWRM
σi(B),q,p,χ0

. I.e., for any B ∈ SB, the corresponding S/D-

LWRM
B,q,p,χ0

problem is equivalent to each other.

Proof. We also fix an arbitrary σi ∈ Gal(K/Q), and set τ = σi for convenience.
We take D-LWR problem as an example, since proofs are similar.

Assume that an oracle O could solve D-LWRM
B,q,p,χ0

with probability δ when

given L samples, we shall show that we could use O to solve D-LWRM
τ(B),q,p,χ0

with the same probability when given the same number of samples. When given
L samples {(ak, bk}Lk=1 sampled from either AMq,p,s(τ(B)) with s←↩ χd0 or U(Rdq×
R∨p ), we transfer {(τ−1(ak), τ−1(bk))}Lk=1 to O and accept the decision returned

by O. When {(ak, bk}Lk=1 are sampled from U(Rdq × R∨p ), then it is easy to

verify that {(τ−1(ak), τ−1(bk))}Lk=1 are aslo distributed uniformly over Rdq×R∨p .

While, if {(ak, bk)}Lk=1 are sampled from AMq,p,s(τ(B)) for some s←↩ χd0, we could

easily deduce that τ−1(bk) = bτ−1(ak)T · τ−1(s)eB,q,p with τ−1(ak) ←↩ U(Rdq)

and τ−1(s) ←↩ χd0 by Lemma 1, since τ−1(
∑d
i=1 ak,i · si) =

∑d
i=1 τ

−1(ak,i) ·
τ−1(si). We could expect O to solve corresponding problems with probability δ,
as desired.

Reduction from D-LWRM
τ(B),q,p,χ0

to D-LWRM
B,q,p,χ0

is similar, so we omit it.

Now, let’s discuss the search to decision reductions of Ring/Module LWR
problems. As we have already explained, this reduction is divided into three
steps.

Reductions from S-LWRM
B,q,p,χ0

to pi-S-LWRM
SB ,q,p,χ0

Let’s first give the formal definition of pi-S-LWRM
SB ,q,p,χ0

problem.

Definition 4. The pi-S-LWRM
SB ,q,p,χ0

problem is: given a polynomial number

of samples from AMq,p,s(B) for some arbitrary s ∈ Supp(χd0) and B ∈ SB, find
s mod piR

∨ := (s1 mod piR
∨, · · · , sd mod piR

∨).

Notice that these problems are all worst-case. Reductions from S-LWRM
B,q,p,χ0

to pi-S-LWRM
SB ,q,p,χ0

for any i ∈ [g] could be deduced by the following two
lemmas.

Lemma 3. p1-S-LWRM
SB ,q,p,χ0

problem is equivalent to pi-S-LWRM
SB ,q,p,χ0

prob-
lem for any i ∈ [g].

Proof. We only need to show that if there is an oracle O which could solve p1-S-
LWRM

SB ,q,p,χ0
problem with L samples, we can use it to solve p2-S-LWRM

SB ,q,p,χ0

problem. Other reductions are all similar.
For any fixed basis B ∈ SB , when given L samples {(ak, bk)}Lk=1 sampled

from AMq,p,s(B) for some arbitrary s ∈ Supp(χd0), we need to recover s mod p2R
∨.

Since K/Q is Galois, there exists at least one σj ∈ Gal(K/Q) such that σj(p2) =
p1. We then give {σj(ak), σj(bk)}Lk=1 (under the representations with respect
to basis σj(B)) to O and could expect to get some s′. Lemma 1 shows that
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σj(bk) = σj(baTk · seB,q,p) = bσj(ak)T · σj(s)eσj(B),q,p. Since χ0 is σj-invariant,

{σj(ak), σj(bk)}Lk=1 are distributed identically to AMq,p,σj(s)(σj(B)). Therefore,

oracle O will return s′ = σj(s) mod p1R
∨ by assumption. Since σ−1

j (p1R
∨) =

p2R
∨, we can deduce that σ−1

j (s′) = s mod p2R
∨ is the desired solution.

Lemma 4. There is an efficient PPT reduction from S-LWRM
B,q,p,χ0

to p1-S-

LWRM
SB ,q,p,χ0

.

Proof. First notice that by our definition of χ0, recovering s mod qR∨ is equiva-
lent to recovering s mod pR∨. Our goal is to find s mod pkR

∨ for every k ∈ [g].
Then, we could recover s mod pR∨ efficiently via the Chinese Remainder The-
orem R∨p

∼= R∨/p1R
∨ × · · · × R∨/pgR

∨. Assume p1-S-LWRM
SB ,q,p,χ0

oracle O
requires L samples to output s mod p1R

∨. Since there exist {σi}’s such that
σi(pi) = p1, we make L queries to AMq,p,s(B), get {(ak, bk)}Lk=1, and send each

L samples {σi(ak), σi(bk)}Lk=1 to O. Analysis similar to Lemma 3 shows that
we could get s mod piR

∨ for all i ∈ [g], and the Chinese Remainder Theorem
ensures we could recover s mod pR∨ successfully.

Reductions from pi-S-LWRM
SB ,q,p,χ0

to W-D-LWRM,i
SB ,q,p,χ0

The formal definition of W-D-LWRM,i
SB ,q,p,χ0

problem is as following.

Definition 5. Let i ∈ [g],

– For some s ∈ Supp(χd0), the distribution AM,i
q,p,s(B) over Rdq×R∨p is defined as:

sample (a, b)←↩ AMq,p,s(B) and output (a, b+ h), where h ∈ R∨p is uniformly
at random over mod pjR

∨ for all j ≤ i, and 0 over mod pjR
∨ for other

j > i.
– The W-D-LWRM,i

SB ,q,p,χ0
problem is: given a polynomial number of samples

from AM,j
q,p,s(B) for some arbitrary s ∈ Supp(χ0), B ∈ SB and j ∈ {i− 1, i},

determine j.

The proof of the following lemma uses a similar route as [18, 20], and the
ring-variant has been proved to be effective in [19]. We put its detailed proof
in Appendix A for completeness, since our reductions contain the reductions of
module cases and the full version of [19] seems to be unavailable now.

Lemma 5. For any i ∈ [g], there is an efficient PPT reduction from pi-S-

LWRM
SB ,q,p,χ0

problem to W-D-LWRM,i
SB ,q,p,χ0

problem.

Reductions from W-D-LWRM,i
SB ,q,p,χ0

to D-LWRM
B,q,p,χ0

Slightly different from the route used in [19], we choose to divide reduction

from W-D-LWRM,i
SB ,q,p,χ0

to D-LWRM
B,q,p,χ0

into two parts: one is a reduction

from W-D-LWRM,i
SB ,q,p,χ0

to worst-case D-LWRM
B,q,p,χ0

(where one needs to solve

decision LWR problems for some arbitrary s ∈ Supp(χd0) with probability ≈
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1) by noticing AM,0
q,p,B = AMq,p,B and AM,g

q,p,B = U(R∨p ), and using a standard

hybrid argument. The other is a reduction from worst-case D-LWRM
B,q,p,χ0

to

D-LWRM
B,q,p,χ0

by using the technique of secret re-randomization. Since these
techniques have been used in many lattice-based reductions [18, 20, 25], we just
give the following lemma and put its proof in Appendix A.

Lemma 6. There is an efficient PPT reduction from W-D-LWRM,i
SB ,q,p,χ0

prob-

lem for some i ∈ [g] to D-LWRM
B,q,p,χ0

problem.

The number of samples used in reductions of Lemma 6 depends on the ad-
vantage of solving D-LWRM

B,q,p,χ0
problem. For more details, one could refer

to Appendix A. Combing Lemmas 4, 5 and 6, we could deduce the following
Theorem.

Theorem 1. Assume that K = Q(ζ) is an algebraic number field which is Ga-
lois over Q, R = OK , M = Rd with d a positive integer, p is a split-well prime,
modulus q = Q · p satisfies that gcd(Q, p) = 1 and gcd(p,∆K) = 1, B is any
Zq-basis of R∨q . Let χ0 = U((R∨q ∩ R∨p )×), there is an efficient PPT reduction

from S-LWRM
B,q,p,χ0

problem to D-LWRM
B,q,p,χ0

problem.

That is to say, if search LWR problem is one-way with respect to some ar-
bitrary basis of R∨ (or Zq-basis of R∨q ), then the corresponding decision LWR
problem is pseudo-random. However, we could not deduce a reduction from
worst-case ideal/module lattices problems to decision LWR problem by combin-

ing Theorem 4.11 of [19] and Theorem 1, since
|Supp(χd0)|
|(R∨q )d| = negl(n). How to show

the worst-case hardness of decision ring/module LWR problems will be discussed
in Section 4.

4 On the Worst-Case Hardness of Ring/Module LWR
Problems

In Section 3, we constrain the secret set to be (R∨q ∩R∨p )×, which is a negligible
part of R∨q . So, we could not using known methods (e.g. methods used in [9, 19])
to show the worst-case hardness of LWR problems with these special secrets. In
fact, we shall show that there is a PPT algorithm to solve Ring/Module-LWR
problems with secrets constrained in (R∨q ∩R∨p )× in this section. Then, combing
this PPT algorithm and reductions showed in Section 3, we’ll show the worst-
case hardness of Ring-LWR problems with secrets in (R∨q )×. In this section, we
use symbols as defined in Section 3, unless otherwise specified.

4.1 Attacks on LWR with Special Secrets

In this subsection, we will give a simple attack to the search variant of LWR
problems with secrets chosen in (R∨q ∩ R∨p )× (and similar sets), though there
are still exponential many secrets. The intuition is quiet simple. Using CRT, we
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could represent the b-component of a LWR sample to a linear form of (part of)
a and s for suitable parameters, if the secrets s are too special.

Let’s recall some facts about CRT first. For q = Q · p with gcd(p,Q) = 1, we
could calculate the ring isomorphism Zq ∼= ZQ × Zp easily. In fact, these exists
some x, y ∈ Z such that px+Qy = 1. We define p−1

Q = x mod Q, Q−1
p = y mod p,

and set r1 = p · p−1
Q mod q, r2 = Q · Q−1

p mod q. Then, the isomorphism of
Zq ∼= ZQ×Zp is defined as s = r1 · s1 + r2 · s2 with s ∈ Zq, s1 ∈ ZQ and s2 ∈ Zp.
Since Z ⊆ R ⊆ R∨, r1 and r2 (which will also be fixed throughout this paper
unless specified) could also be regarded as a CRT “basis” of the ring/module
isomorphism Rq ∼= RQ ×Rp and R∨q

∼= R∨Q ×R∨p .

Lemma 7. For any distribution φ over (R∨q ∩ R∨p )×, there is a PPT algo-

rithm for solving S-LWRM
B,q,p,φ with a polynomial number samples, where B =

{b1, · · · , bn} is any Zq-basis of R∨q .

Proof. For any s = (s1, · · · , sd)T ←↩ φd, we represent sj = r2 ·sj,2 for some sj,2 ∈
(R∨p )× and j ∈ [d]. Assume a = (a1, · · · , ad)T with aj = r1·aj,1+r2·aj,2 ∈ Rq, we

get aT ·s = r2·
∑n
j=1 aj,2·sj,2 mod qR∨, since r2

2 = r2 mod q and r1·r2 = 0 mod q.

Assume further that
∑d
j=1 aj,2 · sj,2 =

∑n
i=1 xi · bi mod qR∨, we have

ba · seB,q,p = br2 ·
d∑
j=1

aj,2 · sj,2eB,q,p = br2 ·
n∑
i=1

xi · bi mod qR∨eB,q,p

=

n∑
i=1

b 1

Q
· r2 · xieq,p · bi mod pR∨

= Q−1
p ·

n∑
i=1

xi · bi mod pR∨ = Q−1
p ·

d∑
j=1

aj,2 · sj,2 mod pR∨.

Since aj,2 ←↩ U(Rp) for j ∈ [d], with a polynomial number of samples, we could
find d samples {(ak = (ak,1, · · · , ak,d)T , bk)}dk=1 such that the d × d matrix
A consisted of ak,j,2 for k, j ∈ [d] is invertible in Rd×dp with probability ≈ 1

(e.g. using Lemma 9 of [29]). Namely, in this case, we have (b1, · · · , bd)T =
Q−1
p ·A · (s1,2, · · · , sd,2)T mod pR∨.

Hence, if we could get such samples, we have that Qp ·A−1 ·(b1, · · · , bd)T mod
pR∨ is the desired solution.

Remark 1. We choose (R∨q ∩ R∨p )× to be the secret set just for simplicity. It is
easy to check that for any secret set of the form

Ss := {s = (s1, · · · , sd) ∈ (R∨q )d : |sj mod QR∨| ≤ poly(n) for j ∈ [d]},

attack proposed in Lemma 7 also works for d = O(1). Since in this case, we can
check all the possible values of {sj,1}dj=1’s to eliminate the bias appeared in the
b-components. For more details, one can also refer to the proof of Lemma 8. Via
the above attack, we could also deduce that the search variant LWR problems
used in [19] is not hard.
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4.2 Reducing Worst-Case Lattice Problems to LWR Problems

To show the worst-case hardness of S-LWR problems, Rényi divergence is
a powerful tool [6, 9, 12, 19]. Usually, the requirement is that the proportion of
secrets should be a non-negligible part of R∨q . For our purpose, we need to
introduce an intermediate problem which we call the extended LWR problems.
We set the distribution χ1 = U((R∨q )×), where (R∨q )× := {s = r1 ·s1 +r2 ·s2 mod
qR∨, s.t. s1 ∈ (R∨Q)× and s2 ∈ (R∨p )×}. Given any Zq basis B of R∨q , the (worst-
case) extended search Ring/Module LWR problems with parameters q,Q, p is
denoted by Ext-S-LWRM

B,q,Q,p,χ′ , whose instances are of the form (a1,a2, baT1 ·
seB,q,Q, baT2 · seB,q,p) ∈ Rdq × Rdq × R∨Q × R∨p for some fixed s ∈ Supp(χd1) and

a1,a2 ←↩ U(Rdq).
Comparing with methods used in [19], we utilize a different approach to prove

the worst-case hardness of Ext-S-LWR problem. For a fixed basis B of R∨, we
will first add some additional errors sampled from some appropriate Gaussian
distribution to the b-components of LWE samples to amend the distribution of
coefficients of errors with respect to basis B to a sphere Gaussian distribution.
Then, we could use similar method as [6, 9, 12] to estimate corresponding Rényi
divergences, and give a reduction from search LWE problems to Ext-S-LWR
problems. We present the following theorem, whose proof is put in Appendix B.
Notice that the field K used in Theorem 2 need not to be Galois over Q.

Theorem 2. Let B be any basis of R∨, and α, σ be two posotive reals such
that σ > α · s1(B−1). There is a PPT reduction from S-LWEMq,Dα to Ext-S-

LWRM
B,q,p,χ1

for modulus q ≥ max{Q, p} · σ√
π
· lnn · n · L. Here, L is the half of

the number of samples used, and such that L ≤ nlnn−1.

Remark 2. It seems to be natural to define the Ext-S-LWR problem with in-
stances of the form (a, baT ·seB,q,Q, baT ·seB,q,p). However, for modulus q = Q·p
with gcd(p,Q) = 1, there exists elements {x}’s of Zq such that Pre[(bx +
eeq,Q, bx + eeq,p) 6= (bxeq,Q, bxeq,p)] = 1. Therefore, the corresponding Rényi
distance is unbounded. The main reason is that coefficients for rounding opera-
tion q 7→ p and q 7→ Q are correlated in this case. For our choices, it is easy to
show that the coefficients of aT1 · s and aT2 · s are independent from each other,
and are distributed uniform over Zq. So, we could analyze the two rounding
operations separately.

For cyclotomic field K = Q(ζl) with ζl = e2πi· 1l , there is a basis, namely the
decoding basis, of R∨ with s1(B−1) =

√
l = Õ(n) [21]. Hence, in this case, if

we use decoding basis, q ≥ max{p,Q} · α·L√
π
· Õ(n2) is sufficient. There are quan-

tum reductions from worst-case basic ideal lattice problems (e.g. SIVPγ) over
K to search Ring/Module LWE problems [18, 20]. However, for S-LWE prob-
lems, the error distributions are worst-case in the sense that one need to solve
corresponding S-LWE problems with error distributions coming from a set of
distributions (e.g. Ψ≤α [18, 20]). It is possible to amend the error distributions
to some spherical Gaussians [1, 20, 24] via a Rényi divergence arguments. Hence,



16 Y. Wang et al.

for cyclotomic fields, if we set d = Õ(1) and L = Õ(1), we could also get a re-

duction from worst-case SIVPγ problem with γ = Õ(
√
n
α′ ) to Ext-S-LWRM

B,q,p,χ1

problem with q = Õ(n
9
2 · (α′)2).

Next, we present a reduction from Ext-S-LWR problem to a weak version of
Ring/Module LWR problem, denoted by Weak-S-LWR. Its instances are of the
form (a, baT ·seB,q,p) ∈ Rq×R∨p for some fixed s ∈ Supp((χ1)d) and a←↩ U(Rdq),
but we only ask an adversary to recover si,2 := si mod pR∨ for si ∈ s. Notice
that the reduction from Weak-S-LWR problem to S-LWR problem is trivial.

Lemma 8. There is a PPT reduction from Ext-S-LWRM
B,q,Q,p,χ1

to Weak-S-

LWRM
B,q,p,χ1

for any Zq-basis B = {b1, · · · , bn} of R∨q .

Proof. For some fixed a1 = (a1,1, · · · , a1,d)
T ,a2 = (a2,1, · · · , a2,d)

T ∈ Rdq and

s = (s1, · · · , sd)T ∈ (R∨q )d, we assume that si = r1 · si,1 + r2 · si,2 mod qR∨ and
ak,i = r1 · ak,i,1 + r2 · ak,i,2 mod qR for k ∈ {1, 2} and i ∈ [d]. Then, we have

aTk · s mod qR∨ = r1 ·
d∑
j=1

ak,j,1 · sj,1 + r2 ·
d∑
j=1

ak,j,2 · sj,2 mod qR∨

=: r1 ·
n∑
i=1

xk,1,i · bi + r2 ·
n∑
i=1

xk,2,i · bi mod qR∨.

Through a similar calculation as Lemma 7, we have

baT1 · seB,q,Q = p−1
Q ·

d∑
j=1

a1,j,1 · sj,1 +

n∑
i=1

b
Q ·Q−1

p

p
· x1,2,ie · bi mod QR∨

and

baT2 · seB,q,p = Q−1
p ·

d∑
j=1

a2,j,2 · sj,2 +

n∑
i=1

b
p · p−1

Q

Q
· x2,1,ie · bi mod pR∨.

Recall that Q · Q−1
p = 1 mod p, we could recover {sj,1}’s ⊆ R∨Q as in Lemma

7 from baT1 · seB,q,Q if we know {sj,2}’s ⊆ R∨p . Since in this case, the term∑n
i=1b

Q·Q−1
p

p ·x1,2,ie · bi mod QR∨ is efficiently computable via sj,2, a2,j,2 and r2

with j ∈ [d].
Therefore, when given L Ext-S-LWRM

B,q,p,χ1
samples {ai,1,ai,2, bi,1, bi,2}Li=1,

we just transfer {ai,2, bi,2}Li=1 to Weak-S-LWRM
B,q,p,χ1

oracle O and could expect
to get sj,2 = sj mod pR∨ for sj ∈ s. Then, we could recover s ∈ R∨q via the
about observation and CRT effectively.

It is easy to verify that reductions proposed in Section 3 also work for Weak-
S-LWR problems with secrets in Supp(χ1) = (R∨q )×. The only things 8 one

8 In the reduction from pi-Weak-S-LWRM
S(B),q,p,χ1

to W-D-LWRM,i
S(B),q,p,χ1

, we may

need to change the a′-component to a + q
p
· r2 · (y, 0, · · · , 0)T , compared with a +

q
p
· (y, 0, · · · , 0)T in the proof of Lemma 5.
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need to do is to modify definitions of corresponding intermediate problems to
Weak-S-LWR cases. The reduction road-map is S-LWE7→Ext-S-LWR7→Weak-S-
LWR7→ pi-Weak-S-LWR7→W-D-LWRi 7→D-LWR.

Overall, we could deduce the following theorem.

Theorem 3. Assume K is a number field which is Galois over Q with [K :
Q] = n, R = OK , R∨ is the dual ideal of R, B is a set of basis of R∨, modulus
q = Q · p such that p is a spilt-well prime and gcd(Q, p) = 1, d is an integer
and M = Rd. Let α, σ be two posotive reals such that σ > α · s1(B−1), and
χ1 = U((R∨q )×). There is a PPT reduction from S-LWEMq,Dα to D-LWRM

B,q,p,χ1

for modulus q ≥ max{Q, p} · σ√
π
· lnn ·n ·L. Here, L is the half of the number of

samples used, and such that poly(n) ≤ L ≤ nlnn−1.

5 On the Hardness of Polynomial LWR Problems

We shall discuss the one-wayness and pseudo-randomness of polynomial LWR
problems, and show the worst-case hardness of Poly-S/D-LWR problems over
any number field K which is Galois over Q in this section. Some results about
middle-product polynomial LWR problems are also given.

5.1 Polynomial LWR Problems over General Galois Extension

Notice that for general Galois extension K = Q[x]/(Φ(x)) = Q(ζ), its ring of
integers R may not be isomorphic to Z[x]/(Φ(x)) ∼= Z[ζ]. Usually, Z[ζ] is just an
order 9, not an ideal, of K. Our main ingredient is a ring (Z module) isomorphism
between the polynomial ring Rq and Rq for suitable modulus q. Recall that we
have the following prime ideal decomposition [14]. For any fixed prime p such
that p - |R/Z[ζ]| and p - ∆K , we assume Φ(x) = Φ1(x) · · ·Φg(x) mod p with
deg(Φi(x)) = f for i ∈ [g]. Here, Φi(x) is irreducible polynomial in Zp[x] and
Φi(x) 6= Φj(x) for any i 6= j ∈ [g]. Then, the prime ideal decomposition of p
is pR = p1 · · · pg with pi = (p, Φi(ζ)) · R, and the norm of pi is N(pi) = pf for
i = 1, · · · , g. In particular, we have g · f = n.

Next, let’s show that there exists some power-basis of Rq for suitable square-
free modulus q, even if R may have no power-basis.

Lemma 9. Let p be a prime such that p - ∆K and p - |R/Z[ζ]|. Assume Φ(x) =
Φ1(x) · · ·Φg(x) mod p with deg(Φi(x)) = f for i ∈ [g], here Φi(x) is irreducible
polynomial in Zp[x] and Φi(x) 6= Φj(x) for any i 6= j ∈ [g]. Then, we have the
following ring (Z-module) isomorphisms:

Rp = R/pR ∼= R/p1 × · · · ×R/pg
∼= Z[x]/(p, Φ1(x))× · · · × Z[x]/(p, Φg(x))
∼= Zp[x]/(Φ1(x))× · · · × Zp[x]/(Φg(x))
∼= Zp[x]/(Φ(x)).

9 An order of K is a subring with unity, whose Q span is K.
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Proof. Note that we have pR = p1 · · · pg with pi = (p, Φi(ζ))R $ R and N(pi) =
pf for i = 1, · · · , g. The first and last isomorphisms come form CRT. Since
p is a prime, Zp[x] is a principal ideal domain. So, Fi := Zp[x]/(Φi(x)) is a
finite field. The natural map ψ1 : Z[x] 7→ Zp[x]/(Φi(x)) is a surjection with
kernel Ker(ψ1) = (p, Φi(x)). So, the third isomorphism is concluded. We can
also deduce that (p, Φi(x)) with i ∈ [g] is a maximal ideal of Z[x].

Now we consider the map ψ2 : Z[x] 7→ R/pi, defined by ψ2(f(x)) = f(ζ)+pi.
It’s easy to check ψ2 is a ring homomorphism. Since we choose p - |R/Z[ζ]|,
and |R/(Z[ζ] + pR)| is a factor of gcd(|R/Z[ζ]|, |R/pR|) = 1, we get |R/(Z[ζ] +
pR)| = 1, which is equivalent to Z[ζ] + pR = R. Note that pR ⊆ pi, we have
Z[ζ] + pi = R, which implies that ψ2 is surjective. Using the fact that ideal
(p, Φi(x)) is maximal, ψ2((p, Φi(x))) ⊆ (p, Φi(ζ)) and pi = (p, Φi(ζ)) $ R, we
have Ker(ψ2) = (p, Φi(x)), since the kernel of ψ2 is an ideal of Z[x]. So, R/pi ∼=
Z[x]/(p, Φi(x)).

Via the proof of Lemma 9, we get that (1, ζ mod pR, · · · , (ζ mod pR)n−1 =
ζn−1 mod pR) is a Zp power basis of Rp for suitable prime p. Assume q = Q · p
withQ, p two different primes such that gcd(q,∆K) = 1 and gcd(q, |R/Z[ζ]|) = 1.
We have two ring isomorphisms Rp ∼= Zp[x]/(Φ(x)) and RQ ∼= ZQ[x]/(Φ(x)) by
Lemma 9. Meanwhile, we also have Zq[x]/(Φ(x)) ∼= ZQ[x]/(Φ(x))×Zp[x]/(Φ(x))
(by the First Isomorphism Theorem of rings) and Rq ∼= RQ × Rp by the CRT.
Therefore, we could deduce a ring isomorphism ϕq,R : Zq[x]/(Φ(x)) ∼= Rq for this
special kind of modulus q. In particular, Rq admits a Zq power basis consisting
of powers of ϕq,R(x mod Φ(x) · Zq[x]) = ζ mod qR.

Recall that for any modulus q, there exists an R-module isomorphism ϕR,R∨ :
Rq ∼= R∨q (e.g. applying Lemma 2.15 of [20]). We denote its inverse by ϕR∨,R.
More precisely, assume the prime ideal decomposition of qR is known, we could
compute an element t ∈ (R∨)−1 such that t · R∨ + qR = R efficiently by [20,
Lemma 2.14]. Meanwhile, we could also compute an element c ∈ t ·R∨ such that
c = 1 mod qR by [20, Lemma 2.13]. The map ϕR∨,R : R∨q 7→ Rq is defined as
ϕR∨,R(u mod qR∨) = t·u mod qR for u ∈ R∨q . On the other hand, for any a ∈ R,
c
t ·a ∈ R

∨ is the element corresponding to a such that t· c·at mod qR = a mod qR,
so the map ϕR,R∨ : Rq 7→ R∨q is defined as ϕR,R∨(a mod qR) = c

t · a mod qR∨ =
a
t mod qR∨ for a ∈ Rq. In the followings, we will reuse the symbols ϕR,R∨ and
ϕR∨,R for different modulus q if no ambiguity is caused.

For any Zq-basis B̄ of R∨q , ϕR∨,R(B̄) is a set of Zq-basis of Rq. If we set
χ2 = U(R×q ), then we have χ2 = ϕR∨,R(χ1). We can deduce the following
lemma.

Lemma 10. The Primal-(S)D-LWRM
ϕR∨,R(B̄),q,p,χ2

problem is equivalent to the

(S)D-LWRM
B̄,q,p,χ1

problem.

Proof. Denote ϕR∨,R by ϕ for simplicity. Notice that ϕ is a R-module isomor-
phism and Z ⊆ R, this lemma follows by checking the equation ϕ(baT ·seB̄,q,p) =

bϕ(aT · s)eϕ(B̄),q,p = ba · ϕ(s)eϕ(B̄),q,p via a similar process as in the proof of

Lemma 1, here a←↩ U(Rdq) and s ∈ (R∨q )d.
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Remark 3. We note that reductions of the lattice LWR problems in [19] (as well
as the LWE case [23]) does not contain the direction of reductions from LWR
problems to primal LWR problems.

Let’s set ζ̄ = ζ mod qR, and B̄1 = {1, ζ̄, · · · , ζ̄n−1}. Then, we have B̄1 is a
Zq-basis of Rq, and B̄2 := ϕR,R∨(B̄1) is a Zq-basis of R∨q . Let ξ = c

t · ζ and

set B2 := (1, ξ, · · · , ξn−1), then we also have B2 mod qR∨ = B̄2. Set χ3 be the
uniform distribution over the set ϕ−1

q,R(R×q ) = R×q . Similar as proof of Lemma
10, we could get the following lemma.

Lemma 11. The Poly-(S)D-LWRd
q,p,χ3

problem is equivalent to the Primal-(S)D-

LWRM
B̄1,q,p,χ2

problem.

Combining Lemmas 10 and 11, we get:

Poly-(S)D-LWR
d
q,p,χ3

⇔ Primal-(S)D-LWR
M
B̄1,q,p,χ2

⇔ (S)D-LWR
M
B̄2,q,p,χ1

.

To show the hardness of Poly-S/D-LWR problems, we use reductions proposed
in Section 4. However, B2 is usually not a set of basis of R∨ for general Galois
extension K. Assume B is an arbitrary basis of R∨, then we have B2 = B · T
with some T ∈ Zn×n. Meanwhile, T mod q is invertible in Zn×nq , since both

B̄ := B mod qR∨ and B̄2 are Zq bases of R∨q . Combining results showed in
Section 4, we could deduce the following theorem via reductions

S-LWE Problems⇒ Ext-S-LWR Problems

⇒
{

Weak-S-LWR Problems⇒ S-LWR Problems⇔ Poly-S-LWR Problems.

Weak-S-LWR Problems⇒ D-LWR Problems⇔ Poly-D-LWR Problems.

Theorem 4. Assume K = Q(ζ) is a number field with [K : Q] = n, which is
Galois over Q, R = OK , R∨ is the dual ideal of R, modulus q = Q ·p with p and
Q different primes such that gcd(q,∆K) = 1 and gcd(q, |R/Z[ζ]|) = 1, d is an
integer and M = Rd. Let B2 := (1, ξ, · · · , ξn−1) with ξ defined as above Lemma
11, and α, σ be reals such that σ > α · s1(B−1

2 ). If S-LWEMq,Dα is one-way and

modulus q ≥ max{Q, p} · σ√
π
· lnn · n · L, then Poly-S-LWRd

q,p,χ3
is one-way,

and Poly-D-LWRd
q,p,χ3

is pseudo-random. Here, L is the half of the number of

samples used, and such that Poly(n) ≤ L ≤ nlnn−1.

5.2 Polynomial LWR Problems over Cyclotomic Rings

Recall that the parameter q in Theorem 2 depends on the basis of R∨. How-

ever, even for the l-th cyclotomic fields K = Q(ζl) with ζl = e
2πi
l , the decoding

basis of R∨ does not equal to the basis B2 defined above Lemma 11. Moreover,
for non-prime-power cyclotomic fields, the powerful basis of R does not equal to
the power basis (i.e. B1 defined above Lemma 11) of R. To show the hardness
of Poly-S/D-LWR problems with tighter parameters, we use reductions:

S-LWE Problems⇒ Primal-S-LWR Problems⇒ Primal-Ext-S-LWR Problems

⇒
{

Primal-Weak-S-LWR Problems⇒ Primal-S-LWR Problems⇔ Poly-S-LWR Problems.

Primal-Weak-S-LWR Problems⇒ Primal-D-LWR Problems⇔ Poly-D-LWR Problems.
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Lemma 12. For the l-th cyclotomic fields K = Q(ζl), there is a PPT reduction

from S-LWEMq,Dα to Primal-S-LWEMq,Dα·l̂
. Here, l̂ = l

2 when l is even, and l̂ = l

when l is odd.

Proof. By [27, Theorem 2.13], for any s ∈ (R∨q )d and t ∈ (R∨)−1 such that

tR∨+ qR = R, the map (a, b) 7→ (a, t · b) transforms AMq,s,Dα to Primal-AMq,t·s,Dr

with r = (|σ1(t)| · α, · · · , |σn(t)| · α), and U(Rdq × H/qR∨) to U(Rdq × H/qR).
Let g =

∏
p|l(1− ζp), then we have g ∈ R, R∨ = g

l̂
·R and gR+ qR = R for any

prime q such that (q, l) = 1 [21, Lemmas 2.16 and 2.18]. Hence, (R∨)−1 = l̂
g ·R.

By taking t = l̂, we get a transformation from AM1,s,Dα to Primal-AM
q,l̂·s,Dα·l̂

, and

from U(Rdq ×H/qR∨) to U(Rdq ×H/qR). We get the result as desired.

Reduction from Primal-S-LWR Problems to Primal-Ext-S-LWR Problems is
similar to Theorem 2. Combining Lemmas 11 and 12, and the fact that when l

is a prime-power, the power basis B of R has singular values s1(B) =
√
l̂ and

sn(B) =
√

l
rad(l) . Here, rad(l) =

∏
p|l p. Notice that we don’t need to use Lemma

9, so requirements on q can be relaxed. We could deduce the following theorem.

Theorem 5. Assume cyclotomic field K = Q(ζl) = Q[x]/(Φl(x)) with l a
prime-power, n = ϕ(l), R = OK , M = Rd with some positive integer d. Let
modulus q = Q · p with p a spilt-well prime, gcd(p,Q) = 1 and q - ∆K . If S-

LWRM
q,Dα

is hard and q ≥ max{p,Q} · σ·L·n·lnn√
π

with σ > α · l̂ ·
√

l
rad(l) , then both

Poly-S-LWRd
q,p,χ3

and d
q,p,χ3

are hard. Here, χ3 = U((Zq[x]/(Φl(x)))×), and L

is the half of the number of samples used, and such that Poly(n) ≤ L ≤ nlnn−1.

For the case l = 2k, if we set d = Õ(1), p ≈ Q and σ = Õ(α · n 3
2 ), then

q = Õ(α2 ·n5 ·L2) is sufficient. For Poly-S-LWR problem, if we assume L = Õ(1),
then for q = Õ(α2 · n5), a reduction from S-LWEMq,Dα to Poly-S-LWRd

q,p,χ3
is

obtained. Since for α = Õ(α′ ·n 1
4 ), there is a quantum reduction from worst-case

ideal/module SIVP
Õ(
√
n

α′ )
to S-LWEMq,Dα [1, 18, 20, 24], as long as α′ · q ≥ Õ(1).

We could set q = Õ(n2) and α′ = Õ(n−
7
4 ), then a reduction from worst-case

ideal/module SIVP
Õ(n

9
4 )

to Poly-S-LWRd
q,p,χ3

(as well as the worst-case Poly-D-

LWR) problem is obtained. For Poly-D-LWRd
q,p,χ3

problem, parameters (mainly
the poly(n)) still depend on the advantage of adversary.

5.3 Middle Product Polynomial LWR Problems

In this subsection, we set f(x) = xm + 1 for some positive integer m 10. For

any a =
∑m−1
i=0 ai · xi ∈ Zq[x]/(f(x)), define two vectors

→
a := (a0, · · · , am−1)T

and
←
a := (am−1, · · · , a0)T . We adopt similar notations as those proposed in [26].

10 In fact, f(x) = xm + c for any c ∈ Z is sufficient. Such f(x) has advantages that
some rounding operations are preserved.
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Symbol Z<nq [x] is used to denote the set of polynomials in Zq[x] of degree < n.

For any integer d > 0 and a ∈ Zq[x], we let Rotdf (a) denote the matrix in Zd×mq

whose i-th row is given by the coefficients of the polynomial a · xi−1 mod f for
i ∈ [d]. We also use Rotf (a) instead of Rotmf (a). We define Mf ∈ Zm×mq such
that for any 1 ≤ i, j ≤ m, the coefficient (Mf )i,j is the constant coefficient of

xi+j−2 mod f . Notice that in our setting, we have Mf =

 1 0 ··· 0 0
0 0 ··· 0 −1
0 0 ··· −1 0
...
...

...
...

0 −1 ··· 0 0

.

For any integers d, k > 0 and a ∈ Z<nq [x], we set Toepd,k(a) to be the ma-

trix in Zd×(k+d−1)
q , whose i-th row is given by the coefficients of a · xi−1 for

i ∈ [d]. For integers da, db, d, k such that da + db − 1 = d + 2k, the middle

product �d : Z<daq [x]× Z<dbq [x] 7→ Z<dq [x] is defined as a�d b := ba·b mod xk+d

xk
c,

here terms with xi for i < 0 are rounded off. For a ∈ Z<n+d−1
q [x] with co-

efficients (a1, · · · , an+d−2)T , the Hankel matrix of a is defined as Hank(a) =( a0 a1 ··· ad−1 ··· an−1
a1 a2 ··· ad ··· an
...

...
...

...
ad−1 ad ··· a2d−2 ··· an+d−2

)
∈ Zd×nq . For integers n, d > 0, we define the set

(Z<n+d−1
q [x])× consisting of polynomials of Z<n+d−1

q [x] with Hankel matrix of
full rank d.

We will need the following lemma [6, 26].

Lemma 13. We have the following facts.

1. For any a ∈ Z<mq [x] and integer 0 < d < m, we have Rotdf (a)·(1, 0, · · · , 0)T =

Md
f ·
→
a .

2. For any integers d, k > 0 and any a ∈ Z<kq [x], we have Rotdf (a) = Toepd,k(a)·
Rotk+d−1

f (1).

3. For any integers d, k > 0, let r ∈ Z<k+1
q [x], a ∈ Z<d+k

q [x] and b = r �d a.

Then we have
→
b = Toepd,k+1(r) ·←a .

The middle-product LWR problem is defined as follows.

Definition 6. Let n, d, p, q > 0 be integers,

– For s ∈ Z<n+d−1
q [x], we define the middle-product LWR distribution, denoted

by MP-As,n,d,q,p, over Z<nq [x]×Z<dp [x] as the one obtained by sampling a←↩
U(Z<nq [x]) and returning (a, b = ba�d seq,p).

– The (average-case) middle-product search LWR problem, denoted by MP-S-
LWRn,d,q,p, consists in recovering s ∈ Z<n+d−1

q [x] with non-negligible proba-

bility for s←↩ U((Z<n+d−1
q [x])×), when given a polynomial number samples

from MP-As,n,d,q,p.
– The (average-case) middle-product decision LWR problem, denoted by MP-

D-LWRn,d,q,p, consists in distinguishing between a polynomial number of
samples from MP-As,n,d,q,p and the same number of samples from U(Z<nq [x]×
Z<dp [x]), with non-negligible probability over the choice s←↩ U((Z<n+d−1

q [x])×).



22 Y. Wang et al.

As usual, the worst-case middle-product search/decision LWR problem, de-
noted by W-MP-S/D-LWR, could be defined by asking an adversary to recover
s (or distinguishing corresponding distributions) with probability ≈ 1 for some
arbitrary s ∈ (Z<n+d−1

q [x])×. Here, we choice to constrain s ∈ (Z<n+d−1
q [x])× in

order to connecting MP-S/D-LWR problem to worst-case ideal lattice problems,
due to the following observation.

Lemma 14. Let d, n be positive integers. For any s ∈ (Zq[x]/(f(x)))×, set s′ ∈
Z<n+d−1
q [x] with

←
s′ = Rotn+d−1

f (1) ·Rotf (s) · (1, 0, · · · , 0)T . Then, we have that

the rank of Hank(s′) is d, i.e. s′ ∈ (Z<n+d−1
q [x])×.

Proof. First notice that, by our choice of f(x), s ∈ (Zq[x]/(f(x)))× if and only
if Rotf (s) is invertible in Zm×mq , since multiplication induced by s in the ring

Zq[x]/(f(x)) corresponds to matrix RotTf (s). A direct calculation shows that

←
s′ = (s0,−sm−1, · · · ,−s1,−s0, sm−1, · · · )T ∈ Zn+d−1

q .

Therefore, if we define s′′ ∈ Z<n+d−1
q [x] such that

→
s′′ =

←
s′, then we get

Hank(s′′) =


s0 −sm−1 −sm−2 · · · −s1 · · ·

−sm−1 −sm−2 −sm−3 · · · −s0 · · ·
−sm−2 −sm−3 −sm−4 · · · sm−1 · · ·

...
...

...
...

−sm−d+1 −sm−d −sm−d−1 · · · sm−d+2 · · ·


d×n

.

So, the first m columns of Hank(s′′) is the matrix which is consisted of the first
column of Rotf (s) and the last d−1 columns of Rotf (s) up to a fact −1. Hence,
the rank of Hank(s′′) is d, and so is the rank of Hank(s′).

Now, we could deduce the following reduction.

Theorem 6. For integers d ≤ m ≤ n and modulus p|q, there is a PPT reduc-
tion from search/decision polynomial LWR problems defined over Zq[x]/(f(x))×
Zp[x]/(f(x)) to W-MP-S/D-LWRn,d,q,p.

Proof. Given an instance (a, b) ∈ Zq[x]/(f(x))×Zp[x]/(f(x)) with b = ba · seq,p
for some s ∈ Zq[x]/(f(x)), we set a′ = a+f ·r ∈ Z<nq [x] with r ←↩ U(Z<(n−m)

q [x]),

and analyze the term Md
f ·
→
b . We have

Md
f ·
→
b

= Rotdf (ba · seq,p) · (1, 0, · · · , 0)T (By Lemma 13)

= bRotdf (a · s) · (1, 0, · · · , 0)T eq,p (f is rounding-preserved)

= bRotdf (a) · Rotf (s) · (1, 0, · · · , 0)T eq,p (By definition)

= bRotdf (a′) · Rotf (s) · (1, 0, · · · , 0)T eq,p (a = a′ mod f)

= bToepd,n(a′) · Rotn+d−1
f (1) · Rotf (s) · (1, 0, · · · , 0)T eq,p. (By Lemma 13)
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Therefore, we get Md
f ·
→
b = ba′ �d s′eq,p, where s′ ∈ Z<n+d−1

q [x] and
←
s′ =

Rotn+d−1
f (1) · Rotf (s) · (1, 0, · · · , 0)T by Lemma 13.
For search variant problems, we need to note that the first row of matrix

Rotn+d−1
f (1) · Rotf (s) is a re-order of coefficients of s. So, if one could recover

←
s′, he could also recover s easily. For decision variant problems, we only need

to notice that Md
f ·
→
b ←↩ U(Z<dp [x]) if b ←↩ U(Zp[x]/(f(x))), due to the special

form of Mf .

Results showed in Theorem 6 are not satisfactory. Since we do’t know how to
show the average-case hardness of MP-D-LWR problems. The main obstacle is
that the secret re-randomizing technique could not be used here. For search vari-
ant problems, it’s possible to reduce MP-LWE problems to MP-LWR problems
via the Rényi divergence. While for MP-D-LWR problems, no known results
have been showed.

In fact, if we define Sf = {s′ ∈ Z<n+d−1
q [x] : ∃ s ∈ Zq[x]/(f(x)), s.t.

←
s′ =

Rotn+d−1
f (1) · Rotf (s) · (1, 0, · · · , 0)T }, which is a subset of (Z<n+d−1

q [x])× by
Lemma 14, Theorem 6 also gives a reduction from average-case Poly-D-LWR
problems defined over Zq[x]/(f(x)) with secrets s ←↩ U((Zq[x]/(f(x)))×) to
average-case MP-D-LWR problems with secrets s ←↩ U(Sf ). Thus, Combining
our results in Subsection 5.2, for secrets s←↩ U(Sf ) and m a power-of-2 integer,
the hardness of corresponding MP-LWR problems could be guaranteed by worst-
case ideal lattice problems defined over corresponding number field.

This is also not satisfactory, since it violate the original intention for design-
ing middle-product LWE/LWR problems. It classifies the secrets of MP-LWR
problems in set (Z<n+d−1

q [x])×. Different category seems to have different se-
curity level. However, for search variant problems, there seems to be no such
divergence (via MP-S-LWE 7→ MP-S-LWR approach). We just proposed our
partial results about MP-D-LWR problems here. Whether we could show the
average-case hardness of MP-D-LWR problems with secrets over (Z<n+d−1

q [x])×

or Z<n+d−1
q [x] needs further discussions.
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A Missing proofs of Section 3

Proof of Lemma 5: In order to find s mod piR
∨ = (s1 mod piR

∨, · · · , sd mod

piR
∨), we try to find each of the d coordinates of s by using the W-D-LWRM,i

SB ,q,p,χ
oracle O. Since prime p is well-split, we have |N(pi)| ≤ poly(n) and there are
only poly(n) many candidates of sj mod piR

∨. Therefore, it is possible to try
them all in order to find the correct one.

Fix an arbitrary B ∈ SB , to find s1 mod piR
∨, we first sample y uniformly

at random mod piR
∨, and set y = 0 mod pjR

∨ for all j 6= i. Then, we sample h
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uniformly at random over mod pjR
∨ for all j ≤ i− 1, and set h = 0 mod pjR

∨

for other j ≥ i. Let x mod piR
∨ ∈ R∨/piR∨ be the guess of s1 mod piR

∨, we
transfer (a′, b′) := (a + q

p · (y, 0, · · · , 0)T , b + h + x · y) to the oracle O and

output the corresponding x mod piR
∨ if O returns i− 1. Note that p|q, we have

b′ = b + h + x · y = b
∑d
i=1 ai · sieB,q,p + h + x · y = b(a′)T · seB,q,p + h + y ·

(x−s1) mod pR∨. If x = s1 mod piR
∨, then by our choice of y and CRT, we get

that (a′, b′) is distributed identically to AM,i−1
q,p,s (B); while if x 6= s1 mod piR

∨,
we have y · (x− s1)←↩ U(R∨/piR

∨) since R∨/piR
∨ is a finite field, and (a′, b′)

is distributed identically to AM,i
q,p,s(B). Hence, by attempting at most poly(n)

guesses, we could recover s1 mod piR
∨ with the help of O.

Repeating the above process d times enable us to recover sj mod piR
∨ for

all j ∈ [d].

Before proving Lemma 6, we give the formal definition of worst-case decision
LWR problems.

Definition 7. Let K,R,R∨, B, q, p, χ be the same as defined in Section 3, the
worst-case decision LWR problems, denoted by W-D-LWRM

B,q,p,χ is: distinguish a

polynomially many samples which are sampled from either AMq,p,s(B) or U(Rdq ×
R∨p ) with probability ≈ 1 for some arbitrary s ∈ Supp(χd).

Proof of Lemma 6: First, we could deduce that for any basis B ∈ SB , the
W-D-LWRM

B,q,p,χ problem is equivalent to each other via a similar calculation as

Lemma 2. Fix an arbitrary B ∈ SB and an arbitrary s ∈ Supp(χd), assume there
exists an oracle O which could solve W-D-LWRM

B,q,p,χ with advantage δ ≈ 1. If

we define a sequence of distributions Disti := AM,i
q,p,s(B) for i ∈ {0, 1, · · · , g},

then δ = |Pr[O(AM,0
q,p,s(B)) = 1]− Pr[O(AM,g

q,p,s(B)) = 1]| and we have

δ ≤
g∑
i=1

|Pr[O(AM,i−1
q,p,s (B)) = 1]− Pr[O(AM,i

q,p,s(B)) = 1]|

=

g∑
i=1

δi ≤ g · δmax,

where δi := |Pr[O(AM,i−1
q,p,s (B)) = 1] − Pr[O(AM,i

q,p,s(B)) = 1]| is the advantage

of an adversary O to solve W-D-LWRM,i
SB ,q,p,χ problem, and δmax = maxi∈[g] δi.

Therefore, if oracle O could solve W-D-LWRM
B,q,p,χ problem, it could also solve

W-D-LWRM,i∗

SB ,q,p,χ problem for at least one i∗ ∈ [g] with probability & 1
g . Re-

peating g times could ensure that O could be used to solve W-D-LWRM,i∗

SB ,q,p,χ
with probability ≈ 1.

Note that for any s ∈ (R∨q ∩ R∨p )×, s · r ←↩ U((R∨q ∩ R∨p )×) if r ←↩ U(R×q ).

For a given (a, b) ∈ Rdq × R∨p , we consider the map fr : Rdq × R∨p 7→ Rdq × R∨p
defined by fr((a, b)) := (a′, b) for r = (r1, · · · , rd)T ∈ (R×q )d, where a′ =

(a1 · r1, · · · , ad · rd)T . If (a, b) comes from uniform distribution, so are (a′, b).
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While if (a, b) is sampled from AMq,p,s(B) for some arbitrary s ∈ (R∨q ∩R∨p )×, we

have b = b(a′)T ·s′eB,q,p, where s′ = (s1·r−1
1 , · · · , sd·r−1

d )T ←↩ U(((R∨q ∩R∨p )×)d).

Now assume there exists an oracle O′ which could solve D-LWRM
B,q,p,χ with

non-negligible probability δ′ ≥ 1
nc1+c2

. Here, we assume for n−c1 of all possible

s, the acceptance probability of O′ on inputs from AMq,p,s(B) and on inputs from

U differ by at least n−c2 . Let D denote the output distribution of D-LWRM
B,q,p,χ

problem. Repeat the following nc1+1 times: choose a vector r ←↩ U((R×q )d),
then estimate the acceptance probability of O′ on U and fr(D) by calling O′

32 · n2c2+1 times on each of the input distributions. If the two estimates differ

by more than n−c2

2 , then we stop and decide to accept. Otherwise we continue.
If the procedure ends without accepting, we reject. The correctness could be
obtained via a standard analysis as in [25].
(The detailed analyses are proposed as follows.) We assume Pr[O′(U) =
1] = pU and Pr[O′(AMq,p,s(B)) = 1] = pA,s, then for n−c1 of all possible s,
we have |pU − pA,s| ≥ n−c2 . The distribution of the outputs of O′ could be
regarded as a binomial distribution. We try to estimate the value of pU (and
pf := Pr[O′(fr(D)) = 1]) by repeating enough measurements. Namely, we count
the number of acceptances outputted by O′ on input U (denoted by NU ) and

fr(D) (denoted by Nf ). We also compute p̂U = NU
N and p̂f =

Nf
N with N =

32 · n2c2+1. By Hoeffding’s bound, we get

Pr[|p̂U − pU | ≥ t] ≤ 2e−2N ·t2

and
Pr[|p̂f − pf | ≥ t] ≤ 2e−2N ·t2 .

If we take t = 1
8 · n

−c2 , we have Pr[|p̂U − pU | ≥ 1
8 · n

−c2 ] ≤ 2e−n. Therefore, if
D = U , we have |p̂U − p̂f | ≤ |p̂U − pU | + |pU − p̂f | < 1

4 · n
−c2 < 1

2 · n
−c2 with

probability (1 − 2e−n)2 > 1 − 4e−n. While if D = AMq,p,s′(B) and s′ falls in the

n−c1 parts of all possible s, we have

|p̂U − p̂f | = |p̂U − pU + pU − pA,s′ + pA,s′ − p̂f | ≥
1

2
· n−c2

with probability ≥ 1− 4e−n. Since {s′}’s are distributed independently at ran-
dom, the probability that there exists at least one time such that the correspond-
ing s′ falls in the n−c1 parts of all possible s is 1 − (1 − n−c1)n

c1+1 ≥ 1 − e−n.
Hence, with probability ≥ 1− 5e−n, correctness holds.

B Worst-Case Hardness of Extended LWR Problems

There are quantum reductions from worst-case basic ideal lattice problems
(e.g. SIVPγ) over K to search Ring/Module LWE problems [18, 20]. However,
for S-LWE problems, the error distributions are worst-case in the sense that one
need to solve corresponding S-LWE problems with error distributions coming
from a set of distributions (e.g. Ψ≤α [18, 20]). It is possible to amend the error



26 Y. Wang et al.

distributions to some spherical Gaussians [1, 20, 24] via a Rényi divergence ar-
guments. Parameters of the resulted error distributions depend on the number
of samples used. So, we choose to use a single error distribution (and will use
ψ = Dα for some α > 0) to discuee S-LWE problems for convenience. Note that,

we usually have α ≤
√

logn
n in applications. Meanwhile, if we constrain secrets

to the set (R∨q )×, the hardness of the corresponding problem does not decrease.

We’ll still use S-LWEMq,ψ to denote corresponding problems.

Assume B is an arbitrary basis of R∨. For any e ←↩ Dα, assume e = B · e′
11 with coefficient vertor e′ ∈ Rn. We want to modify the distribution of e′

to some sphere Gaussian distribution. To do so, we choose e′′ ←↩ D√Σ with

Σ = σ2 · I − α2 · B−1 · B−T and σ > α · s1(B−1) first. Then, add B · e′′ to the
b-component of LWE samples. The coefficients of the revised error e +B · e′′ is
B−1 · e + e′′, which is distributed as Dσ by [11, Proposition 3.2].

Given two distributions X and Y , we define RD2(X||Y ) = Ea←↩X [Pr[X=a]
Pr[Y=a] ].

We need the following standard fact, which is slightly better than the results
showed in [2], about the Gaussian distribution.

Lemma 15. For any C > 0 and 1-dimensional Gaussian distribution Ds, we
have

Prx←↩Ds [|x| ≥ C · s] ≤ e−π·C
2

.

Proof. We will use the following tail bound, which comes from [13] to prove this
lemma:

1√
2π
·
∫ +∞

z

e−
x2

2 dx ≤ 1

2
· e− z

2

2 .

We have

Prx←↩Ds [|x| ≥ C · s] = 2

∫ +∞

C·s

1

s
· e−π·

x2

s2 dx

=
2√
2π

∫ +∞

C·
√

2π

e−
y2

2 dy

≤ e−π·C
2

,

as desired.

Now, we could show the worst-case hardness of extended LWR problems.

Lemma 16. Let B be an arbitrary basis of R∨, there is a PPT reduction from
S-LWEMq,Dα to Ext-S-LWRM

B,q,p,χ′ for modulus q = Q · p with gcd(p,Q) = 1 and

q ≥ max{p,Q} · σ√
π
· lnn · n · L, where σ > α · s1(B−1), and L is (half of) the

number of samples used, and such that L ≤ nlnn−1.

11 Notice that, we use B to simplify formulation. Here, it should be ϕ(B)



On the Hardness of Ring/Module/Polynomial LWR Problems 27

Proof. When given two LWE sample (a1, b1 = aT1 ·s+e1) and (a2, b2 = aT2 ·s+e2)
with e1, e2 ←↩ Dα, we sample e′1, e

′
2 ←↩ D√Σ , where Σ = σ2 · I − α2 ·B−1 ·B−T

with σ > α·s1(B−1). Let Xs denote the distribution of (a1,a2, baT1 ·seB,q,Q, baT2 ·
seB,q,p), and Ys denote the distribution of (a1,a2, bb1 +e′1eB,q,Q, bb2 +e′2eB,q,p).
Next, we want to bound

RD2(Xs||Ys)

= Ea1,a2←↩U(Rdq )[
Pr[Xs = (a1,a2, baT1 · seB,q,Q, baT2 · seB,q,p)]

Pr[Ys = (a1,a2, baT1 · s + e′′1eB,q,Q, baT2 · s + e′′2eB,q,p)]
]

= Ea1,a2←↩U(Rdq )[
1

pro
],

where e′′i = ei + e′i, and pro = Prei,e′i [(ba
T
1 · s + e1 + e′1eB,q,Q, baT2 · s + e2 +

e′2eB,q,p) = (baT1 ·seB,q,Q, baT2 ·seB,q,p)] for i = 1, 2. Notice that a1 is independent
from a2, the coefficients of aT1 ·s and aT2 ·s are all independent from each other,
and are distributed uniformly over Zq since we have constrained si ∈ (R∨q )× for
i ∈ [2]. Hence, we get

pro = Pre1,e′1 [baT1 · s + e1 + e′1eB,q,Q = baT1 · seB,q,Q]

· Pre2,e′2 [baT2 · s + e2 + e′2eB,q,p = baT2 · seB,q,p].

Assume without loss of generality that Q < p. The coefficients of error e2 +e′2
with respect to basis B obeys to the distribution Dσ. By using Lemma 15 with
C = lnn√

π
, the absolute value of each coefficient of e + e′ is bounded by N :=

σ√
π
· lnn with probability δ = 1 − n− lnn. Now, we could analyze the rounding

operation by coefficient. Define the bounder elements in Zq with respect to N
and modulus p, q by

Borq,p(N) := {x ∈ Zq : bx+Neq,p 6= bxeq,p},

then it yields |Borq,p(N)| ≤ N · p, since by our choice of parameters, we have
Q > N . For 0 ≤ t ≤ n, let’s also define

Bads,t := {a ∈ Rdq : |{i ∈ [n] : (aT · s)i ∈ Borq,p(N)}| = t}.

Now, for any fixed t and a ∈ Bads,t, if (aT · s)i /∈ Borq,p(N) for i ∈ [n], we have
Pre2,e′2 [b(aT ·s+e2 +e′2)ieq,p = b(aT ·s)ieq,p] ≥ δ. While, if (aT ·s)i ∈ Borq,p(N),

we have Pre2,e′2 [b(aT ·s+e2 +e′2)ieq,p = b(aT ·s)ieq,p] ≥ 1
2 , since the distribution

of one-dimension Gaussian distribution Dσ is balanced 12. In this case, we get

Pre2,e′2 [baT · s + e2 + e′2eB,q,p = baT · seB,q,p] ≥ δn−t

2t ≥
δn

2t . Note that,

Pr[a ∈ Bads,t] ≤
(
n

t

)
· (1− |Borq,p(N)|

q
)n−t · ( |Borq,p(N)|

q
)t,

12 I.e. Prx←↩Dσ [x ≥ 0] = Prx←↩Dσ [x ≤ 0] ≥ 1
2
.
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we have

Ea2←↩U(Rdq )[
1

Pre2,e′2 [baT2 · s + e2 + e′2eB,q,p = baT2 · seB,q,p]
]

≤
n∑
t=0

∑
a∈Bads,t

δ−n · 2t

= δ−n ·
n∑
t=0

(
n

t

)
· (1− |Borq,p(N)|

q
)n−t · (2 · |Borq,p(N)|

q
)t

= δ−n · (1 +
|Borq,p(N)|

q
)n ≤ δ−n · (1 +

pN

q
)n.

Therefore, we could deduce that

RD2(Xs||Ys)L ≤
(1 + pN

q )2nL

δ2nL
≤ (

1 + (nL)−1

1− (nL)−1
)2nL ≤ e4,

where we have use the fact that δ = 1−n− lnn ≥ 1− 1
nL for L ≤ nlnn−1. By the

property of Rényi divergence, we get the desire results.
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