On the security of Hufu-UOV

Yasufumi Hashimoto *

Abstract

In 2019, Tao proposed a new variant of UOV with small keys, called Hufu-UOV. This paper studies its security.

Keywords. multivariate public-key cryptosystems, UOV, Hufu-UOV

1 UOV and Hufu-UOV

We first describe the original UOV [3, 1] and Hufu-UOV [4].

1.1 UOV

Let $n, o, v \ge 1$ be integers with $v \ge o, n = o + v, q$ be a power of prime and \mathbf{F}_q a finite field of order q. Define the quadratic map $G : \mathbf{F}_q^n \to \mathbf{F}_q^o, \mathbf{x} = {}^t(x_1, \dots, x_n) \mapsto G(\mathbf{x}) = {}^t(g_1(\mathbf{x}), \dots, g_o(\mathbf{x}))$ by

$$g_{l}(\mathbf{x}) = \sum_{1 \leq i \leq o} x_{i} \cdot (\text{linear form of } x_{o+1}, \dots, x_{n}) + (\text{quadratic form of } x_{o+1}, \dots, x_{n})$$
$$= {}^{t}\mathbf{x} \begin{pmatrix} 0_{o} & * \\ * & *_{v} \end{pmatrix} \mathbf{x} + (\text{linear form}), \qquad (1 \leq l \leq o)$$

where the coefficients of the polynomials above are elements of \mathbf{F}_q . The unbalanced oil and vinegar signature scheme (UOV) [3, 1] is constructed as follows.

Secret key. An invertible affine map $S: \mathbf{F}_q^n \to \mathbf{F}_q^n$ and the quadratic map G defined above.

Public key. The quadratic map $F := G \circ S : \mathbf{F}_q^n \to \mathbf{F}_q^o$.

Signature generation. For a message $\mathbf{m} = {}^t(m_1, \ldots, m_o) \in \mathbf{F}_q^o$ to be signed, choose $u_1, \ldots, u_v \in \mathbf{F}_q$ randomly, and find $(y_1, \ldots, y_o) \in \mathbf{F}_q^o$ with

$$g_1(y_1, \dots, y_o, u_1, \dots, u_v) = m_1, \quad \dots, \quad g_o(y_1, \dots, y_o, u_1, \dots, u_v) = m_o.$$
 (1)

Since the equations in (1) are linear, (y_1, \ldots, y_o) is given efficiently. The signature for **m** is $\mathbf{z} := S^{-1t}(y_1, \ldots, y_o, u_1, \ldots, u_v)$.

Signature verification. The signature **z** is verified if $F(\mathbf{z}) = \mathbf{m}$ holds.

Security. Major attacks on UOV are Kipnis-Shamir's attack [2, 1] and the direct attack. Kipnis-Shamir's attack is to recover an affine map $S_1: \mathbf{F}_q^n \to \mathbf{F}_q^n$ equivalent to S and its complexity is

^{*}Department of Mathematical Science, University of the Ryukyus, hashimoto@math.u-ryukyu.ac.jp

known to be $O(q^{\max(0,v-o)} \cdot (\text{polyn.}))$. The direct attack is to generate a dummy signature by solving the system of quadratic equations $F(\mathbf{x}) = \mathbf{m}$ directly. It is known that its complexity is, in general, exponential of m.

1.2 Hufu-UOV

Hufu-UOV [4] is a variant of UOV whose quadratic polynomials are constructed by circulant matrices and Toeplitz matrices respectively given in the following forms.

$$\begin{pmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & \ddots & a_{n-3} & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_2 & a_3 & \ddots & a_0 & a_1 \\ a_1 & a_2 & \cdots & a_{n-1} & a_0 \end{pmatrix}, \qquad \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ b_1 & a_0 & \ddots & a_{n-3} & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ b_{n-2} & b_{n-3} & \ddots & a_0 & a_1 \\ b_{n-1} & b_{n-2} & \cdots & b_1 & a_0 \end{pmatrix}.$$

Define the quadratic map $G(\mathbf{x}) = (g_1(\mathbf{x}), \dots, g_o(\mathbf{x}))$ and the invertible linear map $S : \mathbf{F}_q^n \to \mathbf{F}_q^n$ by

$$g_{l}(\mathbf{x}) = {}^{t}\mathbf{x} \begin{pmatrix} \lambda_{l} A & {}^{t}U_{l} \\ U_{l} & W_{l} \end{pmatrix} \mathbf{x}, \qquad (1 \leq l \leq o),$$
$$S(\mathbf{x}) = \begin{pmatrix} I_{o} & 0 \\ M & I_{v} \end{pmatrix} \mathbf{x},$$

where $\lambda_l \in \mathbf{F}_q$, A is an $o \times o$ -Toeplitz matrix, W_l is a $v \times v$ -circulant matrix and U_l , M are the first o-columns of $v \times v$ -circulant matrices. Note that A and W_l can be taken to be symmetric. Then the Hufu-UOV is as follows.

Secret key. The invertible affine map $S: \mathbf{F}_q^n \to \mathbf{F}_q^n$ and the quadratic map $G: \mathbf{F}_q^n \to \mathbf{F}_q^o$ defined above, and an invertible affine map $T: \mathbf{F}_q^o \to \mathbf{F}_q^o$.

Public key. The quadratic map $F := T \circ G \circ S : \mathbf{F}_q^n \to \mathbf{F}_q^o$.

Signature generation. For a message $\mathbf{m} \in \mathbf{F}_q^o$ to be signed, compute $\mathbf{z} = (z_1, \dots, z_o) := T^{-1}(\mathbf{m})$ and choose $u_1, \dots, u_v \in \mathbf{F}_q$ randomly. Find $(y_1, \dots, y_o) \in \mathbf{F}_q^o$ with

$$g_{1}(y_{1}, \dots, y_{o}, u_{1}, \dots, u_{v}) = z_{1},$$

$$g_{2}(y_{1}, \dots, y_{o}, u_{1}, \dots, u_{v}) - \lambda_{2}\lambda_{1}^{-1}g_{1}(y_{1}, \dots, y_{o}, u_{1}, \dots, u_{v}) = z_{2} - \lambda_{2}\lambda_{1}^{-1}z_{1},$$

$$\vdots$$

$$g_{o}(y_{1}, \dots, y_{o}, u_{1}, \dots, u_{v}) - \lambda_{o}\lambda_{1}^{-1}g_{1}(y_{1}, \dots, y_{o}, u_{1}, \dots, u_{v}) = z_{o} - \lambda_{o}\lambda_{1}^{-1}z_{1}.$$

$$(2)$$

The signature for **m** is $\mathbf{z} := S^{-1t}(y_1, \dots, y_o, u_1, \dots, u_v)$.

Signature verification. The signature **z** is verified if $F(\mathbf{z}) = \mathbf{m}$ holds.

Since the first equation in (2) is quadratic and the later o-1 equations are linear, one can generate the signature easily.

The number of parameters in the secret key of Hufu-UOV is about $\frac{3}{2}ov$. It is much smaller than $\frac{1}{2}ov^2 + o^2v$, which is a round number of the parameters in the secret key of the original UOV. This situation is similar to the public key. For the security, Tao [4] claimed that Hufu-

UOV is almost as secure as the original UOV against the known attacks. However, it is not true. We propose an attack on Hufu-UOV in the next section.

2 Proposed attack

Let $f_1(\mathbf{x}), \ldots, f_o(\mathbf{x})$ be public quadratic polynomials with $F(\mathbf{x}) = (f_1(\mathbf{x}), \ldots, f_o(\mathbf{x}))$, and $\bar{g}_1(\mathbf{x})$, $\ldots, \bar{g}_o(\mathbf{x})$ the quadratic polynomials with $(T \circ G)(\mathbf{x}) = (\bar{g}_1(\mathbf{x}), \ldots, \bar{g}_o(\mathbf{x}))$. For $1 \leq l \leq o$, we write $f_l(\mathbf{x}), g_l(\mathbf{x})$ by $f_l(\mathbf{x}) = {}^t\mathbf{x} \begin{pmatrix} A_l & {}^tB_l \\ B_l & C_l \end{pmatrix} \mathbf{x}$ and $\bar{g}_l(\mathbf{x}) = {}^t\mathbf{x} \begin{pmatrix} \bar{V}_l & {}^t\bar{U}_l \\ \bar{U}_l & \bar{W}_l \end{pmatrix} \mathbf{x}$ for $o \times o$ symmetric matrices $A_l, \bar{V}_l, v \times o$ matrices B_l, \bar{U}_l and $v \times v$ symmetric matrices C_l, \bar{W}_l . By the definition of T and G, we see that there exist $\mu_1, \ldots, \mu_o \in \mathbf{F}_q$ such that $\bar{V}_l = \mu_l A$. Since $f_l(S^{-1}(\mathbf{x})) = \bar{g}_l(\mathbf{x})$, we have

$$A_l - {}^t B_l M - {}^t M B_l + {}^t M C_l M = \mu_l A, \quad B_l - C_l M = \bar{U}_l, \quad C_l = \bar{W}_l.$$
 (3)

Recall that M, \bar{U}_l, μ_l, A are secret and A_l, B_l, C_l are public. Furthermore, note that A_l is an $o \times o$ symmetric Toeplitz matrix, C_l is a $v \times v$ symmetric circulant matrix and B_l is the first o column of a $v \times v$ circulant matrix. It is easy to see that there exist $v \times v$ circulant matrices A^c, A_l^c, B_l^c, M^c such that

$$A = (I_o, 0)A^c \begin{pmatrix} I_o \\ 0 \end{pmatrix}, \quad A_l = (I_o, 0)A_l^c \begin{pmatrix} I_o \\ 0 \end{pmatrix}, \quad B_l = B_l^c \begin{pmatrix} I_o \\ 0 \end{pmatrix}, \quad M = M^c \begin{pmatrix} I_o \\ 0 \end{pmatrix}.$$

For example, if o = 2, v = 5 and

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \qquad M = \begin{pmatrix} 3 & 2 \\ 1 & 3 \\ 1 & 1 \\ 0 & 1 \\ 2 & 0 \end{pmatrix},$$

the 5×5 circulant matrices A^c, M^c are as follows.

$$A^{c} = \begin{pmatrix} 1 & 2 & y & y & 2 \\ 2 & 1 & 2 & y & y \\ \hline y & 2 & 1 & 2 & y \\ y & y & 2 & 1 & 2 \\ 2 & y & y & 2 & 1 \end{pmatrix}, \qquad M^{c} = \begin{pmatrix} 3 & 2 & 0 & 1 & 1 \\ 1 & 3 & 2 & 0 & 1 \\ 1 & 1 & 3 & 2 & 0 \\ 0 & 1 & 1 & 3 & 2 \\ 2 & 0 & 1 & 1 & 3 \end{pmatrix}.$$

Remark that A^c cannot be fixed uniquely and the number of unknowns in A^c is $\lceil \frac{v+1}{2} \rceil - o$. At the present time, we remain such unfixed parameters to be unknowns.

Due to (3), we have

$$\mu_l A^c = A_l^c - {}^t B_l^c M^c - {}^t M^c B_l^c + {}^t M^c C_l M^c.$$

Since the multiplication between circulant matrices is commutative, the equation above is written by

$$\mu_l A^c = A_l^c - {}^t B_l^c M^c - B_l^{ct} M^c + C_l^t M^c M^c$$
(4)

for $1 \le l \le o$. Let

$$H_l := C_l{}^t M^c M^c - {}^t B_l^c M^c - B_l^{ct} M^c + A_l^c - \mu_l A^c$$

for $1 \le l \le o$ and

$$\bar{H}_l(\delta_l, \delta_2) := (C_2 - \delta_2 C_1) H_l - (C_l - \delta_l C_1) H_2 + (\delta_2 C_l - \delta_l C_2) H_1$$

for $3 \leq l \leq o, \, \delta_2, \delta_l \in \mathbf{F}_q$. We have

$$\begin{split} \bar{H}_l(\delta_l, \delta_2) = & ((C_l{}^tB_2^c - C_2{}^tB_l^c) + \delta_2(C_1{}^tB_l^c - C_l{}^tB_1^c) + \delta_l(C_2{}^tB_1^c - C_1{}^tB_2))M^c \\ & + ((C_lB_2^c - C_2B_l^c) + \delta_2(C_1B_l^c - C_lB_1^c) + \delta_l(C_2B_1^c - C_1B_2))^tM^c \\ & + (C_2A_l^c - C_lA_2^c) + \delta_2(C_lA_1^c - C_1A_l^c) + \delta_l(C_1A_2^c - C_2A_1^c) \\ & + ((\mu_l\delta_2 - \mu_2\delta_l)C_1 + (\mu_1\delta_l - \mu_l)C_2 + (\mu_2 - \mu_1\delta_2)C_l)A^c. \end{split}$$

This means that, if $\delta_2 = \mu_1^{-1}\mu_2$ and $\delta_l = \mu_1^{-1}\mu_l$ hold, the matrix equation $\bar{H}_l(\delta_l, \delta_2) = 0$ generates a system of linear equations of unknowns in M^c, A_1^c, A_2^c, A_l^c . The number of equations and variables derived from $\bar{H}_3(\delta_3, \delta_2) = 0, \dots, \bar{H}_K(\delta_K, \delta_2) = 0$ are respectively $\lceil \frac{v+1}{2} \rceil (K-2)$ and $v+(\lceil \frac{v+1}{2} \rceil -o)K$, and then we can recover M by solving its system of linear equations if $K \geq \frac{2v+1}{o}$ and $\delta_2, \dots, \delta_K$ are chosen correctly. Thus the following attack is available on Hufu-UOV.

Step 1. Choose $\delta_2, \ldots, \delta_K \in \mathbf{F}_q$ randomly.

Step 2. Solve the system of linear equations derived from $\bar{H}_3(\delta_3, \delta_2) = 0, \dots, \bar{H}_K(\delta_K, \delta_2) = 0$. If there exists a solution, fix M by its solution. If not, go back to Step 1 and choose another $(\delta_1, \dots, \delta_K)$.

Step 3. If the quadratic forms of x_1, \ldots, x_o in $f_2\left(\begin{pmatrix} I_o \\ -M & I_v \end{pmatrix}\mathbf{x}\right), \ldots, f_m\left(\begin{pmatrix} I_o \\ -M & I_v \end{pmatrix}\mathbf{x}\right)$ are constant multiples of the quadratic form of x_1, \ldots, x_o in $f_1\left(\begin{pmatrix} I_o \\ -M & I_v \end{pmatrix}\mathbf{x}\right)$, output M as the correct secret key. If not, go back to Step 1 and choose another $(\delta_2, \ldots, \delta_K)$.

Since the number of candidates of $(\delta_2, \ldots, \delta_K)$ are $q^{K-1} = q^{\lceil \frac{2v+1}{o} \rceil - 1}$, the complexity of this attack is $O\left(q^{\lceil \frac{2v+1}{o} \rceil - 1} \cdot (\text{polyn},)\right)$. It is much less than the complexities of the Kipnis-Shamir's attack and the direct attack on the original UOV.

Acknowledgments. The author was supported by JST CREST no. JPMJCR14D6 and JSPS Grant-in-Aid for Scientific Research (C) no. 17K05181.

References

- [1] A. Kipnis, J. Patarin, L. Goubin, Unbalanced oil and vinegar signature schemes, Eurocrypt'99, LNCS **1592** (1999), 206–222, extended in http://www.goubin.fr/papers/OILLONG.PDF, 2003.
- [2] A. Kipnis, A. Shamir, Cryptanalysis of the oil and vinegar signature scheme, Crypto'98, LNCS **1462** (1998), pp.257–267.
- [3] J. Patarin, The Oil and Vinegar Signature Scheme, the Dagstuhl Workshop on Cryptography, 1997.
- [4] C. Tao, A Method to Reduce the Key Size of UOV Signature Scheme, https://eprint.iacr.org/2019/473.