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Abstract

In 2019, Tao proposed a new variant of UOV with small keys, called Hufu-UOV. This
paper studies its security.

Keywords. multivariate public-key cryptosystems, UOV, Hufu-UOV

1 UOV and Hufu-UOV

We first describe the original UOV [3, 1] and Hufu-UOV [4].

1.1 UOV

Let n, o, v ≥ 1 be integers with v ≥ o, n = o+ v, q be a power of prime and Fq a finite field of
order q. Define the quadratic map G : Fn

q → Fo
q, x = t(x1, . . . , xn) 7→ G(x) = t(g1(x), . . . , go(x))

by

gl(x) =
∑

1≤i≤o

xi · (linear form of xo+1, . . . , xn) + (quadratic form of xo+1, . . . , xn)

=tx

(
0o ∗
∗ ∗v

)
x+ (linear form), (1 ≤ l ≤ o)

where the coefficients of the polynomials above are elements of Fq. The unbalanced oil and
vinegar signature scheme (UOV) [3, 1] is constructed as follows.

Secret key. An invertible affine map S : Fn
q → Fn

q and the quadratic map G defined above.

Public key. The quadratic map F := G ◦ S : Fn
q → Fo

q.

Signature generation. For a message m = t(m1, . . . , mo) ∈ Fo
q to be signed, choose

u1, . . . , uv ∈ Fq randomly, and find (y1, . . . , yo) ∈ Fo
q with

g1(y1, . . . , yo, u1, . . . , uv) = m1, . . . , go(y1, . . . , yo, u1, . . . , uv) = mo. (1)

Since the equations in (1) are linear, (y1, . . . , yo) is given efficiently. The signature for m is
z := S−1t(y1, . . . , yo, u1, . . . , uv).

Signature verification. The signature z is verified if F (z) = m holds.

Security. Major attacks on UOV are Kipnis-Shamir’s attack [2, 1] and the direct attack. Kipnis-
Shamir’s attack is to recover an affine map S1 : Fn

q → Fn
q equivalent to S and its complexity is
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known to be O(qmax (0,v−o) · (polyn.)). The direct attack is to generate a dummy signature by
solving the system of quadratic equations F (x) = m directly. It is known that its complexity
is, in general, exponential of m.

1.2 Hufu-UOV

Hufu-UOV [4] is a variant of UOV whose quadratic polynomials are constructed by circulant
matrices and Toeplitz matrices respectively given in the following forms.

a0 a1 · · · an−2 an−1

an−1 a0
. . . an−3 an−2

...
. . .

. . .
. . .

...

a2 a3
. . . a0 a1

a1 a2 · · · an−1 a0


,



a0 a1 · · · an−2 an−1

b1 a0
. . . an−3 an−2

...
. . .

. . .
. . .

...

bn−2 bn−3
. . . a0 a1

bn−1 bn−2 · · · b1 a0


.

Define the quadratic map G(x) = (g1(x), . . . , gm(x)) and the invertible linear map S : Fn
q → Fn

q

by

gl(x) =
tx

(
λlA

tUl

Ul Wl

)
x, (1 ≤ l ≤ m),

S(x) =

(
Io 0
M Iv

)
x,

where λl ∈ Fq, A is an o× o-Toeplitz matrix, Wl is a v × v-circulant matrix and Ul,M are the
first o-columns of v × v-circulant matrices. Note that A and Wl can be taken to be symmetric.
The secret key is (G,S) and the public key is F = G ◦S. The signature generation is as follows.

Signature generation. For a message m = t(m1, . . . , mo) ∈ Fo
q to be signed, choose

u1, . . . , uv ∈ Fq randomly, and find (y1, . . . , yo) ∈ Fo
q with

g1(y1, . . . , yo, u1, . . . , uv) = m1,

g2(y1, . . . , yo, u1, . . . , uv)− λ2λ
−1
1 g1(y1, . . . , yo, u1, . . . , uv) = m2 − λ2λ

−1
1 m1,

...

go(y1, . . . , yo, u1, . . . , uv)− λoλ
−1
1 g1(y1, . . . , yo, u1, . . . , uv) = mo − λoλ

−1
1 m1.

(2)

The signature for m is z := S−1t(y1, . . . , yo, u1, . . . , uv).

Since the first equation in (2) is quadratic and the later o− 1 equations are linear, one can
generate the signature easily.

The number of parameters in the secret key of Hufu-UOV is about 3
2ov. It is much smaller

than 1
2ov

2 + o2v, which is a round number of the parameters in the secret key of the original
UOV. This situation is similar to the public key. For the security, Tao [4] claimed that Hufu-
UOV is almost as secure as the original UOV against the known attacks. However, it is not
true. We propose an attack on Hufu-UOV in the next section.
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2 Proposed attack

Let f1(x), . . . , fm(x) be public quadratic polynomials with F (x) = (f1(x), . . . , fm(x)), and
F1, . . . , Fm the n × n matrices with fl(x) = txFlx. Choose Fl to be symmetric and de-

note by Al, Bl, Cl respectively the o × o, v × o, v × v matrices with Fl =

(
Al

tBl

Bl Cl

)
. Since

fl(S
−1(x)) = gl(x), we have

Al − tBlM − tMBl +
tMClM = λlA, Bl − ClM = Ul, Wl = Cl. (3)

Recall that M,Ul, λl, A are secret and Al, Bl, Cl are public. Furthermore, note that Al is an o×o
Toeplitz matrix, Cl is a v × v circulant matrix and Bl is the first o column of a v × v circulant
matrix. It is easy to see that there exist v × v circulant matrices Ac, Ac

l , B
c
l ,M

c such that

A = (Io, 0)A
c

(
Io
0

)
, Al = (Io, 0)A

c
l

(
Io
0

)
, Bl =Bc

l

(
Io
0

)
, M = M c

(
Io
0

)
.

For example, if o = 2, v = 5 and

A =

(
1 2
2 1

)
, M =


3 2
1 3
1 1
0 1
2 0

 ,

the 5× 5 circulant matrices Ac,M c are as follows.

Ac =


1 2 y y 2
2 1 2 y y

y 2 1 2 y
y y 2 1 2
2 y y 2 1

 , M c =


3 2 0 1 1
1 3 2 0 1
1 1 3 2 0
0 1 1 3 2
2 0 1 1 3

 .

Remark that Ac cannot be fixed uniquely and the number of unknowns in Ac is ⌈v+1
2 ⌉ − o. At

the present time, we remain such unfixed parameters to be unknowns.
Due to (3), we have

λlA
c = Ac

l − tBc
lM

c − tM cBc
l +

tM cClM
c.

Since the multiplication between circulant matrices is commutative, the equation above is written
by

λlA
c = Ac

l − tBc
lM

c −Bc
l
tM c + Cl

tM cM c (4)

for 1 ≤ l ≤ m. Let
Hl := Cl

tM cM c − tBc
lM

c −Bc
l
tM c +Ac

l − λlA
c

for 1 ≤ l ≤ m and

H̄l(δl, δ2) := (C2 − δ2C1)Hl − (Cl − δlC1)H2 + (δ2Cl − δlC2)H1
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for 3 ≤ l ≤ m, δ2, δl ∈ Fq. We have

H̄l(δl, δ2) =((Cl
tBc

2 − C2
tBc

l ) + δ2(C1
tBc

l − Cl
tBc

1) + δl(C2
tBc

1 − C1
tB2))M

c

+ ((ClB
c
2 − C2B

c
l ) + δ2(C1B

c
l − ClB

c
1) + δl(C2B

c
1 − C1B2))

tM c

+ (C2A
c
l − ClA

c
2) + δ2(ClA

c
1 − C1A

c
l ) + δl(C1A

c
2 − C2A

c
1)

+ ((λlδ2 − λ2δl)C1 + (λ1δl − λl)C2 + (λ2 − λ1δ2)Cl)A
c.

This means that, if δ2 = λ−1
1 λ2, δl = λ−1

1 λl hold, the matrix equation H̄l(δl, δ2) = 0 generates
a system of linear equations of unknowns in M c, Ac

1, A
c
2, A

c
l . The number of equations and

variables derived from H̄3(δ3, δ2) = 0, . . . , H̄K(δK , δ2) = 0 are respectively ⌈v+1
2 ⌉(K − 2) and

v+(⌈v+1
2 ⌉−o)K, and then we can recoverM by solving its system of linear equations ifK ≥ 2v+1

o
and δ2, . . . , δK are chosen correctly. Thus the following attack is available on Hufu-UOV.

Step 1. Choose δ2, . . . , δK ∈ Fq randomly.
Step 2. Solve the system of linear equations derived from H̄3(δ3, δ2) = 0, . . . , H̄K(δK , δ2) = 0.
If there exists a solution, fix M by its solution. If not, go back to Step 1 and choose another
(δ1, . . . , δK).

Step 3. If the quadratic forms of x1, . . . , xo in f2

((
Io
−M Iv

)
x

)
, . . . , fm

((
Io
−M Iv

)
x

)
are

constant multiples of the quadratic form of x1, . . . , xo in f1

((
Io
−M Iv

)
x

)
, output M as the

correct secret key. If not, go back to Step 1 and choose another (δ2, . . . , δK).

Since the number of candidates of (δ2, . . . , δK) are qK−1 = q⌈
2v+1

o
⌉−1, the complexity of this

attack is O
(
q⌈

2v+1
o

⌉−1 · (polyn,)
)
. It is much less than the complexities of the Kipnis-Shamir’s

attack and the direct attack on the original UOV.
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