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ABSTRACT
We propose a new hash function Reinforced Concrete, which is
the first generic purpose hash that is fast both for a zero-knowledge
prover and in native x86 computations. It is suitable for a various
range of zero-knowledge proofs and protocols, from set member-
ship to generic purpose verifiable computation. Being up to 15x
faster than its predecessor Poseidon hash, Reinforced Concrete
inherits security from traditional time-tested schemes such as AES,
whereas taking the zero-knowledge performance from a novel and
efficient decomposition of a prime field into compact buckets.

The new hash function is suitable for a wide range of applications
like privacy-preserving cryptocurrencies, verifiable encryption, pro-
tocols with state membership proofs, or verifiable computation. It
may serve as a drop-in replacement for various prime-field hashes
such as variants of MiMC, Poseidon, Pedersen hash, and others.

Keywords: Hash functions, verifiable computation, zksnarks,
finite fields.

1 INTRODUCTION
SNARKs and hash functions. The recent years have been marked

as a thrive of distributed verifiable computation, where the out-
come of some algorithm A is accompanied with a succinct proof of
correctness, widely known as a SNARK [47, 58, 62]. Performance
of those protocols, however, remains a major bottleneck for appli-
cations. The reasons are manyfold, but one crucial point is that
SNARKs are constructed for statements formulated over prime fields
whereas regular computer programs are written for and executed
over bitstrings. The necessary translation of code into finite field
arithmetic carries a significant overhead. A notable example is the
cost of computing 70 SHA-256 hash function calls, which were
needed to transfer Zcash [3] cryptocurrency privately back in 2017,
and which took over 40 seconds to create such a SNARK, compared
to 10 microseconds of native computation on a PC. Thus, the de-
sign of various cryptographic primitives tailored for operating over
finite fields is an active research area [6, 7, 41].

In this paper we remove one of such bottlenecks by offering a
hash function that is fast both for SNARKs and native computation.
There already exist functions that excel in either of those areas,
but not in both. The motivation for such a swissarmy tool is the
following. To scale, parallelize, and aggregate proofs we employ

what is called a recursive proof protocol [21, 25–27], where a party
can prove their share of computation together with a verification
of proof coming from the predecessor. This also enables wrapping
multiple proofs into a single succinct check. Notably, however, many
such recursive protocols require both hashing the input of a party
with Merkle tree and proving some openings of the tree in zero-
knowledge (ZK). Thus, whatever hash function is selected for the
tree, it must be fast in both scenarios. To make a concrete example,
one of the most ZK-efficient hash functions to date, Poseidon [41],
when plugged into the Fractal recursive protocol, makes the prover
100 times more expensive just because it is slow in the native x86
computation [27, Section 13.2].

Summary of use cases. In more details, our new hash function
will address, among others, the following use cases:

• Fast and efficient set membership proofs based on
Merkle tree accumulators. Immensely popular in cryptocur-
rency protocols [2, 3, 61], this case requires a hash function
for the tree. Parties 𝑃1, 𝑃2, . . . , 𝑃𝑛 add entries 𝑉1,𝑉2, . . . ,𝑉𝑘
to some public accumulator 𝔄. Then at any point any party
𝑃 𝑗 can prove that 𝑉𝑖 ∈ 𝔄. For instance, in Zcash [3] 𝑉𝑖 are
unspent transactions and 𝔄 is a Merkle tree over them, so
that in order to spend transaction 𝑉 an owner is required
to provide a proof of knowledge that 𝑉 ∈ 𝔄 as well as a
proof of knowledge of some secret committed within 𝑉 . Its
ZK circuit should minimize the proof creation time.

• Verifiable computation based on recursive proofs. Here
the entire computation is a chain of functions 𝐹1, 𝐹2, . . . , 𝐹𝑘
applied consecutively to some state. Starting with 𝑋 , for
each 𝑖 Party 𝑃𝑖 computes 𝐹𝑖 and carries an intermediate
result and a proof of correctness to the next 𝑃𝑖+1 so that the
last 𝑃𝑘 provides 𝑌 and attests 𝑋

𝐹𝑘◦𝐹𝑘−1◦···◦𝐹1−−−−−−−−−−−−−→ 𝑌 being ac-
tually aware only of their own computation and the proof of
correctness 𝜋𝑘−1 from 𝑃𝑘−1. Verifiable computation frame-
works such as Halo Infinite [21] or Fractal [27] instruct that
the proof 𝜋𝑘 asserts the correctness of 𝐹𝑘 and that the code
𝐶𝑘 that verifies 𝜋𝑘−1 outputs a success. If the inner commit-
ment scheme is Merkle-tree-based (such as FRI [12]), then
𝜋𝑘−1 consists of several Merkle tree openings, so that 𝐶𝑘
makes a number of calls to the hash function that comprises
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the tree. Here we minimize both native computation time
and the prover time.

Both use cases require a cryptographically secure hash function,
i.e., it should resist preimage and collision attacks.

Summary of requirements. We summarize the requirements stem-
ming from the use cases as follows.

• Minimal prover time. For many ZK proof systems it is a
(super)linear function of the gate count, where each gate
is usually a basic field arithmetic operation or, in some
systems, a table lookup [13, 34, 35, 47, 62]. Though the ac-
tual performance depends significantly on the proof system
chosen and an application, the mere number of standard
gates is a good approximation. It is known that custom
gates (lookup high-degree polynomials) may increase the
performance up to the factor of 10, but those are function-
specific and can’t be reasonably compared across distinct
proof systems. In Table 1 we provide a count in R1CS con-
straints (roughly, the number of field multiplications), in
standard Plookup gates (each gate contains either a single
multiplication and an arity-4 addition, or a table lookup),
and in area-degree product (each custom gate contributes
to the cost additively with the product of input size and
the degree of the polynomial that describes the gate con-
straint). Unfortunately, we can’t provide a sound prover
time benchmark since at the moment of submission no
production-ready proof system that supports lookups is
available though specifications exist [63].

• Native performance. A hash function is supposed to run
as fast as possible on typical hardware where proofs are
created, which are regular laptops and desktops nowadays.
The Fractal use case [27] implies that it should be at least
10x faster than Poseidon.

• Security. The common approach [6, 41] is to provide evi-
dence that the existing attacks fail. However, as algebraic
attacks [4, 40] are the most natural for finite-field-based de-
signs, it becomes increasingly difficult to estimate the secu-
rity as the performance of those attacks is highly volatile [11,
64]. It is thus desirable to base the security of a new hash
function on a more traditional [60] rather than algebraic
security analysis.

State of the art. There already exist several hash functions crafted
for the first use-case with the number of circuit gates (or equiva-
lently low-degree polynomial constraints) being the primary metric.
Examples include prime-field (Feistel) MiMC versions [5, 6], Friday
[8], Poseidon [41], Rescue [7] (and its updated version Rescue-
Prime [7]), Griffin [39], Grendel [65], and Neptune [43]. Many of
these hash functions share some common features, as the fact that
the non-linear layer is instantiated via a simple power map. Focus-
ing on Poseidon, it is based on the Hades design strategy [42],
which makes use of an uneven distribution of the S-boxes, namely,
full S-box layers in the external rounds and partial S-box layers
in the middle ones, in order to minimize the multiplicative com-
plexity. The external rounds provide security against statistical
attacks, while the internal rounds have the goal of increasing the

degree of the permutation. A rather recent addition to this set is Sin-
semilla [3, Sec. 5.4.1.9], an instance of the Pedersen hash function[3,
Sec. 5.4.1.7] optimized for table lookups in custom gates.

While most of them have withstood public scrutiny [4, 11, 16, 33,
46, 51], the plain performance is not satisfactory (see last column
of Table 1), since each round of such schemes requires a finite
field multiplication, which is relatively expensive (hundreds of
CPU cycles) compared to bit operations utilized in traditional hash
functions.

Our design: Reinforced Concrete. We present a new sponge hash
function Reinforced Concrete, in short RC, over F𝑝 exploiting
all the advantages of lookup-equipped proof systems and suitable
for both membership proofs and verifiable computation use cases.
The permutation that instantiates RC is composed of two types of
components:

(1) outer ones for preventing statistical attacks;
(2) an inner one for preventing algebraic attacks.

The inner part strengthens the whole construction like steel bars
strengthen concrete, hence the name of the function and its com-
ponents.

For the inner component, instead of using simple power maps
as in Poseidon and Rescue, we use a single building block with
a complex algebraic structure, which we call Bars. A Bars layer
can be seen as a non-linear layer composed of independent high-
degree and dense S-boxes. The Bars function combines a layer of
S-boxes (such as in AES) with a field element decomposition in
just a handful of small operations (or table gates in the circuit),
and it admits a very simple representation when using look-up
tables, as e.g. in the case of AES [32] and AES-like ciphers. As a
result, the security argument we propose for preventing algebraic
attacks including interpolation [50] and Grobner basis attacks [30]
resembles the one well known and accepted in the literature for
AES and more generally AES-like ciphers, for which the algebraic
attacks can attack only a tiny fraction of the rounds compared to
the statistical attacks [28, 29].

Even if it prevents algebraic attacks, it can be broken by more
traditional statistical attacks such as rebound attacks [55, 60]. As
those are much better studied, we instantiated the external rounds
with other layers which are known to protect against statistical
attacks, including affine layers called Concrete that provides full
diffusion and low-degree non-linear layer called Bricks, which
both provides (non-linear) diffusion and ensure security against
statistical attacks.

Our approach to performance. We tackle the performance issue
by making the Bars layer fast in the native computation. For this
we managed to avoid field multiplications altogether in this layer
and do only a bunch modular reductions by small moduli instead,
followed by compact S-boxes. The performance of our design varies
for different fieldswe operate on, but is in the range of 2-9x overhead
over the popular SHA-256.

Our approach to compactness. We tackle the prover time issue
by providing an efficient lookup-based implementation of highly-
nonlinear Bars, which is therefore one of main contributions of
this submission. Concretely, it is the first primitive that is highly
nonlinear, compact, and fast at the same time. For S-boxes of size
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29.5, we make only 126 lookups to process 510 bits of data, which
is not far from the optimal 510/9.5 ≈ 53.

Comparison to other designs. When compared to the hash func-
tions tailored to the same use cases, we are on par in the gate metric
and are much faster in the native performance.

The performance can be improved in certain fields, and we show
how to craft a prime to increase performance further. Even over
generic prime fields (such as the scalar fields of the BLS12-381
or BN254 elliptic curves) RC is faster by a factor of 5 compared
to Poseidon and by a factor of 140 compared to Rescue and 120
compared to Rescue-Prime. Using specially crafted fields increases
these factors to 16, 357, and 289 respectively. RC is, thereby, only
by a factor of 5 slower than Blake2, the fastest traditional hash
algorithm we benchmarked, but requires 7 times less gates when
encoded into a circuit.

Compared to Pedersen hash/Sinsemilla we provide pre-image
resistance in addition to collision resistance. Also we rely on the
public scrutiny rather than on (pre-quantum) hardness assump-
tions.

From the design perspective, one can view the collision resistant
but slower Sinsemilla as an alternative to the Bars layer, as both
are not preimage resistant in isolation. Whether it is possible to
take the best from both designs, remains the subject of future work.

Regarding security analysis, the new design offers reasonably
big security margin against statistical attacks, but at the same time
much bigger margin against algebraic attacks. Since the latter are
less explored, we conclude that RC is more robust against possi-
ble breakthroughs in algebraic analysis. On the other hand, the
most recent algebraic cryptanalysis of weakened Poseidon and
Rescue-Prime [11] has proven to be memory-intensive and thus
less practical than can be expected.

Supported proof systems. Whereas some ZK proof systems ex-
plicitly work with arithmetic gates (i.e. field additions and multipli-
cations) only [47, 62], a number of protocols also support lookup ta-
bles. Those includeArya [22], Plookup [34, 63], Halo2 [3], Cairo [37].
As lookup gates also speed up traditional hash functions like SHA-2,
we expect such protocols to become widespread in the near future.

Restrictions and Future Work. Whereas RC clearly brings high
native and ZK performance, it also has its own restrictions. First
of all, a proof system should support lookup gates, as otherwise
the RC circuit would be quite big (we estimate it to be around 5000
constraints). Secondly the Bars component is specific for each field,
which implies a bit of work when carrying it to a proof system with
a new curve. Devising a more generic Bars is the subject of the
future work. Another interesting direction is non-sponge instances
of RC.

Summary of the paper. We describe RC on a high level in Section 2.
Then we give formal security definitions and claims regarding the
security of RC in Section 3. A more detailed rationale and specifica-
tion follows in Section 4. We proceed with a summary of our own
cryptanalysis in Section 5 (which is detailed in Appendix). Then we
present a constraint system (needed to build a circuit for ZK proofs)
for RC and prove its correctness and soundness (Section 6). We
conclude the main body of the paper with the benchmarks. Details
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· · ·
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Figure 1: A sponge hash function with a fixed-size output. In
our case 𝐼𝑉 is a 3-tuple of zero F𝑝 elements,𝑚𝑖 are message
chunks to be hashed (2 F𝑝 elements each), ⊕ is the element-
wise addition in the field, ℎ𝑖 are hash outputs.

of RC instances for different fields and details of cryptanalysis are
presented in Appendix.

2 RC IN A NUTSHELL
The RC hash function operates in the sponge framework (Fig. 1).
The sponge converts a fixed length bijective function (called RC
permutation) to a variable-length hash function, which is collision-
and preimage-resistant as long as the underlying permutation does
not exhibit any ‘non-random‘ properties up to the bound defined
by the security level 2_ (in our case _ is universally set to 128).

The RC permutation illustrated in Fig. 2, can be considered as a
modified 7-round SP network, where input, output and intermediate
state elements are from F3𝑝 for a prime number 𝑝 . More formally,

RC := Concrete(8) ◦ Bricks ◦ Concrete(7)

◦ Bricks ◦ Concrete(6) ◦ Bricks

◦ Concrete(5) ◦ Bars ◦ Concrete(4)

◦ Bricks ◦ Concrete(3) ◦ Bricks

◦ Concrete(2) ◦ Bricks ◦ Concrete(1)

In the following, we refer to Concrete ◦ Bricks as "round".
We define RC for different 𝑝 , with two (-BN and -BLS) being scalar

scalar fields of the curves BN254 [69] and BLS12-3811 and another
one (-ST) crafted for a specially chosen field in order to deliver
the highest performance. We elaborate how to craft an instance in
Section 4.

We reserve 1 field element for the capacity in sponge, thus aiming
for the 128-bit security against collision and preimage attacks for all
instances. A single call to RC thus suffices for a 2-to-1 compression
function.

Design. The RC design depicted in Figure 2 is a modification of a
traditional word-oriented SP-network (SPN) for constructing (keyed
or keyless) cryptographic permutations. The RC design differs from
a traditional SPN in two aspects:

• the middle layer of the SP network is replaced by a spe-
cial component called Bars. This special component ef-
fectively reinforces the permutation against cryptanalytic
approaches that would cover many more rounds without
Bars. It does not admit a low-degree polynomial descrip-
tion but can be implemented as a circuit with reasonable
costs in ZK.

1https://electriccoin.co/blog/new-snark-curve/

https://electriccoin.co/blog/new-snark-curve/
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Performance
Zero knowledge Native

R1CS Plookup Area-degree
eq-s reg. gates product (`s)

Poseidon 243 633 9495 19
Rescue 288 480 7200 480

Rescue-Prime 252 420 6300 415
Feistel-MiMC 1326 1326 19890 38

Griffin 96 186 2790 115
Neptune 228 1137 17055 20
SHA-256 27534 3000 60000 0.32
Blake2s 21006 2000 40000 0.21

Pedersen hash 869 13035 54
Sinsemilla 510 1530 137

Reinforced Concrete-BN/BLS - 378 5670 3.4
Reinforced Concrete-ST - 360 5400 1.09

Table 1: Performance of various hash functions in the zero knowledge (preimage proof) and native (hashing 512 bits of data)
settings. All native benchmarks are ours (Section 8.2). Poseidon, Rescue, Rescue-Prime, Feistel-MIMC, Neptune, and Griffin
gate counts are ours (Section 8.1.2). SHA-256 and Blake2s R1CS gate counts are from Hopwood’s notes [49], and their Plookup
costs as well as the area-degree product is taken from the report by Williamson [68]. Pedersen hash gate count is taken from
the Zcash protocol [3], and the area-degree product is calculated using the same factor of 15 as for Poseidon. The Sinsemilla
regular gate count by us is Section 8.1.2, whereas the area-degree optimized version is from [24].

• instead of applying independent non-linear transforma-
tions on single words, RC uses (low-degree) non-linear lay-
ers, called Bricks, that additionally mix different words.
Bricks used the same construction as Horst [39]. It pro-
vides resistance against statistical cryptanalysis and is cheap
in the zero knowledge, i.e. via gate counting.

The third component, Concrete, is an analog of the traditional
affine layer but over F. It ensures diffusion to make statistical or
algebraic properties expand to the entire state, and is also cheap in
ZK.

Layout. The Bricks and Concrete layers interleave exactly as
in traditional SPN designs [32]. As RC is used in a sponge frame-
work, the Bricks components at either end would bring no secu-
rity against collision or preimage attacks, so we start and end with
Concrete. The middle call to Bricks is replaced with Bars. The
rationale behind putting all Bar into a single layer is that start-from-
the-middle attacks are somewhat easier to find and thus we plan to
detect them all in the design phase.

3 SECURITY REQUIREMENTS AND CLAIMS
Our high-level security claims, which determine the parameter
selection for RC, are the following.

• For the sponge hash function with RC, we aim for a collision
and preimage resistance up to 2128 field operations for 256-
bit fields. We want to be able to instantiate a random oracle
in protocols up to 2128 calls.

• For the authenticated encryption scheme using RC, we aim
for confidentiality and integrity up to 2128 encrypted mes-
sages for 256-bit fields.

• When using the RC in other future schemes, we aim for a 1-
element CICO security [48] up to 2128 field operations. More

concretely, it should be infeasible to find such 𝑥1, 𝑥2, 𝑦1, 𝑦2
such that

RC(0, 𝑥1, 𝑥2) = (0, 𝑦1, 𝑦2)

4 SPECIFICATION AND RATIONALE
The story behind the design of RC, which has determined its inner
components is as follows:

• We wanted to design a hash function which has a high
degree as a polynomial and would not allow a treatment
with algebraic methods such as Grobner basis.

• Wewere aware how table lookups can be used to implement
hash functions that are highly non-linear and resistant to
algebraic attacks – such as Blake2 and SHA-256. We seek to
have similar functionality but applied to finite field elements
rather than 32/64/128/256-bit words. For this we had to
design an efficient way to decompose a field element into
smaller chunks, apply some nonlinear transformation, and
then wrap it back (composition). This was to become Bars.

• It turned out that in order to avoid overflows at composition,
the nonlinear transformation within Bars should have a
certain number of fixed points, and there must not be many
of them for security. This yielded an heuristic method for
finding a decomposition.

• In order to protect against non-algebraic attacks, we had to
wrap Bars with additional confusion and diffusion layers.
The number of those was derived from traditional attacks
on SPN-based designs such as rebound [60].

4.1 The Bricks function
The function Bricks : F3𝑝 → F3𝑝 is a non-linear permutation of
degree 𝑑 = 5 (with the requirement gcd(𝑝 − 1, 𝑑) = 1). Following
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Figure 2: The RC permutation. The middle Br-C-B-C-Br part
is secure against algebraic attacks whereas C-Br-C-Br-C-Br-
C-Br-C-Br-C is secure against rebounds (more generally, sta-
tistical) attacks.

[39], we define Bricks as

Bricks(𝑥1, 𝑥2, 𝑥3)

= (𝑥𝑑1 , 𝑥2 (𝑥
2
1 + 𝛼1𝑥1 + 𝛽1), 𝑥3 (𝑥22 + 𝛼2𝑥2 + 𝛽2)),

where 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ F𝑝 such that 𝛼2
𝑖
− 4𝛽𝑖 is not a quadratic

residue modulo 𝑝 . We refer to [39, Section 3] for a proof regarding
its invertibility, which relies on the fact that 𝑧2 + 𝛼𝑧 + 𝛽 ≠ 0 for
each 𝑧 ∈ F𝑝 .

4.2 The Concrete function
The function Concrete( 𝑗 ) : F3𝑝 → F3𝑝 denotes the multiplication of
the state by a 3 × 3MDS matrix𝑀 = circ(2, 1, 1) with subsequent
addition of the 𝑗-th round constant vector 𝑐 ( 𝑗 ) ∈ F3𝑝 , that is

Concrete( 𝑗 ) (𝑥) := ©«
2 1 1
1 2 1
1 1 2

ª®¬ × ©«
𝑥1
𝑥2
𝑥3

ª®¬ + 𝑐 ( 𝑗 ) .
Note that 𝑀 is invertible and MDS for each 𝑝 ≥ 3. The elements
𝑐
( 𝑗 )
1 , 𝑐

( 𝑗 )
2 , 𝑐

( 𝑗 )
3 are certain pseudo-random constants, generated us-

ing e.g. Shake-128 with rejection sampling.

4.3 The Bars Function
The function Bars : F3𝑝 → F3𝑝 is defined as

Bars(𝑥1, 𝑥2, 𝑥3) = (Bar(𝑥1), Bar(𝑥2), Bar(𝑥3)) .
The function Bar : F𝑝 → F𝑝 is designed to be a permutation of
F𝑝 coming from 𝑛 smaller permutations acting independently on 𝑛
smaller domains Z𝑠1 , . . . ,Z𝑠𝑛 , where 𝑠1, . . . , 𝑠𝑛 are defined for each
prime 𝑝 separately, see Section 7. The independence requirement is
crucial for the performance of Bar. For this we decompose a field
element 𝑥 ∈ F𝑝 into 𝑛 smaller digits 𝑥1, . . . , 𝑥𝑛 with 𝑥𝑖 ∈ Z𝑠𝑖 with
the function Comp, and then compose it back with Decomp. Overall,
Bar : F𝑝 → F𝑝 is defined as

Bar = Comp ◦ SBox ◦ Decomp. (1)

In the following, we define all these components. The invertibility
of Bar is proved in Appendix A.2.

4.3.1 Decomposition and Composition. We choose the standard
representation F𝑝 = {0, 1, . . . , 𝑝 − 1} for F𝑝 , thus identifying an
element 𝑥 ∈ F𝑝 with an integer 0 ≤ 𝑥 ≤ 𝑝 − 1. Our decomposition
Decomp : F𝑝 → Z𝑠1 × . . . × Z𝑠𝑛 expands 𝑥 ∈ F𝑝 as

𝑥 = 𝑥1 · 𝑠2𝑠3 · · · 𝑠𝑛 + 𝑥2 · 𝑠3𝑠4 · · · 𝑠𝑛 + · · ·

+ 𝑥𝑛−1 · 𝑠𝑛 + 𝑥𝑛 =

𝑛∑︁
𝑖=1

𝑥𝑖

∏
𝑗>𝑖

𝑠 𝑗 .

with 0 ≤ 𝑥𝑖 < 𝑠𝑖 and where the 𝑠𝑖 are chosen such that
∏𝑛

𝑖=1 𝑠𝑖 > 𝑝 .
The digits 𝑥𝑖 ∈ Z𝑠𝑖 are determined similarly to ordinary base-𝑏
expansion:

𝑥𝑛 := 𝑥 mod 𝑠𝑛,

𝑥𝑖 :=
𝑥 − ∑

𝑗>𝑖 𝑥 𝑗
∏

𝑘> 𝑗 𝑠𝑘∏
𝑗>𝑖 𝑠 𝑗

mod 𝑠𝑖 .
(2)

It follows directly from the definition in Eq. (2) that the digits 𝑥𝑖
are unique. Because of the strong analogy with ordinary base-𝑏
expansion and for ease of notation in the following part, we define
for 1 ≤ 𝑖 ≤ 𝑛 the elements

𝑏𝑖 :=
∏
𝑗>𝑖

𝑠 𝑗 = 𝑠𝑖+1𝑠𝑖+2 . . . 𝑠𝑛,

where 𝑏𝑛 is defined by the empty product and thus 𝑏𝑛 := 1. The
inverse process, the composition Comp : Z𝑠1 × · · · × Z𝑠𝑛 → F𝑝 is
computed as

Comp(𝑦1, . . . , 𝑦𝑛) :=
𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 mod 𝑝. (3)

4.3.2 SBox. Let (𝑣1, 𝑣2, . . . , 𝑣𝑛) = Decomp(𝑝 − 1) and let 𝑝′ ≤
min1≤𝑖≤𝑛 𝑣𝑖 . Then 𝑥𝑖 is converted as follows:

𝑦𝑖 := 𝑆 (𝑥𝑖 ) =
{
𝑓 (𝑥𝑖 ) if 𝑥𝑖 < 𝑝′,

𝑥𝑖 if 𝑥𝑖 ≥ 𝑝′,
(4)

where 𝑓 denotes a permutation of Z𝑝′ . In Lemma 3 we prove that
Bar is indeed a permutation of F𝑝 . The value 𝑝′ is selected for each
𝑝 separately.

The 𝑓 function is derived from theMiMC cipher (which implicitly
requires 𝑝′ being prime). Reference values of 𝑝′ for various 𝑝 and
tables for 𝑓 are given in full in the Appendix.
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4.4 Sponge framework parameters
We suggest the bijective transformation RC being used in the sponge
framework [14] similarly to Poseidon [41] and Rescue [7]. The
parameters are as follows:

• Rate is two F𝑝 elements, capacity is one F𝑝 element.
• Claimed preimage and collision security level of 128 bits.
• The padding rule is simply to add the 0 element to any input

of odd length. The very first capacity value is initialized by
the length-depending constant, e.g. just length 𝑙 . This does
not violate the sponge security proof as long as only short
lengths (say up to 232) are allowed.

5 SECURITY ANALYSIS
In this section we summarize our own analysis of RC security and
connect it with the requirements outlined in Section 3.

For the latter, we customarily reduce the security of RC hash to
its resistance against known cryptanalytic attacks. In particular, we
focus on the following two classes of attacks, respectively statistical
and algebraic attacks. As already mentioned in the introduction,
we make use of the Hades/Poseidon design strategy in order to
provide security:

• Statistical attacks (including differential, linear, rebound,
truncated, impossible,MiTM, boomerang) cannot bemounted
on RC even with the middle component Bricks-Concrete-
Bars-Concrete-Bricks replacedwith a single Bricks layer
up 2128 field operations.

• The middle component Bricks-Concrete-Bars-Concrete-
Bricks resists invariant subspace and algebraic (e.g., Gröb-
ner basis) attacks up to 2128 field operations. Due to the
high degree and because we are working over prime fields,
we also expect ample resistance against higher-order differ-
ential attacks (e.g., zero-sum distinguishers or cube attacks).

We give a detailed overview of statistical attack approaches in
Appendix B.1, and we focus on algebraic attacks in Appendix B.4.
The short summary is the following:

• Differential and linear attacks do not work as long as the
Bricks layer is involved.

• We cannot mount rebound attacks for 5 or more rounds
thus having at least 2 rounds of security margin.

• No invariant subspace attacks have been found.
• Groebner basis cryptanalysis fails at greatly weakened ver-

sions (10-bit fields) already.

6 LOOKUP TABLES AND SYSTEM OF
CONSTRAINTS FOR BAR

In this section we create tables and a set of constraints such that for
𝑥,𝑦 ∈ F𝑝 it holds 𝑦 = Bar(𝑥) if and only if this set of constraints is
satisfied. We face two challenges:

(1) The S-box 𝑆𝑖 acts on a domain of size 𝑠𝑖 , which makes each
S-box potentially unique. If we specify the behavior of each
S-box separately, the table would have

∑
𝑖 𝑠𝑖 entries, which

renders it inefficient.
(2) Since

∏
𝑖 𝑠𝑖 > 𝑝 , there exist distinct elements (𝑥1, . . . , 𝑥𝑛) ≠

(𝑥 ′1, . . . , 𝑥
′
𝑛) in Z𝑠1 × . . . Z𝑠𝑛 that produce the same 𝑥 ∈ F𝑝 ,

0 1 2

Figure 3: Finite-state automaton A representing all valid
sequences 𝑐1, 𝑐2, . . . , 𝑐𝑛 .

i.e., for which it holds

𝑥 = Comp(𝑥1, . . . , 𝑥𝑛) =
𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 mod 𝑝 =

=

𝑛∑︁
𝑖=1

𝑥 ′𝑖𝑏𝑖 mod 𝑝 = Comp(𝑥 ′1, . . . , 𝑥
′
𝑛).

We have to ensure that our table and set of constraints
prevents this collision from happening.

We address these challenges with two additional sets of variables
(𝑧1, . . . , 𝑧𝑛) and (𝑐1, . . . , 𝑐𝑛), respectively. The variable 𝑧𝑖 encodes if
𝑥𝑖 < 𝑝′ (𝑆𝑖 is non-linear function) or 𝑥𝑖 ≥ 𝑝′ (𝑆𝑖 is identity function)
and is defined as

𝑧𝑖 :=
{
0, if 𝑥𝑖 < 𝑝′;
1, if 𝑥𝑖 ≥ 𝑝′ .

(5)

The purpose of variables (𝑐1, . . . , 𝑐𝑛) is to indicate if a tuple (𝑥1, . . . , 𝑥𝑛) ∈
Z𝑠1 × . . .×Z𝑠𝑛 has the property

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 ≥ 𝑝 , or not. If

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 ≥

𝑝 , the tuple (𝑥1, . . . , 𝑥𝑛) “overflows” 𝑝 and thus it is a potential can-
didate for a collision since by definition composition is unique for
all (𝑥1, . . . , 𝑥𝑛) with

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 < 𝑝 . With our set of constraints we

need to exclude all those tuples “overflowing” 𝑝 . For (𝑣1, . . . , 𝑣𝑛) =
Decomp(𝑝 − 1), we therefore define

𝑐𝑖 :=


0, if 𝑥 𝑗 = 𝑣 𝑗 for all 1 ≤ 𝑗 ≤ 𝑖;
1, if 𝑥𝑖 < 𝑣𝑖 ;
2, if 𝑥𝑖 ≥ 𝑣𝑖 and 𝑥 𝑗 ≠ 𝑣 𝑗 for some 1 ≤ 𝑗 ≤ 𝑖;

(6)

By definition of 𝑐𝑖 , only sequences 𝑐1, 𝑐2, . . . , 𝑐𝑛 of length 𝑛 out-
put by the finite-state automaton A in Fig. 3 are allowed; they
characterize all tuples (𝑥1, . . . , 𝑥𝑛) ∈ N𝑛 with

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 < 𝑝 .

We create the following 4-ary tables for our set of constraints:
• Table 𝑇2 contains all binary sequences of length 4 (Fig. 4)

thus providing a means to encode all possible sequences
(𝑧1, . . . , 𝑧𝑛) by concatenating as many 4-ary sequences as
needed;

• Table 𝑇3 contains all outputs of length 4 of the finite-state
automaton A in Fig. 3. They are chained together with
the last element of one 4-ary sequence matching the first
element of the next 4-ary sequence to encode all possible
outputs of A of length 𝑛, see constraints (8),(9);

• Table 𝑇1 encodes the output of the S-Boxes 𝑆1, . . . , 𝑆𝑛 and
indicates whether for an input to S-Box 𝑆𝑖 the non-linear
function 𝑓 or the identity function is applied (Fig. 5).

We claim that 𝑦 = Bar(𝑥) holds if and only if for 𝑥,𝑦 ∈ F𝑝
and (𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑛) ∈ N𝑛 the following constraints are
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𝑇2 =



0 0 0 0
0 0 0 1
0 0 1 0
· · ·
1 1 1 0
1 1 1 1


,

Figure 4: Lookup Table 𝑇2.

𝑇1 =



0 0 𝑓 (0) 1
1 0 𝑓 (1) 1
· · ·

𝑝′ − 1 0 𝑓 (𝑝′ − 1) 1
𝑝′ 1 𝑝′ 1

𝑝′ + 1 1 𝑝′ + 1 1
· · ·

𝑣1 − 1 1 𝑣1 − 1 1
𝑣1 1 𝑣1 0
𝑝′ 2 𝑝′ 1
· · ·

𝑣2 − 1 2 𝑣2 − 1 1
𝑣2 2 𝑣2 0
𝑣2 2 𝑣2 2

𝑣2 + 1 2 𝑣2 + 1 2
· · ·

𝑠2 − 1 2 𝑠2 − 1 2
· · ·
𝑝′ 𝑛 𝑝′ 1
· · ·

𝑣𝑛 − 1 𝑛 𝑣𝑛 − 1 1
𝑣𝑛 𝑛 𝑣𝑛 0
𝑣𝑛 𝑛 𝑣𝑛 2

𝑣𝑛 + 1 𝑛 𝑣𝑛 + 1 2
· · ·

𝑠𝑛 − 1 𝑛 𝑠𝑛 − 1 2



, 𝑇3 =



0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 2
0 1 1 1
0 1 1 2
0 1 2 1
0 1 2 2
1 1 1 1
1 1 1 2
1 1 2 1
1 1 2 2
1 2 1 1
1 2 1 2
1 2 2 1
1 2 2 2
2 1 1 1
2 1 1 2
2 1 2 1
2 1 2 2
2 2 1 1
2 2 1 2
2 2 2 1
2 2 2 2


Figure 5: Lookup Tables 𝑇1 and 𝑇3.

satisfied:

∀𝑛 ≥ 𝑖 ≥ 1 : (𝑥𝑖 , 𝑖 · 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 ) ∈ 𝑇1, (7)
∀⌈(𝑛 − 1)/3⌉ − 1 ≥ 𝑖 ≥ 1 :

(𝑐3𝑖−2, 𝑐3𝑖−1, 𝑐3𝑖 , 𝑐3𝑖+1) ∈ 𝑇3, (8)
(𝑐𝑛−3, 𝑐𝑛−2, 𝑐𝑛−1, 𝑐𝑛) ∈ 𝑇3, (9)
∀⌈𝑛/4⌉ − 1 ≥ 𝑖 ≥ 1 :

(𝑧4𝑖−3, 𝑧4𝑖−2, 𝑧4𝑖−1, 𝑧4𝑖 ) ∈ 𝑇2, (10)
(𝑧𝑛−3, 𝑧𝑛−2, 𝑧𝑛−1, 𝑧𝑛) ∈ 𝑇2, (11)

𝑥 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 mod 𝑝, (12)

𝑦 =

𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 mod 𝑝. (13)

In particular, we claim for 𝑥 ∈ F𝑝 there doesn’t exist any collision
in Z𝑠1 × . . . Z𝑠𝑛 . I.e., there is exactly one element (𝑥1, . . . , 𝑥𝑛) in
Z𝑠1 × . . . Z𝑠𝑛 with Comp(𝑥1, . . . , 𝑥𝑛) = 𝑥 . We prove these assertions
in Lemma 1 and Lemma 2. As a result, the total number of lookup
constraints is

𝑛 + ⌈(𝑛 − 1)/3⌉ + ⌈𝑛/4⌉ ≈ 𝑛 + 𝑛/3 + 𝑛/4 ≈ 1.59𝑛

table lookups with tables of total size 𝑝′ +∑
𝑖 (𝑠𝑖 − 𝑝′ + 1) + 16 + 23.

6.1 Soundness and Completeness
Lemma 1. The set of constraints (7) – (13) is complete, i.e., for any

𝑥,𝑦 ∈ F𝑝 with 𝑦 = Bar(𝑥) it is possible to construct {𝑥𝑖 , 𝑦𝑖 , 𝑐𝑖 , 𝑧𝑖 :
1 ≤ 𝑖 ≤ 𝑛} that satisfy them.

Proof. We work with the standard representation of F𝑝 , that is,
F𝑝 = {0, 1, . . . , 𝑝 − 1}. Suppose for 𝑥,𝑦 ∈ F𝑝 it holds 𝑦 = Bar(𝑥).
Our proof works as follows:

1. We construct 𝑥𝑖 , 𝑦𝑖 and show that constraints (12) and (13)
are satisfied;

2. we define 𝑧𝑖 that satisfy constraints (10) and (11) regarding
Table 𝑇2;

3. we define 𝑐𝑖 that satisfy constraints (8) and (9) regarding
Table 𝑇3;

4. we show that (𝑥𝑖 , 𝑖 · 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 ) satisfy the constraints (7) re-
garding Table 𝑇1.

1st Step.We define (𝑥1, . . . , 𝑥𝑛) := Decomp(𝑥) and (𝑦1, . . . , 𝑦𝑛) :=
SBox(𝑥1, . . . , 𝑥𝑛) = (SBox ◦ Decomp) (𝑥); then constraint (12) holds
by definition of Decomp and constraint (13) by definition of Bar, i.e.,

𝑦 = (Comp ◦ SBox ◦ Decomp) (𝑥)
= Comp (SBox ◦ Decomp(𝑥))

= Comp(𝑦1, . . . , 𝑦𝑛) =
𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 mod 𝑝.

2nd Step. Let 𝑝′ be according to the definition of the Bar function,
i.e., 𝑝′ is the largest prime smaller than or equal to 𝑣 = min1≤𝑖≤𝑛 𝑣𝑖 ,
where (𝑣1, . . . , 𝑣𝑛) = Decomp(𝑝 − 1). For 1 ≤ 𝑖 ≤ 𝑛 we define

𝑧𝑖 :=
{
0, if 𝑥𝑖 < 𝑝′;
1, if 𝑥𝑖 ≥ 𝑝′;

that indicate if 𝑥𝑖 < 𝑝′ or 𝑥𝑖 ≥ 𝑝′. The sequence (𝑧1, . . . , 𝑧𝑛) is a
binary sequence of length 𝑛, where all 2𝑛 combinations are possible:
every digit 𝑥𝑖 can be strictly smaller or greater than 𝑝′. Since𝑇2 con-
tains all binary sequences of length 4, we have that the constraints
(10) and (11) regarding 𝑇2 are satisfied .

3rd Step. If 𝑥 = 𝑝 − 1, or equivalently, if 𝑥𝑖 = 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛,
we define 𝑐𝑖 := 0, for all 1 ≤ 𝑖 ≤ 𝑛. Thus (𝑐1, . . . , 𝑐𝑛) = (0, . . . , 0) and
the corresponding constraints (8) and (9) in Table 𝑇3 are satisfied.
If 𝑥 < 𝑝 − 1, there exists at least one index 1 ≤ 𝑖 ≤ 𝑛 with 𝑥𝑖 < 𝑣𝑖 .
Let 𝑗 be the minimal index with that property. We set

𝑐𝑖 :=


0, if 𝑖 < 𝑗 ;
1, if 𝑖 ≥ 𝑗 and 𝑥𝑖 < 𝑣𝑖 ;
2, if 𝑖 > 𝑗 and 𝑥𝑖 ≥ 𝑣𝑖 .

Note that the case 𝑖 = 𝑗 and 𝑥𝑖 ≥ 𝑣𝑖 cannot happen, since this would
on the one hand mean 𝑥 𝑗 ≥ 𝑣 𝑗 and on the other hand 𝑥 𝑗 < 𝑣 𝑗 (by
definition of 𝑗 ), a contradiction. Thus, the above three cases cover
all possible situations regarding 𝑖 . Next, we list all subsequences of
𝑐1, . . . , 𝑐𝑛 that are not possible:

(a) (2, . . .); since 𝑐1 = 2 this would mean 1 ≤ 𝑗 < 𝑖 = 1, a
contradiction.

(b) (. . . , 0, 2, . . .); this would imply 𝑖 < 𝑗 (𝑐𝑖 = 0) and 𝑖 + 1 > 𝑗

(𝑐𝑖+1 = 2), a contradiction.
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(c) (. . . , 1, 0, . . .); a contradiction, since 𝑖 ≥ 𝑗 (𝑐𝑖 = 1) and
𝑖 + 1 < 𝑗 (𝑐𝑖+1 = 0).

(d) (. . . , 2, 0, . . .); a contradiction, since 𝑖 > 𝑗 (𝑐𝑖 = 2) and
𝑖 + 1 < 𝑗 (𝑐𝑖+1 = 0).

We explicitly note, all other subsequences are valid. In a next step,
we model a finite-state automaton B whose outputs of length 𝑛

characterize all possible sequences (𝑐1, . . . , 𝑐𝑛). Clearly, B has the
states 0, 1, 2 with only 0, 1 being accepting states: due to (a) no
sequence can start with 2. According to (b), (c) and (d), all possible
transitions are given by

{(0, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2)}.

But this means, that automaton B is identical to automaton A de-
picted in Fig. 3. Hencewe conclude, all possible sequences (𝑐1, . . . , 𝑐𝑛)
of elements as defined above are precisely the outputs of length 𝑛 of
the finite-state automatonA. If we divide the sequence (𝑐1, . . . , 𝑐𝑛)
into chunks of 4 elements such that the last element of one chunk
matches the first element of the next chunk, we see that constraints
(8) and (9) regarding 𝑇3 are satisfied.

4th Step. Constraints (7) regarding 𝑇1 are satisfied as well: by
definition of 𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 we have 0 ≤ 𝑥𝑖 ≤ 𝑠𝑖 − 1, 𝑧𝑖 ∈ {0, 1},
𝑦𝑖 = 𝑆𝑖 (𝑥𝑖 ) and 𝑐𝑖 ∈ {0, 1, 2}, respectively. This means, the domains
of 𝑥𝑖 , 𝑖 · 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 agree with the general conditions in 𝑇1. Not all
combinations are allowed, however. The following arguments show
that indeed all possible 4-ary chunks (𝑥𝑖 , 𝑖 · 𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 ) satisfy the
constraints in 𝑇1. As in the 3rd Step, for 𝑥 = 𝑝 − 1 we define 𝑐𝑖 := 0
and thus have (𝑥𝑖 , 𝑖 ·𝑧𝑖 , 𝑦𝑖 , 𝑐𝑖 ) = (𝑣𝑖 , 𝑖, 𝑣𝑖 , 0) for 1 ≤ 𝑖 ≤ 𝑛. Hence, for
𝑥 = 𝑝 − 1 the corresponding constraints (7) in Table𝑇1 are satisfied.
Therefore let 𝑥 < 𝑝 − 1 and let again 𝑗 be the minimal index with
𝑥𝑖 < 𝑣𝑖 .

• For 0 ≤ 𝑥𝑖 < 𝑝′, we have 𝑧𝑖 = 0, 𝑖 ·𝑧𝑖 = 0,𝑦𝑖 = 𝑆 (𝑥𝑖 ) = 𝑓 (𝑥𝑖 )
and 𝑐𝑖 = 1 (since 𝑥𝑖 < 𝑝′ ≤ 𝑣𝑖 ) by construction of 𝑥𝑖 , 𝑧𝑖 , 𝑦𝑖
and 𝑐𝑖 , respectively. Thus the first 𝑝′ constraints in 𝑇1 are
satisfied.

• For 𝑝′ ≤ 𝑥𝑖 = 𝑣𝑖 two cases can happen: if 𝑖 < 𝑗 , then 𝑐𝑖 = 0;
if 𝑖 > 𝑗 , then 𝑐𝑖 = 2. In both cases the corresponding 4-ary
chunk 𝑥𝑖 , 𝑖 · 𝑧𝑖 = 𝑖, 𝑦𝑖 = 𝑥𝑖 , 𝑐𝑖 ∈ {0, 2} is contained in𝑇1. We
note, the case 𝑥𝑖 = 𝑣𝑖 and 𝑖 = 𝑗 cannot happen due to the
definition of 𝑗 .

• For 𝑝′ ≤ 𝑥𝑖 < 𝑣𝑖 , we have 𝑧𝑖 = 1, 𝑖 · 𝑧𝑖 = 𝑖 , 𝑦𝑖 = 𝑆 (𝑥𝑖 ) = 𝑥𝑖
and 𝑐𝑖 = 1 (since 𝑥𝑖 < 𝑣𝑖 ). Thus the corresponding 𝑣𝑖 − 𝑝′

constraints in 𝑇1 are satisfied.
• For 𝑣𝑖+1 ≤ 𝑥𝑖 ≤ 𝑠𝑖−1 it holds 𝑧𝑖 = 1, 𝑖 ·𝑧𝑖 = 𝑖 ,𝑦𝑖 = 𝑆 (𝑥) = 𝑥𝑖

and 𝑐𝑖 = 2, which shows that the corresponding 𝑠𝑖 − 𝑣𝑖 − 1
constraints in 𝑇1 are fulfilled.

Specifically, for 𝑖 = 1 there is no entry (𝑥1, 𝑖 ·𝑧1, 𝑦1, 2) in𝑇1, therefore
we have to argue that this case cannot happen; this is clear, however,
since we have already shown that automaton B, which represents
all valid sequences (𝑐1, . . . , 𝑐𝑛), guarantees 𝑐1 ∈ {0, 1}.

Lemma 2. The set of constraints (7)–(13) is sound, i.e., for any
𝑥,𝑦 ∈ F𝑝 and any {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑐𝑖 ∈ N : 1 ≤ 𝑖 ≤ 𝑛} that satisfy them
all it holds 𝑦 = Bar(𝑥).

Proof. We work with the standard representation of F𝑝 . For
R := Z𝑠1 × . . . × Z𝑠𝑛 let

R<𝑝 := {(𝑧1, . . . , 𝑧𝑛) ∈ R :
𝑛∑︁
𝑖=1

𝑧𝑖𝑏𝑖 < 𝑝}.

Our proof consists of the following parts:
(1) Show that (𝑥1, . . . , 𝑥𝑛) is a valid decomposition of 𝑥 , i.e.,

(𝑥1, . . . , 𝑥𝑛) = Decomp(𝑥).
(2) Show that for all 1 ≤ 𝑖 ≤ 𝑛 we have 𝑦𝑖 = 𝑆𝑖 (𝑥𝑖 ) according

to (4) and deduce (𝑦1, . . . , 𝑦𝑛) = (SBox ◦ Decomp) (𝑥).
(3) Use the above two facts and deduce 𝑦 = Bar(𝑥).
1st Step. Let (𝑥 ′1, . . . , 𝑥

′
𝑛) := Decomp(𝑥) and 𝑥 :=

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 . Sup-

pose 𝑥 < 𝑝 , or in other words (𝑥1, . . . , 𝑥𝑛) ∈ R<𝑝 . Then by (12) we
have 𝑥 = 𝑥 mod 𝑝 =

∑𝑛
𝑖=1 𝑥𝑖𝑏𝑖 mod 𝑝 = 𝑥 < 𝑝, and thus

Decomp(𝑥) = Decomp

(
𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 mod 𝑝

)
= (Decomp ◦ Comp) (𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛).

The last equality uses the fact, that Decomp and Comp are inverse
to each other on R<𝑝 and F𝑝 ; we proved this in more detail in
Lemma 3.

We show that the case 𝑥 ≥ 𝑝 leads to a contradiction. For this,
suppose 𝑥 ≥ 𝑝 . This implies that there exists 1 ≤ 𝑘 ≤ 𝑛 with

𝑥𝑖 = 𝑣𝑖 for all 1 ≤ 𝑖 < 𝑘 and 𝑥𝑘 > 𝑣𝑘 .

Note that 𝑘 > 1 as 𝑥1 ≤ 𝑣1 by Table 𝑇1 (constraint (7)). Also, by
constraint (7) it holds 𝑐𝑖 ∈ {0, 2} for all 1 ≤ 𝑖 < 𝑘 and in particular
𝑐1 = 0. Therefore, constraints (8) and (9) regarding Table 𝑇3 ensure
that actually all 𝑐𝑖 = 0 for 1 ≤ 𝑖 < 𝑘 since there is no sequence
with (. . . , 0, 2, . . .) in 𝑇3. Therefore, again by constraints (8) and (9),
we have that 𝑐𝑘 ∈ {0, 1}. By constraint (7) this is only possible if
𝑥𝑘 ≤ 𝑣𝑘 . A contradiction.

2nd Step. Let 1 ≤ 𝑖 ≤ 𝑛. We show 𝑦𝑖 = 𝑆 (𝑥𝑖 ). By constraints (10)
and (11) it holds 𝑧𝑖 ∈ {0, 1}. If 𝑧𝑖 = 0 then 𝑖 ·𝑧𝑖 = 0 and by constraint
(7) we have 𝑥𝑖 < 𝑝′ and 𝑦𝑖 = 𝑓 (𝑥𝑖 ). If 𝑧𝑖 = 1, we have 𝑖 · 𝑧𝑖 = 𝑖 > 1,
and again by constraint (7) it holds 𝑥𝑖 ≥ 𝑝′ and 𝑦𝑖 = 𝑥𝑖 . Altogether
we get that 𝑦𝑖 = 𝑆𝑖 (𝑥𝑖 ) and thus

(𝑦1, . . . , 𝑦𝑛) = SBox(𝑥1, . . . , 𝑥𝑛)
Part1
= SBox(Decomp(𝑥)) = (SBox ◦ Decomp) (𝑥) .

(14)

3rd Step. For the last part we use the definition of Bar, Part 2,
the definition of Comp and constraint (13), which yields

Bar(𝑥) (1)
= (Comp ◦ SBox ◦ Decomp) (𝑥)
= Comp(SBox ◦ Decomp(𝑥))
Part 2
= Comp(𝑦1, . . . , 𝑦𝑛)

(3)
=

𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 mod 𝑝
(13)
= 𝑦.

7 CONCRETE INSTANCES
The values of 𝛼1, 𝛼2, 𝛽1, 𝛽2 are given by

• 𝑝 = 𝑝BLS381: (1,3,2,4).
• 𝑝 = 𝑝BN254: (1,3,2,4)
• 𝑝 = 𝑝𝑆𝑇 : (1,2,3,4).
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For the Bar function we choose a decomposition into 𝑛 = 27
small S-boxes for 𝑝 being the order of BLS12-381 or BN254 curves.

BLS12-381. The prime 𝑝 is given by
𝑝BLS381 = 0x73eda753299d7d483339d80809a1d80

553bda402fffe5bfeffffffff00000001.

The bucket sizes
𝑠27, 𝑠26, . . . , 𝑠19,
𝑠18, 𝑠17, . . . , 𝑠10,
𝑠9, 𝑠8, . . . , 𝑠1,

for the Bar layer are given by
693, 696, 694, 668, 679, 695, 691, 693, 700,
688, 700, 694, 701, 694, 699, 701, 701, 701,
695, 698, 697, 703, 702, 691, 688, 703, 679.

If (𝑣1, . . . , 𝑣27) denotes the decomposition of 𝑝−1, the largest prime
𝑝′ smaller than or equal to 𝑣 = min1≤𝑖≤27 𝑣𝑖 is 𝑝′ = 659. The values
𝑠𝑖 were found by a variant of branch-and-bound process where we
recursively determine from 𝑠27 to 𝑠1 under the constraint that 𝑠𝑖 −𝑣𝑖
is not too large for any 𝑖 .

BN254. The prime 𝑝 is given by
𝑝BN254 = 0x30644e72e131a029b85045b68181585

d2833e84879b9709143e1f593f0000001.

The bucket sizes for the Bar layer are given by
651, 658, 656, 666, 663, 654, 668, 677, 681,
683, 669, 681, 680, 677, 675, 668, 675, 683,
681, 683, 683, 655, 680, 683, 667, 678, 673.

If (𝑣1, . . . , 𝑣27) denotes the decomposition of 𝑝 − 1, the largest
prime 𝑝′ smaller than or equal to 𝑣 = min1≤𝑖≤27 𝑣𝑖 is 𝑝′ = 641.
Decomposition was found in the same way.

Special prime. We have crafted a special prime for the proof
systems that are not elliptic curve based, so that the decomposition
and modular reduction are extremely fast. Concretely, we found
out that a 250-bit prime

𝑝𝑆𝑇 = 0x3𝑓 𝑎000 . . . 001

admits the following representation:

𝑝𝑆𝑇 = 2250 − 3 · 2241 + 1 =
24∑︁
𝑖=0

(210 − 6)210𝑖 + 1,

i.e.,

𝑠2 = 𝑠3 = · · · = 𝑠24 = 1024, (15)
𝑠25 = 1023, 𝑣1 = 𝑣2 = · · · = 𝑣25 = 1018. (16)

For this decomposition we first selected 𝑠𝑖 to be almost all powers of
two, prepared constraints that (𝑝−1) is divisible by 230 for Discrete
Fourier Transform, and then tried a few values for 𝑣𝑖 until we find
a prime.

8 PERFORMANCE
In this section we consider performance of plain and zero knowl-
edge (circuit) implementations of RC. As the application, we con-
sider a single call to permutation RC, which corresponds to hashing
of two F elements, or computing one node of a Merkle tree.

8.1 Proof System Performance
8.1.1 Circuit metrics. So far many circuit implementations of hash
functions are tailored to the proof system implementation they will
be used, so it is extremely difficult to compare apples to apples by
just measuring prover time. This is more complicated for proof
systems that support lookups as only reference implementations
are available2.

Thuswe turned to differentmetrics. First one just count gates and
assumes that there are two types of gates: an arithmetic gate and a
lookup gate, with the former implementing a quadratic constraint
of form

𝑎1𝑥1𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 = 𝑎6

with 𝑥𝑖 being witness variables and 𝑎𝑖 being values of selector
polynomials. It can handle a 2-ary addition. A lookup gate has form

(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑇

where 𝑇 is the lookup table. These two gates are the ones defined
in the Plonk and Plookup papers [34, 35] and thus we call it regular
gates metric.

The second metric applies to custom gates, which implement
arbitrary polynomial lookup constraints, and attempts to estimate
the prover cost by assuming it is approximated as

𝐶𝑝𝑟𝑜𝑣𝑒𝑟 ∼ (number of gates) ×
(max degree of a gate constraint) × (gate arity)

We call it area-degree product. The maximum degree of a regular
gate constraint is 3, the arity is 5, so each gate contributes with cost
15.

8.1.2 Measuring hash functions.

RC.. The regular gates count for the BLS/BN primes.
• Bricks: 8 gates per round (7 for 𝑝𝑆𝑇 with 𝑑 = 3);
• Concrete: 2 gates per element, 6 per round.
• Bars: 96 gates per element, 288 per round

– decomposition: 27 gates
– composition: 27 gates
– table: 42 gates.

Total: 8 · 6 + 6 · 7 + 288 = 378 gates to process two F𝑝 elements of
data. The 𝑝𝑆𝑇 case uses only 25 𝑠𝑖 so the total number of gates is
360.

The area-degree product is thus 378 · 15 = 5670.

Poseidon. Poseidon-128 [41] with 2 inputs, which needs 633 gates
for the same setting: each full round needs 9 quadratic gates and 6
addition gates, whereas each partial round needs 3 quadratic and 6
addition gates. Total count is 15 · 8 + 57 · 9 = 633.

Rescue. Rescue with 2 inputs requires 16 full founds, which
together utilize 288 quadratic gates. In addition, each (out of 16)
round carries two matrix multiplications, i.e. 2 · 6 addition gates
per round. The total regular gate count is then 480. Rescue-Prime,
a new variant of Rescue, requires only 14 rounds and, thus, is 12%
cheaper.

2E.g. Plonkup https://github.com/dusk-network/plonkup

https://github.com/dusk-network/plonkup
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Sinsemilla. Sinsemilla is parameterized by 𝑘 that determines
the lookup table length 2𝑘 and the same number of EC generators
𝑃0, 𝑃1, . . . , 𝑃2𝑘−1. A hash of 𝑡𝑘-bit𝑀 = (𝑀1, 𝑀2, . . . , 𝑀𝑡 ), 𝑡 < 254 is
defined as

𝐻 (𝑀) = (𝑄 +
∑︁
𝑖≤𝑡

[2𝑡−𝑖 ]𝑃𝑀𝑖
)𝑥 ,

where 𝑄 is some EC point, + is EC addition, [𝑎] is the EC scalar
multiplication by 𝑎, ()𝑥 is the 𝑥-coordinate of the curve.

To make a regular gate measurement, we take their system [24]
of 5𝑡 quadratic equations and a single 𝑡-ary addition of message de-
composition. Measuring in regular gates, we obtain that Sinsemilla
needs 9𝑡 arithmetic gates, and 𝑡 lookup gates. For 𝑘 = 10 and 𝑡 = 51
we obtain 510-bit message input, for which the total gate count is
about 510 regular gates.

The authors also provide an optimized version with 51 custom
gates of degree 6 and arity 5. This yields the area-degree product
of 51 · 6 · 5 = 1530.

8.2 Plain Implementation Performance
We implemented RC in pure Rust using the ff_ce library3 for field
operations. Further, we re-implemented Poseidon, Rescue, and
Griffin with a statesize of 3 words, Neptune using a statesize of 4
words, and Feistel-MiMC using ff_ce to compare them to RC in a fair
setting. We further compare RC to pure Rust implementations of
traditional hash algorithms4, and compare it to Sinsemilla using an
implementation found in the Zcash/Orchard repository on Github5,
and to a Pedersen Hash implementation from librustzcash6. We
benchmark input sizes of at least 512-bit (i.e., two field elements in
RC). We, thus, benchmark one permutation call for all symmetric
hash functions, except for Feistel-MiMC for which we require two.
All benchmarks were obtained on a Linux Desktop PC with an Intel
i7-4790 CPU (3.6GHz) and 16GB RAM using stable Rust version
1.58 and the target-cpu=native flag. The resulting benchmarks
can be found in Table 2, code to reproduce them is publicly available
at [1].

As Table 2 shows, the plain performance of RC highly depends
on the choice of the prime field, more specifically, how elements can
be decomposed. The Bars-layer for 𝑝𝑆𝑇 can be evaluated by using
only one big-integer division7, whereas a generic decomposition,
i.e., for 𝑝𝐵𝑁 254 and 𝑝𝐵𝐿𝑆12, requires significantly more. The result
is a runtime difference by a factor of 3 for the total hashing time.
Compared to the previous state-of-the-art one can observe that RC is
significantly faster. More concretely, RC is faster than the previously
fastest hash function over finite fields (i.e., Poseidon) by a factor
of 5 for 𝑝𝐵𝑁 254 and 𝑝𝐵𝐿𝑆12, and by a factor 16 for the 𝑝𝑆𝑇 prime
field. The Sinsemilla hash algorithm, which also leverages lookup
tables for a faster plain evaluation, is thereby slower than RC by
a factor of up to 125, while the traditional Pedersen Hash is only
slower by a factor of 49. Compared to fast binary hash function, RC
is only slower by a factor of 5 than Blake2, the fastest benchmarked
hashing algorithm. Blake2 in turn however requires 7 times more
Plookup gates than RC.
3https://docs.rs/ff_ce/0.13.1/ff_ce/
4https://github.com/RustCrypto/hashes
5https://github.com/zcash/orchard, uses lookup tables to speed up performance.
6https://github.com/zcash/librustzcash
7We implemented divisions using precomputed reciprocals for all prime fields.

Table 2: Plain performance comparison in nano-seconds (ns)
of different hash functions over prime fields with primes
𝑝BN254, 𝑝BLS381, 𝑝ST. Implemented in Rust.

Hashing algorithm BN BLS ST
𝑛𝑠 𝑛𝑠 𝑛𝑠 𝑛𝑠

RC - 3 419 3 538 1 087
Concrete Layer - 39.1 39.5 34.2
Bricks Layer - 172.4 188.0 101.67
Bars Layer - 2 063 2 062 204.9
Poseidon - 19 944 20.423 18 185
Rescue - 470 030 498 210 388 430
Rescue-Prime - 408 780 431 130 314 660
Feistel-MiMC - 37 980 39 883 31 894
Griffin - 113 670 120 450 90 455
Neptune - 20 265 20 453 18 825
Sinsemilla 137 600 - - -
Pedersen Hash 54 027 - - -
SHA-256 319.1 - - -
Blake2b 189.6 - - -
Blake2s 213.3 - - -
SHA3-256 419.2 - - -

Table 3: Performance comparison in seconds (s) of dif-
ferent hash functions over prime fields with primes
𝑝BN254, 𝑝BLS381, 𝑝ST for computing a Merkle tree with 220 ele-
ments. Implemented in Rust.

Hashing algorithm BN BLS ST
𝑠 𝑠 𝑠 𝑠

RC - 3.91 3.97 1.36
Poseidon - 22.6 23.8 22.3
Rescue - 497.2 520.6 396.8
Rescue-Prime - 436.3 458.4 324.3
Feistel-MiMC - 42.2 44.3 34.1
Griffin - 122.7 129.6 95.0
Neptune - 24.4 26.1 24.1
Sinsemilla 144.9 - - -
Pedersen Hash 60.1 - - -
SHA-256 0.624 - - -
Blake2b 0.225 - - -
Blake2s 0.222 - - -
SHA3-256 0.439 - - -

To further highlight the requirement for fast plain performance
of ZK-friendly hash functions, we compare the runtime to accumu-
late a Merkle tree with 220 elements in Table 3. One can observer,
that using traditional hash function, accumulating the Merkle tree

https://docs.rs/ff_ce/0.13.1/ff_ce/
https://github.com/RustCrypto/hashes
https://github.com/zcash/orchard
https://github.com/zcash/librustzcash
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already requires 3 𝑠 , the runtime is significantly worse when using
ZK-friendly hash functions, such as Poseidon and Rescue. RC with
its fast plain performance, however, is only insignificantly slower
then traditional hash functions, making it the optimal choice for use
case which require fast plain performance, as well as fast ZK-proof
generation.
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A BIJECTIVITY OF RC COMPONENTS
A.1 Bijectivity of Bricks
Given 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ F𝑝 such that

𝛼2𝑖 − 4 · 𝛽𝑖 is a non-quadratic residue mod 𝑝,

for each 𝑖 ∈ {1, 2}, the generalized Bricks function is defined as
follows:

Bricks(𝑥1, 𝑥2, 𝑥3)

= (𝑥𝑑1 , 𝑥2 (𝑥
2
1 + 𝛼1𝑥1 + 𝛽1), 𝑥3 (𝑥22 + 𝛼2𝑥2 + 𝛽2)) .

This function is invertible. Indeed, given Bricks(𝑥1, 𝑥2, 𝑥3) = (𝑦1, 𝑦2, 𝑦3),
we have

𝑥1 = 𝑦
1/𝑑
1 , 𝑥2 =

𝑦2
(𝑥21 + 𝛼1 · 𝑥1 + 𝛽1)

,

𝑥3 =
𝑦3

(𝑥22 + 𝛼2 · 𝑥2 + 𝛽2)
,

where
(1) 𝑥 ↦→ 𝑥𝑑 is invertible due to the assumption on 𝑑 ,
(2) 𝑧2 + 𝛼𝑖 · 𝑧 + 𝛽𝑖 ≠ 0 for each 𝑧 ∈ F𝑝 due to the definition

of 𝛼𝑖 , 𝛽𝑖 . In particular, the only possible solutions of this
equation would be

𝑧± =

(
−𝛼𝑖 ±

√︃
𝛼2
𝑖
− 4 · 𝛽𝑖

)
/2,

which do not exist due to the fact that 𝛼2
𝑖
− 4 · 𝛽𝑖 is not a

square.

A.2 Bijectivity of Bar
Lemma 3. The function Bar permutes F𝑝 .

Proof. We work with the standard representations of F𝑝 and
Z𝑠1 , . . . ,Z𝑠𝑛 . For R := Z𝑠1 × . . . × Z𝑠𝑛 let

R<𝑝 := {(𝑧1, . . . , 𝑧𝑛) ∈ R :
𝑛∑︁
𝑖=1

𝑧𝑖𝑏𝑖 < 𝑝}.

The idea of the proof reads as follows: we show that
(1) Decomp is injective and Decomp(F𝑝 ) ⊆ R<𝑝 ;
(2) SBox(R<𝑝 ) ⊆ R<𝑝 and deduce that SBox permutes R<𝑝 ;
(3) Comp is injective on R<𝑝 .

With these statements, it follows at once that the function Bar :
F𝑝 → F𝑝 given by

Bar = Comp ◦ SBox ◦ Decomp
is injective and hence surjective as well. In particular, we see that
Decomp and Comp are indeed inverse functions over R<𝑝 and F𝑝 .

Ad (1), (3): the statement Decomp(F𝑝 ) ⊆ R<𝑝 is a direct conse-
quence of the definition of Decomp. For the injectivity of Decompwe
show that it has a left inverse function on R<𝑝 which is precisely
given by Comp restricted to R<𝑝 . Indeed, for 𝑥 ∈ F𝑝 it holds

(Comp ◦ Decomp) (𝑥) = Comp(𝑥1, . . . , 𝑥𝑛)

=

𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 mod 𝑝 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑏𝑖 = 𝑥 .

The second equality is just the definition of Comp, the third equality
uses the fact that Decomp(F𝑝 ) ⊆ R<𝑝 , and the fourth equality is true
by definition of Decomp. Similarly, we obtain for (𝑧1, . . . , 𝑧𝑛) ∈ R<𝑝

(Decomp ◦ Comp) (𝑧1, . . . , 𝑧𝑛)

= Decomp(
𝑛∑︁
𝑖=1

𝑧𝑖𝑏𝑖 mod 𝑝)

= Decomp(
𝑛∑︁
𝑖=1

𝑧𝑖𝑏𝑖 ) = (𝑧1, . . . , 𝑧𝑛)

and hence that Comp restricted to R<𝑝 has the left inverse Decomp.
Ad (2): Since SBox is the parallel application of 𝑛 smaller bijec-

tions it is clearly injective. The only assertion to prove is hence

https://www.zfnd.org/zcon/0/workshop-notes/Zcon0%20Circuit%20Optimisation%20handout.pdf
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the inclusion SBox(R<𝑝 ) ⊆ R<𝑝 . Let (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R<𝑝 and
let (𝑦1, . . . , 𝑦𝑛) = (𝑆 (𝑥1), . . . , 𝑆 (𝑥𝑛)) denote the image under SBox.
Now recall that 𝑣 = min𝑖 𝑣𝑖 where (𝑣1, 𝑣2, . . . , 𝑣𝑛) = Decomp(𝑝 − 1),
and let 𝑚 be the smallest index such that 𝑥𝑚 < 𝑣 . If there is
no such 𝑚, then all S-boxes 𝑆 are identity functions and the as-
sertion holds. If such an 𝑚 exists, then for all 𝑖 < 𝑚 we have
𝑦𝑖 = 𝑆 (𝑥𝑖 ) = 𝑥𝑖 by the definition of the 𝑆𝑖 . Moreover, for 𝑖 = 𝑚

we have 𝑦𝑚 = 𝑆 (𝑥𝑚) < 𝑣 ≤ 𝑣𝑚 . For the remaining part we high-
light the following property of our decomposition (which has an
analogous counterpart in ordinary base-𝑏 expansion): for every
1 ≤ 𝑘 ≤ 𝑛 it holds

𝑛∑︁
𝑖=𝑘+1

(𝑠𝑖 − 1)𝑏𝑖 =
𝑛∑︁

𝑖=𝑘+1
(𝑠𝑖 − 1)

∏
𝑙>𝑖

𝑠𝑙

=

𝑛∑︁
𝑖=𝑘+1

( ∏
𝑙>𝑖−1

𝑠𝑙 −
∏
𝑙>𝑖

𝑠𝑙

)
=

∏
𝑙>𝑘

𝑠𝑙 − 1 = 𝑏𝑘 − 1.

Informally speaking, this translates to the statement “the sum of
the maximal values of the first 𝑙 = 𝑛 − 𝑘 least significant positions
equals the value of the next greater significant position minus 1”.
We use this fact and deduce

𝑛∑︁
𝑖=1

𝑦𝑖𝑏𝑖 =

𝑚−1∑︁
𝑖=1

𝑦𝑖𝑏𝑖 + 𝑦𝑚𝑏𝑚 +
𝑛∑︁

𝑖=𝑚+1
𝑦𝑖𝑏𝑖︸      ︷︷      ︸

<𝑏𝑚

<

𝑚−1∑︁
𝑖=1

𝑥𝑖𝑏𝑖 + (𝑦𝑚 + 1)𝑏𝑚 ≤
𝑚−1∑︁
𝑖=1

𝑥𝑖𝑏𝑖 + 𝑣𝑚𝑏𝑚

≤
𝑚−1∑︁
𝑖=1

𝑣𝑖𝑏𝑖 + 𝑣𝑚𝑏𝑚 ≤ 𝑝 − 1.

Hence, SBox(𝑥1, . . . , 𝑥𝑛) ∈ R<𝑝 which implies that SBox permutes
R<𝑝 . The second last inequality uses the property that for 𝑢 ∈ F𝑝
with 𝑢 ≤ 𝑝 − 1, the decompositions (𝑢1, . . . , 𝑢𝑛) and (𝑣1, . . . , 𝑣𝑛) =
Decomp(𝑝 − 1) ∈ R satisfy for any 1 ≤ 𝑘 ≤ 𝑛 the inequality

𝑘∑︁
𝑖=1

𝑢𝑖𝑏𝑖 ≤
𝑘∑︁
𝑖=1

𝑣𝑖𝑏𝑖 .

In other words, “if 𝑢 is smaller than or equal to 𝑣 , the sum of the
values of any first 𝑘 most significant digits of 𝑢 is smaller than or
equal to the corresponding sum for 𝑣 .” For 𝑢 = 𝑣 , the statement
is obvious. For 𝑢 ≠ 𝑣 , there is at least one index 1 ≤ 𝑖 ≤ 𝑛 with
𝑢𝑖 < 𝑣𝑖 ; let 𝑡 denote the minimal index with this property. If 𝑘 < 𝑡 ,
then

∑𝑘
𝑖=1 𝑢𝑖𝑏𝑖 =

∑𝑘
𝑖=1 𝑣𝑖𝑏𝑖 by definition of 𝑡 . If 𝑘 ≥ 𝑡 then

𝑘∑︁
𝑖=1

𝑢𝑖𝑏𝑖 =

𝑡−1∑︁
𝑖=1

𝑢𝑖𝑏𝑖 + 𝑢𝑡𝑏𝑡 +
𝑘∑︁

𝑖=𝑡+1
𝑢𝑖𝑏𝑖

<

𝑡−1∑︁
𝑖=1

𝑢𝑖𝑏𝑖 + (𝑢𝑡 + 1)𝑏𝑡 ≤
𝑡−1∑︁
𝑖=1

𝑣𝑖𝑏𝑖 + 𝑣𝑡𝑏𝑡

≤
𝑘∑︁
𝑖=1

𝑣𝑖𝑏𝑖 .

A.3 The SBox function
In Eq. (4), 𝑓 : F𝑝′ → F𝑝′ denotes the non-identity part of each
S-box 𝑆𝑖 . Since 𝑆𝑖 shall be a permutation of Z𝑠𝑖 , we also need 𝑓 to
be a permutation of F𝑝′ . In particular, when 𝑓 is represented as a
univariate polynomial over F𝑝′ it needs to have a high degree and
a dense polynomial description (i.e., many non-zero coefficients).
Other properties (e.g., high nonlinearity) are not needed in this con-
text, because security against the corresponding attacks is already
achieved using the Bricks layer (through large-word operations).
We apply the following technique to choose the function 𝑓 .

(1) We choose the smallest𝑑 ∈ N such that𝑑 is prime,𝑑 = 2𝑛−1
for some 𝑛 ∈ N, and gcd(𝑑, 𝑝′ − 1) = 1. The last require-
ment ensures that the resulting polynomial is a permutation
polynomial over F𝑝′ .

(2) we compute the 𝑟 -fold composition

𝑓 (𝑋 ) := (𝑓𝑟 ◦ 𝑓𝑟−1 ◦ · · · ◦ 𝑓1) (𝑋 ) ∈ F𝑝′ [𝑋 ] ,

where 𝑓𝑖 (𝑋 ) := (𝑋 + 𝑐𝑖 )𝑑 for random 𝑐𝑖 ∈ F𝑝′ .
In the second step, we set 𝑟 = 2

⌈
log𝑑 (𝑝′)

⌉
, and we want to reach

a degree of 𝑝′ − 2 and 𝑝′ − 1 non-zero coefficients. If either of
these conditions is not fulfilled, we sample a new set of 𝑟 constants
𝑐1, 𝑐2, . . . , 𝑐𝑟 and apply the above function 𝑓 again until the resulting
polynomial is dense and of maximum degree. In our experiments,
both conditions are fulfilled after only a small number of trials. We
note that the final representation of 𝑓 is similar to the polynomial
representation of the MiMC permutation [6], where the key is set
to a known constant.

We practically evaluated the algebraic properties of the result-
ing S-box 𝑆𝑖 when embedded in F𝑛′

2 , where 𝑛′ :=
⌈
log2 (𝑝′)

⌉
. As

expected, in our experiments we observed that the algebraic degree
of 𝑆𝑖 is 𝑛′ (note that 𝑆𝑖 embedded in F𝑛′

2 is not a permutation).8
For the sake of completeness, the full S-box definition is given

in auxiliary files.

B SECURITY ANALYSIS
In this section, we analyze the security of our design against known
attacks on bijective transformations relevant in the hash function
and encryption settings.

B.1 Statistical Attacks
Firstly, we show that our design is secure against statistical attacks,
including the differential one and its variants, the linear attack and
the rebound attack. In order to achieve this goal, we make use of the
same strategy originally proposed for HadesMiMC and Poseidon.
That is, we make use only of the Bricks and of the Concrete
components in order to guarantee security against statistical attack.
In particular, here we consider a variant of the RC permutation
denoted by RC′ in which the middle component Bricks-Concrete-
Bars-Concrete-Bricks is replaced with a single Bricks, i.e.,

RC′ := Concrete(8) ◦ Bricks ◦ Concrete(7)

◦ Bricks ◦ Concrete(6) ◦ Bricks ◦ Concrete(3)

◦ Bricks ◦ Concrete(2) ◦ Bricks ◦ Concrete(1) .

8The algebraic degree refers to the maximum degree of all component functions.
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We claim that if a sponge hash function instantiated with RC′ is
secure against the statistical attacks proposed in this section, then
it is also secure if it is instantiated with the full RC permutation RC
instead. This is a reasonable assumption, since RC exhibits the same
structure, but increases the number of nonlinear components.

B.1.1 Differential Cryptanalysis. Differential cryptanalysis [18, 19]
and its variations are the most widely used techniques to analyze
symmetric-key primitives. Given pairs of inputs with some fixed
input differences, differential cryptanalysis considers the probabil-
ity distribution of the corresponding output differences produced
by the cryptographic primitive. Let 𝛿𝐼 , 𝛿𝑂 ∈ F𝑡𝑝 be respectively the
input and the output differences through a function 𝐹 over F𝑡𝑝 . The
differential probability (DP) of having a certain output difference
𝛿𝑂 given a particular input difference 𝛿𝐼 is equal to

Prob(𝛿𝐼 → 𝛿𝑂 ) =
|{𝑥 ∈ F𝑡𝑝 | 𝐹 (𝑥 + 𝛿𝐼 ) − 𝐹 (𝑥) = 𝛿𝑂 }|

𝑝𝑡
.

As our design is an iterated scheme, a cryptanalyst searches for
ordered sequences of differences over any number of rounds that are
called differential characteristics/trails. Assuming the independence
of the rounds, the DP of a differential trail is the product of the
DPs of its one-round differences. We claim that the security against
differential attacks is achieved if every differential characteristic
has a probability smaller than 𝑝−2. This is due to the fact that many
characteristics can be used together in order to set up the attack,
which means that a probability of 𝑝−1 may not be sufficient to
provide security.

To show that our scheme is secure against this attack, we start
by considering the maximum differential probability (DPmax) of
each component of the Bar. As it is well known,

DPmax (𝑥 ↦→ 𝑥𝑑 ) = (𝑑 − 1)/𝑝.

In the Bricks layer, themaximumdifferential probability of 𝐹 (𝑥,𝑦) =
𝑥 (𝑦2+𝛼𝑦+𝛽) for an input difference 𝛿𝐼 = (𝛿𝐼 ,𝑥 , 𝛿𝐼 ,𝑦) ∈ F2𝑝 \ {(0, 0)}
and an output difference 𝛿𝑂 ∈ F𝑝 (where 𝛼, 𝛽 ∈ F𝑝 \ {0} s.t. 𝛼2−4𝛽
is not a square modulo 𝑝) is

Prob(𝛿𝐼 → 𝛿𝑂 ) ≤
{ 2

𝑝 if 𝛿𝐼 ,𝑦 = 0 or 𝛿𝐼 ,𝑥 = 𝛿𝑂 = 0,
𝑝−1
𝑝2 < 1

𝑝 otherwise.

In particular, 𝛿𝐼 ,𝑦 = 0 =⇒ 𝛿𝑂 ≠ 0. We refer to [39, Lemma 4] for
this result. Here we show that the best differential characteristic
over two rounds has probability at most

4(𝑑 − 1)2
𝑝4

≪ 𝑝−3 .

Roughly speaking, this is due to the facts that
• at least four words are active (due to the branch number of

the matrix that defines the linear layer),
• each active word affects the overall probability by a factor

proportional to 𝑝−1.
Examples of differential characteristics that achieve a probability
of ≈ 𝑝−4 are the following.

(1) The third word at the input of the first round is active, while
all words at the input of the second round are active, i.e.,

©«
0
0
𝛿1

ª®¬
Br.( ·)
−−−−−→ ©«

0
0
𝛿2

ª®¬
Conc.( ·)
−−−−−−−→ ©«

𝛿2
𝛿2
2𝛿2

ª®¬
Br.( ·)
−−−−−→ ©«

𝛿3
𝛿4
𝛿5

ª®¬ for fixed differences

𝛿1, . . . , 𝛿5 ∈ F𝑝 . Note that if 𝛿2 is not fixed, then the prob-
ability increases by a factor 𝑝 (but it is still much smaller
than 𝑝−2);

(2) At the input of both rounds, the second and the third words

are active, i.e., ©«
0
𝛿1
𝛿2

ª®¬
Br.( ·)
−−−−−→ ©«

0
𝛿3
𝛿4

ª®¬
Conc.( ·)
−−−−−−−→ ©«

𝛿3 + 𝛿4
2𝛿3 + 𝛿4
𝛿3 + 2𝛿4

ª®¬
Br.( ·)
−−−−−→ ©«

𝛿5
𝛿6
𝛿7

ª®¬ for
fixed differences 𝛿1, . . . , 𝛿7 ∈ F𝑝 such that 𝛿3 + 𝛿4 = 𝛿5 = 0.
Note that if 𝛿3 is not fixed, then the probability increases
by a factor 𝑝 (but it is still much smaller than 𝑝−2);

(3) The first word at the input of the first round is active, while
the second and the third words at the input of the second

round are active, i.e., ©«
𝛿1
0
0

ª®¬
Br.( ·)
−−−−−→ ©«

𝛿2
𝛿3
0

ª®¬
Conc.( ·)
−−−−−−−→ ©«

2𝛿2 + 𝛿3
𝛿2 + 2𝛿3
𝛿2 + 𝛿3

ª®¬
Br.( ·)
−−−−−→ ©«

𝛿4
𝛿5
𝛿6

ª®¬
for fixed differences 𝛿1, . . . , 𝛿6 ∈ F𝑝 such that 2 · 𝛿2 + 𝛿3 =
𝛿4 = 0. Note that if 𝛿2 is not fixed, then the probability
increases by a factor 𝑝 (but it is still much smaller than
𝑝−2).

Note that this last case is consistent with the branch number of the
matrix. Indeed, note that if the first word is active at the input of
Bricks, then the two first words in output are active. This means
that the number of active input and output words of the matrix is
four.

If the difference in the first words is non-zero in both rounds,
then the probability of the differential characteristic is much smaller
than 𝑝−4, since at least other three words (for a total of five active
words) are active at the input of the Bricks layer (in order to satisfy
the branch number of the matrix, and due to the definition of the
Bricks layer).

As a result, two (consecutive) rounds are sufficient to provide
security against differential attacks.

B.1.2 Truncated and Impossible Differential Attacks. Truncated
differential cryptanalysis [52] is a variant of classical differential
cryptanalysis, in which the attacker can specify only part of the dif-
ference between pairs of texts. Impossible differential cryptanalysis
was introduced by Biham et al. [17] and Knudsen [53]. It exploits
differentials that occur with probability zero.

Working over a single round, we have that

©«
0
0
Δ1

ª®¬
Bricks( ·)
−−−−−−→ ©«

0
0
Δ2

ª®¬
Concrete( ·)
−−−−−−−−→ ©«

Δ2
Δ2

2 · Δ2

ª®¬
and ©«

Δ1
0
0

ª®¬
Bricks( ·)
−−−−−−→ ©«

Δ2
Δ3
0

ª®¬
Concrete( ·)
−−−−−−−−→ ©«

2 · Δ2 + Δ3
Δ2 + 2 · Δ3
Δ2 + Δ3

ª®¬
with probability 1 for (unknown) differences Δ1,Δ2,Δ3 ∈ F𝑝 (the
case in which the middle word is active is analogous). In a similar
way, if we activate the second and the third words in input, we have

©«
0
Δ1
Δ2

ª®¬
Bricks( ·)
−−−−−−→ ©«

0
Δ3
Δ4

ª®¬
Concrete( ·)
−−−−−−−−→ ©«

Δ3 + Δ4
2 · Δ3 + Δ4
Δ3 + 2 · Δ4

ª®¬
with probability 1 for (unknown) differences Δ1, . . . ,Δ4 ∈ F𝑝 . If the
two active words are in a different position in the input, then no
truncated differential with probability 1 exists.
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Note that in both these cases, we we have a linear relation among
the output differences. Such linear relation is then broken/lost after
the next Bricks layer. The only way to extend them is that one
output word is equal to zero. However, this happens with with
probability 1/𝑝 , exactly as in the case in which the outputs are
generated by a pseudo-random permutation (besides the fact that
𝑝 is our security level). Due to this fact and since the Concrete
layer is defined via the multiplication with a MDS matrix, it is not
possible to extend the truncated differentials just given over more
rounds (even when working with a nonzero probability ∈ (1/𝑝, 1)).
See also the analysis given in the previous section for the case of
differential cryptanalysis in which the middle differences are not
fixed.

At the same time, it is possible to set up an impossible differential

over two rounds, since ©«
0
0
Δ1

ª®¬
Conc.◦Br.( ·)
−−−−−−−−−−−→ ©«

Δ2
Δ2
2Δ2

ª®¬ ≠
©«
0
0
Δ3

ª®¬
Conc.◦Br.( ·)
−−−−−−−−−−−→ ©«

Δ4
Δ4
2Δ4

ª®¬
holds with probability 0 for (unknown) differences Δ1, . . . ,Δ4 ∈ F𝑝 .
It follows that three rounds are sufficient to provide security against
truncated and impossibledifferential attacks.

B.1.3 Meet-in-the-Middle and Boomerang Attacks. Meet-in-the-
Middle and boomerang [67] distinguishers (and their variants) rely
on chaining two good differential/linear trails. Due to the differ-
ential/linear analysis just proposed, we claim that our analyzed
scheme RC′ with six rounds (composed of Bricks layers) is secure
against these attacks.

B.1.4 Rebound Attacks. Rebound attacks were first presented in
[55, 60]. The goal of this attack is to find two (input, output) pairs
such that the two inputs satisfy a certain (truncated) input differ-
ence and the corresponding outputs satisfy a certain (truncated)
output difference. The rebound attack consists of two phases, called
inbound and outbound phase. According to these phases, the inter-
nal permutation of the hash function is split into three subparts. Let
𝑃 : F𝑡𝑝 → F𝑡𝑝 be the target permutation, then 𝑃 = 𝑃𝑓 𝑤 ◦ 𝑃𝑖𝑛 ◦ 𝑃𝑏𝑤 .
The inbound phase is in the middle of the permutation and the
two outbound phases are next to the inbound part. In this inbound
part, the attacker tries to cover a middle part in the construction
separately, which would otherwise be expensive in a classical dif-
ferential attack. Having found input and output differences such
that this part is covered in the inbound phase, the attacker now
extends the trail in both directions in the outbound phase.

Here we show that RC′ (namely, the 6-round variant of the RC
permutation in which the middle component is replaced with a
single Bricks layer) is secure against the rebound attack.

Inbound Phase. From Appendix B.1.2 we know that there exist
truncated differentials with a probability of 1 over a single round.
However, these cannot be extended over more rounds, not even
when considering probabilities between 1/𝑝 and 1. Hence, using
an inside-out approach, the attacker can cover two rounds in the
inbound phase.

In order to apply the outbound phase and due to the truncated
differential trails that we found, it is desirable that the difference in
at least one word of the trail found by the inbound phase is equal
to zero. Again, this cannot be achieved with a probability larger
than 1/𝑝 . Hence, we claim that the attacker cannot cover three (or
more) rounds in the inbound phase.

Outbound Phase. In order to extend the trails found in the in-
bound phase, we make use of the results regarding the truncated
differentials presented before. Since one round can always be cov-
ered with a truncated differential characteristic of probability 1, the
attacker can skip two rounds (one in each direction).

Conclusion. Due to the analysis just proposed, we claim that RC′
instantiated with six rounds is secure against the rebound attack
as we can’t find an attack on five rounds or more. Since the hash
sponge function instantiatedwith this weaker permutation is secure
with respect to this attack, the same result holds when considering
the original permutation RC.

B.1.5 Linear and Zero-Correlation Cryptanalysis. In the case of
Boolean functions, linear cryptanalysis [59] searches for a linear
combination of input, output and (if present) key bits that is un-
balanced, i.e., biased towards 0 or towards 1. In the F𝑝 case, linear
cryptanalysis [9] consists in the search of a linear combination of in-
put, output, and (if present) key words that is unbalanced, i.e., biased
towards an element of F𝑝 with probability higher than 1/|F𝑝 | = 1/𝑝 .
Linear attacks pose no threat to our design instantiated with the
same number of rounds previously defined for classical differential
cryptanalysis.

Similar to impossible differential attack, zero-correlation attacks
are a variant of linear attacks that exploit linear hulls with a zero
correlation [20]. In general, those linear hulls are found by a miss-
in-the-middle approach. E.g., the approach is to combine two trails
that propagate some deterministic properties in order to ensure
that the property cannot be fulfilled. Due to our security analysis
against linear and differential cryptanalysis and since our analyzed
scheme RC′ has four Bricks layers, we claim that finding impossible
differentials or zero-correlation linear hulls is infeasible.

B.1.6 Square/Integral &Mixture Differential Attacks. Integral crypt-
analysis is an attack first applied on SQUARE [31] and is particu-
larly efficient against block ciphers based on strong-aligned SPN
schemes [15], as AES and AES-like schemes. It is based on the
analysis the propagation of sums of values. In the case of our
scheme, only one round can be covered with such an attack, e.g.9©«
𝐶

𝐶

𝐴

ª®¬
Bricks( ·)
−−−−−−−−→ ©«

𝐶

𝐶

𝐴

ª®¬
Concrete( ·)
−−−−−−−−−−→ ©«

𝐴

𝐴

𝐴

ª®¬
Bricks( ·)
−−−−−−−−→ ©«

?
?
?

ª®¬ , since both Bricks and

Concrete mix the components of the state.
Other distinguishers that are particular efficient against strong-

aligned schemes are the “multiple-of-𝑛” one [45] and the mixture
differential cryptanalysis [38]. By appropriate choices of a number
of input pairs (related by particular linear/differential relations), it
is possible to make sure that the number of times that the difference
of the resulting output pairs lie in a particular subspace is always a
multiple of𝑛. Since both Bricks and Concretemix the components
of the state, we claim that these attacks pose no threat to our design.

B.2 Invariant Subspace Attack and Fixed Points
B.2.1 Invariant Subspaces. Following [44], we say that a subspace
S ⊆ F𝑡𝑝 is invariant for a function 𝐹 over F𝑡𝑝 if and only if for each

9We use the standard notation 𝐴,𝐶, 𝐵, ? to denote respectively an active word, a
constant one, a balanced one, and an unknown one. We recall that an active word is
also balanced.
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𝑎 ∈ F𝑡𝑝 there exists 𝑏 ∈ F𝑡𝑝 such that

𝐹 (S + 𝑎) = S + 𝑏.

For completeness, we mention that this definition is a slightly dif-
ferent from the one proposed in [56, 57], which is based on the
existence of weak keys.

Here we analyze the security of our scheme against this attack,
since recent proposals have shown vulnerabilities [16, 46]. We start
with the Bars layer. Since Bars operates independently on each
input word, we have the following:

• All subspaces in which only a single word is active (e.g.,
S = ⟨(0, 1, 0)⟩ are invariant through it. In other words, if
the difference in one word is equal to zero, it remains equal
to zero after Bars.

• The subspaces of the form ⟨(1, 1, 0)⟩, or ⟨(1, 0, 1)⟩, or ⟨(0, 1, 1)⟩,
or ⟨(1, 1, 1)⟩ are invariant since the same function 𝑓 defined
in Eq. (4) is applied on each word.

At the same time, note that the subspaces of the form e.g. ⟨(1, 𝑎, 0)⟩
for fixed 𝑎 ∈ F𝑝 \ {0, 1} cannot be invariant due to the fact that the
initial linear relation is destroyed by the function SBox.

We point out that there are invariant affine subspaces even if
no word is fully active. In particular, remember that Bars = Comp ◦
SBox ◦ Decomp, where both Comp : Z𝑠1 × . . . × Z𝑠𝑛 → F𝑝 and
Decomp : F𝑝 → Z𝑠1 × . . . × Z𝑠𝑛 are linear operations that work at
word level, where Comp(𝑥) = (𝑥1, . . . , 𝑥𝑛) ∈ Z𝑠1 × . . . × Z𝑠𝑛 and
where

∑𝑛
𝑖=1 𝑥𝑖 · 𝑏𝑖 = 𝑥 for given 𝑏𝑖 . Furthermore, SBox operates

independently on each 𝑥𝑖 . Hence, the affine subspace I defined as

I :=
{∑︁

𝑖

𝑥𝑖 · 𝑏𝑖 ∈ F𝑝 : 𝑥1 ∈ Z𝑠1 and 𝑥2, . . . , 𝑥𝑛 fixed
}

is an invariant affine subspace through Bars (note that the values
of 𝑥𝑖 for 𝑖 ≥ 2 change, but this would only change the coset and
not the subspace itself). Other invariant affine subspaces can be
defined similarly.

Due to the analysis just proposed, there is no invariant sub-
space for Bricks. This means that our scheme is secure against the
invariant subspace attack.

B.2.2 Fixed Points. For completeness, we also discuss the case of
fixed points. We say that a function 𝐹 over F𝑡𝑝 has a fixed point
𝑥 ∈ F𝑡𝑝 if 𝐹 (𝑥) = 𝑥 .

The only fixed points for Bricks are (0, 0, 0), (±1, 0, 0) and (±
√
−1, 0, 0).

Indeed:
• the only fixed points for 𝑥 ↦→ 𝑥5 are the ones that satisfy

𝑥 · (𝑥4 − 1) = 0, that is {0,±1,±
√
−1}. Note that −1 is a

quadratic residue modulo 𝑝 if and only if 𝑝 = 1 mod 4,
which is exactly the case of 𝑝BLS381 and 𝑝BN254.

• the only fixed points for 𝑥 ↦→ 𝑥 · (𝑦2 + 𝛼 ·𝑦 + 𝛽) for a given
fixed𝑦 ∈ F3𝑝 are (1) {(0, 𝑦) ∈ F2𝑝 | ∀𝑦 ∈ F𝑝 } and (2) {(𝑥,𝑦) ∈
F2𝑝 | ∀𝑥 ∈ F𝑝 and 𝑦 ∈ F𝑝 s.t. (𝑦2 +𝛼 ·𝑦 + 𝛽) = 1}. Since this
second condition is never satisfied for 𝑦 ∈ {0,±1,±

√
−1}

(that is, the fixed points of the first component), it follows
that the only fixed points are the ones given before.

In the case of Bar, there are several fixed points for each S-box
𝑆𝑖 as defined in Eq. (4). In particular, the input 𝑥 of 𝑆𝑖 remains
unchanged if 𝑥 ≥ 𝑝′. Since there are 𝑛 independent S-boxes 𝑆𝑖 for

each one of the three words, it follows that the number of fixed
points for Bar are (

𝑛∏
𝑖=1

(𝑠𝑖 − 𝑝′)
)3

,

over 𝑝3. As a concrete example, when using 𝑝BLS381 ≈ 2256, the
probability for a random point to be a fixed point is(

2134.54

2256

)3
≈ 2−364.4 .

Recall that the Bars layer plays no role in our security arguments
for RC regarding statistical attacks. When considering algebraic
attacks on the middle layer, we have not found a way to exploit
these fixed points in attacks on the middle part of RC. Since the
fixed point property is not described by a low-degree equation, we
expect that, for instance, finding a solution to the CICO problem
with Bar inputs being fixed points is much higher than without
these restrictions.

B.3 Gröbner Basis Cryptanalysis
Gröbner Basis Cryptanalysis usually proceeds in two stages: first,
one models the (cryptographic) permutation as a system of equa-
tions with unknown parameters as variables. Subsequently, a Gröb-
ner basis for the (zero-dimensional) ideal defined by the polynomials
describing the equation system is computed. In practice, the second
step is divided into a triad of computations, namely

(1) Compute a Gröbner basis for the (zero-dimensional) ideal
with respect to a fast term ordering, usually degrevlex;

(2) convert the degrevlex-Gröbner basis into a lex-Gröbner
basis using the FGLM algorithm;

(3) factor the univariate polynomial in the lex-Gröbner basis
and determine the solutions for the corresponding variable.
Back-substitute those solutions, if needed, to determine
solutions for other variables.

Each of the above three steps comes with its own complexity
estimate. Under the assumption of a semi-regular input system
𝑓1, . . . , 𝑓𝑘 in 𝑙 variables with degrees 𝑑1, . . . , 𝑑𝑚 , it is well-known
that the Hilbert series of the ideal corresponding to the input sys-
tem is related to its Gröbner basis, see [10]. The first index with
non-positive coefficient of the expression

𝑆𝑘,𝑙 (𝑧) =
∏𝑘

𝑖=1 (1 − 𝑧𝑑𝑖 )
(1 − 𝑧)𝑙

is the degree of regularity 𝑑reg and it is an upper bound for the
highest degree element in a Gröbner basis with respect to a graded
ordering. Thus, 𝑑reg helps to establish the following upper bound
for the complexity𝐶 (counting finite field operations) of computing
a Gröbner basis of a semi-regular input system:

𝐶𝐺𝐵 (𝑙, 𝑑𝑟𝑒𝑔) ∈ O
((
𝑙 + 𝑑reg

𝑙

)𝜔 )
, (17)

where 𝜔 denotes the linear algebra constant. The terms hidden by
O(·) are relatively small, that’s why for our analysis we drop the
O(·) and use the expression directly. Our security analysis consists
of following steps:

(1) We present a system of algebraic equations for the Bar
function.
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(2) We give an algebraic model for the three-layer version
Concrete ◦ Bars ◦ Concrete in the CICO-setting.

(3) We run a series of Gröbner basis attacks on the three-
layer version Concrete ◦ Bars ◦ Concrete instantiated
with much smaller primes 𝑝 and argue that already for
this small-scale versions the attack complexity is at least
(𝐶𝐺𝐵 (𝑙, 𝑑𝑟𝑒𝑔/3))1/2.

Algebraic Representation of Bar. For an algebraic model of Bar,
we “embed” Z𝑠𝑖 in F𝑝 for all 1 ≤ 𝑖 ≤ 𝑛. This embedding is not an em-
bedding in the strict mathematical sense of a structure preserving in-
jective map. Instead, given the respective standard representations
of Z𝑠𝑖 and F𝑝 , we treat the elements 0, 1, . . . , 𝑠𝑖 −1 ∈ Z𝑠𝑖 as elements
in F𝑝 . As a result, we suggest the following system of 2𝑛 + 2 equa-
tions over F𝑝 in the 2𝑛 + 2 variables 𝑥,𝑦, 𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 ∈ F𝑝
to model the Bar function:


𝑥 = 𝑥1𝑏1 + 𝑥2𝑏2 + · · · + 𝑥𝑛𝑏𝑛

0 = 𝑝𝑠𝑖 (𝑥𝑖 ), 1 ≤ 𝑖 ≤ 𝑛

𝑦𝑖 = 𝐿𝑖 (𝑥𝑖 ), 1 ≤ 𝑖 ≤ 𝑛

𝑦 = 𝑦1𝑏1 + 𝑦2𝑏2 + · · · + 𝑦𝑛𝑏𝑛

,

where
• 𝑝𝑠𝑖 (𝑥𝑖 ) :=

∏𝑠𝑖−1
𝑘=0 (𝑥𝑖 − 𝑘) is a polynomial of degree 𝑠𝑖 that

vanishes at {0, 1, . . . , 𝑠𝑖 − 1}; 𝑝𝑠𝑖 ensures that 𝑥𝑖 ∈ Z𝑠𝑖 ;
• 𝐿𝑖 (𝑥𝑖 ) is the interpolation polynomial of degree 𝑠𝑖 − 1 for

S-box 𝑆𝑖 (“embedded” in F𝑝 ), i.e.

𝐿𝑖 (𝑥𝑖 ) :=
∑︁

0≤𝑘≤𝑠𝑖−1
𝑆𝑖 (𝑘)

∏
0≤ 𝑗≤𝑠𝑖−1

𝑗≠𝑘

𝑥𝑖 − 𝑗

𝑘 − 𝑗
.

Under regularity assumptions, the entire system has an expected
degree of regularity

𝑑Barreg = 1 +
𝑛∑︁
𝑖=1

(𝑠𝑖 − 1) +
𝑛∑︁
𝑖=1

(𝑠𝑖 − 2)

= 1 − 𝑛 + 2
𝑛∑︁
𝑖=1

(𝑠𝑖 − 1) ≈ 2𝑛 𝑛
√
𝑝.

Algebraic Representation of Concrete ◦ Bars ◦ Concrete. In this
part we argue that already the computational cost of the first step
(i.e., computing a degrevlex-Gröbner basis) of Concrete ◦ Bars ◦
Concrete in the CICO-setting far exceeds the 128-bit security re-
quirement. Our arguments are based on empirical observations on
small-scale instances of this truncated version.

We model the composition Concrete ◦ Bars ◦ Concrete in the
CICO-setting10 and suggest the following system of 6𝑛+8 equations
in 6𝑛 + 6 variables as algebraic model:

CBC𝑐𝑖𝑐𝑜 =



𝑦1 = Bar(𝑥1)
𝑦2 = Bar(𝑥2)
𝑦3 = Bar(𝑥3)
0 = Concrete−1 (𝑥1, 𝑥2, 𝑥3) [1]
0 = Concrete(𝑦1, 𝑦2, 𝑦3) [1]

,

10See Appendix B.6.1 for further details.

𝑝 41 61 79 97 107 113 127
𝑙, 𝑛 18,20 18,20 18,20 18,20 18,20 18,20 18,20
𝑣 5 5 7 7 7 7 7

𝑠1, 𝑠2 7,7 8,9 9,10 10,11 11,12 12,13 13,13
𝑑reg 28 35 40 45 50 55 58
𝑑mag 13 15 15 17 19 21 23

𝑑reg : 𝑑mag 2.2 2.3 2.6 2.6 2.6 2.6 2.5
𝑇 (s) 17 23 60 344 462 1020 1625
𝐶bit : 2 28 30 30 32 34 36 38

Table 4: Results ofGröbner basis computations on small-scale
instances of Concrete◦Bars◦Concrete in the CICO-setting for
various primes 𝑝 and decompositions into 𝑛 = 2 buckets. The
degree of regularity 𝑑reg is computed under the assumption
that the input system is semi-regular, the timings of the
Gröbner basis computations 𝑇 are given in seconds, and the
estimated bit complexity 𝐶bit := log2 (𝐶𝐺𝐵) is divided by 2 (to
reflect practical runtimes).

Here, Concrete( · , · , ·) [𝑖] denotes the 𝑖-th word of the state (for
1 ≤ 𝑖 ≤ 3) and 𝑛 describes the number of buckets Z𝑠1 , . . . ,Z𝑠𝑛 in
the decomposition Decomp. The variables 𝑥1, 𝑥2, 𝑥3 and 𝑦1, 𝑦2, 𝑦3,
respectively, denote the input and output to Bars.

Discussion of Practical Results. In our practical experiments we
computed Gröbner bases of small-scale instances of CBC𝑐𝑖𝑐𝑜 for
various primes 𝑝 and decompositions into 𝑛 = 2 buckets.11 Table 4
we present the results of our experiments. Instead of taking 𝑑reg for
establishing the complexity estimates, we computed Gröbner basis
of several small-scale instances and observed the maximum degree
𝑑mag reached during these computations using the CAS Magma.
Subsituting𝑑reg with𝑑mag in (17), results in our complexity estimate
𝐶 . We use 𝜔 = 2 and, furthermore, we take the bit-complexity
𝐶bit := log2 (𝐶) to write down the complexity estimates in Table 4.

Our practical findings can be summarized as follows: (i) the ratio
of the theoretical estimate for the maximum degree 𝑑reg and the
maximum degree 𝑑mag reached by Magma during the Gröbner basis
computations is approximately (and conservatively estimated) 3;
(ii) using the empirical values 𝑑mag for establishing complexity
estimates, we observed that our practical experiments run about as
fast as the square root of the complexity estimates. This yields the
following estimate for attacking a full-scale instance of CBC𝑐𝑖𝑐𝑜
with 𝑝 = 𝑝𝐵𝑁 254 or 𝑝 = 𝑝𝐵𝑆𝑇 381 and 𝑛 = 27 via a Groebner basis
approach: (

𝐶𝐺𝐵 (𝑙 = 170, 𝑑𝑟𝑒𝑔/3)
)1/2

> 21360,
far exceeding the generic CICO security level of 2256 function calls
(which amounts to ≈ 2267 finite field operations for Concrete ◦
Bars ◦ Concrete) and the security level of 2128 function calls for
collision and preimage resistance.

B.4 Other Algebraic Attacks
Finally we claim that our design is secure against other algebraic
attacks, including interpolation as well as higher-order differential
distinguishers (we highlight that we do not claim security against
zero-sum partitions).

11We conducted our experiments on a machine with Intel® Xeon® E5-2630 v3 @
2.40GHz (32 cores) and 378GB RAM under Debian 11 using Magma V2.26-2.



Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger, and Roman Walch

To achieve this goal, we argue that all mentionedmethods cannot
penetrate Middle. In particular, this implies that the full permuta-
tion provides security with respect to above mentioned cryptana-
lytical methods.

To rule out algebraic attacks, we introduce the following param-
eters:

• 𝑑𝐵 is the degree of the Bar transformation as an operation
over F𝑝 .

• 𝑑𝑆 is the maximum degree of the component functions of
the Bricks layer as an operation over F𝑝 .

B.4.1 Interpolation Analysis. In its basic form, interpolation analy-
sis aims at constructing the polynomial representation of a given
(cryptographic) function [50]. To provide resistance against inter-
polation, a function must exhibit maximal degree (or a degree close
to its maximum) and a dense polynomial representation (i.e., a
description with many non-zero coefficients).

The total degree of one word of the permutation RC over F𝑝 is
𝑑𝐵 · 𝑑6

𝑆
. It is enough to require 𝑑𝐵 > 2127 for 128-bit security.

A heuristic argument that 𝑑𝐵 > 2127 is that the we define Bars
on at least 𝑝′27 points in a nonlinear way. This accounts to at least
2251 points, so the degree should exceed 2251.

We also computed the degree 𝑑𝐵 for small-scale instances of
Bar with 𝑓 (𝑥) = 𝑥−1 as internal function 𝑓 for the small S-Boxes
𝑆1, . . . , 𝑆𝑛 and 𝑛 = 2, 3. For every instance we tested, the degree of
Bar was maximal, i.e. 𝑝 − 2, with almost all coefficients of the
polynomial being non-zero. Extrapolating this trend and since
log2 (𝑝) ≈ 256 for the full-scale permutation RC, we conclude that
above requirement is far exceeded.

B.4.2 Higher-Order Differential Attack and Zero-Sum Distinguish-
ers. Given a vectorial Boolean function F over F𝑛2 of degree 𝑑 , the
higher-order differential attack [52, 54] exploits the fact that∑︁

𝑥∈V+𝑣
𝑥 =

∑︁
𝑥∈V+𝑣

𝐹 (𝑥) = 0

for each affine subspace V + 𝑣 ⊆ F𝑛2 of dimension strictly bigger
than 𝑑 (that is, dim(V) ≥ 𝑑 + 1). The corresponding attack in the
case of a prime field F𝑝 has been recently proposed by Beyne et
al. [16]. Since this result is related to the degree of the polynomial
that describes the permutation, we claim that the security against
the interpolation attack implies security against this attack as well.

A possible variant of higher-order sum in the case of permuta-
tions is the zero-sum partition distinguisher [23]. Here we explicitly
state that we do not make claims about the security of our scheme
against zero-sum partitions. This choice is motivated by the gap
present in the literature between the number of rounds of the inter-
nal permutation that can be covered by a zero-sum partition and by
the number of rounds in the corresponding sponge hash function
that can be broken e.g. via a preimage or a collision attack.

B.5 Side-channel attacks
Whereas it is clear that ZK protocols might fall apart in the presence
of a side-channel adversary, the available literature is scarce ([66]
being an exception). Most primitives are not strengthened against
side-channels. The reason probably being that performance is criti-
cal, and a side-channel protection would slow down and make the

protocol less practical. In addition, constant-time implementations
of prime arithmetic are hard and not available in many frameworks
used by deployed ZK protocols. Naturally, many protocols are com-
petitors and are afraid to lose a market share.

For the RC design, its native execution can be run without table
lookups as the table is computed as a polynomial. If the prime field
operations were implemented in constant-time, our function would
be leakage-free. We also note that ZK-friendly hash functions, in
contrast to AES, are much less exposed to an attacker as the input
messages are rather short.

B.6 Every Building Block is Necessary
B.6.1 The Necessity of Bars. We first focus on a design which
excludes the Bars layer, and we show that a much higher num-
ber of rounds is needed to provide security. In order to do this,
we use a Gröbner basis approach. Further, as our permutation is
used in a Sponge setting, we consider the CICO (constrained input,
constrained output) problem. More specifically, our goal is to find
𝑡 − 𝑘 variables such that the first 𝑘 words of both the input and the
output of RC are zero. For a good hash transformation, we expect
this to take a workload of 𝑝𝑘 operations when working over F𝑝 .

In more detail, we want that

𝑥 = 0∥ · · · ∥0∥𝑥𝑘+1∥ · · · ∥𝑥𝑡

is the input of the function (where ·∥· denotes the concatenation)
and

𝑦 = RC(𝑥) = 0∥ · · · ∥0∥𝑦𝑘+1∥ · · · ∥𝑦𝑡

is the output, and our goal is to find 𝑥𝑘+1, · · · , 𝑥𝑡 .
Focusing on our function with 𝑡 = 3 and using a single element

of approximately 256 bits for the capacity (for a 128-bit security
level), let us consider 𝑘 = 1. We then have 2 variables and only one
equation. This system is underdetermined, but we can arbitrarily
fix one of the variables. In the end, we arrive at a single equation
in a single variable.

Full-Round Equations. Using this straight-forward approach, we
note that our Bricks layer has a degree of 3. Without further con-
sidering the density of the resulting polynomials, our final goal is
to find the roots of a univariate equation of degree 3𝑟 , where 𝑟 is
the number of rounds. Since this cost is approximately an element
in O(𝑑3) [36], we want that

33𝑟 ≥ 𝑝 =⇒ 𝑟 ≥ log27 (𝑝) .

For example, if 𝑝 ≈ 2256, this results in 𝑟 ≥ 54, which is much larger
than what our current proposal needs.

Intermediate Variables and Equations. Another possible approach
is to keep the degrees low by introducing additional variables. In
order to do this, we introduce 3 new variables in each round and
we arrive at a system of degree-3 equations.

Let us again assume that we use 𝑟 rounds. Then, we introduce
3(𝑟 − 1) new variables and equations. In the end, we arrive at
𝑛𝑒 = 3(𝑟 − 1) + 1 degree-3 equations and the same number of
variables 𝑛𝑣 (one additional equation for the final zero element,
and the original variable 𝑥𝑡 at the beginning). Generically, the



Reinforced Concrete: A Fast Hash Function for Verifiable Computation

complexity of solving such a system is then in

O
((
𝐷reg + 𝑛𝑣

𝑛𝑣

)𝜔 )
,

where we set 𝜔 = 2 and where

𝐷reg = 1 +
𝑛𝑒∑︁
𝑖=1

2 = 1 + 2 · (3(𝑟 − 1) + 1) .

In this case, we want that(
1 + 6(𝑟 − 1) + 2 + 3(𝑟 − 1) + 1

3(𝑟 − 1) + 1

)2
=

(
9𝑟 − 5
3𝑟 − 2

)2
≥ 𝑝,

which results in 𝑟 ≥ 33 for 𝑝 ≈ 2256. Note that we are not exploit-
ing the density and general structure of the polynomials. Indeed,
when using equations which cover single rounds, we can assume
that they do not exhibit strong pseudo-random properties, which
means that the above estimation is actually a pessimistic one (from
the attacker’s perspective). However, this is sufficient to show the

efficiency of our current proposal, since any faster attack would
only further increase the number of rounds needed for security in
the design without the Bars layer.

B.6.2 The Necessity of Concrete. Without the Concrete layer,
we would have a weaker diffusion over the 3 words. In particular,
note that the Bricks layer does not provide any mixing in the first
word. Hence, when omitting the Concrete layer, the subspaces
⟨(0, 1, 0), (0, 0, 1)⟩ and ⟨(0, 0, 1)⟩ are invariant through the whole
permutation, independent of the number of rounds.

B.6.3 The Necessity of Bricks. Without the Bricks layer, an at-
tacker could work with a system of equations over the smaller fields
of the Bars layer. Moreover, the in-word diffusion (i.e., the diffusion
in a single word) would only happen in the Bars layer, which is
weak. Further, we need the Bricks layer for statistical arguments,
since e.g. in a rebound attack both outbound phases would be linear
otherwise (when considering the Bars layer in the inbound phase).
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