Minor improvements of algorithm to solve under-defined systems of multivariate quadratic equations

Yasufumi Hashimoto *

Abstract

There have been several works on solving an under-defined system of multivariate quadratic equations over a finite field, e.g. Kipnis et al. (Eurocrypt'98), Courtois et al. (PKC'02), Tomae-Wolf (PKC'12), Miura et al. (PQC'13), Cheng et al. (PQC'14) and Furue et al. (PQC'21). This paper presents two minor improvements of Furue's aproach.

Keywords. under-defined multivariate quadratic equations

1 Introduction

Solving a system of multivariate non-linear polynomial equations over a finite field is known to be a hard problem [5,3]. Until now, there have been several algorithms to solve an under-defined system of multivariate quadratic equations over a finite field, i.e. the number n of variables is larger than the number m of equations. For example, the algorithms of Kipnis et al. [7], Courtois et al. [2], Miura et al. [6] and Cheng et al. [1] solve it in polynomial time but n must be much larger than m, and the algorithms of Tomae-Wolf [8], Cheng et al. [1] and Furue et al. [4] do not require too much larger n but do not solve in polynomial time.

Table 1: Algorithms of solving under-defined multivariate quadratic equations

	q	n	Complexity
Kipnis et al. [7]	even	$m(m+1)$	polyn.
Courtois et al. [2]	any	$2^{m / 7}(m+1)$	polyn.
Miura et al. [6]	even	$\frac{1}{2} m(m+1)$	polyn.
Cheng et al. [1]	any	$\frac{1}{2} m(m+1)$	polyn.
Tomae-Wolf [8]	even	$m(m-a+1)$	$\operatorname{MQ}(q, a, a)$
Cheng et al. [1]	any	$\frac{1}{2} m(m+1)-\frac{1}{2} a(a-1)$	$\operatorname{MQ}(q, a, a)$
Furue et al. [4]	even	$(m-a)(m-k)+m$	$q^{k} \cdot \operatorname{MQ}(q, a-k, a)$
Alg. $1\left(a \gg \frac{m}{2}\right)$	any	$(m-a+1)(m-k)$	$q^{k} \cdot \operatorname{MQ}(q, a-k, a)$
Alg. $2\left(a \gg \frac{m}{2}\right)$	any	$(a-k)(m-a)+m$	$q^{k} \cdot \operatorname{MQ}(q, a-k, a)$

In the present paper, we propose two minor improvements of the most recent Furue's approach at PQCrypto 2021 [4]. Table 1 summarizes the contributions of the previous and the present works. In this Table 1, " q " is the order of the finite field, " n " is the least of required

[^0]n and "Complexity" is the complexity of the corresponding algorithm, where $\mathrm{MQ}(q, a, b)$ is the complexity of solving b quadratic equations of a variables over a finite field of order q. We also summarize the required n in Table 2 when a is close to m.

Table 2: Comparison of required n

a	TW [8]	C. $[1]$	F. $[4]$	Alg. 1	Alg.2
$m-1$	$2 m$	$2 m-1$	$2 m-k$	$2 m-2 k$	$2 m-k-1$
$m-2$	$3 m$	$3 m-3$	$3 m-2 k$	$3 m-3 k$	$3 m-2 k-4$
$m-3$	$4 m$	$4 m-6$	$4 m-3 k$	$4 m-4 k$	$4 m-3 k-9$
$m-4$	$5 m$	$5 m-10$	$5 m-4 k$	$5 m-5 k$	$5 m-4 k-16$
$m-5$	$6 m$	$6 m-15$	$6 m-5 k$	$6 m-6 k$	$6 m-5 k-25$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

2 Furue's approach

We first describe Furue's approach [4].
Let $n, m, k, a \geq 1$ be integers, q a power of $2, \mathbf{F}_{q}$ a finite field of order q and $f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$ quadratic polynomials of n variables $\mathbf{x}={ }^{t}\left(x_{1}, \ldots, x_{n}\right)$. Furue's approach is as follows.
Step 1. Find an $(n-m+k) \times(m-k)$ matrix M such that

$$
\begin{aligned}
\bar{f}_{l}(\mathbf{x}) & :=f_{l}\left(\left(\begin{array}{ll}
I_{m-k} \\
M & \\
I_{n-m+k}
\end{array}\right) \mathbf{x}\right) \\
& =K_{l}\left(x_{1}^{2}, \ldots, x_{m-k}^{2}\right)+\sum_{i=1}^{m-k} x_{i} \cdot L_{l i}\left(x_{m-k+1}, \ldots, x_{n}\right)+Q_{l}\left(x_{m-k+1}, \ldots, x_{n}\right) \\
& ={ }^{+} \mathbf{x}\left(\begin{array}{ccc|c}
* & & \\
& \ddots & & * \\
& * & \\
\hline & * & *_{n-m+k}
\end{array}\right) \mathbf{x}+(\text { linear form of } \mathbf{x})
\end{aligned}
$$

for $1 \leq l \leq m-a$, where $K_{l}, L_{l i}$ are linear forms and Q_{l} is a quadratic form.
Step 2. Choose $u_{1}, \ldots, u_{n-m+k} \in \mathbf{F}_{q}$ such that

$$
L_{l i}\left(u_{1}, \ldots, u_{n-m+k}\right)=0
$$

for $1 \leq l \leq m-a$ and $1 \leq i \leq m-k$.
Step 3. Solve the system

$$
\begin{equation*}
\left\{\bar{f}_{l}\left(x_{1}, \ldots, x_{m-k}, u_{1}, \ldots, u_{n-m+k}\right)=0\right\}_{1 \leq l \leq m} \tag{1}
\end{equation*}
$$

of m equations of $m-k$ variables $\left(x_{1}, \ldots, x_{m-k}\right)$. If there exists a solution of (1), output $\left(\begin{array}{cc}I & \\ -M & I\end{array}\right)^{t}\left(x_{1}, \ldots, x_{m-k}, u_{1}, \ldots, u_{n-m+k}\right)$ as a solution of $\left\{f_{l}(\mathbf{x})=0\right\}_{1 \leq l \leq m}$. If not, go back to Step 2 and choose another $\left(u_{1}, \ldots, u_{n-m+k}\right)$.

Condition of (n, m) and Complexity. In Step 1, one solves the systems of at most ($m-$ $k-1)(m-a)$ linear equations of $n-m+k$ variables. Step 2 is to solve $(m-k)(m-a)$ linear equations of $n-m+k$ variables. In Step 3, one solves the system of $m-a$ quadratic equations in the forms

$$
\begin{equation*}
\left.K_{l}\left(x_{1}^{2}, \ldots, x_{m-k}^{2}\right)=\text { (const. }\right) \tag{2}
\end{equation*}
$$

and a random quadratic equations of $m-k$ variables. When q is even, (2) is equivalent to a linear equation of x_{1}, \ldots, x_{m-k} (see e.g. [8, 4]). Then solving (1) is reduced to solving the system of a quadratic equations of $a-k$ variables. Remark that, since the probability that (1) has a solution is considered to be about q^{-k}, there should be additional k variables in Step 2 . We thus conclude that $n \geq m+(m-k)(m-a)$ is required in this approach and the complexity is $q^{k} \cdot \mathrm{MQ}(q, a-k, a)$.

3 New algorithms

We propose two minor improvements of Furue's approach given in the previous section. Remark that q does not have to be even.

3.1 Algorithm 1

Step 1. Find an $(n-m+k) \times(m-k)$ matrix M such that

$$
\begin{aligned}
\bar{f}_{l}(\mathbf{x}) & :=f_{l}\left(\left(\begin{array}{ll}
I_{m-k} & \\
M & I_{n-m+k}
\end{array}\right) \mathbf{x}\right) \\
& =\sum_{i=1}^{m-k} x_{i} \cdot L_{l i}\left(x_{m-k+1}, \ldots, x_{n}\right)+Q_{l}\left(x_{m-k+1}, \ldots, x_{n}\right) \\
& ={ }^{\mathbf{t}} \mathbf{x}\left(\begin{array}{l|l}
0_{m-k} & * \\
\hline * & *_{n-m+k}
\end{array}\right) \mathbf{x}+(\text { linear form of } \mathbf{x})
\end{aligned}
$$

for $1 \leq l \leq m-a$, where $L_{l i}$ is a linear form and Q_{l} is a quadratic form.
Step 2. Choose $u_{1}, \ldots, u_{n-m+k} \in \mathbf{F}_{q}$ arbitrary.
Step 3. Solve the system

$$
\begin{equation*}
\left\{\bar{f}_{l}\left(x_{1}, \ldots, x_{m-k}, u_{1}, \ldots, u_{n-m+k}\right)=0\right\}_{1 \leq l \leq m} \tag{3}
\end{equation*}
$$

of m equations of $m-k$ variables $\left(x_{1}, \ldots, x_{m-k}\right)$. If there exists a solution of (3), output $\left(\begin{array}{cc}I & \\ -M & I\end{array}\right) t\left(x_{1}, \ldots, x_{m-k}, u_{1}, \ldots, u_{n-m+k}\right)$ as a solution of $\left\{f_{l}(\mathbf{x})=0\right\}_{1 \leq l \leq m}$. If not, go back to Step 2 and choose another (u_{1}, \ldots, u_{n-m+k}).
Condition of (n, m) and Complexity. In Step 1, one solves the systems of at most ($m-k-$ 1) $(m-a)$ linear equations and $m-a$ quadratic equations of $n-m+k$ variables. Step 2 is to choose parameters arbitrary. In Step 3, one solves the system of $m-a$ linear equations and a random quadratic equations of $m-k$ variables. Since the probability that (3) has a solution is considered to be about q^{-k}, we can conclude that we need $n \geq(m-k)(m-a+1)$ and the complexity is $\operatorname{MQ}(q, m-a, m-a)+q^{k} \cdot \mathrm{MQ}(q, a-k, a)$.

3.2 Algorithm 2

Step 1. Find an $(n-m+k) \times(m-k)$ matrix M such that

$$
\begin{aligned}
\bar{f}_{l}(\mathbf{x}) & :=f_{l}\left(\left(\begin{array}{ll}
I_{m-k} & \\
M & I_{n-m+k}
\end{array}\right) \mathbf{x}\right) \\
& =P_{l}\left(x_{a-k+1}, \ldots, x_{m-k}\right)+\sum_{i=1}^{m-k} x_{i} \cdot L_{l i}\left(x_{m-k+1}, \ldots, x_{n}\right)+Q_{l}\left(x_{m-k+1}, \ldots, x_{n}\right) \\
& ={ }^{+} \mathbf{x}\left(\begin{array}{lll}
0_{a-k} & 0 & * \\
0 & *_{m-a} & * \\
\hline * & * & *_{n-m+k}
\end{array}\right) \mathbf{x}+(\text { linear form of } \mathbf{x})
\end{aligned}
$$

for $1 \leq l \leq m-a$, where $L_{l i}$ is a linear forms and P_{l}, Q_{l} are quadratic forms.
Step 2. Choose $u_{1}, \ldots, u_{n-m+k} \in \mathbf{F}_{q}$ such that

$$
L_{l i}\left(u_{1}, \ldots, u_{n-m+k}\right)=0
$$

for $1 \leq l \leq m-a$ and $1 \leq i \leq a-k$.
Step 3. Solve the system

$$
\begin{equation*}
\left\{\bar{f}_{l}\left(x_{1}, \ldots, x_{m-k}, u_{1}, \ldots, u_{n-m+k}\right)=0\right\}_{1 \leq l \leq m} \tag{4}
\end{equation*}
$$

of m equations of $m-k$ variables $\left(x_{1}, \ldots, x_{m-k}\right)$. If there exists a solution of (4), output
$\left(\begin{array}{cc}I & \\ -M & I\end{array}\right)^{t}\left(x_{1}, \ldots, x_{m-k}, u_{1}, \ldots, u_{n-m+k}\right)$ as a solution of $\left\{f_{l}(\mathbf{x})=0\right\}_{1 \leq l \leq m}$. If not, go back to Step 2 and choose another (u_{1}, \ldots, u_{n-m+k}).
Condition of (n, m) and Complexity. In Step 1, one solves the systems of at most ($a-k-$ 1) ($m-a$) linear equations and $m-a$ quadratic equations of $n-m+k$ variables, and the systems of $(a-k)(m-a)$ linear equations of $n-m+k$ variables. Step 2 is to solve $(a-k)(m-a)$ linear equations of $n-m+k$ variables. In Step 3, one solves the system of $m-a$ quadratic equations of $m-a$ variables $x_{a-k+1}, \ldots, x_{m-k}$ and a random quadratic equations of $m-k$ variables x_{1}, \ldots, x_{m-k}. Since the probability that (4) has a solution is considered to be about q^{-k}, there should be additional k variables in Step 2. We thus conclude that we need $n \geq m+(a-k)(m-a)$ and the complexity is $\mathrm{MQ}(q, m-a, m-a)+q^{k} \cdot \mathrm{MQ}(q, a-k, a)$.

Acknowledgment. The author was supported by JST Crest no.JPMJCR14D6 and JSPS Grant-in-Aid for Scientific Research (C) no.17K05181.

References

[1] C.M. Cheng, Y. Hashimoto, H. Miura and T. Takagi, A polynomial-time algorithm for solving a class of underdetermined multivariate quadratic equations over fields of odd characteristics, PQCrypto'14, LNCS 8772 (2014), pp.40-58.
[2] N. Courtois, L. Goubin, W. Meier, J.-D. Tacier, Solving underdefined systems of multivariate quadratic equations, PKC'02, LNCS 2274 (2002), pp.211-227.
[3] A.S. Fraenkel, Y. Yesha, Complexity of problems in games, graphs and algebraic equations. Discrete Appl. Math. 1 (1979), pp.15-30.
[4] H. Furue, S. Nakamura, T. Takagi, Improving Thomae-Wolf algorithm for solving underdetermined multivariate quadratic polynomial problem, PQC'21, LNCS 12841 (2021), pp.6578.
[5] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NPcompleteness, W.H. Freeman, 1979.
[6] H. Miura, Y. Hashimoto, T. Takagi, Extended algorithm for solving underdefined multivariate quadratic equations, PQCryoto'13, LNCS 7932 (2013), pp.118-135.
[7] A. Kipnis, J. Patarin, L. Goubin, Unbalanced oil and vinegar signature schemes, Eurocrypt'99, LNCS 1592 (1999), pp.206-222, extended in http://www.goubin.fr/papers/ OILLONG.PDF, 2003.
[8] E. Thomae, C. Wolf, Solving underdetermined systems of multivariate quadratic equations revisited, PKC'12, LNCS 7293 (2012), pp.156-171.

[^0]: *Department of Mathematical Science, University of the Ryukyus, hashimoto@math.u-ryukyu.ac.jp

