
On Fingerprinting Attacks and Length-Hiding
Encryption

Kai Gellert, Tibor Jager, Lin Lyu, and Tom Neuschulten

Bergische Universität Wuppertal, Germany
{kai.gellert,tibor.jager,lin.lyu,tom.neuschulten}@uni-wuppertal.de

Abstract. It is well known that already the length of encrypted mes-
sages may reveal sensitive information about encrypted data. Finger-
printing attacks enable an adversary to determine web pages visited by
a user and even the language and phrases spoken in voice-over-IP con-
versations.
Prior research has established the general perspective that a length-
hiding padding which is long enough to improve security significantly
incurs an unfeasibly large bandwidth overhead. We argue that this per-
spective is a consequence of the choice of the security models considered
in prior works, which are based on classical indistinguishability of two
messages, and that this does not reflect the attacker model of typical
fingerprinting attacks well.
Therefore we propose a new perspective on length hiding encryption,
which aims to capture security against fingerprinting attacks more accu-
rately. This makes it possible to concretely quantify the security provided
by length-hiding padding against fingerprinting attacks, depending on
the real message distribution of an application. We find that for many
real-world applications (such as webservers with static content, DNS re-
quests, Google search terms, or Wikipedia page visits) and their specific
message distributions, even length-hiding padding with relatively small
bandwidth overhead of only 2–5% can already significantly improve se-
curity against fingerprinting attacks. This gives rise to a new perspective
on length-hiding encryption, which helps understanding how and under
what conditions length-hiding encryption can be used to improve secu-
rity.

1 Introduction

“Secure encryption” is today a very well-understood concept. However, stan-
dard cryptographic security definitions for encryption schemes (symmetric and
asymmetric alike) consider a security experiment where an adversary chooses
two plaintext messages m0 and m1, receives back an encryption of a randomly

Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement 802823. We
thank Hans-Jörg Bauer and Michael Simon, ZIM of University of Wuppertal, for
their assistance with determining a real-world DNS host name distribution.

chosen message m∗ ∈ {m0,m1}, and then has to determine which of the two
messages was encrypted. A common, crucial restriction of such security defini-
tions is that the two messages must have equal length. Otherwise it may be trivial
to determine the encrypted message based on the length of the given ciphertext,
such that security in this sense is impossible to achieve.

There are other standard security notions, such as “real-or-random” defini-
tions, where an adversary has to distinguish between an encryption of a cho-
sen message m and a random string of equal length or simulation-based se-
mantic security, which requires the existence of an efficient simulator that pro-
duces the same output as the adversary given only the length of a ciphertext
(e.g., [4,5,22,23]). All these definitions have in common that they do not provide
security against attacks that are based on the length of messages.

Due to their simplicity and generality, these definitions have been extremely
useful for building a general theory of secure encryption. However, assuming that
only messages of equal length are encrypted is a necessary theoretical idealization
and unrealistic from a practical perspective. In most real-world applications
already the length of messages may reveal sensitive information.

The real-world relevance of hiding message lengths. Well-known examples of
attacks leveraging message lengths consider a passive adversary that merely
observes the encrypted network traffic and can identify web pages visited by a
user [7,14,20,28,30,41], or the language and even phrases spoken in an encrypted
voice-over-IP conversation [43,44], all this without breaking the expected security
of the underlying encryption scheme. Even revealing the length of user passwords
makes it possible to identify individual users in TLS-encrypted sessions and
provides an advantage in password guessing attacks [17], in particular when
passwords are re-used across different services. Hence, it is a desirable goal to
hide the length of transmitted messages in practice.

Impossibility of hiding message lengths in cryptographic theory. Tezcan and Vau-
denay [39] considered the asymptotic setting commonly used in theoretical cryp-
tography and showed essentially that efficiently hiding the length of messages
is impossible for arbitrary message distributions. Concretely, an exponential-
sized padding is necessary, if the adversary in a standard security experiment
is allowed to choose arbitrary messages of different lengths, and one aims at
achieving a negligible distinguishing advantage. This suggests that in theory it is
impossible to hide plaintext length efficiently, which supports the common belief
that a considerable bandwidth overhead incurred by length-hiding padding is
inevitable.

Dependence of encrypted messages and length hiding padding. In order to over-
come this impossibility, Paterson, Ristenpart, and Shrimpton introduce the no-
tion of length-hiding encryption (LHE) [32]. Essentially, LHE augments the en-
cryption algorithm with an additional length-hiding parameter `, which is spec-
ified by an application calling the encryption algorithm. The length-hiding pa-
rameter determines the amount of length-hiding padding used for a particular

2

message. Secure LHE in the sense of [32] essentially guarantees security for plain-
texts of different lengths, provided that the length hiding parameter ensures that
the corresponding ciphertexts have equal size. However, [32] does not yet explain
how ` can be chosen in order to obtain any security guarantees for realistic mes-
sage distributions.

Furthermore, this work considers a classical “two-message indistinguishabil-
ity” security model, where an adversary outputs two challenge messages m0

and m1 whose length difference must be bounded by some ∆, i.e., it holds that
0 ≤

∣∣|m0| − |m1|
∣∣ ≤ ∆. Here, ∆ depends on `. Note that this requires the mes-

sages in the security experiment to be chosen depending on the length hiding
parameter used by the underlying encryption scheme.

We argue that in order to determine suitable length-hiding padding to pro-
tect against fingerprinting attacks on a given application layer protocol, such
as HTTP, DNS, etc., we do not want to make the distribution of application-
layer messages dependent on the used padding scheme, but rather the other way
around. That is, we want to determine a suitable length hiding parameter for the
given message distribution of the application. Therefore we propose a security
definition which does not mandate any a priori length difference ∆ of messages,
but rather quantifies the security of a certain padding length for a given message
distribution (or an approximation thereof).

Quantifying the security of length-hiding encryption. There is currently no method-
ology that makes it possible to concretely assess and quantify the security of a
given length-hiding padding scheme against fingerprinting attacks. In order to
understand under which circumstances length-hiding schemes can reduce the
effectivity of fingerprinting attacks without very large performance penalty, we
have to analyze which concrete security guarantees can be obtained by length-
hiding schemes with reasonable (i.e., non-exponential-sized) length-hiding pa-
rameters.

We know that suitable choice of a padding length must depend on the mes-
sage distribution of an application (more precisely, on the distribution of the
lengths of encrypted messages), as otherwise security is known to be not achiev-
able [39]. In order to determine a suitable padding length for a given application
in practice, it is therefore necessary to determine the message distribution of the
given application. This can be achieved, for instance, by implementing a server-
side monitoring algorithm that records (an approximation of) the distribution.
This algorithm could run in set intervals and update the length-hiding param-
eter on the fly, if the distribution changes over time (e.g., due to changed web
site contents or access patterns).

Our Contributions We develop a methodology that makes it possible to con-
cretely quantify the effect of LHE on the security of a given application. To this
end, we introduce a new cryptographic security model, which aims to preserve
the simplicity and generality of classical models, while capturing security against
fingerprinting attacks in order to reflect such security requirements of applica-

3

tions. Based on this definition, we describe a methodology to concretely quantify
the effect of LHE for a given application.

In a next step, we demonstrate the feasibility of our approach by applying it
to different types of fingerprinting attacks. Each of these scenarios cover multiple
application-based aspects such as which block mode is used for encryption, or
whether compression for transmitted data is enabled. Since the security impact
of such aspects are often very subtle, we provide a more detailed explanation in
Appendix 2. We summarize our results as follows:

Simple webpage fingerprinting. As a first example, we consider a website
consisting of many static HTML pages, a user that visits one page, and
an adversary that tries to determine the visited page based on the size of
encrypted data. Since we want to base our analysis on a publicly-available
web site with static contents, we used the IACR Cryptology ePrint archive
at https://eprint.iacr.org/2020/.1

We find that switching from counter mode to block mode encryption al-
ready decreases the advantage of the adversary from 0.74 to 0.14 (where
an advantage of 1 means that the adversary can uniquely determine a web
page, while 0 means that the size of the transmitted data reveals no informa-
tion about the visited page). This makes fingerprinting much less effective,
without noticeable bandwidth overhead.
Reducing the advantage to 0 costs about 95% bandwidth overhead without
compression, however, by additionally using compression and advantage to 0
can even be achieved without any overhead, by slightly reducing the amount
of data transmitted by 0.3%. Hence, from a website fingerprinting perspec-
tive, it seems to make sense to enable LHE, possibly in combination with
compression, on this server.

Web page fingerprinting with patterns. In order to analyze more complex
fingerprinting attacks, we again consider the IACR Cryptology ePrint Archive
and an adversary that tries to determine the visited page based on the size of
encrypted data. This time, we consider a user that first visits the web page of
a random paper from the year 2020, and then downloads the corresponding
paper (a pdf file). Note that this yields a much more distinguishable pattern,
in particular due to the highly varying size of pdf documents, and the fact
that pdf files are not as easily compressible as text-based web pages.
We find that the advantage in counter mode is 1, that is, all papers are
uniquely identifiable, such that the encryption provides no security at all
against such attacks. This can be reduced to 0.12 by applying length-hiding
padding with a bandwidth overhead of only about 2.4%. Hence, LHE can
significantly improve security against fingerprinting at negligible overhead,
which refutes the common belief that a significant overhead is necessary in
order to achieve a considerable security improvement.

1 We also considered basing this analysis on other web sites, such as Wikipedia and a
user that accesses a certain Wikipedia page. However, the IACR ePrint server also
enables us to easily consider a natural extension to more complex access pattern,
see below.

4

https://eprint.iacr.org/2020/

Google search term fingerprinting. Here we consider the scenario that one
user is searching some term in a search engine. A passive adversary observes
the encrypted traffic and tries to determine which search term the user is
searching for. We used 503 most popular search terms from the daily search
trends published by Google at https://trends.google.com/trends/
in a time period of one month in Spring 2021.
We find that without LHE an adversary achieves very high advantage of
almost 1. LHE with only 2% bandwidth overhead can reduce this very sig-
nificantly to only 0.07. In combination with compression, the advantage can
be reduced to 0.006, while reducing the amount of transmitted data by 50%.

Simple Wikipedia fingerprinting. All the three application examples above
consider a uniform message distribution, which does not necessarily cap-
ture the message distribution in the real-world applications. Obtaining real-
world message distributions, e.g. by capturing Internet traffic, is difficult (for
practical reasons, as well as due to privacy concerns). However, the Wiki-
media Foundation publishes statistics of the Wikipedia website since May
2015, which provides us with the real distribution of visited webpages of the
Wikipedia website. To better demonstrate the feasibility of our approach
with respect to real-world message distributions, we carry out a webpage fin-
gerprinting analysis for the Wikipedia webpages in simple English language,
based on the real webpage visit distribution of May 2021.
We find that without LHE an adversary achieves very high trivial advantage
(0.875). LHE with only 2% bandwidth overhead can reduce this to 0.13.
In combination with compression, the advantage can be reduced to 0.0058,
while reducing the amount of transmitted data by 50%.

DNS fingerprinting. Here we consider the Domain Name System (DNS) pro-
tocol and DNS request/response pairs. This setting is particularly interesting
because there is an increasing trend to encrypt DNS protocol messages to
hide the requested domain names. However, it turns out that the length of
DNS requests/response pairs exhibit a very distinctive pattern, which make
it easy to determine the requested domain name from the ciphertext length.
We consider two different settings:
1. A user that issues a DNS request for a randomly chosen host name from

1,000 most popular hosts according to the Majestic Million list.
2. In collaboration with the IT department of a medium-sized university

(with 23k students and 3.5k staff members), we collected the host names
of DNS requests performed by staff and students within a 24 hr time in-
terval in July 2021. The data collection was carried out under supervision
of the university data privacy officer and in accordance with applicable
data protection laws. In particular, only the hostnames and their fre-
quency were collected, but not the requesting IP addresses or any other
personal data. This provides us with a real-world message distribution
that makes it possible to determine the security and appropriate padding
sizes for this particular DNS service.

In both cases, the adversary that tries to determine the requested host name
based on the size of request and response.

5

https://trends.google.com/trends/

In the Majestic Million case, we find that the advantage of an adversary
can be reduced from 0.644 (in counter mode without compression) down to
0.01 with a bandwidth overhead of about 79% without compression, or 57%
with. For the university DNS case, the advantage of an adversary can be
reduced from 0.551 (in counter mode without compression) to below 0.01
with a bandwidth overhead of about 54% without compression.

In summary, we find that LHE can, contrary to the common belief, improve
security against fingerprinting attacks very significantly, often with minor band-
width overhead. This also confirms the recent tendency to switch from block-
mode to counter-mode encryption indeed makes fingerprinting attacks much
more effective.

We support our theoretical model and calculations with a proof-of-concept
implementation in form of an Apache module. Our implementation consists of
two parts. One part is a server-side monitoring algorithm that records (an ap-
proximation of) the message distribution and computes a suitable length-hiding
parameter. The other part applies the length-hiding parameter as input to the
encryption procedure of server responses. We used this proof-of-concept imple-
mentation to validate the results of our theoretical analysis.

Application of our results. Some standards and implementations of crypto-
graphic protocols already provide means to conceal the length of plaintexts,
in order to prevent fingerprinting attacks or reduce their effectivity. One such
example is the TLS 1.3 standard [34], which directly supports the use of length-
hiding padding and functions as basis of our implementation.

Another example of an Internet standard that supports length-hiding padding
is DNS. RFC 8467 [29] describes block-length padding, which recommends to pad
all DNS requests to a multiple of 128 bytes and all DNS responses to a multiple
of 468 bytes (as originally proposed in [13]). We remark that these numbers are
derived from an empirical analysis conducted specifically for DNS, and that we
do not yet have a clear methodology to quantify to which degree they improve
security concretely.

Related Works The work of Boldyreva et al. [8] focuses on hiding message bound-
aries in a ciphertext stream with fragmented message transmission. This work
is similar in spirit to ours in the sense that it tries to find a balance between the
conflicting aims of keeping the generality and simplicity of traditional security
definitions on the one hand, and developing an approach that can be used to
provide meaningful provable security analyses of practical schemes on the other
hand.

A very recent work on length hiding encryption is due to Degabriele [10],
which will appear at ACM CCS 2021. We compare our approach with the one
in [10] in ??.

Fingerprinting attacks have been intensively studied in the context of web
page fingerprinting, deanonymization of Tor private channels, and other applica-
tions such as LTE/4G. Early approaches were based on the length of encrypted

6

messages, as well as their direction and the frequency of messages [19, 20, 28].
More recent approaches use additional features advanced analysis techniques
based on machine learning [18, 26, 31, 38]. Also active attacks have been consid-
ered [26, 37]. Countermeasures to fingerprinting attacks were proposed [42, 45],
but could be broken with refined analysis methods [12, 38]. Cai et al. [9] give a
systematic analysis of attacks and defenses to understand what features convey
the most information.

We note that many works on the feasibility of fingerprinting attacks make
use of side-channels beyond message lengths and we discuss about this in Ap-
pendix A.

Outline of this paper. In Section 3 we describe a new perspective on LHE,
which is more suitable for our approach, and conveniently yields schemes that
follow the standard syntax of symmetric encryption schemes. Furthermore, we
establish a definitional framework to analyze and quantify the concrete effect
of LHE. Section 4 contains the results of an empirical analysis of different real-
world message distributions. In Section 5 we present our implementation of LHE
and compare its performance with our empirical results.

2 Further Context and Discussion

This section provides further context by discussing the impact of recent develop-
ments in secure communication protocols like TLS on the effectiveness of finger-
printing attacks. We argue that the increased use of Counter Mode encryption
(such as AES-GCM, for instance) and the deprecation of compression in re-
sponse to attacks such as CRIME, TIME, BREACH, and HEIST [3, 11, 33, 40]
has made fingerprinting attacks more efficient. In this light, we also discuss the
controversial question whether compression before encryption is recommendable
or not. We also survey related works on compression and encryption.

Increasing use of counter mode aids attacks based on message lengths. Older
TLS versions preferred block mode encryption algorithms, such as CBC mode
(e.g., the only mandatory cipher suite in TLS 1.2 is based on CBC). Since such
block modes already need to pad a plaintext to a multiple of the block size of the
underlying block cipher, the exact length of plaintexts is somewhat concealed,
which provides some very minimalistic form of LHE.

However, in the past few years the percentage of TLS connections using
counter mode encryption grew very significantly. A recent large-scale study [27]
showed that about 80% of TLS connections use counter mode encryption (mostly
AES-GCM). On the one hand, given the performance and security advantages of
the authenticated encryption mode GCM over previous modes, this is a positive
development. On the other hand, since the optional length-hiding padding is
currently rarely used, counter mode encryption provides a passive adversary with
very precise information about the length of a plaintext message, as it reveals
the exact length of a plaintext to a passive adversary. This makes attacks that

7

infer confidential information from the plaintext length much more effective, and
additionally emphasizes the need for LHE and a methodology to select concrete
length-hiding parameters for LHE schemes.

Deprecation of compression and attacks based on ciphertext lengths. Compres-
sion of data (with an algorithm like gzip) before encryption (“compress-then-
encrypt”) may equalize the size of ciphertexts of different plaintexts to some
degree, and thus may contribute to concealing the length of the plaintext. Com-
pression of plaintexts was optionally possible and often used (until a few years
ago) in TLS versions up to 1.2. However, today it is considered good practice not
to perform compression of data before encryption, and the option to compress
plaintexts was deprecated in TLS 1.3. This is mainly due to partially chosen-
plaintext attacks [25], where an adversary injects chosen data that get compressed
along with secret data before encryption. The length of the resulting ciphertexts
reveals information about the redundancy in the adversarially-chosen and the
secret data, which allows the adversary to draw conclusions about this secret
data. The practical relevance was demonstrated by attacks like CRIME, TIME,
BREACH, and HEIST [3,11,33,40], which may allow an active adversary to steal
HTTP session cookies, for instance. These attacks require an adversary that is
able to perform a partially chosen-plaintext attack, which in some applications
is very realistic, but in others is not.

While the deprecation of compression prevents such active attacks in ap-
plications where partially chosen-plaintext attacks are practically feasible, at
the same time it provides a passive adversary with more accurate information
about the size of plaintext data, even in applications where the partially cho-
sen plaintext attacker model does not apply because an adversary is not able
to inject data that gets encrypted along with confidential data. Hence, the ef-
fect of countermeasures may depend on the concrete attacker model at hand. If
partially chosen-plaintext attacks provide a practical threat in a given applica-
tion context, then disabling compression is necessary. However, if the design of
an application does not allow such attacks, then disabling compression provides
a passive adversary with more precise information about the size of encrypted
data, which may be harmful to security in another attacker model.

Attacks like CRIME and its variants [3, 11, 33, 40] targeted HTTP session
cookies in HTTP versions 1 and 1.1. Compression was performed on the under-
lying cryptographic protocol layer, by TLS. Now, due to the significant band-
width gain, the most recent version HTTP/2 [6] re-introduces compression on
the application layer. The possibility of partially chosen-plaintext attacks is ex-
plicitly considered, and the HTTP/2 standard [6] requires to disable compression
in applications where such attacks are possible, or alternatively to use a sepa-
rate compression dictionary for potentially adversarially-controlled data. Hence,
for HTTP/2 a passive website fingerprinting attacker still needs to be consid-
ered, while active partially chosen-plaintext attacks based on compression are
already addressed by the standard. Hence, we consider it interesting to analyze
the security impact of compression on the effectivity of fingerprinting attacks.

8

We note also that the passive attacker model is particularly relevant when
considering a “big brother” adversary, which monitors Internet traffic at such
a large scale that widespread active attacks at this scale become practically
infeasible. Such an adversary may store large amounts of encrypted data for later
analysis. If the analysis takes place after the encrypted session has finished, then
an active attack is not possible anymore.

On using compress-then-encrypt. Our analysis raises the controversial question
whether compression before encryption is recommendable or not. From a web-
site fingerprinting perspective with passive attacker model, compression appears
to be useful, as this improves security against such attacks while even saving
bandwidth. We stress, however, that we do not generally recommend the use
of compression. Compression must only be used if it is clear that active at-
tacks do not apply. This may either be the case if compression-based attacks
are already considered and prevented on the application layer, as in some appli-
cations of HTTP/2, for instance, or in applications where active attacks seem
not to apply, due to the nature or design of the considered application, or if
they are considered out of scope since a different attacker model (e.g. the “big
brother” adversary) is considered. Still, we conclude that the general advice to
disable compression, independent of a given attacker model, can be misleading
and harmful to security. It is necessary to carefully consider the concrete security
requirements of the application at hand.

Related work on compress-then-encrypt The possibility of using compress-then-
encrypt securely has been considered in [2, 24]. However, the security notion
in [24] does not yet capture the aforementioned real-world attacks [3, 11, 33,
40]. Alawatugoda et al. [2] give security notions that focus on the security of
HTTP Cookies in compress-then-encrypt schemes (which is the main target
of [3,11,33,40]). They consider the trivial countermeasure of simply excluding the
cookie from compression, which requires the compress-then-encryption scheme to
“know” which input is “secret” and which not, which is essentially the approach
followed by HTTP/2 [6]. They also consider the approach of using a restricted
class of compression algorithms with fixed dictionary, but also show that this
yields a rather bad compression rate for complex plaintext data.

3 A New Perspective on Length-Hiding Encryption

Now we can describe our new perspective on length-hiding encryption (LHE),
which makes it possible to concretely quantify the effect of length-hiding padding
on security. We first introduce a new syntactical notion of LHE in Section 3.1 and
a corresponding security experiment in Section 3.2. Based on these foundations,
we can then define the trivial success probability and the trivial advantage to
concretely quantify the security of an encryption scheme with respect to different
length-hiding parameters.

In Appendix B we also discuss k-anonymity as an alternative approach and
explain why we consider it as not very suitable for our purposes.

9

3.1 A New Syntactical Definition

We first recap the formal definition of symmetric-key encryption.

Definition 1 (Symmetric-key encryption). A symmetric-key encryption
scheme SE consists of two algorithms E and D. The (possibly) randomized en-
cryption algorithm E takes input a secret key sk and a plaintext m ∈ {0, 1}∗, and
outputs a ciphertext ct. The deterministic decryption algorithm D takes input
a secret key sk and a ciphertext ct then outputs a plaintext m or a symbol ⊥.
The correctness of SE requires that Dsk(Esk(m)) = m for all sk ∈ {0, 1}k and
m ∈ {0, 1}∗.

Note that, in the above definition, the ciphertext length is implicitly defined
by the encryption algorithm and cannot be altered or controlled outside the algo-
rithm. Paterson et al. introduced the concept of length-hiding encryption in [32],
which makes it possible to control the ciphertext length outside the encryption
algorithm. In this paper we will work with a slightly different perspective, which
we consider as more practical.

Recall that in [32] the length-hiding parameter ` is the total ciphertext length
and it is an explicit input to the encryption algorithm. The parameter can be
controlled by the adversary in the security experiment, the only restriction is that
it must be at least as large as the largest of the two messages submitted by the
adversary in the indistinguishability security experiment. We believe this does
not capture real-world attacks based on ciphertext lengths very well, because it
considers only the indistinguishability of two messages that are encrypted with
respect to the same ciphertext length `.

To protect against such attacks, we find it more practical to view the length
hiding parameter as a fixed system parameter and to make the ciphertexts length
dependent on both ` and the size of encrypted messages. More precisely, the
global parameter ` (of a symmetric-key encryption scheme) defines a fixed func-
tion which maps plaintext length to certain ciphertext length.

Now, for any symmetric-key encryption scheme SE, we formalize a new
symmetric-key encryption scheme SE(`) as the scheme SE instantiated with
length hiding parameter ` as follows.

Definition 2 (Symmetric-key encryption with length-hiding parame-
ter `). Let SE = (E,D) be a symmetric encryption scheme. Let pad(m, `) be a
function that pads a plaintext m such that

|pad(m, `)| =
⌈
|m|
`

⌉
· `.

That is, pad applies length-hiding padding to the plaintext m such that the length
of pad(m, `) is an integer multiple of `. Let pad−1 be the function that removes the
padding, that is, pad−1(pad(m, `)) = m for all m and pad−1(⊥) = ⊥. We call
` the length-hiding parameter and define the length-hiding encryption scheme
SE(`) = (E(`),D(`)) as

E
(`)
sk (m) := Esk(pad(m, `)) and D

(`)
sk (m) := pad−1(Dsk(m)).

10

Note that in particular we have SE(1) = SE.

Padding a message to a multiple of some parameter ` is a generalization of the
block-length padding scheme proposed in [13] and recommended for encrypted
DNS requests in RFC 8467 [29].

Note that this scheme allows to capture “perfect” length-hiding padding,
where the length-hiding parameter ` is at least as large as the largest possible
message in an application, such that all ciphertexts have identical length and no
information is leaked through the length. However, if ` is smaller, then we will
get weaker security guarantees. We will show that this is very useful to achieve
a trade-off between improved resilience to attacks based on message length and
bandwith overhead of the length-hiding padding. Furthermore, we will analyze
the concrete impact of different length-hiding parameters on the security and
bandwidth requirements of an application.

Security notions for symmetric-key encryption schemes. Since SE(`) follows the
standard syntax of encryption schemes for all ` ∈ N, standard security defini-
tions (without considering length leakage) for symmetric-key encryption apply
to it. There are many different ways to define security for symmetric-key encryp-
tion schemes. In this paper we will consider two flavors of standard IND-CCA
security, the IND-M-CCA security and the IND-C-CCA security. Both provide
protection for message privacy but none of them provides protection against
length leakage. However, they serve as an important tool in our approach to
capture the effectiveness of length-hiding encryption.

IND-M-CCA security. The first notion is the indistinguishability of encryptions
of chosen messages from encryptions of random strings. It is equivalent to the
classical “left-or-right” definition where an adversary outputs two messages m0

and m1, receives back an encryption of message mb for a random b $←− {0, 1},
and has to determine b.

Definition 3 (IND-M-CCA security). A symmetric-key encryption scheme
SE = (E,D) is IND-M-CCA secure if for any PPT adversary A, the advantage

AdvSE,A
IND-M-CCA(1k) :=

∣∣∣2 · Pr
[
IND-M-CCASE,A(1k) = 1

]
− 1
∣∣∣

is negligible, where game IND-M-CCASE is defined in Figure 1.

IND-C-CCA security. The second notion we consider is indistinguishability of
ciphertexts from random strings (the “IND” notion in [22]), which is commonly
used in recent works, such as [15, 16]. This security considers the “ciphertext
pseudorandomness” of the symmetric-key encryption scheme.

Definition 4 (IND-C-CCA security). A symmetric-key encryption scheme
SE = (E,D) is IND-C-CCA secure if for any PPT adversary A, the advantage

AdvSE,A
IND-C-CCA(1k) :=

∣∣∣2 · Pr
[
IND-C-CCASE,A(1k) = 1

]
− 1
∣∣∣

11

Proc. Initialize
(
1k
)
:

b $←− {0, 1}
sk $←− {0, 1}k
C ← ∅
Return

Proc. Enc(m):

Return Esk(m)

Proc. Dec(ct):

Return

{
Dsk(ct)
⊥

If ct /∈ C
Otherwise

Proc. Challenge(m):

m0 ← m

m1
$←− {0, 1}|m|

ct $←− Esk(mb)

ct $←− Esk(m)

r $←− {0, 1}|ct|

ret←

{
ct If b=0

r Otherwise

C ← C ∪ {ret}
Return ret

Proc. Finalize(b′):

Output (b′ = b)

Fig. 1. The security game IND-M-CCASE and the security game IND-C-CCASE . The

gray background codes only applies to game IND-C-CCASE.

is negligible, where game IND-C-CCASE is defined in Figure 1.

Since the length-hiding parameter ` is a global system parameter and known
to the adversary (the adversary does not have to break the scheme or make
any encryption or decryption queries to know this parameter), we point out
that the length-hiding property is orthogonal to the exact oracle query ability of
the adversary. Our choice to consider security against chosen-ciphertext attacks
should merely serve as a concrete example. For instance, CPA security is easily
obtained by removing the decryption oracle, passive eavesdropping by addition-
ally removing the encryption oracle. It is also possible to consider advanced
security notions, such as misuse-resistant encryption [35], where the adversary
is able to specify the nonce used by an encryption algorithm. Furthermore, it
can be considered in both the symmetric-key and the public-key setting. We
chose security against chosen-ciphertext attacks in order to demonstrate that
the approach works also with this rather strong standard security definition.

3.2 New Security Model

Our objective is to define a model that is independent of a particular application,
but capable of capturing complex application settings where multiple messages
of varying lengths are encrypted using multiple keys and the adversary wants
to deduce information about these messages from the ciphertexts. Therefore we
parametrize our security model as follows:

Message distribution. Note that the information an adversary can deduce
from the size of observed ciphertexts depends inherently on the message
distribution of a given application, and possibly other application-specific
properties, such as observable patterns of messages, for instance. Since we

12

want to preserve as much of the simplicity and generality of classical security
models as possible, our new security definition is parametrized by a message
distribution M of a given application.
For instance, in the web page fingerprinting setting, the distribution M would
assign probabilities to different web pages on a server. If a client performs a
search with an Internet search engine, then m∗ $←− M would correspond to
the messages exchanged between a client and the search engine. Note that, in
this case, the message distribution M is defined by the client and the server
may not know this distribution M beforehand. However, we consider strong
adversaries who knows M so that it obtains some a prior knowledge about
this search term.

Specification of data to-be-protected. We introduce a function P which
specifies the information that an adversary wants to learn about the en-
crypted data. For instance, if a client performs a search with an Internet
search engine and the adversary wants to learn the search term, then the
data exchanged between client and search engine would be m∗ $←− M, and
the goal of the adversary would be to determine the search term P(m∗).

Multiple symmetric keys. We want to be able to consider complex finger-
printing attacks on applications transmitting encrypted data. For instance,
in the context of Internet search engines a client might first connect to a
search engine and to perform a search, then connect to a DNS server to
make a DNS request for the first search result, and then connect to the
server hosting the corresponding web site. We will consider a setting where
all three connections are encrypted, such that this involves three different en-
crypted sessions with three different, independent symmetric keys.2 In order
to reflect this accurately, we need to define a security model which involves
d symmetric keys.

Adversarial model. Finally, we need to specify the capabilities that we grant
the attacker. We will consider chosen-ciphertext attacks (CCA), as already
discussed in Section 3.1.

In Section 4, we will show how to define M, P, and d for a particular given
applications to obtain concrete security statements for this application. In most
practical cases, P will be efficiently computable, but we do not have to demand
this.

Security experiment. Motivated by this discussion, we define the (SE,M,P, d)-CCA
security experiment based on the game described in Figure 2. In this game, we
consider an encryption scheme SE with d ≥ 1 independent secret keys and a
message distribution M that outputs t ≥ 1 messages where t = t1 + . . .+ td for
some t1, . . . , td ∈ N. We model M as a probabilistic algorithm defining a message
distribution over ({0, 1}∗)t. In the sequel it will be convenient to view the output
of M as a tuple of tuples of messages m = ((m1j)j∈[t1], . . . , (mdj)j∈[td])

$←− M.

2 In practice the TLS protocol would be used for these three connections, where differ-
ent keys are used for sending and receiving data, but we view these keys as a single
symmetric key.

13

Here (mdj)j∈[ti] is the tuple of messages encrypted under the i-th symmetric key

ski. The function P maps P : ({0, 1}∗)t → {0, 1}∗.

Proc. Initialize
(
1k
)
:

sk1, · · · , skd $←− {0, 1}k
challenged← False

C ← ∅
Return (M,P)

Proc. Enc(i,m):

Return Eski(m)

Proc. Dec(i, ct):

If (i, ct) ∈ C:
Return ⊥

Return Dski(ct)

Proc. Challenge():

If challenged = True return ⊥
challenged← True(
(m∗1j)j∈[t1], · · · , (m

∗
dj)j∈[td]

)︸ ︷︷ ︸
m∗

$←− M

For i ∈ [d], j ∈ [ti]:
ct∗ij

$←− Eski(m
∗
ij)

C ← C ∪ {(i, ct∗ij)}
Return (ct∗ij)i∈[d],j∈[ti]

Proc. Finalize(p):

Output (P(m∗) = p)

Fig. 2. The (SE,M,P, d)-CCA security game with respect to encryption scheme SE,
message distribution M, property P and number of secret key d.

Definition 5. For any adversary A, define the success probability of A in game
(SE,M,P, d)-CCA as the probability that A is able to determine P(m∗). For-
mally:

RealSucc(SE,M,P, d,A) := Pr
[
(SE,M,P, d)-CCAA(1k) = 1

]
.

Non-triviality of M and P. In the sequel we will only consider M and P such that
there exist m and m′ such that Pr[m $←− M] > 0, Pr[m′ $←− M] > 0, and P(m) 6=
P(m′). This is necessary for technical reasons, but also sufficient because we
would otherwise not get a meaningful notion of security (because otherwise it
would be trivial to predict P with respect to M with success probability 1, even
without seeing any ciphertexts).

Our security definition implies the IND-M-CCA and we discuss this in Ap-
pendix C.

3.3 Trivial Success Probability and Advantage

Trivial success probability. We introduce the trivial success probability of an
adversary, which captures the success probability that an adversary trivially
obtains from the length of ciphertexts, without “breaking” the underlying en-
cryption scheme SE. Note that this depends on the degree to which SE hides the
size of plaintexts, the message distribution M, and the function P.

Definition 6. The trivial success probability with respect to (SE,M,P) is de-
fined as the largest possible probability of guessing P(m∗), given M, P, and the

14

size of the ciphertexts (|ct∗ij |)i∈[d],j∈[ti], but not the ciphertexts themselves. More
formally,

TrivSucc(SE,M,P) := max
S

Pr
[
S(M,P, (|ct∗i |)i∈[t]) = P(m∗)

]
where m∗ =

(
(m∗1j)j∈[t1], · · · , (m∗dj)j∈[td]

)
$←− M, sk1, · · · , skd

$←− {0, 1}k and

ct∗ij
$←− Eski

(m∗ij) for i ∈ [d], j ∈ [ti].

The following property is necessary to avoid contrived and unnatural exam-
ples of encryption schemes, where the length of ciphertexts depends not only
on the size of the message, but also on the secret key. To our best knowledge,
this property is met by any concrete symmetric encryption schemes, except for
contrived counterexamples.

Definition 7. We say an encryption scheme SE = (E,D) has secret key obliv-
ious ciphertext length distribution if for any m ∈ {0, 1}∗, any sk, sk′ ∈ {0, 1}k,
|Esk(m)| distributes identically to |Esk′(m)|.

If we would restrict to settings with deterministic padding length, then we could
instead require |Esk(m)| = |Esk′(m)|. However, we will also consider randomized
padding, so that it is necessary to require identical distribution of ciphertext
lengths.

Relation between trivial and real success probability. We will now prove that
A’s real success probability RealSucc(SE,M,P, d,A) cannot exceed the trivial
success probability TrivSucc(SE,M,P) significantly, provided that SE is IND-C-
CCA secure in the sense of Definition 4 and satisfies Definition 7. This estab-
lishes that in order to minimize RealSucc(SE,M,P, d,A) it suffices to minimize
TrivSucc(SE,M,P).

Theorem 8. For any encryption scheme SE that has secret key oblivious cipher-
text length distribution in the sense of Definition 7, any message distribution M,
any property P and any adversary A, we can construct an adversary B such that

RealSucc(SE,M,P, d,A) ≤ d · AdvSE,B
IND-C-CCA(1k) + TrivSucc(SE,M,P).

The running time of B is T (B) ≈ T (A)+T (M)+T (P)+(t+qe) ·T (E)+qd ·T (D),
where T (M) is the time to sample messages from distribution M, T (P) is the time
to evaluate P, T (E) is the time to execute the encryption algorithm once, T (D)
is the time to execute the decryption algorithm once, qe is the number of Enc
queries made by A and qd is the number of Dec queries made by A.

Due to space limitations, we put the proof of Theorem 8 in Appendix D.
Theorem 8 provides an upper bound of the adversary’s success probability in

our practical “real world” security model and this bound is a sum of the CCA
advantage with the trivial success probability. So if the encryption scheme itself
is secure in the standard sense (i.e., the IND-C-CCA advantage of any adversary
is negligible, which is provided IND-C-CCA security of the scheme) then the sum

15

is close to the trivial advantage. In this way, we can focus on reducing the trivial
success probability by choosing a proper length-hiding encryption scheme to
reduce the information that is leaked through ciphertext length.

In the following, we show a methodology of evaluating the “effectivness” of
length-hiding encryption in reducing the trivial success probability. Intuitively
speaking, we first define the “most likely probability” to capture prior informa-
tion leaked by the distribution M known to the adversary. And this probability
provides a lower bound for the trivial success probability. For any concrete en-
cryption scheme, we compare its trivial success probability with this lower bound
to evaluate its “effectivness” in hiding the length information. And we further
quantify it by providing a new definition of trivial advantage.

Trivial advantage. Based on the trivial success probability, we define the trivial
advantage with respect to encryption scheme SE, message distribution M, and
property P as follows.

Definition 9. For message distribution M and property P, let

PrMostLikely(M,P) := max
S

Pr [S(M,P) = P(m∗)]

denote the probability of the most likely output of P on input m∗, where m∗ =(
(m∗1j)j∈[t1], · · · , (m∗dj)j∈[td]

)
$←− M. The trivial advantage with respect to (SE,M,P)

is defined as difference between the trivial success probability and PrMostLikely(M,P),
scaled to an number that ranges from 0 to 1 for any M and P:

TrivAdv(SE,M,P) :=
TrivSucc(SE,M,P)− PrMostLikely(M,P)

1− PrMostLikely(M,P)
.

Recall that we consider M and P such that there exist m and m′ such that
Pr[m∗ = m] > 0, Pr[m∗ = m′] > 0, and P(m) 6= P(m′), as otherwise it is
trivial to predict P with respect to M with success probability 1. Therefore we
have PrMostLikely(M,P) < 1.

4 Analysis of Real-World Message Distributions

In this section, we will consider different types of attacks, where an adversary ob-
serves encrypted communication and wants to determine the plaintext based on
the communication pattern. As a concrete example we consider counter mode en-
cryption (with AES-GCM, for instance) where the adversary is able to determine
the size of the encrypted message precisely, as well as block mode encryption (us-
ing AES-CBC as an example) where the adversary is able to determine the size
of the encrypted message up to the minimal message padding required for this
mode. We apply our methodology to concretely calculate the trivial advantage
for the considered message distribution M and function P that we define for each
application. Then we compare the results to the same schemes, but using length

16

hiding encryption with different length hiding parameters. This makes it possi-
ble to quantify the security gained by length-hiding encryption and compression
precisely. Most interestingly, we will show that relatively small length-hiding pa-
rameters are able to significantly reduce the effectivity of fingerprinting attacks.

In all the subsequent parts of this work, we will use different units for the
length hiding parameter for counter mode and block mode encryption. The rea-
son for this is that counter mode ciphers (like AES-GCM) usually encrypt mes-
sages byte-wise, therefore the size of ciphertexts and the length-hiding parameter
` are measured in bytes. Block ciphers (like AES-CBC) encrypts messages block-
wise, so we will measure the size of ciphertexts and ` in blocks, where one block
corresponds to the block size of the underlying block cipher (16 bytes in case of
AES).

4.1 Simple Website Fingerprinting

Adversarial model. We consider an adversary performing a website fingerprinting
attack against the IACR ePrint archive3 at https://eprint.iacr.org/
2020/, based on the size of encrypted data. The ePrint page for the year 2020
links to 1620 different subpages, one for each archived research papers. We chose
the year 2020 because it is the most recent year where the number of archived
research papers was fixed at the time this paper is written, which makes the
analysis more easily reproducible. Each subpage contains the title, list of authors,
abstract, and some other metadata for one archived research paper.

Let M := {m1, . . . ,m1620} be the set of the 1620 different web pages. We
assume that a user Alice picks one out of these 1620 subpages uniformly at
random and then visits the corresponding page. Hence, the message distribution
Me that we consider here is the uniform distribution over M. The adversary
tries to guess the subpage visited by Alice. Hence, the adversary outputs an
index i ∈ {1, . . . , 1620}, such that we define function P as P :M→ [1, 1620] for
mi 7→ i.

Considered encryption schemes. The IACR ePrint server uses TLS 1.2 and allows
the client and the server to negotiate one out of two different symmetric ciphers
for the encryption of payload data:

Counter mode. The first option is AES-GCM, which is essentially a stream

cipher and we refer it as SE
(`)
CTR. Note that in this case the attacker learns the

size of the underlying plaintext exactly (in case of TLS the attacker merely
has to subtract a known constant from the ciphertext size), provided that
no length-hiding padding is used (` = 1).

Block mode. The second option is AES-CBC and we refer it as SE
(`)
BLK. Due

to the padding required by CBC-mode encryption, the attacker learns only
that the plaintext lies within a certain (small) range even if no length-hiding

3 We use this server since URLs from the IACR ePrint archive are particularly easy
to parse and analyse.

17

https://eprint.iacr.org/2020/
https://eprint.iacr.org/2020/

padding is used (` = 1). Since the block size of AES is 16 bytes, AES-CBC
uses a padding of length between 1 and 16 bytes, this holds also for AES-CBC
in TLS 1.2.

We decided to use these two algorithms as the basis of our analysis, since they
cover both a stream cipher and a block mode cipher, and are very widely used
in practice. We consider a length-hiding padding with length-hiding parameter

` ∈ N. Ciphertexts are padded to a multiple of ` bytes for SE
(`)
CTR, and ` blocks

for SE
(`)
BLK. Thus, if ` = 1, then no additional length-hiding padding is used.

We also consider enabled compression where the full plaintext message is
compressed using the gzip algorithm, which implements DEFLATE compres-
sion (a combination of the LZ77 algorithm and Huffman coding). This is the
algorithm standardized for use in TLS versions up to 1.2 [21], and therefore
seems to be a reasonable choice for an analysis of real-world algorithms.

In order to indicate whether compression is used, we will refer to the en-

cryption algorithm as SE
(`)
M,C where M ∈ {CTR,BLK} represents its mode and

C ∈ {True,False} represents whether compression is applied before encryption.

Empirical data generation. We implemented a simple script that downloaded
all subpages of https://eprint.iacr.org/2020/ and determined the size
of the page in both uncompressed and compressed form. These sizes are stored
in a database and enable us to compute the size4 of counter- and block-mode
ciphertexts that encrypt the pages in compressed or uncompressed form, with
and without length-hiding encryption, and with respect to different length hiding
parameters.

Calculating the trivial advantage TrivAdv(SE
(`)
M,C,Me). We determined the num-

ber |U | of uniquely identifiable web pages, the size |Smax| of the largest set of
pages of identical size, the number |S| of different possible ciphertext lengths,

and the trivial advantage TrivAdv(SE
(`)
M,C,Me) for both counter mode and block

mode encryption, with and without compression, and with respect to different
length hiding parameters, and with respect to the uniform distribution Me over
the ePrint 2020 webpages.

Recall that the trivial success probability is defined as

TrivSucc(SE
(`)
M,C,Me,P) := max

S
Pr [S(Me,P, |ct∗|) = P(m∗)]

where the probability is over the random choice m∗ $←− Me and ct∗ is the encryp-
tion of m∗. Since Me is the uniform distribution, the trivial success probability
for a given ciphertext length λ is equal to the number of messages m∗ ∈ M
that encrypt to a ciphertext of the given length λ = |ct∗|. Hence, defining

4 To make our calculation more realistic, we consider the ciphertext is split across
TLS fragments with a maximum payload of 214 bytes per fragment, whereby each
fragment needs an additional 22 bytes reserved for the fragment header. The length
for all the TLS headers is also considered and summed to the ciphertext length.

18

https://eprint.iacr.org/2020/

Mλ := {m ∈ M : |Esk(m)| = λ} as the set of messages that encrypt to a
ciphertext of size λ, we have

TrivSucc(SE
(`)
M,C,Me,P) =

∑
λ∈S

|Mλ|
|M|

· 1

|Mλ|
=
|S|
|M|

=
|S|

1620
.

Hence, the trivial advantage is TrivAdv(SE
(`)
M,C,Me,P)

=
TrivSucc(SE

(`)
M,C,Me,P)− PrMostLikely(Me,P)

1− PrMostLikely(Me,P)

=

(
|S|

1620
− 1

1620

)
÷
(

1− 1

1620

)
=
|S| − 1

1619
.

We consider length-hiding block mode ciphertexts with ` ∈ {1, 5, 10, 25} and
counter mode ciphertexts with ` ∈ {1, 80, 160, 400}. Table 1 summarizes the
results of this analysis.

Achieving a trivial advantage of 0. Note that according to Table 1 an increasing
length hiding parameter ` reduces the trivial advantage significantly, but not
to 0. This may be sufficient to make traffic analysis attacks significantly less
effective, but for some applications a trivial advantage of 0 may be desirable.

Rows 9,10,19 and 20 of Table 1 give the minimal length hiding parameter `
that is necessary to reduce the trivial advantage to 0.

Conclusions. For the message distribution considered in this section, we come
to the following conclusions:

– A block mode of operation improves the indistinguishability of the considered
web pages, compared to a counter mode when ` = 1. In combination with
length-hiding encryption and compression, the adversary’s trivial advantage
can be reduced from 0.7400 (in counter mode without compression) down
to 0.0037 (in block mode with compression and length hiding parameter
` = 25), together with a reduction in traffic by 45.278%.

– In most cases compression reduces the trivial advantage of the adversary by
a factor of about 2 or better. The only exception is counter mode without
length hiding padding, where the reduction is still by a significant factor of
about 1.5.

– Compression significantly reduces the number |U | of uniquely identifiable
web pages in all cases by a factor of 2 or better, and increases the size |Smax|
of the largest set of pages of identical size.

– To analyze the impact of different length-hiding parameters and compression
on communication complexity, we also measured the total amount of data
transferred from the server to the client when each of the 1620 web pages
is accessed exactly once. Note that compression not only reduces the adver-
sary’s advantage by a factor around 2, but also reduces the communication
complexity by a factor around 2.

19

Table 1. Analysis of simple website fingerprinting attacks. “CTR” refers to AES-
GCM, “BLK” to AES-CBC. “Comp.” indicates whether compression is enabled, ` is
the length-hiding parameter. Recall that plaintexts are padded to a multiple of ` bytes
for counter mode and ` blocks for block mode encryption, thus, if ` = 1, then no
additional length-hiding padding is used. |U | is the number of uniquely identifiable
pages, |Smax| is the size of the largest set of pages of identical size, |S| is the number of
different ciphertext lengths that are possible for the considered message distribution.
“TrivAdv” is the trivial advantage TrivAdv(SE

(`)
M,C,Me). The column “Total data” lists

the total amount of data transferred from the server to the client when each of the 1620
web pages is accessed exactly once, “Overhead” the traffic overhead incurred by LHE
when compared to the same encryption mode with ` = 1 and without compression.

Mode ` Comp. |U | |Smax| |S| TrivAdv Total data Overhead

1. CTR 1 False 868 4 1199 0.7400 5.39 MB —
2. CTR 1 True 400 8 822 0.5071 2.65 MB -50.888 %
3. CTR 80 False 8 85 54 0.0327 5.45 MB 1.158 %
4. CTR 80 True 3 205 24 0.0142 2.71 MB -49.745 %
5. CTR 160 False 6 166 30 0.0179 5.52 MB 2.311 %
6. CTR 160 True 3 404 14 0.0080 2.77 MB -48.610 %
7. CTR 400 False 1 409 14 0.0080 5.70 MB 5.677 %
8. CTR 400 True 2 826 7 0.0037 2.96 MB -45.159 %
9. CTR 8995 False 0 1620 1 0.0000 13.93 MB 158.346 %

10. CTR 3458 True 0 1620 1 0.0000 5.38 MB -0.294 %

11. BLK 1 False 40 23 213 0.1309 5.40 MB —
12. BLK 1 True 17 46 100 0.0611 2.66 MB -50.777 %
13. BLK 5 False 8 85 54 0.0327 5.45 MB 0.938 %
14. BLK 5 True 3 205 24 0.0142 2.71 MB -49.854 %
15. BLK 10 False 6 166 30 0.0179 5.52 MB 2.089 %
16. BLK 10 True 3 404 14 0.0080 2.77 MB -48.722 %
17. BLK 25 False 1 409 14 0.0080 5.70 MB 5.448 %
18. BLK 25 True 2 826 7 0.0037 2.96 MB -45.278 %
19. BLK 563 False 0 1620 1 0.0000 13.95 MB 158.157 %
20. BLK 217 True 0 1620 1 0.0000 5.40 MB -0.111 %

– Without compression, even for a relatively large LHE parameter `, such as
400 = 25 · 16 for counter mode or 25 for block mode encryption, the added
communication complexity is relatively small, in particular when compared
to the corresponding reduction in the adversary’s trivial advantage.

– Achieving a trivial advantage of 0 costs a traffic overhead 159% without
compression and even reduces traffic with compression.

We also consider a more powerful fingerprinting attack on the IACR ePrint
archive website based on user patterns and another fingerprinting attack on the
Google search engine. Due to space limitations, these two sections can be found
in Appendices E and F.

20

4.2 Simple Wikipedia Fingerprinting

Adversarial model. We consider webpage fingerprinting attack on the Wikipedia
website. In this model, a user visits the Wikipedia website. A passive adversary
observes the encrypted traffic and tries to determine the visited page.

Considered algorithms. Same as in Section 4.1.

Empirical Data Generation. The Wikimedia Foundation publishes pageview
statistics of the Wikipedia website since May 2015. The pageview statistics con-
tain the number of requests for each webpage in Wikipedia, which provides
us with a real world message distribution of Wikipedia pages. We used the
pageview data of May 2021 from https://dumps.wikimedia.org/other/
pageviews/readme.html. We considered the data for 164270 webpages writ-
ten in simple English and used a script issuing an HTTP HEAD-request for every
webpage to determine the size, in uncompressed and in compressed form. These
values are stored in a database and used to compute the size of counter- and
block-mode ciphertexts for these schemes that encrypt the web page in either
compressed or uncompressed form, with or without length-hiding encryption,
and with respect to different length-hiding parameters. We note that the Simple
Wikipedia project has a total number of 260478 webpages, as of May 2021, but
not all webpages were accessed at least once during this period. Therefore we
consider only the subset of webpages that were accessed in the considered time
period (thus, the message distribution implicitly assigns a probability of zero to
other pages).

Let M := {m1, . . . ,m164270} be the set of different Simple Wikipedia web-
pages accessed in May 2021. We assume that the user picks one out of the
164270 webpages according to the distribution (denoted by MWiki) based on the
pageview statistics and then gets the corresponding encrypted webpage. The
adversary tries to guess the webpage. Hence, the adversary outputs an index
i ∈ {1, . . . , 164270}, such that we define function P as P :M→ [1, 164270], for
mi 7→ i.

Calculating the trivial advantage. Table 2 summarizes the results of the analysis.

We calculate TrivAdv(SE
(`)
M,C,MWiki) for M ∈ {CTR,BLK}, C ∈ {True,False}

and different length-hiding parameter `.

Conclusions. Table 2 allows us to make the following observations:

– The adversary achieves very high trivial advantage (0.875) when ` = 1. This
indicates that the adversary could successfully identify the webpage with
high probability only from the ciphertext length.

– Compression reduces the overhead incurred by length-hiding encryption, and
also reduces the trivial advantage.

– A length-hiding parameter of 40K in the CTR mode (resp. 2.5K in the BLK
mode) reduces the trivial advantage to 0.01 and increases the total data by
about 23 % without compression, but reduces about 50 % total data with
compression.

21

https://dumps.wikimedia.org/other/pageviews/readme.html
https://dumps.wikimedia.org/other/pageviews/readme.html

We believe that the example of Wikipedia webpage fingerprinting illustrates
very well that length-hiding encryption with proper length-hiding parameter to-
gether with compression provides us with both security and bandwidth reduction
for real-world message distributions.

Beyond the above analyses, we have also conducted to more analyses on DNS
fingerprinting (one using random host names from the Majestic Million list, the
other using real-world DNS data collected in cooperation with a medium-sized
university), which can be found in Appendix G.

5 Implementation and Analysis

We have implemented our new approach as an Apache module, based on the most
recent versions of an Apache HTTP server (Apache/2.4.38) and the OpenSSL
library (version 1.1.1d) for Debian 10. The implementation is currently experi-
mental, we plan to make a more stable version publicly available.

The implementation consists of two components. The first component moni-
tors the server’s requests and responses. It stores the block-length and and num-
ber of occurrences of requests to static URLs and the corresponding responses
in a database. This database then provides an approximation of the server’s
message distribution, which will be used by the second component to determine
an appropriate length-hiding parameter `. Furthermore, this component applies
length-hiding padding to plaintext messages. Since OpenSSL currently does not
support length-hiding padding beyond the last fragment of a plaintext, even
though this is possible according to the TLS 1.3 standard, our experimental im-
plementation currently simulates padding beyond frame bounds by appending
NULL-bytes to the plaintext.5

The second component of our implementation computes the length-hiding
parameter `, based on the request-response database and a given upper bound on
the desired trivial advantage. It computes the smallest ` that satisfies this trivial
advantage for the message distribution defined by the database. Currently, the
computation proceeds iteratively, that is, at first it tests whether the parameter
` = 1 satisfies the trivial advantage bound. If it does not, ` is incremented and
the process repeated until an optimal value ` is found. Since the trivial advantage
does not necessarily decrease monotonously for a given message distributions,
this approach yields the smallest possible value `. The resulting parameter ` is
then used to define the size of length-hiding padding in the first component.
Note that the second component can run in the background at predefined times
(e.g., once per hour or once per day).

5.1 Validation of Pencil-and-Paper Analysis

To validate the theoretical pencil-and-paper analysis from Section 4 we config-
ured the webserver as a proxy for the IACR ePrint server (resp. Google search

5 As we will discuss below, we aim to extend OpenSSL to allow for length-hiding
padding beyond the TLS fragment boundary, by appending further TLS fragments,
if necessary.

22

engine). Then we requested each of the webpages (resp. search terms) once, to
establish the same message distribution that was considered in Section 4. We
used our implementation to record the message distribution, determine the LHE
parameter `, and then again accessed every web page once. We considered both
AES-GCM and AES-CBC cipher suites. In all cases, we were able to accurately
reproduce our results from Tables 1–4.

So far we have considered only the case without compression, for the follow-
ing reason. The plaintext data is accessible from within an Apache module by
accessing an appropriate “data bucket” of the Apache processing filter chain.
This enabled us to circumvent the fact that OpenSSL currently does not sup-
port length-hiding padding beyond the last fragment of a plaintext, by padding
the plaintext directly with NULL bytes. However, in order to apply the same
approach to compressed plaintext data, we would need access to a bucket that
contains the plaintext after compression, but before encryption. This seems not
possible from an Apache module, and therefore we could not yet validate the
pencil-and-paper analysis of compress-then-encrypt.

In future work we aim to perform further experiments, on a public web
server with real-world message distributions and with compression. To this end,
we have to extend OpenSSL to allow for length-hiding padding beyond the TLS
fragment boundary, by appending further TLS fragments, if necessary. Such
low-level modifications to OpenSSL and experiments on a public web server in
production require significant additional care. Therefore we view this as out of
scope of the present paper and leave this for future work.

6 Conclusions

Fingerprinting attacks are a very powerful technique to extract information from
an encrypted channel, which are known to be very difficult to defend against.
We have introduced a methodology that makes it possible to concretely quantify
the security gained by length-hiding encryption. Our goal is to go beyond the
assumption that the length of a ciphertext does reveal sensitive information,
which is typically made implicitly in theoretical security models. In this sense,
understanding security in presence of messages of different lengths contributes
to our understanding of “secure encryption” in general.

We find that a surprisingly small amount of padding that incurs only a minor
bandwidth overhead of a few percent can already reduce the advantage of an
adversary very significantly. Even only the use of block mode encryption schemes,
whose padding provides some very simple form of length-hiding encryption, may
already reduce the concrete advantage of fingerprinting attacks very significantly.
We also observe that the the general recommendation to disable compression
before encryption in all applications seems overgeneralized. While useful and
necessary in some applications (when active attacks are feasible), in some other
cases (e.g., “big brother” attacks) it may be harmful to security. It is therefore
necessary to consider the security requirements of the application at hand with
a more detailed analysis.

23

References

1. Majestic Million List, 2020. January 28, 2020, https://majestic.com/
reports/majestic-million.

2. Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. Protecting encrypted
cookies from compression side-channel attacks. In Rainer Böhme and Tatsuaki
Okamoto, editors, FC 2015, volume 8975 of LNCS, pages 86–106. Springer, Hei-
delberg, January 2015.

3. Tal Be’ery and Amichai Shulman. A perfect CRIME? only TIME will
tell, 2013. https://media.blackhat.com/eu-13/briefings/Beery/
bh-eu-13-a-perfect-crime-beery-wp.pdf.

4. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer
Society Press, October 1997.

5. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Journal of Cryp-
tology, 21(4):469–491, October 2008.

6. Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540, May 2015.

7. George Dean Bissias, Marc Liberatore, David D. Jensen, and Brian Neil Levine.
Privacy vulnerabilities in encrypted HTTP streams. In George Danezis and
David M. Martin Jr., editors, PET 2005, volume 3856 of LNCS, pages 1–11.
Springer, Heidelberg, May / June 2005.

8. Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn
Stam. Security of symmetric encryption in the presence of ciphertext fragmenta-
tion. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 682–699. Springer, Heidelberg, April 2012.

9. Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. A
systematic approach to developing and evaluating website fingerprinting defenses.
In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages
227–238. ACM Press, November 2014.

10. Jean Paul Degabriele. Hiding the lengths of encrypted messages via Gaussian
padding, 2021. To appear at ACM CCS 2021, preliminary copy directly obtained
from the author.

11. Thai Duong and Juliano Rizzo. The CRIME attack, 2012. http://www.
ekoparty.org/archive/2012/CRIME_ekoparty2012.pdf.

12. Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-
a-boo, i still see you: Why efficient traffic analysis countermeasures fail. In 2012
IEEE Symposium on Security and Privacy, pages 332–346. IEEE Computer Society
Press, May 2012.

13. Daniel Kahn Gillmor. Empirical DNS padding policy, 2017. https://dns.cmrg.
net/ndss2017-dprive-empirical-DNS-traffic-size.pdf.

14. Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil Schear. Website detection
using remote traffic analysis. In Simone Fischer-Hübner and Matthew K. Wright,
editors, PETS 2012, volume 7384 of LNCS, pages 58–78. Springer, Heidelberg,
July 2012.

15. Shay Gueron and Yehuda Lindell. GCM-SIV: Full nonce misuse-resistant authen-
ticated encryption at under one cycle per byte. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 109–119. ACM Press, Octo-
ber 2015.

24

https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
http://www.ekoparty.org/archive/2012/CRIME_ekoparty2012.pdf
http://www.ekoparty.org/archive/2012/CRIME_ekoparty2012.pdf
https://dns.cmrg.net/ndss2017-dprive-empirical-DNS-traffic-size.pdf
https://dns.cmrg.net/ndss2017-dprive-empirical-DNS-traffic-size.pdf

16. Shay Gueron and Yehuda Lindell. Simpleenc and simpleencsmall – an authen-
ticated encryption mode for the lightweight setting. Cryptology ePrint Archive,
Report 2019/712, 2019. https://eprint.iacr.org/2019/712.

17. Benjamin Harsha, Robert Morton, Jeremiah Blocki, John Springer, and Melissa
Dark. Bicycle attacks considered harmful: Quantifying the damage of widespread
password length leakage, 2020.

18. Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable website finger-
printing technique. In Thorsten Holz and Stefan Savage, editors, USENIX Security
2016, pages 1187–1203. USENIX Association, August 2016.

19. Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website fingerprint-
ing: attacking popular privacy enhancing technologies with the multinomial näıve-
bayes classifier. In CCSW, pages 31–42. ACM, 2009.

20. Andrew Hintz. Fingerprinting websites using traffic analysis. In Roger Dingledine
and Paul F. Syverson, editors, PET 2002, volume 2482 of LNCS, pages 171–178.
Springer, Heidelberg, April 2002.

21. Scott Hollenbeck. Transport Layer Security Protocol Compression Methods. RFC
3749, May 2004.

22. Tibor Jager, Martijn Stam, Ryan Stanley-Oakes, and Bogdan Warinschi. Multi-key
authenticated encryption with corruptions: Reductions are lossy. In Yael Kalai and
Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 409–441.
Springer, Heidelberg, November 2017.

23. Jonathan Katz and Moti Yung. Characterization of security notions for probabilis-
tic private-key encryption. Journal of Cryptology, 19(1):67–95, January 2006.

24. James Kelley and Roberto Tamassia. Secure compression: Theory & practice.
Cryptology ePrint Archive, Report 2014/113, 2014. http://eprint.iacr.org/
2014/113.

25. John Kelsey. Compression and information leakage of plaintext. In Joan Daemen
and Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 263–276.
Springer, Heidelberg, February 2002.

26. Katharina Kohls, David Rupprecht, Thorsten Holz, and Christina Pöpper. Lost
traffic encryption: fingerprinting LTE/4G traffic on layer two. In WiSec, pages
249–260. ACM, 2019.

27. Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson,
Narseo Vallina-Rodriguez, and Juan Caballero. Coming of age: A longitudinal
study of tls deployment. In Proceedings of the Internet Measurement Conference
2018, IMC 2018, New York, NY, USA, 2018. Association for Computing Machinery.

28. Marc Liberatore and Brian Neil Levine. Inferring the source of encrypted HTTP
connections. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimer-
cati, editors, ACM CCS 2006, pages 255–263. ACM Press, October / November
2006.

29. Alexander Mayrhofer. Padding Policies for Extension Mechanisms for DNS
(EDNS(0)). RFC 8467, October 2018.

30. Brad Miller, Ling Huang, Anthony D. Joseph, and J. D. Tygar. I know why you
went to the clinic: Risks and realization of HTTPS traffic analysis. In Emiliano
De Cristofaro and Steven J. Murdoch, editors, PETS 2014, volume 8555 of LNCS,
pages 143–163. Springer, Heidelberg, July 2014.

31. Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website
fingerprinting in onion routing based anonymization networks. In WPES, pages
103–114. ACM, 2011.

25

https://eprint.iacr.org/2019/712
http://eprint.iacr.org/2014/113
http://eprint.iacr.org/2014/113

32. Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does
matter: Attacks and proofs for the TLS record protocol. In Dong Hoon Lee and
Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 372–389.
Springer, Heidelberg, December 2011.

33. Angelo Prado, Neal, and Harris Yoel Gluck. SSL, gone in 30 seconds: a
BREACH beyond CRIME, 2013. https://media.blackhat.com/us-13/
US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-WP.
pdf.

34. Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018.

35. Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the
key-wrap problem. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 373–390. Springer, Heidelberg, May / June 2006.

36. Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing
information: k-anonymity and its enforcement through generalization and sup-
pression. In Tech. Rep, 1998.

37. Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,
Yossi Oren, and Yuval Yarom. Robust website fingerprinting through the cache
occupancy channel. In Nadia Heninger and Patrick Traynor, editors, USENIX
Security 2019, pages 639–656. USENIX Association, August 2019.

38. Payap Sirinam, Mohsen Imani, Marc Juárez, and Matthew Wright. Deep finger-
printing: Undermining website fingerprinting defenses with deep learning. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 1928–1943. ACM Press, October 2018.

39. Cihangir Tezcan and Serge Vaudenay. On hiding a plaintext length by preencryp-
tion. In Javier Lopez and Gene Tsudik, editors, ACNS 11, volume 6715 of LNCS,
pages 345–358. Springer, Heidelberg, June 2011.

40. Mathy Vanhoef and Tom Van Goethem. HEIST: HTTP encrypted information
can be stolen through TCP-windows, 2016. https://tom.vg/papers/heist_
blackhat2016.pdf.

41. Tao Wang and Ian Goldberg. On realistically attacking tor with website finger-
printing. PoPETs, 2016(4):21–36, October 2016.

42. Tao Wang and Ian Goldberg. Walkie-talkie: An efficient defense against passive
website fingerprinting attacks. In Engin Kirda and Thomas Ristenpart, editors,
USENIX Security 2017, pages 1375–1390. USENIX Association, August 2017.

43. Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian Monrose, and Gerald M.
Masson. Spot me if you can: Uncovering spoken phrases in encrypted VoIP con-
versations. In 2008 IEEE Symposium on Security and Privacy, pages 35–49. IEEE
Computer Society Press, May 2008.

44. Charles V. Wright, Lucas Ballard, Fabian Monrose, and Gerald M. Masson. Lan-
guage identification of encrypted VoIP traffic: Alejandra y roberto or alice and
bob? In Niels Provos, editor, USENIX Security 2007. USENIX Association, Au-
gust 2007.

45. Charles V. Wright, Scott E. Coull, and Fabian Monrose. Traffic morphing: An
efficient defense against statistical traffic analysis. In NDSS 2009. The Internet
Society, February 2009.

26

https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-WP.pdf
https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-WP.pdf
https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-WP.pdf
https://tom.vg/papers/heist_blackhat2016.pdf
https://tom.vg/papers/heist_blackhat2016.pdf

A Side-channels Beyond Ciphertexts Lengths

Many works on the feasibility of fingerprinting attacks make use of side-channels
beyond message lengths. For example, Dyer et al. [12] demonstrate that efficient
countermeasures against traffic analyses often fail in practice. They analyzed
datasets obtained from a concrete implementation, which contain additional in-
formation about the visited websites, beyond the size of transmitted data. This
includes, for instance, the pattern of packet bursts and the bandwidth of the
server.

In comparison, our work follows a “bottom-up” approach, in the sense that
we aim to determine what is in principle achievable, if one focuses on the length
of encrypted messages for different padding lengths, but ignoring other features
such as packet bursts that could be dealt with separately. This leaves us with
a simpler setting, which focuses only on application-layer message lengths and
eliminates other side channels that exist in current implementations.

It seems natural that our approach yields better security, and also suggests
that fingerprinting attacks such as those considered in [12] exploit not merely
the length of padded messages, but also very significantly other features such as
the timing of message bursts, which could be dealt with separately, independent
of length-hiding padding. We believe that this points to a possible approach to
make fingerprinting attacks less effective, in particular when the “TLS setting”
is considered:

1. Use length-hiding padding to conceal the size of application-layer messages.
Our approach even yields concrete information-theoretic bounds that apply
to any attack (as long as the attack is only based on ciphertext length, but
does not break the security of the encryption scheme, of course).

2. Eliminate other side channels, such as message bursts and their timing, by
sender-side buffering and ensuring that application-layer messages are send
in single bursts.

Given the effectiveness of fingerprinting attacks pointed out by [12] and other
works, and with the theoretical impossibility result by Vaudenay and Tezcan [39]
in mind, which both do not raise too much optimism about LHE, we consider
this work as a first possible step towards a meaningful application of LHE in
practice.

B On k-Anonymity of Encrypted Messages

Another natural candidate to analyze the indistinguishability of encrypted mes-
sages would be to extend the notion of k-anonymity [36], which is a classical
and well-studied approach for protecting privacy in datasets in general. Let M
be the set of all messages that can be produced by message sampler M. In our
context, k-anonymity would essentially require that for every message m ∈ M
there exists at least k − 1 further messages m1, . . . ,mk−1 that are encrypted to
the same ciphertext length.

27

However, there are two main issues with this seemingly more natural ap-
proach. k-anonymity provides only meaningful message privacy if the message
sampler M produces the uniform distribution overM (or is at least close to uni-
form. However, k-anonymity may fail completely to provide expected security
guarantees, if M is not the uniform distribution.

For instance, consider the message space

M = {m1,0,m1,1,m2,0,m2,1}

and assume that message mi,j yields a ciphertext of lengths `i, such that

|Esk(m1,0)| = |Esk(m1,1)| = `1

and

|Esk(m2,0)| = |Esk(m2,1)| = `2

with `1 6= `2. This message space would achieve 2-anonymity.

However, now consider a message distribution M which does not produce a
uniform distribution over M, but we have

Pr [m1,0
$←− M] = Pr [m2,0

$←− M] = 0

and

Pr [m1,1
$←− M] = Pr [m2,1

$←− M] = 1/2.

Note that in this case the adversary can uniquely determine the encrypted mes-
sage from the ciphertext length, even though 2-anonymity is achieved.

The message sampler M represents the a priori knowledge of an adversary
of encrypted data. For instance, the adversary might already know that the
targeted user visits a Wikipedia web page about some disease, where some are
more likely than others, but might be uncertain which one. In this case, the
distribution M would produce only the Wikipedia pages on diseases, each with a
probability corresponding to the likelihood of this particular disease, rather than
the uniform distribution over all Wikipedia pages. As another example, consider
an adversary that wants to figure out which exact research paper was accessed
by a user on https://eprint.iacr.org/2020/, knowing that the user is
particularly interested in research on one particular research area. Again, the
uniform distribution over all messages is not useful to capture this.

We believe a practically useful formal security model for length-hiding en-
cryption should cover such a priori knowledge and therefore consider k-anonymity
as not very suitable to analyze practical fingerprinting attacks, unless the distri-
bution M is the uniform distribution. In this case, for a message space achieving
k-anonymity, we obtain a trivial advantage of at most 1/k, and exactly 1/k if
and only if each ciphertext length corresponds to exactly k different messages.

In our experiments described below, we will also determine the k of k-
anonymity achieved by different padding lengths, for comparison.

28

https://eprint.iacr.org/2020/

C On one-way security and indistinguishability.

At a first glance our security definition (Definition 5) may appear very weak,
since it considers a “one-way” security definition where the adversary has to
output P(m∗) explicitly, rather than distinguish it from random. We point out
that the definition is actually not weaker than standard IND-M-CCA security
based on message-indistinguishability in the sense of Definition 3, but actually
a generalization of this standard notion. To see this, let M be the distribution
which outputs some fixed message m0 with probability 1/2, or otherwise a ran-
dom message m1, and let P be the function such that P(m0) = 0 and P(m1) = 1
for all m1 6= m0. Note that then the (SE,M,P, d)-CCA is essentially the stan-
dard IND-M-CCA security experiment for symmetric encryption in the sense of
Definition 3. The generalization makes it possible to capture applications where
messages do not have identical lengths in a more accurate and natural way.

D Proof of Theorem 3.8

We first define experiment Gameu for u ∈ {0, 1, . . . , d} as shown in Figure 3.

Proc. Initialize
(
1k
)
:

sk1, . . . , skd $←− {0, 1}k
challenged← False

C ← ∅
Return (M,P)

Proc. Enc(i,m):

Return Eski(m)

Proc. Dec(i, ct):

If (i, ct) ∈ C:
Return ⊥

Return Dski(ct)

Proc. Challenge():

If challenged = True return ⊥
challenged← True(
(m∗1j)j∈[t1], . . . , (m

∗
dj)j∈[td]

)︸ ︷︷ ︸
m∗

$←− M

For i ∈ [d], j ∈ [ti]:
ct $←− Eski(m

∗
ij)

r $←− {0, 1}|ct|

ct∗ij ←

{
ct If i > u

r Otherwise

C ← C ∪ {(i, ct∗ij)}
Return (ct∗ij)i∈[d],j∈[ti]

Proc. Finalize(p):

Output (P(m∗) = p)

Fig. 3. Gameu for u ∈ {0, 1, . . . , d} in proving Theorem 8.

It is clear that Game0 is exactly the same with the (SE,M,P, d)-CCA game.
So that we get

Pr[GameA0 = 1] = RealSucc(SE,M,P, d,A). (1)

For any u ∈ [d], Gameu−1 differs from Gameu only in the generation of
(ct∗uj)j∈[tu]. And we can prove the following claim which bounds their differ-
ence.

29

Claim. For any u ∈ {1, . . . , d}, there exists an adversary B such that

Pr[GameAu−1 = 1]− Pr[GameAu = 1] ≤ AdvSE,B
IND-C-CCA(1k) (2)

and the running time of B is T (B) ≈ T (A)+T (M)+T (P)+(t+qe)·T (E)+qd·T (D),
where T (M) is the time to sample messages from distribution M, T (P) is the
time to evaluate P, T (E) is the time to execute the encryption algorithm once,
T (D) is the time to execute the decryption algorithm once, qe is the number of
Enc queries made by A and qd is the number of Dec queries made by A.

Adversary B picks d − 1 secret keys sk1, . . . , sku−1, sku+1, . . . , skd
$←− {0, 1}k

and implicitly sets sku as the secret key sk that is chosen by the IND-C-CCA
experiment. Then it starts A with input (M,P).

In order to respond to the first Challenge query of A, B samples a message

tuple m∗ =
(

(m∗1j)j∈[t1], . . . , (m
∗
dj)j∈[td]

)
$←− M. For all i 6= u, B is able to

perfectly generate ct∗ij for j ∈ [ti] according to the specification of Gameu since
B has the secret key ski. To generate ct∗uj for j ∈ [tu], B queries m∗uj to the
Challenge oracle provided by the IND-C-CCA experiment and sets the return
value as ct∗uj . Then B returns (ct∗ij)i∈[d],j∈[ti] to A.

When A makes an Enc(i,m) or Dec(i, ct) query for i 6= u, B is able to
answer it perfectly since it has the secret key ski. If i = u, then B is able to
forward this query to the oracles provided by the IND-C-CCA experiment and
forward the result to A.

When A outputs p and terminates, B calculates p∗ ← P(m∗) itself and
outputs b′ ← 1 to the IND-C-CCA experiment if and only if p = p∗.

So, when b = 0 in the IND-C-CCA experiment, the ciphertexts (ct∗uj)j∈[tu] are
honestly generated and B perfectly simulates Gameu−1 for A. When b = 1, the
ciphertexts (ct∗uj)j∈[tu] are just random strings and B perfectly simulates Gameu
for A. So,

Pr[GameAu−1 = 1]−Pr[GameAu = 1]

= Pr[b′ = b | b = 0]− Pr[b′ = b | b = 1]

≤ AdvSE,B
IND-C-CCA(1k),

and the claim follows. Finally, we can argue information-theoretically that

Pr[GameAd = 1] ≤ TrivSucc(SE,M,P). (3)

Note that (M,P, (|ct∗ij |)i∈[d],j∈[ti]) is all the information about P(m∗) leaked to
A in Gamed and inequality Equation (3) follows. In total, Theorem 8 follows
from Equations (1) to (3).

E Website Fingerprinting with Communication Pattern

Adversarial model. Again, we consider a website fingerprinting attack against
the IACR ePrint archive at https://eprint.iacr.org/2020/, based on
the size of encrypted data. However, we consider a slightly more complex com-
munication pattern:

30

https://eprint.iacr.org/2020/

1. Alice picks one out of the 1620 subpages uniformly at random.
2. Then she visits the corresponding subpage.
3. Then she additionally downloads the pdf file of the corresponding research

paper.

Hence, the message distribution Me,f considered here is the uniform distri-
bution over the 1620 tuples (page, pdf file) in the ePrint archive for 2020. The

adversary observes two ciphertexts ctpage
$←− E

(`)
sk1

(page) and ctfile
$←− E

(`)
sk2

(file). Its
goal is again to determine the accessed web page, based on the size of ciphertexts
transmitted from the server to the client.

Note that the adversary now observes both the size of the subpage and the
size of the pdf document. Hence, we expect that this yields a more distinguish-
able pattern. Our goal is to determine the effect length-hiding encryption (and
optional compression) for this scenario. We expect that compression is less help-
ful, due to the higher variance of the size and compressibility of pdf documents,
and that a larger length-hiding parameter is required in order to reduce the
trivial advantage significantly.

Considered algorithms. We consider the same algorithms as in Section 4.1.

Empirical data generation As in Section 4.1, we implemented a script that
downloads all subpages of https://eprint.iacr.org/2020/ along with
the corresponding pdf files. If no pdf exists, which may happen when the paper
is withdrawn from the archive, then this yields a pdf file size of 0, which also
yields a distinguishable pattern. Then we calculated the size of the page and the
pdf file, each in uncompressed and compressed form. These values are stored in
a database, from which we compute the size of counter- and block-mode cipher-
texts for AES-GCM and AES-CBC, with and without compression, and with
and without length-hiding encryption for different length hiding parameters.

Calculating the trivial advantage. Since Me,f is the uniform distribution over the
1620 tuples (page, pdf file) in the ePrint archive for 2020, we can calculate the
trivial advantage as in Section 4.1.

Table 3 summarizes the results of our analysis. Just like before, we calcu-

late the trivial advantage TrivAdv(SE
(`)
M,C,Me,f) for M ∈ {CTR,BLK}, with and

without compression, and for different length-hiding parameter `. Since the con-
sidered pdf documents are usually significantly larger than the web pages con-
sidered in Section 4.1, we have used larger length-hiding parameters. Counter
mode ciphertexts are padded to a multiple of ` ∈ {1, 1600, 16000, 160000} bytes,
block mode ciphertexts to a multiple of ` ∈ {1, 100, 1000, 10000} blocks (with
block size 16 byte).

Conclusions. For the message distribution considered in this section, we come
to the following conclusions:

– Without length-hiding encryption, in counter mode all web site accesses are
uniquely identifiable with perfect success probability. This holds even when

31

https://eprint.iacr.org/2020/

compression is enabled. Hence, encryption is ineffective to prevent website
fingerprinting in this case.

– Compression reduces the trivial advantage in most cases (except for counter
mode without LHE), but significantly less than in the example considered
in Section 4.1. Hence, as expected, compression is particularly helpful if the
transmitted plaintext data is easily compressible, such as text data, but less
effective if other plaintexts are transmitted, such as pdf documents. The
same holds probably for images, videos, music files, etc., too.

– A block mode of operation provides essentially the same indistinguishability
of data as a counter mode, when relatively long plaintexts are encrypted.

– For both encryption modes, a large length hiding parameter, which pads
ciphertexts to a multiple of 16 kB, reduces the trivial advantage from 1
to below 0.12, which we expect to make traffic analysis attacks much less
practical. Even such a large length-hiding parameter incurs only a very small
overhead, which is below 3% without compression.

– Huge amount of padding is needed to achieve zero trivial advantage.

Hence, the length-hiding padding incurs only a very small overhead, while achiev-
ing a significant reduction of the trivial advantage. Not surprisingly, if the plain-
texts consist mostly of data that is not well compressible, then compression has
no significant effect on the trivial advantage of a website fingerprinting adver-
sary. However, in such applications a suitably chosen length-hiding parameter
may significantly reduce the trivial advantage. Even the large length hiding pa-
rameters that we consider have a surprisingly small bandwidth overhead.

F Google Search Term Fingerprinting

Adversarial model. We consider the scenario that a user is searching some term
in a search engine. A passive adversary observes the encrypted traffic and tries
to figure out which search term the user is searching for.

Considered algorithms. We consider the same algorithms as in Section 4.1.

Empirical Data Generation. In order to obtain realistic data, we collected 503
search terms published by Google as the daily search trends at https://
trends.google.com/trends/ from April 06 to May 05, 2021. We use a
script to search each term in the Google search engine and collected the size of
the returned data, in uncompressed and in compressed form. These values are
stored in a database and used to compute the size of counter- and block-mode
ciphertexts for these schemes that encrypt the web page in either compressed or
uncompressed form, with or without length-hiding encryption and with respect
to different length hiding parameters.

LetM := {m1, . . . ,m503} be the set of the 503 different Google search result
pages. We assume that the user picks one out of the 503 words uniformly at
random and then gets the corresponding search result page. Hence, the message
distribution MGoogle that we consider here is the uniform distribution over M.

32

https://trends.google.com/trends/
https://trends.google.com/trends/

The adversary tries to guess the search term. Hence, the adversary outputs an
index i ∈ {1, . . . , 503}, such that we define function P as P :M→ [1, 503], for
mi 7→ i.

Calculating the trivial advantage. Table 4 summarizes the results of the analysis.

We calculate TrivAdv(SE
(`)
M,C,MGoogle) for M ∈ {CTR,BLK}, C ∈ {True,False}

and different length-hiding parameter `.

Conclusions. Table 4 allows us to make the following observations:

– The adversary achieves very high trivial advantage (close to 1) when ` = 1.
This indicates that the adversary could successfully identify the search term
with high probability only from the ciphertext length of the search result
page.

– Compression reduces the overhead incurred by length-hiding encryption, and
also reduces the trivial advantage.

– A length-hiding parameter of 160K in the CTR mode (resp. 10K in the BLK
mode) reduces the trivial advantage to 0.01 and increases the total data by
about 16 % without compression, but reduces about 50 % total data with
compression.

We believe that the example of Google search term fingerprinting illustrates
very well that the general advice to disable compression before encryption can
be misleading and harmful to security. It is necessary to consider the concrete
security requirements of the application at hand.

G DNS Fingerprinting

Adversarial model. Now we turn from web site fingerprinting to a different appli-
cation. Recall that the Domain Name System (DNS) is an Internet service that
converts between host names such as eprint.iacr.org and IP addresses.
DNS is a public service and therefore public DNS records are public informa-
tion. Still, the contents of a DNS query made by an Internet user should usually
be considered private information, since a passive adversary observing these re-
quests may obtain a very clear picture about the user’s web browsing habits.
Therefore there is currently a tendency towards encrypting DNS traffic with
TLS.

A DNS query consists of a request from a client containing a host name and
a matching response that contains this host’s IP address and additional data. In
this section, we consider an adversary performing a DNS fingerprinting attack:

1. Alice picks host name from a distribution of host names known to the ad-
versary. For instance, this distribution may reflect some a priori knowledge
of the attacker about commonly requested host names for a particular DNS
service.

2. Then she makes an encrypted DNS request to a DNS server and receives an
encrypted response.

33

We formalize this procedure as (req, res) $←− MDNS where MDNS is a distribution
over the (request, response) tuples. Then the request and response are encrypted

(ctreq
$←− E

(`)
sk1

(req) and ctres
$←− E

(`)
sk2

(res)). A passive adversary that monitors both
the request and the response, records two ciphertexts (ctreq,ctres), and then tries
to guess the domain name for which Alice has requested an IP address.

Hence, our function P is defined as

P :M→ [1, N], P(reqi, resi) = i

where M is the set of all possible request/response pairs for the considered list
of host names of length N , (reqi, resi) is any request/response pair for the i-the
entry in the list, and MDNS is a distribution over M.

Considered algorithms. We consider the same algorithms as in Section 4.1.

Empirical Data Generation. For our empirical analysis, we collected two different
data sets:

1. The first 1000 host names of the so-called Majestic Million list [1]. This is
a public list of the 1,000,000 most popular (according to the creator of the
list) web sites on the Internet.6

In order to obtain realistic and publicly reproducible data, we used the
Google DNS server available at the IP address 8.8.8.8. We implemented
a script making DNS requests for the first 1000 host names on the Majestic
Million list and calculating the size of the request and the response, each
both in uncompressed and in compressed form. These values are stored in a
database, and used to compute the size of counter- and block-mode cipher-
texts for these schemes that encrypt the web page in either encrypted or un-
encrypted form, with or without length-hiding encryption and with respect
to different length hiding parameters. To determine the trivial advantage,
we assumed that a user chooses the requested domain name uniformly at
random, due to a lack of more precise information of a realistic distribu-
tion. We believe that this already draws a general picture of the impact of
length-hiding padding on the security of DNS against fingerprinting attacks.

2. To address the fact that in the Majestic Million case we had to assume a
uniform distibution, due to lack of more information about the frequency
of requested host names, we also obtained a real-world distribution of DNS
requests in collaboration with the IT department of a medium-sized univer-
sity with 23k students and 3.5k staff members. We monitored the university
DNS service for a 24 hr time interval in July 2021, and stored the list of
requested host names and their frequency in order to obtain a real-world
message distribution that makes it possible to determine the concrete secu-
rity and appropriate padding sizes for this particular DNS service.

6 The list is similar to the Alexa Top 1-M list, which is often used in academic research
papers, but published under a Creative Commons license.

34

Ethical considerations and compliance with privacy regulation. In order to
guarantee the protection of privacy of users and compliance with applicable
data protection laws, the data collection was carried out under supervision
of the responsible university data privacy officer. IP adresses and any other
data, except for the requested host names, were automatically filtered out
before storing a requested host name in a text file.

In both cases, we then determined the size of the request and the response, each
both in uncompressed and in compressed form. These values are stored in a
database, and used to compute the size of counter- and block-mode ciphertexts
for these schemes that encrypt the web page in either encrypted or unencrypted
form, with or without length-hiding encryption and with respect to different
length hiding parameters.

Calculating the trivial advantage. Table 5 summarizes the results of the Ma-

jestic Million DNS analysis. We calculate TrivAdv(SE
(`)
M,C,MMajesticDNS) for M ∈

{CTR,BLK}, C ∈ {True,False}, different length-hiding parameter ` and uni-
form message distribution MMajesticDNS. Since DNS requests and responses are
rather small, we use relatively small length-hiding parameters. Counter mode
ciphertexts are padded to a multiple of ` ∈ {1, 64, 128, 256} bytes, block mode
ciphertexts to a multiple of ` ∈ {1, 4, 8, 16} blocks (with block size 16 byte).

Table 6 summarize the results of the university DNS analysis. We calculate

TrivAdv(SE
(`)
M,C,MUniversityDNS) for M ∈ {CTR,BLK}, C ∈ {True,False}, differ-

ent length-hiding parameters ` for DNS request/response and real-world DNS
request distribution MUniversityDNS. Similarly, we consider relatively small length-
hiding parameter ` ∈ {1, 64, 128, 512} bytes for counter mode and ` ∈ {1, 4, 8, 32}
blocks for block mode.

Achieving trivial advantage 0. For the Majestic Million dataset, achieving a
trivial advantage of 0 requires an overhead of 216.509% in CTR mode with
compression. For BLK mode, we obtain 188.626%.

For the university DNS dataset, achieving a trivial advantage of 0 incurs
495.914% overhead in CTR mode with compression. For BLK mode, we obtain
441.625%.

Conclusions. Table 5 and Table 6 allows us to make the following observations:

– Since DNS requests and responses are relatively short, block mode encrypted
improves the indistinguishability of (request, response)-tuples significantly,
even without compression and length-hiding encryption.

– Compression reduces the trivial advantage but does not always reduces the
overhead incurred by length-hiding encryption. The reason is that DNS re-
quests and response contains little redundancy because of the short length,
which may lead to a length growth after compression.

– In both of the two analysis, a moderate length-hiding encryption parameter
of 8 for block mode (resp. 128 = 8 · 16 for counter mode) in combination

35

with compression reduces the trivial advantage to below 0.01. For counter
mode, this incurs a traffic overhead of at most 72%, for block mode at most
59%.

36

Table 2. Analysis of Simple Wikipedia article fingerprinting. “CTR” refers to AES-
GCM, “BLK” to AES-CBC. “Comp.” indicates whether compression is enabled, `
is the length-hiding parameter. Ciphertexts are padded to a multiple of ` bytes for
counter mode, and ` blocks for block mode encryption, ` = 1 means that no additional
length-hiding padding is used. |U | is the number of uniquely identifiable pages, |Smax|
is the size of the largest set of pages of identical size, |S| is the number of different
ciphertext lengths that are possible for the considered message distribution. “TrivAdv”
is the trivial advantage TrivAdv(SE

(`)
M,C,MWiki). The column “Total data” contains the

total amount of data transferred from the sever to the client when each of the 164270
web pages exactly once, “Overhead” the overhead incurred by LHE when compared to
the same encryption mode with ` = 1 and without compression.

Mode ` Comp. |U | |Smax| |S| TrivAdv Total data Overhead

1. CTR 1 False 26597 232 62524 0.8750 400.24 GB 0.000%
2. CTR 1 True 12908 81757 25689 0.5635 72.93 GB -81.780%
3. CTR 400 False 293 2251 1081 0.2775 401.14 GB 0.226%
4. CTR 400 True 132 81757 507 0.1557 73.82 GB -81.556%
5. CTR 4000 False 27 21876 193 0.1354 409.24 GB 2.248%
6. CTR 4000 True 26 81757 100 0.0701 81.76 GB -79.573%
7. CTR 40000 False 4 75284 34 0.0499 493.69 GB 23.349%
8. CTR 40000 True 6 158278 20 0.0058 199.47 GB -50.162%
9. CTR 160000 False 2 160609 11 0.0091 828.22 GB 106.930%

10. CTR 160000 True 2 164063 7 0.0012 728.39 GB 81.987%
11. CTR 2290976 False 0 164270 1 0.0000 10.14 TB 2493.687%
12. CTR 1331408 True 0 164270 1 0.0000 5.89 TB 1407.331%

13. BLK 1 False 3283 238 10540 0.6023 401.35 GB 0.000%
14. BLK 1 True 1457 81757 4901 0.3763 74.40 GB -81.462%
15. BLK 25 False 293 2251 1081 0.2775 402.22 GB 0.217%
16. BLK 25 True 132 81757 507 0.1557 75.26 GB -81.250%
17. BLK 250 False 27 21876 193 0.1354 410.31 GB 2.232%
18. BLK 250 True 26 81757 100 0.0701 83.19 GB -79.272%
19. BLK 2500 False 4 75284 34 0.0499 494.67 GB 23.251%
20. BLK 2500 True 6 158278 20 0.0058 200.75 GB -49.983%
21. BLK 10000 False 2 160609 11 0.0091 828.85 GB 106.514%
22. BLK 10000 True 2 164063 7 0.0012 728.99 GB 81.632%
23. BLK 143186 False 0 164270 1 0.0000 10.14 TB 2486.567%
24. BLK 83213 True 0 164270 1 0.0000 5.89 TB 1403.497%

37

Table 3. Analysis of website fingerprinting with patterns. “CTR” refers to AES-GCM,
“BLK” to AES-CBC. “Comp.” indicates whether compression is enabled, ` is the
length-hiding parameter. |U | is the number of uniquely identifiable pages, |Smax| is
the size of the largest set of pages of identical size, |S| is the number of different
ciphertext lengths that are possible for the considered message distribution. “TrivAdv”
is the trivial advantage TrivAdv(SE

(`)
M,C,Me,f). The column “Total data” contains the

total amount of data transferred from the sever to the client when each of the 1620
web pages and corresponding pdf documents is accessed exactly once, “Overhead” the
overhead incurred by LHE when compared to the same encryption mode with ` = 1
and without compression.

Mode ` Comp. |U | |Smax| |S| TrivAdv Total data Overhead

1. CTR 1 False 1620 1 1620 1.0000 1.33 GB —
2. CTR 1 True 1620 1 1620 1.0000 1.24 GB -6.840 %
3. CTR 1600 False 632 12 989 0.6103 1.33 GB 0.186 %
4. CTR 1600 True 538 12 923 0.5695 1.24 GB -6.643 %
5. CTR 16000 False 74 57 191 0.1174 1.36 GB 2.359 %
6. CTR 16000 True 68 62 178 0.1093 1.27 GB -4.289 %
7. CTR 160000 False 13 387 45 0.0272 1.68 GB 26.927 %
8. CTR 160000 True 12 397 43 0.0259 1.59 GB 20.201 %
9. CTR 91923338 False 0 1620 1 0.0000 278 GB 20836 %

10. CTR 89829769 True 0 1620 1 0.0000 272 GB 20359 %

11. BLK 1 False 1618 2 1619 0.9994 1.33 GB —
12. BLK 1 True 1609 4 1613 0.9957 1.24 GB -6.840 %
13. BLK 100 False 632 12 989 0.6103 1.33 GB 0.184 %
14. BLK 100 True 538 12 923 0.5695 1.24 GB -6.645 %
15. BLK 1000 False 74 57 191 0.1174 1.36 GB 2.357 %
16. BLK 1000 True 68 62 178 0.1093 1.27 GB -4.291 %
17. BLK 10000 False 13 387 45 0.0272 1.68 GB 26.925 %
18. BLK 10000 True 12 397 43 0.0259 1.59 GB 20.199 %
19. BLK 5745209 False 0 1620 1 0.0000 278 GB 20835 %
20. BLK 5614361 True 0 1620 1 0.0000 272 GB 20358 %

38

Table 4. Analysis of Google search term fingerprinting. “CTR” refers to AES-GCM,
“BLK” to AES-CBC. “Comp.” indicates whether compression is enabled, ` is the
length-hiding parameter. Ciphertexts are padded to a multiple of ` bytes for counter
mode, and ` blocks for block mode encryption, ` = 1 means that no additional length-
hiding padding is used. |U | is the number of uniquely identifiable pages, |Smax| is the
size of the largest set of pages of identical size, |S| is the number of different ciphertext
lengths that are possible for the considered message distribution. “TrivAdv” is the
trivial advantage TrivAdv(SE

(`)
M,C,MGoogle). The column “Total data” contains the total

amount of data transferred from the sever to the client when each of the 503 web pages
exactly once, “Overhead” the overhead incurred by LHE when compared to the same
encryption mode with ` = 1 and without compression.

Mode ` Comp. |U | |Smax| |S| TrivAdv Total Overhead

1. CTR 1 False 503 1 503 1.0000 214.08 MB —
2. CTR 1 True 501 2 502 0.9980 71.07 MB -66.800 %
3. CTR 16 False 485 2 494 0.9821 214.08 MB 0.002 %
4. CTR 16 True 460 4 480 0.9542 71.08 MB -66.799 %
5. CTR 1600 False 80 10 188 0.3725 214.46 MB 0.176 %
6. CTR 1600 True 28 17 99 0.1952 71.45 MB -66.625 %
7. CTR 16000 False 9 56 35 0.0677 217.94 MB 1.801 %
8. CTR 16000 True 2 124 17 0.0319 75.08 MB -64.927 %
9. CTR 160000 False 1 361 6 0.0100 248.45 MB 16.054 %

10. CTR 160000 True 2 363 4 0.0060 98.71 MB -53.892 %
11. CTR 1294396 False 0 503 1 0.0000 621.76 MB 190.435 %
12. CTR 513311 True 0 503 1 0.0000 246.57 MB 15.178 %

13. BLK 1 False 485 2 494 0.9821 214.08 MB —
14. BLK 1 True 460 4 480 0.9542 71.08 MB -66.799 %
15. BLK 100 False 80 10 188 0.3725 214.46 MB 0.175 %
16. BLK 100 True 28 17 99 0.1952 71.45 MB -66.626 %
17. BLK 1000 False 9 56 35 0.0677 217.94 MB 1.799 %
18. BLK 1000 True 2 124 17 0.0319 75.08 MB -64.927 %
19. BLK 10000 False 1 361 6 0.0100 248.45 MB 16.052 %
20. BLK 10000 True 2 363 4 0.0060 98.71 MB -53.893 %
21. BLK 80900 False 0 503 1 0.0000 621.77 MB 190.432 %
22. BLK 32082 True 0 503 1 0.0000 246.57 MB 15.176 %

39

Table 5. Analysis of DNS fingerprinting. “CTR” refers to AES-GCM, “BLK” to AES-
CBC. “Comp.” indicates whether compression is enabled, ` is the length-hiding param-
eter. Ciphertexts are padded to a multiple of ` bytes for counter mode, and ` blocks
for block mode encryption, ` = 1 means that no additional length-hiding padding is
used. |U | is the number of uniquely identifiable pages, |Smax| is the size of the largest
set of pages of identical size, |S| is the number of different ciphertext lengths that
are possible for the considered message distribution. “TrivAdv” is the trivial advantage
TrivAdv(SE

(`)
M,C,MMajesticDNS). The column “Total data” contains the total amount of

data transferred between the client and the DNS server when each of the 1000 websites
is accessed exactly once, “Overhead” the overhead incurred by LHE when compared
to the same encryption mode with ` = 1 and without compression.

Mode ` Comp. |U | |Smax| |S| TrivAdv Total data Overhead

1. CTR 1 False 469 13 644 0.644 157.97 KB —
2. CTR 1 True 363 10 590 0.590 145.90 KB -7.644 %
3. CTR 64 False 1 536 6 0.005 222.88 KB 41.084 %
4. CTR 64 True 1 827 5 0.004 197.38 KB 24.942 %
5. CTR 128 False 0 549 3 0.002 309.62 KB 95.998 %
6. CTR 128 True 0 836 2 0.001 270.50 KB 71.231 %
7. CTR 256 False 0 974 2 0.001 506.50 KB 220.623 %
8. CTR 256 True 0 1000 1 0.000 500.00 KB 216.509 %

9. BLK 1 False 7 130 36 0.035 173.23 KB —
10. BLK 1 True 1 246 19 0.018 161.30 KB -6.891 %
11. BLK 4 False 0 535 6 0.005 223.44 KB 28.980 %
12. BLK 4 True 1 814 5 0.004 198.69 KB 14.693 %
13. BLK 8 False 0 546 3 0.002 310.00 KB 78.948 %
14. BLK 8 True 0 819 2 0.001 272.62 KB 57.374 %
15. BLK 16 False 0 974 2 0.001 506.50 KB 192.378 %
16. BLK 16 True 0 1000 1 0.000 500.00 KB 188.626 %

40

Table 6. Analysis of DNS fingerprinting for real-world university DNS request dis-
tribution MUniversityDNS. “TrivAdv” is the trivial advantage TrivAdv(SE

(`)
M,C,MUniversityDNS).

The others stay the same with Table 5.

Mode ` Comp. |U | |Smax| |S| TrivAdv Total data Overhead

1. CTR 1 False 2734 18646 10295 0.551 73.49 MB —
2. CTR 1 True 1679 11865 8364 0.584 80.81 MB 9.956 %
3. CTR 64 False 1 273098 16 0.024 96.35 MB 31.103 %
4. CTR 64 True 2 190619 13 0.037 102.79 MB 39.866 %
5. CTR 128 False 0 338153 5 0.009 124.24 MB 69.051 %
6. CTR 128 True 0 311134 4 0.004 126.30 MB 71.850 %
7. CTR 512 False 0 448467 1 0.000 437.96 MB 495.914 %
8. CTR 512 True 0 448467 1 0.000 437.96 MB 495.914 %

9. BLK 1 False 13 68962 147 0.146 80.86 MB —
10. BLK 1 True 6 91914 87 0.081 88.25 MB 9.145 %
11. BLK 4 False 2 269943 18 0.024 96.68 MB 19.569 %
12. BLK 4 True 1 174666 13 0.030 105.21 MB 30.109 %
13. BLK 8 False 0 335348 6 0.009 124.64 MB 54.149 %
14. BLK 8 True 0 293682 4 0.004 128.43 MB 58.831 %
15. BLK 32 False 0 448465 2 0.000 437.96 MB 441.626 %
16. BLK 32 True 0 448467 1 0.000 437.96 MB 441.625 %

41

	On Fingerprinting Attacks and Length-Hiding Encryption
	Introduction
	Further Context and Discussion
	A New Perspective on Length-Hiding Encryption
	A New Syntactical Definition
	New Security Model
	Trivial Success Probability and Advantage

	Analysis of Real-World Message Distributions
	Simple Website Fingerprinting
	Simple Wikipedia Fingerprinting

	Implementation and Analysis
	Validation of Pencil-and-Paper Analysis

	Conclusions
	Side-channels Beyond Ciphertexts Lengths
	On k-Anonymity of Encrypted Messages
	On one-way security and indistinguishability.
	Proof of Theorem 3.8
	Website Fingerprinting with Communication Pattern
	Google Search Term Fingerprinting
	DNS Fingerprinting

