On the security of Hufu-UOV

Yasufumi Hashimoto *

Abstract

In 2019, Tao proposed a new variant of UOV with small keys, called Hufu-UOV. This paper studies its security.

Keywords. multivariate public-key cryptosystems, UOV, Hufu-UOV

1 UOV and Hufu-UOV

We first describe the original UOV $[3,1]$ and Hufu-UOV [4].

1.1 UOV

Let $n, o, v \geq 1$ be integers with $v \geq o, n=o+v, q$ be a power of prime and \mathbf{F}_{q} a finite field of order q. Define the quadratic map $G: \mathbf{F}_{q}^{n} \rightarrow \mathbf{F}_{q}^{o}, \mathbf{x}={ }^{t}\left(x_{1}, \ldots, x_{n}\right) \mapsto G(\mathbf{x})={ }^{t}\left(g_{1}(\mathbf{x}), \ldots, g_{o}(\mathbf{x})\right)$ by

$$
\begin{aligned}
g_{l}(\mathbf{x}) & =\sum_{1 \leq i \leq o} x_{i} \cdot\left(\text { linear form of } x_{o+1}, \ldots, x_{n}\right)+\left(\text { quadratic form of } x_{o+1}, \ldots, x_{n}\right) \\
& ={ }^{t} \mathbf{x}\left(\begin{array}{cc}
0_{o} & * \\
* & *_{v}
\end{array}\right) \mathbf{x}+(\text { linear form }), \quad(1 \leq l \leq o)
\end{aligned}
$$

where the coefficients of the polynomials above are elements of \mathbf{F}_{q}. The unbalanced oil and vinegar signature scheme (UOV) [3, 1] is constructed as follows.
Secret key. An invertible affine map $S: \mathbf{F}_{q}^{n} \rightarrow \mathbf{F}_{q}^{n}$ and the quadratic map G defined above.
Public key. The quadratic map $F:=G \circ S: \mathbf{F}_{q}^{n} \rightarrow \mathbf{F}_{q}^{o}$.
Signature generation. For a message $\mathbf{m}={ }^{t}\left(m_{1}, \ldots, m_{o}\right) \in \mathbf{F}_{q}^{o}$ to be signed, choose $u_{1}, \ldots, u_{v} \in \mathbf{F}_{q}$ randomly, and find $\left(y_{1}, \ldots, y_{o}\right) \in \mathbf{F}_{q}^{o}$ with

$$
\begin{equation*}
g_{1}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)=m_{1}, \quad \ldots, \quad g_{o}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)=m_{o} \tag{1}
\end{equation*}
$$

Since the equations in (1) are linear, $\left(y_{1}, \ldots, y_{o}\right)$ is given efficiently. The signature for \mathbf{m} is z : $=S^{-1 t}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)$.
Signature verification. The signature \mathbf{z} is verified if $F(\mathbf{z})=\mathbf{m}$ holds.
Security. Major attacks on UOV are Kipnis-Shamir's attack [2, 1] and the direct attack. KipnisShamir's attack is to recover an affine map $S_{1}: \mathbf{F}_{q}^{n} \rightarrow \mathbf{F}_{q}^{n}$ equivalent to S and its complexity is

[^0]known to be $O\left(q^{\max (0, v-o)} \cdot(\right.$ polyn. $\left.)\right)$. The direct attack is to generate a dummy signature by solving the system of quadratic equations $F(\mathbf{x})=\mathbf{m}$ directly. It is known that its complexity is, in general, exponential of m.

1.2 Hufu-UOV

Hufu-UOV [4] is a variant of UOV whose quadratic polynomials are constructed by circulant matrices and Toeplitz matrices respectively given in the following forms.

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & a_{n-2} & a_{n-1} \\
a_{n-1} & a_{0} & \ddots & a_{n-3} & a_{n-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_{2} & a_{3} & \ddots & a_{0} & a_{1} \\
a_{1} & a_{2} & \cdots & a_{n-1} & a_{0}
\end{array}\right), \quad\left(\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & a_{n-2} & a_{n-1} \\
b_{1} & a_{0} & \ddots & a_{n-3} & a_{n-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
b_{n-2} & b_{n-3} & \ddots & a_{0} & a_{1} \\
b_{n-1} & b_{n-2} & \cdots & b_{1} & a_{0}
\end{array}\right) .
$$

Define the quadratic map $G(\mathbf{x})=\left(g_{1}(\mathbf{x}), \ldots, g_{m}(\mathbf{x})\right)$ and the invertible linear map $S: \mathbf{F}_{q}^{n} \rightarrow \mathbf{F}_{q}^{n}$ by

$$
\begin{aligned}
& g_{l}(\mathbf{x})={ }^{t} \mathbf{x}\left(\begin{array}{cc}
\lambda_{l} A & U_{l} \\
U_{l} & W_{l}
\end{array}\right) \mathbf{x}, \quad(1 \leq l \leq m) \\
& S(\mathbf{x})=\left(\begin{array}{cc}
I_{o} & 0 \\
M & I_{v}
\end{array}\right) \mathbf{x}
\end{aligned}
$$

where $\lambda_{l} \in \mathbf{F}_{q}, A$ is an $o \times o$-Toeplitz matrix, W_{l} is a $v \times v$-circulant matrix and U_{l}, M are the first o-columns of $v \times v$-circulant matrices. Note that A and W_{l} can be taken to be symmetric. The secret key is (G, S) and the public key is $F=G \circ S$. The signature generation is as follows. Signature generation. For a message $\mathbf{m}={ }^{t}\left(m_{1}, \ldots, m_{o}\right) \in \mathbf{F}_{q}^{o}$ to be signed, choose $u_{1}, \ldots, u_{v} \in \mathbf{F}_{q}$ randomly, and find $\left(y_{1}, \ldots, y_{o}\right) \in \mathbf{F}_{q}^{o}$ with

$$
\begin{aligned}
& g_{1}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)=m_{1} \\
& g_{2}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)-\lambda_{2} \lambda_{1}^{-1} g_{1}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)=m_{2}-\lambda_{2} \lambda_{1}^{-1} m_{1}
\end{aligned}
$$

$$
\begin{equation*}
\vdots \tag{2}
\end{equation*}
$$

$$
g_{o}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)-\lambda_{o} \lambda_{1}^{-1} g_{1}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)=m_{o}-\lambda_{o} \lambda_{1}^{-1} m_{1}
$$

The signature for \mathbf{m} is $\mathbf{z}:=S^{-1 t}\left(y_{1}, \ldots, y_{o}, u_{1}, \ldots, u_{v}\right)$.
Since the first equation in (2) is quadratic and the later $o-1$ equations are linear, one can generate the signature easily.

The number of parameters in the secret key of Hufu-UOV is about $\frac{3}{2}$ ov. It is much smaller than $\frac{1}{2} o v^{2}+o^{2} v$, which is a round number of the parameters in the secret key of the original UOV. This situation is similar to the public key. For the security, Tao [4] claimed that HufuUOV is almost as secure as the original UOV against the known attacks. However, it is not true. We propose an attack on Hufu-UOV in the next section.

2 Proposed attack

Let $f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$ be public quadratic polynomials with $F(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)$, and F_{1}, \ldots, F_{m} the $n \times n$ matrices with $f_{l}(\mathbf{x})={ }^{{ }^{t} \mathbf{x}} F_{l} \mathbf{x}$. Choose F_{l} to be symmetric and denote by A_{l}, B_{l}, C_{l} respectively the $o \times o, v \times o, v \times v$ matrices with $F_{l}=\left(\begin{array}{ll}A_{l} & { }^{t} B_{l} \\ B_{l} & C_{l}\end{array}\right)$. Since $f_{l}\left(S^{-1}(\mathbf{x})\right)=g_{l}(\mathbf{x})$, we have

$$
\begin{equation*}
A_{l}-{ }^{t} B_{l} M-{ }^{t} M B_{l}+{ }^{t} M C_{l} M=\lambda_{l} A, \quad B_{l}-C_{l} M=U_{l}, \quad W_{l}=C_{l} . \tag{3}
\end{equation*}
$$

Recall that M, U_{l}, λ_{l}, A are secret and A_{l}, B_{l}, C_{l} are public. Furthermore, note that A_{l} is an $o \times o$ Toeplitz matrix, C_{l} is a $v \times v$ circulant matrix and B_{l} is the first o column of a $v \times v$ circulant matrix. It is easy to see that there exist $v \times v$ circulant matrices $A^{c}, A_{l}^{c}, B_{l}^{c}, M^{c}$ such that

$$
A=\left(I_{o}, 0\right) A^{c}\binom{I_{o}}{0}, \quad A_{l}=\left(I_{o}, 0\right) A_{l}^{c}\binom{I_{o}}{0}, \quad B_{l}=B_{l}^{c}\binom{I_{o}}{0}, \quad M=M^{c}\binom{I_{o}}{0} .
$$

For example, if $o=2, v=5$ and

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), \quad M=\left(\begin{array}{ll}
3 & 2 \\
1 & 3 \\
1 & 1 \\
0 & 1 \\
2 & 0
\end{array}\right),
$$

the 5×5 circulant matrices A^{c}, M^{c} are as follows.

$$
A^{c}=\left(\begin{array}{cc|ccc}
1 & 2 & y & y & 2 \\
2 & 1 & 2 & y & y \\
\hline y & 2 & 1 & 2 & y \\
y & y & 2 & 1 & 2 \\
2 & y & y & 2 & 1
\end{array}\right), \quad M^{c}=\left(\begin{array}{cc|ccc}
3 & 2 & 0 & 1 & 1 \\
1 & 3 & 2 & 0 & 1 \\
1 & 1 & 3 & 2 & 0 \\
0 & 1 & 1 & 3 & 2 \\
2 & 0 & 1 & 1 & 3
\end{array}\right)
$$

Remark that A^{c} cannot be fixed uniquely and the number of unknowns in A^{c} is $\left\lceil\frac{v+1}{2}\right\rceil-o$. At the present time, we remain such unfixed parameters to be unknowns.

Due to (3), we have

$$
\lambda_{l} A^{c}=A_{l}^{c}-{ }^{t} B_{l}^{c} M^{c}-{ }^{t} M^{c} B_{l}^{c}+{ }^{t} M^{c} C_{l} M^{c} .
$$

Since the multiplication between circulant matrices is commutative, the equation above is written by

$$
\begin{equation*}
\lambda_{l} A^{c}=A_{l}^{c}-{ }^{t} B_{l}^{c} M^{c}-B_{l}^{c t} M^{c}+C_{l}^{t} M^{c} M^{c} \tag{4}
\end{equation*}
$$

for $1 \leq l \leq m$. Let

$$
H_{l}:=C_{l}^{t} M^{c} M^{c}-{ }^{t} B_{l}^{c} M^{c}-B_{l}^{c t} M^{c}+A_{l}^{c}-\lambda_{l} A^{c}
$$

for $1 \leq l \leq m$ and

$$
\bar{H}_{l}\left(\delta_{l}, \delta_{2}\right):=\left(C_{2}-\delta_{2} C_{1}\right) H_{l}-\left(C_{l}-\delta_{l} C_{1}\right) H_{2}+\left(\delta_{2} C_{l}-\delta_{l} C_{2}\right) H_{1}
$$

for $3 \leq l \leq m, \delta_{2}, \delta_{l} \in \mathbf{F}_{q}$. We have

$$
\begin{aligned}
\bar{H}_{l}\left(\delta_{l}, \delta_{2}\right)= & \left(\left(C_{l}^{t} B_{2}^{c}-C_{2}^{t} B_{l}^{c}\right)+\delta_{2}\left(C_{1}{ }^{t} B_{l}^{c}-C_{l}^{t} B_{1}^{c}\right)+\delta_{l}\left(C_{2}{ }^{t} B_{1}^{c}-C_{1}{ }^{t} B_{2}\right)\right) M^{c} \\
& +\left(\left(C_{l} B_{2}^{c}-C_{2} B_{l}^{c}\right)+\delta_{2}\left(C_{1} B_{l}^{c}-C_{l} B_{1}^{c}\right)+\delta_{l}\left(C_{2} B_{1}^{c}-C_{1} B_{2}\right)\right)^{t} M^{c} \\
& +\left(C_{2} A_{l}^{c}-C_{l} A_{2}^{c}\right)+\delta_{2}\left(C_{l} A_{1}^{c}-C_{1} A_{l}^{c}\right)+\delta_{l}\left(C_{1} A_{2}^{c}-C_{2} A_{1}^{c}\right) \\
& +\left(\left(\lambda_{l} \delta_{2}-\lambda_{2} \delta_{l}\right) C_{1}+\left(\lambda_{1} \delta_{l}-\lambda_{l}\right) C_{2}+\left(\lambda_{2}-\lambda_{1} \delta_{2}\right) C_{l}\right) A^{c} .
\end{aligned}
$$

This means that, if $\delta_{2}=\lambda_{1}^{-1} \lambda_{2}, \delta_{l}=\lambda_{1}^{-1} \lambda_{l}$ hold, the matrix equation $\bar{H}_{l}\left(\delta_{l}, \delta_{2}\right)=0$ generates a system of linear equations of unknowns in $M^{c}, A_{1}^{c}, A_{2}^{c}, A_{l}^{c}$. The number of equations and variables derived from $\bar{H}_{3}\left(\delta_{3}, \delta_{2}\right)=0, \ldots, \bar{H}_{K}\left(\delta_{K}, \delta_{2}\right)=0$ are respectively $\left\lceil\frac{v+1}{2}\right\rceil(K-2)$ and $v+\left(\left\lceil\frac{v+1}{2}\right\rceil-o\right) K$, and then we can recover M by solving its system of linear equations if $K \geq \frac{2 v+1}{o}$ and $\delta_{2}, \ldots, \delta_{K}$ are chosen correctly. Thus the following attack is available on Hufu-UOV.
Step 1. Choose $\delta_{2}, \ldots, \delta_{K} \in \mathbf{F}_{q}$ randomly.
Step 2. Solve the system of linear equations derived from $\bar{H}_{3}\left(\delta_{3}, \delta_{2}\right)=0, \ldots, \bar{H}_{K}\left(\delta_{K}, \delta_{2}\right)=0$. If there exists a solution, fix M by its solution. If not, go back to Step 1 and choose another $\left(\delta_{1}, \ldots, \delta_{K}\right)$.
Step 3. If the quadratic forms of x_{1}, \ldots, x_{o} in $f_{2}\left(\left(\begin{array}{cc}I_{o} & \\ -M & I_{v}\end{array}\right) \mathbf{x}\right), \ldots, f_{m}\left(\left(\begin{array}{cc}I_{o} & \\ -M & I_{v}\end{array}\right) \mathbf{x}\right)$ are constant multiples of the quadratic form of x_{1}, \ldots, x_{o} in $f_{1}\left(\left(\begin{array}{cc}I_{o} & \\ -M & I_{v}\end{array}\right) \mathbf{x}\right)$, output M as the correct secret key. If not, go back to Step 1 and choose another $\left(\delta_{2}, \ldots, \delta_{K}\right)$.

Since the number of candidates of $\left(\delta_{2}, \ldots, \delta_{K}\right)$ are $q^{K-1}=q^{\left[\frac{2 v+1}{o}\right\rceil-1}$, the complexity of this attack is $O\left(q^{\left[\frac{2 v+1}{o}\right\rceil-1} \cdot(\right.$ polyn, $\left.)\right)$. It is much less than the complexities of the Kipnis-Shamir's attack and the direct attack on the original UOV.

Acknowledgments. The author was supported by JST CREST no. JPMJCR14D6 and JSPS Grant-in-Aid for Scientific Research (C) no. 17K05181.

References

[1] A. Kipnis, J. Patarin, L. Goubin, Unbalanced oil and vinegar signature schemes, Eurocrypt'99, LNCS 1592 (1999), 206-222, extended in http://www.goubin.fr/papers/ OILLONG.PDF, 2003.
[2] A. Kipnis, A. Shamir, Cryptanalysis of the oil and vinegar signature scheme, Crypto'98, LNCS 1462 (1998), pp.257-267.
[3] J. Patarin, The Oil and Vinegar Signature Scheme, the Dagstuhl Workshop on Cryptography, 1997.
[4] C. Tao, A Method to Reduce the Key Size of UOV Signature Scheme, https://eprint.iacr.org/2019/473.

[^0]: *Department of Mathematical Science, University of the Ryukyus, hashimoto@math.u-ryukyu.ac.jp

