Minor improvements of algorithm to solve under-defined systems of multivariate quadratic equations

Yasufumi Hashimoto *

Abstract

There have been several works on solving an under-defined system of multivariate quadratic equations over a finite field, e.g. Kipnis et al. (Eurocrypt'98), Courtois et al. (PKC'02), Tomae-Wolf (PKC'12), Miura et al. (PQC'13), Cheng et al. (PQC'14) and Furue et al. (PQC'21). This paper presents two minor improvements of Furue's aproach.

Keywords. under-defined multivariate quadratic equations

1 Introduction

Solving a system of multivariate non-linear polynomial equations over a finite field is known to be a hard problem [5, 3]. Until now, there have been several algorithms to solve an under-defined system of multivariate quadratic equations over a finite field, i.e. the number n of variables is larger than the number m of equations. For example, the algorithms of Kipnis et al. [7], Courtois et al. [2], Miura et al. [6] and Cheng et al. [1] solve it in polynomial time but n must be much larger than m, and the algorithms of Tomae-Wolf [8], Cheng et al. [1] and Furue et al. [4] do not require too much larger n but do not solve in polynomial time.

	q	n	Complexity
Kipnis et al. [7]	even	m(m+1)	polyn.
Courtois et al. $[2]$	any	$2^{m/7}(m+1)$	polyn.
Miura et al. $[6]$	even	$\frac{1}{2}m(m+1)$	polyn.
Cheng et al. $[1]$	any	$\frac{1}{2}m(m+1)$	polyn.
Tomae-Wolf [8]	even	m(m-a+1)	MQ(q, a, a)
Cheng et al. $[1]$	any	$\frac{1}{2}m(m+1) - \frac{1}{2}a(a-1)$	$\mathrm{MQ}(q, a, a)$
Furue et al. [4]	even	(m-a)(m-k) + m	$q^k \cdot \mathrm{MQ}(q, a - k, a)$
Alg. 1 $(a \gg \frac{m}{2})$	any	(m-a+1)(m-k)	$q^k \cdot \mathrm{MQ}(q, a-k, a)$
Alg. 2 $(a \gg \frac{\bar{m}}{2})$	any	(a-k)(m-a)+m	$q^k \cdot \mathrm{MQ}(q, a-k, a)$

Table 1: Algorithms of solving under-defined multivariate quadratic equations

In the present paper, we propose two minor improvements of the most recent Furue's approach at PQCrypto 2021 [4]. Table 1 summarizes the contributions of the previous and the present works. In this Table 1, "q" is the order of the finite field, "n" is the least of required

^{*}Department of Mathematical Science, University of the Ryukyus, hashimoto@math.u-ryukyu.ac.jp

n and "Complexity" is the complexity of the corresponding algorithm, where MQ(q, a, b) is the complexity of solving b quadratic equations of a variables over a finite field of order q. We also summarize the required n in Table 2 when a is close to m.

Table 2: Comparison of required n

rasio =/ companson of required //							
a	TW [8]	C. [1]	F. [4]	Alg. 1	Alg.2		
m-1	2m	2m - 1	2m-k	2m-2k	2m - k - 1		
m-2	3m	3m - 3	3m-2k	3m - 3k	3m - 2k - 4		
m-3	4m	4m - 6	4m - 3k	4m - 4k	4m - 3k - 9		
m-4	5m	5m - 10	5m - 4k	5m-5k	5m - 4k - 16		
m-5	6m	6m - 15	6m - 5k	6m - 6k	6m - 5k - 25		
:	:	:	•				
:	:	:	:	:	:		

2 Furue's approach

We first describe Furue's approach [4].

Let $n, m, k, a \ge 1$ be integers, q a power of 2, \mathbf{F}_q a finite field of order q and $f_1(\mathbf{x}), \ldots, f_m(\mathbf{x})$ quadratic polynomials of n variables $\mathbf{x} = {}^t(x_1, \ldots, x_n)$. Furue's approach is as follows.

Step 1. Find an $(n - m + k) \times (m - k)$ matrix M such that

$$\begin{split} \bar{f}_{l}(\mathbf{x}) &:= f_{l} \left(\begin{pmatrix} I_{m-k} \\ M & I_{n-m+k} \end{pmatrix} \mathbf{x} \right) \\ &= K_{l}(x_{1}^{2}, \dots, x_{m-k}^{2}) + \sum_{i=1}^{m-k} x_{i} \cdot L_{li}(x_{m-k+1}, \dots, x_{n}) + Q_{l}(x_{m-k+1}, \dots, x_{n}) \\ &= {}^{t}\mathbf{x} \begin{pmatrix} * & & \\ & \ddots & \\ & & * \\ \hline & & * & \\ \hline & & & * & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & \hline$$

for $1 \leq l \leq m-a$, where K_l, L_{li} are linear forms and Q_l is a quadratic form. Step 2. Choose $u_1, \ldots, u_{n-m+k} \in \mathbf{F}_q$ such that

$$L_{li}(u_1,\ldots,u_{n-m+k})=0$$

for $1 \le l \le m - a$ and $1 \le i \le m - k$. Step 3. Solve the system

$$\left\{\bar{f}_{l}(x_{1},\ldots,x_{m-k},u_{1},\ldots,u_{n-m+k})=0\right\}_{1\leq l\leq m}$$
(1)

of *m* equations of m - k variables (x_1, \ldots, x_{m-k}) . If there exists a solution of (1), output $\begin{pmatrix} I \\ -M & I \end{pmatrix}^t (x_1, \ldots, x_{m-k}, u_1, \ldots, u_{n-m+k})$ as a solution of $\{f_l(\mathbf{x}) = 0\}_{1 \le l \le m}$. If not, go back to Step 2 and choose another (u_1, \ldots, u_{n-m+k}) .

Condition of (n,m) **and Complexity.** In Step 1, one solves the systems of at most (m - k - 1)(m - a) linear equations of n - m + k variables. Step 2 is to solve (m - k)(m - a) linear equations of n - m + k variables. In Step 3, one solves the system of m - a quadratic equations in the forms

$$K_l(x_1^2, \dots, x_{m-k}^2) = (\text{const.})$$
⁽²⁾

and a random quadratic equations of m - k variables. When q is even, (2) is equivalent to a linear equation of x_1, \ldots, x_{m-k} (see e.g. [8, 4]). Then solving (1) is reduced to solving the system of a quadratic equations of a - k variables. Remark that, since the probability that (1) has a solution is considered to be about q^{-k} , there should be additional k variables in Step 2. We thus conclude that $n \ge m + (m - k)(m - a)$ is required in this approach and the complexity is $q^k \cdot MQ(q, a - k, a)$.

3 New algorithms

We propose two minor improvements of Furue's approach given in the previous section. Remark that q does not have to be even.

3.1 Algorithm 1

Step 1. Find an $(n - m + k) \times (m - k)$ matrix M such that

$$\bar{f}_{l}(\mathbf{x}) := f_{l} \left(\begin{pmatrix} I_{m-k} \\ M & I_{n-m+k} \end{pmatrix} \mathbf{x} \right)$$
$$= \sum_{i=1}^{m-k} x_{i} \cdot L_{li}(x_{m-k+1}, \dots, x_{n}) + Q_{l}(x_{m-k+1}, \dots, x_{n})$$
$$= {}^{t}\mathbf{x} \left(\frac{0_{m-k} | *}{* | *_{n-m+k}} \right) \mathbf{x} + (\text{linear form of } \mathbf{x})$$

for $1 \le l \le m - a$, where L_{li} is a linear form and Q_l is a quadratic form. **Step 2.** Choose $u_1, \ldots, u_{n-m+k} \in \mathbf{F}_q$ arbitrary. **Step 3.** Solve the system

$$\left\{\bar{f}_{l}(x_{1},\ldots,x_{m-k},u_{1},\ldots,u_{n-m+k})=0\right\}_{1\leq l\leq m}$$
(3)

of *m* equations of m - k variables (x_1, \ldots, x_{m-k}) . If there exists a solution of (3), output $\begin{pmatrix} I \\ -M & I \end{pmatrix}^t (x_1, \ldots, x_{m-k}, u_1, \ldots, u_{n-m+k})$ as a solution of $\{f_l(\mathbf{x}) = 0\}_{1 \le l \le m}$. If not, go back to Step 2 and choose another (u_1, \ldots, u_{n-m+k}) .

Condition of (n, m) **and Complexity.** In Step 1, one solves the systems of at most (m - k - 1)(m - a) linear equations and m - a quadratic equations of n - m + k variables. Step 2 is to choose parameters arbitrary. In Step 3, one solves the system of m - a linear equations and a random quadratic equations of m - k variables. Since the probability that (3) has a solution is considered to be about q^{-k} , we can conclude that we need $n \ge (m - k)(m - a + 1)$ and the complexity is $MQ(q, m - a, m - a) + q^k \cdot MQ(q, a - k, a)$.

3.2 Algorithm 2

Step 1. Find an $(n - m + k) \times (m - k)$ matrix M such that

$$\begin{split} \bar{f}_l(\mathbf{x}) &:= f_l \left(\begin{pmatrix} I_{m-k} \\ M & I_{n-m+k} \end{pmatrix} \mathbf{x} \right) \\ &= P_l(x_{a-k+1}, \dots, x_{m-k}) + \sum_{i=1}^{m-k} x_i \cdot L_{li}(x_{m-k+1}, \dots, x_n) + Q_l(x_{m-k+1}, \dots, x_n) \\ &= {}^t \! \mathbf{x} \begin{pmatrix} 0_{a-k} & 0 & | * \\ 0 & *_{m-a} & | * \\ \hline * & * & | *_{n-m+k} \end{pmatrix} \mathbf{x} + (\text{linear form of } \mathbf{x}) \end{split}$$

for $1 \leq l \leq m-a$, where L_{li} is a linear forms and P_l, Q_l are quadratic forms. Step 2. Choose $u_1, \ldots, u_{n-m+k} \in \mathbf{F}_q$ such that

$$L_{li}(u_1,\ldots,u_{n-m+k})=0$$

for $1 \le l \le m - a$ and $1 \le i \le a - k$. Step 3. Solve the system

$$\left\{\bar{f}_{l}(x_{1},\ldots,x_{m-k},u_{1},\ldots,u_{n-m+k})=0\right\}_{1\leq l\leq m}$$
(4)

of *m* equations of m - k variables (x_1, \ldots, x_{m-k}) . If there exists a solution of (4), output $\begin{pmatrix} I \\ -M & I \end{pmatrix}^t (x_1, \ldots, x_{m-k}, u_1, \ldots, u_{n-m+k})$ as a solution of $\{f_l(\mathbf{x}) = 0\}_{1 \le l \le m}$. If not, go back to Step 2 and choose another (u_1, \ldots, u_{n-m+k}) .

Condition of (n, m) and **Complexity.** In Step 1, one solves the systems of at most (a - k - 1)(m-a) linear equations and m-a quadratic equations of n-m+k variables, and the systems of (a-k)(m-a) linear equations of n-m+k variables. Step 2 is to solve (a-k)(m-a) linear equations of n-m+k variables. In Step 3, one solves the system of m-a quadratic equations of m-a variables $x_{a-k+1}, \ldots, x_{m-k}$ and a random quadratic equations of m-k variables x_1, \ldots, x_{m-k} . Since the probability that (4) has a solution is considered to be about q^{-k} , there should be additional k variables in Step 2. We thus conclude that we need $n \ge m+(a-k)(m-a)$ and the complexity is $MQ(q, m-a, m-a) + q^k \cdot MQ(q, a-k, a)$.

Acknowledgment. The author was supported by JST Crest no.JPMJCR14D6 and JSPS Grant-in-Aid for Scientific Research (C) no.17K05181.

References

- C.M. Cheng, Y. Hashimoto, H. Miura and T. Takagi, A polynomial-time algorithm for solving a class of underdetermined multivariate quadratic equations over fields of odd characteristics, PQCrypto'14, LNCS 8772 (2014), pp.40–58.
- [2] N. Courtois, L. Goubin, W. Meier, J.-D. Tacier, Solving underdefined systems of multivariate quadratic equations, PKC'02, LNCS 2274 (2002), pp.211–227.

- [3] A.S. Fraenkel, Y. Yesha, Complexity of problems in games, graphs and algebraic equations. Discrete Appl. Math. 1 (1979), pp.15–30.
- [4] H. Furue, S. Nakamura, T. Takagi, Improving Thomae-Wolf algorithm for solving underdetermined multivariate quadratic polynomial problem, PQC'21, LNCS 12841 (2021), pp.65– 78.
- [5] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NPcompleteness, W.H. Freeman, 1979.
- [6] H. Miura, Y. Hashimoto, T. Takagi, Extended algorithm for solving underdefined multivariate quadratic equations, PQCryoto'13, LNCS 7932 (2013), pp.118–135.
- [7] A. Kipnis, J. Patarin, L. Goubin, Unbalanced oil and vinegar signature schemes, Eurocrypt'99, LNCS 1592 (1999), pp.206-222, extended in http://www.goubin.fr/papers/ OILLONG.PDF, 2003.
- [8] E. Thomae, C. Wolf, Solving underdetermined systems of multivariate quadratic equations revisited, PKC'12, LNCS 7293 (2012), pp.156–171.