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Abstract. In this paper, a method for searching correlations between
the binary stream of LFSR and the keystream of SNOW-V and SNOW-
Vi is presented based on the techniques of composite function. With the
aid of the linear relationship between the four taps of LFSR inputting to
FSM at three consecutive clocks, we present an automatic search model
based on the SAT/SMT technique and search out a binary linear approx-
imation with a correlation 2−49.54. Applying such approximation, we pro-
vide a correlation attack on SNOW-V with an expected time complexity
2248.81, a memory complexity 2240 and 2240 keystream words generated
by the same key and IV. For SNOW-Vi, we provide a binary linear ap-
proximation with the same correlation and mount a correlation attack
with the same complexity as that of SNOW-V. The results indicate that
neither of SNOW-V and SNOW-Vi can guarantee the 256-bit security
level if the design constraint that the maximum of keystream length for
a single pair of key and IV is less than 264 is ignored.

Key words: SNOW-V; SNOW-Vi; Cryptanalysis, Linear Approxima-
tion; Automatic Search.

1 Introduction

SNOW-V is a new member of the SNOW family stream ciphers following SNOW
1.0, SNOW 2.0 and SNOW 3G. Proposed by Ekdahl and Johansson in 2000
and 2002 respectively, SNOW 1.0 [5] and SNOW 2.0 [6] consist of two main
components: the LFSR (linear feedback shift register) part and the FSM (finite
state machine) part. SNOW 3G [17] is a word-oriented stream cipher used as the
core of 3GPP (3G Partnership Project) Confidentiality and Integrity Algorithms
UEA2 & UIA2 for UMTS and LTE. As an improved version of SNOW 2.0,
SNOW 3G introduces the third 32-bit register in the FSM and a second 32-
bit nonlinear transformation to update the register, thus enhances the security
under the 128-bit key. With the development of communication and computing
technology, there is an urgent need for increasing the security level to 256-bit key
length in 5G application environment. In 2018, SNOW-V [7] was announced to
satisfy the 256-bit security level requirement for 5G from 3GPP. Lately, Ekdahl
et al. proposed SNOW-Vi [8], which is a new member of SNOW series stream
cipher. Compared with SNOW 3G, the structure of SNOW-V and SNOW-Vi



keeps the same, while a couple of LFSRs are used to replace the original one,
and the size of registers increases from 32 bits to 128 bits so that the size of
internal state raises significantly. This makes SNOW-V and SNOW-Vi difficult
to be analyzed.

Resistance against the correlation attack [12, 3] is a standard design crite-
rion for LFSR-based stream ciphers. The basic idea for correlation attack is to
approximate the nonlinear parts with linear expressions, and derive statistical
characteristics related to keystream words at different clock instances and the
LFSR parts, and then recover the initial states of LFSR. Fast correlation attacks
on SNOW series stream cipher have always been a hot topic of cryptanalysis. For
SNOW 1.0, Coppersmith et al. found a linear approximation with the correlation
2−8.3 [4] and proposed a fast correlation attack with a complexity 2100. In [18], a
distinguishing attack on SNOW 2.0 with complexity around 2230 was presented,
and then an enhanced version with a reduced complexity 2174 was provided in
[13]. By approximating the functions with the form of (x+y)⊕x⊕f(y) , Gong et
al. searched out a binary approximation with a correlation 2−33.82 and mounted
a fast correlation attack on SNOW 3G with a complexity 2232.33 [10]. Later, they
took the idea to the extreme, found a binary linear approximation with a corre-
lation 2−18.67 of SNOW-Vσ0 [11], which results in a fast correlation attack with
time complexity 2251.93, memory complexity 2244 and 2103.83 keystream words.
On the other hand, Zhang et al. gave a fast correlation attack on SNOW 2.0 by
building a byte-wise approximation of the FSM part in an assigned finite field
[21]. Adopting this idea, Yang et al. found a byte-wise approximation in GF (28)
with SEI (Squared Euclidean Imbalance) being 2−40.97 [19], and mounted a fast
correlation attack with a complexity 2176.56. For full SNOW-V and SNOW-Vi,
there is no prior correlation attack beyond their design documents.

In this paper, we focus on the search of binary linear approximations with
high correlation of SNOW-V and SNOW-Vi. As the FSM transformation is
mainly composed of S-boxes, linear transformations and additions modulo 232,
we simplify the linear approximation of FSM transformation to approximation
trails of a composite function so that we can take advantage of automatic search
technique which allows a wide range of search. Meanwhile, in the previous fast
correlation attacks, masks of outputs and LFSR taps are usually the same val-
ues, in this paper we consider a different and more general case that the masks
of outputs and LFSR taps are different, which can further expand the search
range. With the aid of the linear relationship between the four taps of LFSR
inputting into FSM at three consecutive clocks, we present an automatic search
model based on SAT/SMT technique and search out a binary linear approxi-
mation with a correlation 2−49.54 , which results in a correlation attack with
an expected time complexity 2248.81, a memory complexity 2240, requiring 2240

keystream words, which can recover the internal state of SNOW-V for the clock
producing the first keystream word. For SNOW-Vi, we provide a linear approxi-
mation with the same correlation and mount a correlation attack with the same
complexity as on SNOW-V. The results of this paper show that SNOW-V and
SNOW-Vi can be attacked with complexity less than the key exhaustion, if the



limitation that at most 264 keystream words can be generated by a single key-IV
pair is ignored. As far as we know, these results are the best correlation attacks
for SNOW-V and SNOW-Vi up to now. It needs to emphasize that our crypt-
analysis results don’t means that SNOW-V and SNOW-Vi are not safe under
their design limit for the maximum length of keystream with a single pair of key
and IV.

The rest of this paper is organized as follows: Section 2 lists some notations
and gives a brief introduction of SNOW-V and SNOW-Vi. Section 3 proposes
the framework of our linear approximation of SNOW-V. Section 4 describes the
automatic search models used in this paper in detail. Section 5 and 6 show the
correlation attacks on SNOW-V and SNOW-Vi respectively. We conclude this
paper in Section 7.

2 Preliminaries

2.1 Notations and definitions

Henceforth, we fix some notations for convenience.

– The binary field is denoted by GF (2), and its n-dimensional extension field
is denoted by GF (2n).

– The bitwise XOR is denoted by ⊕, and the addition and minus modulo 232

is denoted by � and � respectively.
– Given a binary variable x, x̄ denotes x⊕ 1.
– wt(x) denotes the Hamming weight of Boolean vector x.
– We denote binary vectors in this paper as x = (xn−1, xn−2, ..., x0), in which
xn−1 is the most significant bit and x0 is the least significant bit.

– Given two binary vectors a = (an−1, an−2, ..., a0), b = (bn−1, bn−2, ..., b0), the
cascading operation is defined as a||b = (an−1, an−2, ..., a0, bn−1, bn−2, ..., b0).

– Given two binary vectors a = (an−1, an−2, ..., a0), b = (bn−1, bn−2, ..., b0), the

inner product is defined as a · b =
n−1
⊕
i=0

aibi.

– Let x be an element of GF (2k) and y = (ym−1, ym−2, ..., y0) be an m-
dimensional vector on the same field, the product of x and y is defined
as x ∗ y = (xym−1, xym−2, ..., xy0), in which the product xyi is taken over
GF (2k).

– The correlation of a binary random variable x is defined as

ρ(x) = Pr(x = 0)− Pr(x = 1).

– The correlation of a Boolean function f : F2n → F2 is defined as

ρ(f) = Pr(f(x) = 0)− Pr(f(x) = 1).

– The correlation of f(x, y) = x � y with the 128-bit input mask α, β and
128-bit output mask γ is denoted by ρA(γ ← α, β).



– The correlation of f(x) = AESR(x, 0) with the 128-bit input mask α and
128-bit output mask β is denoted by ρE(β ← α).

– We use the corresponding bold letter to denote the matrix of a linear trans-
formation, e.g. P (x) = Px for a linear transformation P and a column vector
x.

2.2 Description of SNOW-V and SNOW-Vi

SNOW-V
SNOW-V has greatly expanded the internal state of the original structure of

SNOW 2.0 and SNOW 3G. The LFSR part of SNOW-V is a circular structure
consisting of two LFSRs, and the size of each register in FSM part increases to
128 bits. The overall schematic of SNOW-V algorithm is shown in Fig.1.
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Fig. 1. The keystream generation phase of the SNOW-V stream cipher

Each cell in LFSR part represents an element in GF (216). The elements of
LFSR-A are generated by the polynomial

gA(x) = x16 + x15 + x12 + x11 + x8 + x3 + x2 + x+ 1 ∈ GF (2)[x],

while the elements of LFSR-B are generated by

gB(x) = x16 + x15 + x14 + x11 + x8 + x6 + x5 + x+ 1 ∈ GF (2)[x].



The LFSR part is updated by

a(t+16) = b(t) + αa(t) + a(t+1) + α−1a(t+8) mod gA(α),
b(t+16) = a(t) + βb(t) + b(t+3) + β−1b(t+8) mod gB(β),

in which α is a root of gA(x) and β is a root of gB(x). Two taps T1 and T2 at
time t are respectively given as

T
(t)
1 = (b

(8t)
15 , b

(8t)
14 , ..., b

(8t)
8 ), T

(t)
2 = (a

(8t)
7 , a

(8t)
6 , ..., a

(8t)
0 ).

R1, R2, R3 are three 128-bit registers of FSM part, updated by

R
(t+1)
1 = σ(R

(t)
2 � (R

(t)
3 ⊕ T

(t)
2 )),

R
(t+1)
2 = AESR(R

(t)
1 , C1),

R
(t+1)
3 = AESR(R

(t)
2 , C2).

AESR(input, key) denotes the AES encryption round function, C1 and C2 are
zero. σ is a byte-oriented permutation:

σ= [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15],

and σ−1 = σ. The 128 bits keystream output at clock t is given by:

z(t) = (R
(t)
1 � T

(t)
1 )⊕R(t)

2 .

For more details of SNOW-V, please refer to [7].

SNOW-Vi

SNOW-Vi is an extreme performance variant of SNOW-V, and eliminates

the linear relationship between T1
(t−1), T1

(t), T
(t+1)
1 , T

(t)
2 . SNOW-Vi is consistent

with SNOW-V except replacing the polynomial gA(x) and gB(x) with

gA(x) = x16 + x14 + x11 + x9 + x6 + x5 + x3 + x2 + 1 ∈ F2[x](0x4a6d),
gB(x) = x16 + x15 + x14 + x11 + x10 + x7 + x2 + x+ 1 ∈ F2[x](0xcc87),

and the LFSR sequences generating expressions with

a(t+16) = b(t) + αa(t) + a(t+7) mod gA(α),
b(t+16) = a(t) + βb(t) + b(t+8) mod gB(β).

Two taps T1 and T2 at time t are given respectively as

T
(t)
1 = (b

(8t)
15 , b

(8t)
14 , · · · , b(8t)8 ), T

(t)
2 = (a

(8t)
15 , a

(8t)
14 , · · · , a(8t)8 ).

For more details of SNOW-Vi, we refer to [8].



3 Linear approximation of SNOW-V

SNOW-V employs two LFSRs making up a circular structure. There is a straight-
forward observation [20] that the four taps at three consecutive clocks satisfy

T
(t+1)
1 = T

(t)
2 ⊕ β ∗ T1(t−1) ⊕ β−1 ∗ T1(t) ⊕ (T1

(t−1) >> 48)⊕ (T1
(t) << 80),

we also confirm it experimentally. For convenience, we denote it by

L(T
(t−1)
1 , T

(t)
1 ) = T

(t+1)
1 ⊕ T (t)

2 .

From now, we omit the superscript of R
(t)
1 , R

(t)
2 , R

(t)
3 , and simply them as

R1, R2, R3. The keystream outputs in three consecutive clocks can be expressed
by

zt−1 = (T
(t−1)
1 � E−1(R2))⊕ E−1(R3),

zt = (T
(t)
1 �R1)⊕R2,

zt+1 = (T
(t+1)
1 � σ(R2 � (R3 ⊕ T (t)

2 )))⊕ E(R1).

Let α, β, γ, l,m, n, h be 128-bit masks, we can straightforward observe that
the following equation will show a nonzero correlation ρ when the masks take
certain values:

(α, β, γ, l,m, n, h) · (zt−1, zt, zt+1, T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 , T

(t)
2 )

= α · (E−1(R2) � T
(t−1)
1 )⊕ β ·R2 ⊕ γ · (σ(R2 � (R3 ⊕ T (t)

2 )) � T
(t+1)
1 )

⊕α · E−1(R3)⊕ β · (R1 � T
(t)
1 )⊕ γ · E(R1)

⊕l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2
ρ
= 0.

In order to simplify the linear approximation analysis, we divide the process
of the approximation into several sub-steps by introducing 6 functions

f1(x, y, z, u, v, w) = (x� v, y, z, u, L(z, u)⊕ v, w),
f2(x, y, z, u, v, w) = ((σ−1(x) � y)⊕ v, y, z, u, v, w),
f3(x, y, z, u, v, w) = (E−1(x), E−1(y), z, u, v, w),
f4(x, y, z, u, v, w) = (x, (y � z), u, v, w),
f5(x, y, z, u, v) = (x, y, z, u,E−1(v)),
f6(x, y, z, u, v) = (x, y, u, (z � v)).

It is clear that the composition function

F (x, y, z, u, v, w) := (f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1)(x, y, z, u, v, w)

has 6-word input and 4-word output.
Consider the binary linear approximation of F :

(γ, β, l,m, n, γ)
F−→ (α, α, h, β).



Let

(x, y, z, u, v, w) = (σ(R2 � (R3 ⊕ T (t)
2 )) � T

(t+1)
1 , R2, T

(t−1)
1 , T

(t)
1 , T

(t+1)
1 , E(R1)).

Then x, y, z, u, v, w are uniform distributed words and independent with each

other. Recall L(T
(t−1)
1 , T

(t)
1 ) = T

(t+1)
1 ⊕ T (t)

2 , we have

f1(x, y, z, u, v, w) = (σ(R2 � (R3 ⊕ T (t)
2 )), R2, T

(t−1)
1 , T

(t)
1 , T

(t)
2 , E(R1)),

f2 ◦ f1(x, y, z, u, v, w) = (R3, R2, T
(t−1)
1 , T

(t)
1 , T

(t)
2 , E(R1)),

f3 ◦ f2 ◦ f1(x, y, z, u, v, w) = (E−1(R3), E−1(R2), T
(t−1)
1 , T

(t)
1 , T

(t)
2 , E(R1)),

f4 ◦ f3 ◦ f2 ◦ f1(x, y, z, u, v, w) = (E−1(R3), E−1(R2)� T
(t−1)
1 , T

(t)
1 , T

(t)
2 , E(R1)),

f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1(x, y, z, u, v, w) = (E−1(R3), E−1(R2)�T (t−1)
1 , T

(t)
1 , T

(t)
2 , R1),

f6◦f5◦f4◦f3◦f2◦f1(x, y, z, u, v, w) = (E−1(R3), E−1(R2)�T (t−1)
1 , T

(t)
2 , T

(t)
1 �R1).

Thus, the equation of the linear approximation (γ, β, l,m, n, γ)
F−→ (α, α, h, β) is

(γ, β, l,m, n, γ) · (σ(R2 � (R3 ⊕ T (t)
2 )) � T

(t+1)
1 , R2, T

(t−1)
1 , T

(t)
1 , T

(t+1)
1 , E(R1))

⊕ (α, α, h, β) · (E−1(R3), E−1(R2) � T
(t−1)
1 , T

(t)
2 , T

(t)
1 �R1)

ρF
= 0.

It is obvious that the correlation ρF of the above approximation is equal to ρ.
If ρ 6= 0, we will get a distinguisher for distinguishing attack when

l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2 = 0,

and a distinguisher for correlation attack when

l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2 6= 0.

In this paper, we focus on the search of correlation attack distinguishers.
Now we analyze the masks in the process of the linear approximation on F

above in the case that the input and output masks are fixed as (γ, β, l,m, n, γ)
and (α, α, h, β) respectively. We denote the mask of the j-th output of fi as ξij
and the correlation of fi as ρi. Then the linear approximation equation of f1 is

γ · x⊕ β · y ⊕ l · z ⊕m · u⊕ n · v ⊕ γ · w,
ρ1
= ξ11 · (x� v)⊕ ξ12 · y ⊕ ξ13 · z ⊕ ξ14 · u⊕ ξ15 · L(z, u)⊕ ξ15 · v ⊕ ξ16 · w,

(1)

which is equivalent to

(β ⊕ ξ12) · y ⊕ (γ ⊕ ξ16) · w ⊕ [ξ15 · L(z, u)⊕ (l ⊕ ξ13) · z ⊕ (ξ14 ⊕m) · u]

⊕ [ξ11 · (x� v)⊕ γ · x⊕ (n⊕ ξ15) · v]
ρ1
= 0.

With the assumption that ρ1 6= 0, we have ξ12 = β, ξ16 = γ. Denoting ξ11 = a, ξ13 =
e, ξ14 = f, ξ15 = d, we have dL = (e⊕ l)||(f ⊕m) by

d · L(z, u) = dL

(
z
u

)
= (e⊕ l)z ⊕ (f ⊕m)u,



and (1) is equivalent to γ · xρ1= a · (x � v) ⊕ (n ⊕ d) · v, which is the linear
approximation γ ← a, n⊕ d of the addition modulo 232. Thus the correlation of
(1) is ρ1 = ρA(γ ← a, n⊕ d).

For f2, we have

a · x⊕ β · y ⊕ e · z ⊕ f · u⊕ d · v ⊕ γ · w
= ξ21 · (σ−1(x) � y)⊕ ξ21 · v ⊕ ξ22 · y ⊕ ξ23 · z ⊕ ξ24 · u⊕ ξ25 · v ⊕ ξ26 · w,

(2)

scilicet

[ξ21 · (σ−1(x) � y)⊕ a · x⊕ (β ⊕ ξ22) · y]⊕ (e⊕ ξ23) · z ⊕ (ξ24 ⊕ f) · u
⊕ (ξ21 ⊕ ξ25 ⊕ d) · v ⊕ (ξ26 ⊕ γ) · wρ2= 0.

By ρ2 6= 0 we know that ξ23 = e, ξ24 = f, ξ26 = γ,ξ21 = d ⊕ ξ25 . Denoting ξ22 = b,
then (2) is equivalent to ξ21 ·(σ−1(x)�y)⊕a·x⊕(β⊕ξ22)·y = 0. Let X = σ−1(x),
then the above equation can be converted to

a · σ(X) = (σTa)X
ρ2
= (β ⊕ b) · y ⊕ ξ21 · (X � y),

which is the linear approximation σTa ← β ⊕ b, d ⊕ ξ25 of the addition modulo
232, hence ρ2 = ρA(σTa← β ⊕ b, d⊕ ξ25).

For f3, the following equation holds

(d⊕ ξ25) · x⊕ b · y ⊕ e · z ⊕ f · u⊕ ξ25 · v ⊕ γ · w
ρ3
= ξ31 · E−1(x)⊕ ξ32 · E−1(y)⊕ ξ33 · z ⊕ ξ34 · u⊕ ξ35 · v ⊕ ξ36 · w.

(3)

It is equivalent to

[ξ31 · E−1(x)⊕ (d⊕ ξ25) · x]⊕ [ξ32 · E−1(y)⊕ b · y]⊕ (ξ33 ⊕ e) · z ⊕ (ξ34 ⊕ f) · u
⊕ (ξ35 ⊕ ξ25) · v ⊕ (ξ36 ⊕ γ) · wρ3= 0.

By ρ3 6= 0 we know that ξ33 = e, ξ34 = f, ξ35 = ξ25 , ξ
3
6 = γ. Let ξ32 = c, then (3) is

equivalent to [ξ31 · E−1(x) ⊕ (d ⊕ ξ25) · x] ⊕ [ξ32 · E−1(y) ⊕ b · y]
ρ3
= 0, which is the

two linear approximations d ⊕ ξ25
AES← ξ31 and b

AES← c of AES round function, so
we have ρ3 = ρE(d⊕ ξ25 ← ξ31)ρE(b← c).

For f4, we have

ξ31 ·x⊕c ·y⊕e ·z⊕f ·u⊕ξ25 ·v⊕γ ·w
ρ4
= ξ41 ·x⊕ξ42 ·(y�z)⊕ξ43 ·u⊕ξ44 ·v⊕ξ45 ·w, (4)

which is equivalent to

(ξ31⊕ ξ41) ·x⊕ [ξ42 · (y�z)⊕ c ·y⊕e ·z]⊕ (f ⊕ ξ43) ·u⊕ (ξ25⊕ ξ44) ·v⊕ (γ⊕ ξ45) ·wρ4= 0.

By ρ4 6= 0 we know that ξ41 = ξ31 , ξ
4
3 = f, ξ44 = ξ25 , ξ

4
5 = γ, and we can rewrite the

above equation as ξ42 · (y� z)
ρ4
= c · y⊕ e · z, which is the approximation ξ42 ← c, e

of addition modulo 232. Obviously ρ4 = ρA(ξ42 ← c, e).
For f5, the approximation equation is

ξ31 ·x⊕ ξ42 · y⊕ f · z⊕ ξ25 ·u⊕γ · v
ρ5
= ξ51 ·x⊕ ξ52 · y⊕ ξ53 · z⊕ ξ54 ·u⊕ ξ55 ·E−1(v), (5)



scilicet

(ξ31 ⊕ ξ51) · x⊕ (ξ42 ⊕ ξ52) · y ⊕ (f ⊕ ξ53) · z ⊕ (ξ25 ⊕ ξ54) · u⊕ [ξ55 ·E−1(v)⊕ γ · v]
ρ5
= 0.

By ρ5 6= 0 we know that ξ51 = ξ31 , ξ
5
2 = ξ42 , ξ

5
3 = f, ξ54 = ξ25 . Denoting ξ55 = q, then

(5) can be reduced to q · E−1(v) ⊕ γ · vρ5= 0, which is the linear approximation

γ
AES← q of AES round function, so ρ5 = ρE(γ ← q).

For f6, we have

ξ31 · x⊕ ξ42 · y ⊕ f · z ⊕ ξ25 · u⊕ q · v
ρ6
=α · x⊕ α · y ⊕ h · u⊕ β · (z � v). (6)

By ρ6 6= 0 we know that ξ31 = ξ42 = α, ξ25 = h, and (6) can be simplified to

β · (z�v)⊕f ·z⊕q ·vρ6= 0, which is the linear approximation β ← f, q of addition
modulo 232. Thus ρ6 = ρA(β ← f, q).

Thus, the linear approximation trail of F above can be described as

(γ, β, l,m, n, γ)
f1−−−−−−−−−−−−−−−−−−−−−→

dL=(e⊕l)||(f⊕m),ρA(γ←a,n⊕d)
(a, β, e, f, d, γ)

f2−−−−−−−−−−−−−→
ρA(σT a←b⊕β,d⊕h)

(d⊕ h, b, e, f, h, γ)
f3−−−−−−−−−−−−−→

ρE(d⊕h←α)ρE(b←c)
(α, c, e, f, h, γ)

f4−−−−−−−→
ρA(α←e,c)

(α, α, f, h, γ)

f5−−−−−−→
ρE(γ←q)

(α, α, f, h, q)
f6−−−−−−−→

ρA(β←f,q)
(α, α, h, β),

and its correlation can be computed as

ρ(a, b, c, d, q) =ρA(γ ← a, n⊕ d)ρA(σTa← b⊕ β, d⊕ h)ρE(d⊕ h← α)

ρE(b← c)ρA(α← e, c)ρE(γ ← q)ρA(β ← f, q),

with the constraint dL = (e⊕ l)||(f ⊕m), and a, b, c, d, q are free masks.

4 Automatic search of linear approximation trails of
SNOW-V

STP is an SMT solver which encodes the constraints with CVC, SMT-LIB1 and
SMT-LIB2 languages [9]. Since STP solver can model XOR operations much
easier than MILP and SAT solvers, we construct STP-based automatic search
program for linear approximation trails of SNOW-V. STP solver will return a
solution that meets the conditions if there is one. The model of the linear ap-
proximation above contains three substitution layers and four layers of addition
modulo 232 operations as the nonlinear part. Here we characterize the linear
approximation in the way available for STP solver. For convenience, signs of
correlation values are temporarily ignored in the process of characterization.

8-bit S-box. We denote the correlation of an S-box with the input mask
x = (x7, x6, ..., x0) and output mask y = (y7, y6, ..., y0) as c(x, y). Accurately



characterizing the correlation of an S-box will make the program too large for
the STP solver, hence we take the method used in [1] to character the activity of
the S-boxes. For every S-box in the process of linear approximation, we introduce
a new Boolean function such that

f(x, y) =

{
1, if |c(x, y)| 6= 0;
0, if |c(x, y)| = 0.

Since the expressions longer than 256 characters are not supported by STP
solver, f(x, y) needs to be converted into a series of shorter constrains that are
fully satisfied. By inputting the truth tables, the software LogicFriday can di-
rectly give the product-of-sum representation of a Boolean function. For example,
the Boolean function with 3 input bits and 1 output bit h(a0, a1, a2) = a0a1a2⊕
a0a1 ⊕ a2 has the product-of-sum representation h(a0, a1, a2) = (a0|a1|a2) &
(a0|ā1|a2) & (ā0|a1|a2). Thus, the Boolean function h(a0, a1, a2) has essential
conditions a0|a1|a2 = 0⇒ h(a0, a1, a2) = 0,

a0|ã1|a2 = 0⇒ h(a0, a1, a2) = 0,
ã0|a1|a2 = 0⇒ h(a0, a1, a2) = 0.

In the same way, f(x, y) can be converted into a series of logical conditions.
With the additional constraint introduced: f(x, y) = x0|x1| · · · |x7|y0|y1| · · · |y7,
f(x, y) is the linear activity of the S-box, i.e. f(x, y) = 1 if and only if the S-box
is linear active.

Addition modulo 232. Johan Wallén proposed an recursive method to compute
the correlation with given input and output masks efficiently [16]. Then the
result was improved by Schulte-Geers by proving that modulo addition is CCZ-
equivalent to a vectorial quadratic Boolean function [14]. Denoting u as the
output mask, v, w as the input masks, xi as the i-th bit of Boolean vector x, the
constraints to obtain a valid linear approximation shall be expressed as [14]:

zn−1 = 0,
zj = zj+1 ⊕ uj+1 ⊕ vj+1 ⊕ wj+1(0 ≤ j < n− 1),
zi ≥ ui ⊕ vi(0 ≤ i < n),
zi ≥ ui ⊕ wi,

in which z is a dummy variable. The correlation of the linear approximation is
not zero if and only if there exists a z satisfying the constraints, and is given by

cor(u, v, w) = (−1)
(u⊕v)·(u⊕w)

2−wt(z) when it is not zero.

Objective function. As the maximum of the absolute values of correlations of

an S-box is 2−3, we take 3
48∑
i=1

f i(x, y) +
16∑
j=1

wt(z(j)) instead of the accurate cor-

relation of a linear trail, where f i(x, y) denotes the activity of the i-th S-box and
z(j) denotes the dummy variable of j-th modulo addition operation. This objec-
tive function may not search out the optimal linear approximation trail, but can



find trails with relatively high correlation. Meanwhile, we can give an untight
upper bound on the correlation of linear trails: the precise correlation of a linear

trail shall less than 2−k when the trail satisfies 3
48∑
i=1

f i(x, y) +
16∑
j=1

wt(z(j)) < k.

The precise correlation and its sign. After STP solver returns a linear ap-
proximation trail that satisfies all constraints, we verify the trail and evaluate its
accurate correlation with the real correlations of S-boxes. The sign of correlation
is also determined in the process of verification.

Finding more trails. According to the properties of Walsh spectrum of com-
posite functions, the correlation of a binary linear approximation of SNOW-V
can be computed as

c(α, β, γ, l,m, n, h) =
∑

a,b,c,d,q

ρ(a, b, c, d, q).

Assuming that the trail (α0, β0, γ0, l0,m0, n0, h0, a0, b0, c0, d0, q0) has been found,
we can keep searching for other new solutions by introducing the additional
constraints:

α = α0, β = β0, γ = γ0, l = l0,m = m0, n = n0, h = h0,
(a⊕ a0)|(b⊕ b0)|(c⊕ c0)|(d⊕ d0)|(q ⊕ q0) 6= 0.

Different solutions can be generated one by one in this way, and the binary
correlation gradually approaches its real value by summing up the correlations of
linear trails. We build the automatic search program for the linear approximation

above. With the constraint that 3
48∑
i=1

f i(x, y) +
16∑
j=1

wt(z(j)) < k, STP solver

returns False when k = 44 and returns a solution when k = 45. Thus we know
that 2−44 is an upper bound on correlation of linear trails, but may not be tight.
The best result we have found is

α = l = c = 0x1, 0, 0, 0
β = m = 0x80, 0, 0, 0
γ = h = b = 0x81ec5a80, 0, 0, 0
n = 0x81ec5a00, 0, 0, 0
a = 0xc1000000, 0, 0, 0
d = 0, 0, 0, 0.

with the correlation 2−49.83 (The symblo ’0’ denotes 32-bit 0). Once the input
and output mask (α, β, γ, l,m, n, h) been fixed, we gradually add constraints and

search out all the linear trails with the constraint 3
48∑
i=1

f i(x, y) +
16∑
j=1

wt(z(j)) <

50 and sum the correlations up. The overall correlation reaches 2−49.54. Trails
we have found are shown in Appendix.



5 A correlation attack on SNOW-V

In this section, we present a correlation attack on SNOW-V based on the linear
approximation with the correlation 2−49.54 given in Section 4.

5.1 General description of the presented correlation attack on
SNOW-V

We call the state of LFSR that produce the first keystream word as the initial
state of LFSR. Our aim is to recover the initial state of LFSR. By the result
above, we have

α · zt−1 ⊕ β · zt ⊕ γ · zt+1 ⊕ l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2
2−49.54

= 0.

We assume u = (u511, u510, · · · , u0)
T

and û = (û511, û510, · · · , û0)
T

as the initial
state and guessed initial state respectively. Since the output of LFSR at clock
t can always be expressed as a linear combination of the initial state, i.e. there

always exists a Γt ∈ {0, 1}512 such that Γt ·u = l ·T (t−1)
1 ⊕m ·T (t)

1 ⊕n ·T
(t+1)
1 ⊕

h · T (t)
2 , we can construct a distinguisher with the form

φt(û) =α · zt−1 ⊕ β · zt ⊕ γ · zt+1 ⊕ Γt · û
=α · zt−1 ⊕ β · zt ⊕ γ · zt+1

⊕ l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2 ⊕ Γt · (u⊕ û).

φt(û) will show the correlation ρ = 2−49.54 when û = u, otherwise the distribu-
tion of φt(û) is uniform. With this analysis, we recover the initial LFSR state in
two steps:

Preprocessing stage: Let the most significant B bits of binary vector x =
(x511, x510, · · · , x0)

T
be xh = (x511, x510, · · · , x512−B)

T
, the least significant 512-

B bits be xl = (x511−B , x510−B , · · · , x0)
T

and the number of keystream words
produced by a pair of key and IV be N . For 1 ≤ i1, i2 ≤ N it follows that

(Γi1 ⊕ Γi2) · u = (Γhi1 ⊕ Γ
h
i2) · uh ⊕ (Γ li1 ⊕ Γ

l
i2) · ul.

If Γ li1 = Γ li2 , the equation above is converted into (Γi1⊕Γi2) ·u = (Γhi1⊕Γ
h
i2

) ·uh.
As the event φi1(u) = 0 is independent of the event φi2(u) = 0 and p(φi1(u) =
0) = p(φi2(u) = 0) = 1

2 + 1
2ρ, we have p(φi1(u)⊕φi2(u) = 0) = 1

2 + 1
2ρ

2. Therefore
we can get a parity check equation of B bits of the initial state u

α · (zi1−1 ⊕ zi2−1)⊕ β · (zi1 ⊕ zi2)⊕ γ · (zi1+1 ⊕ zi2+1)⊕ (Γhi1 ⊕ Γ
h
i2) · uhρ

2

= 0,

if Γ li1 = Γ li2 holds. Since the probability p(Γ li1 = Γ li2) = 2−512−B , the expected

number of parity check equations with Γ li1 = Γ li2 among C2
N pairs of Γi is



M = C2
N2−(512−B) ≈ 2−(513−B)N2. Therefore, we can find 2−(513−B)N2 par-

ity check equations in preprocessing stage on average.

Processing stage: Among the M parity check equations we denote the j -th
equation as (α, β, γ) ·Zj⊕Γhj ·uh = 0, where Zj = (zi1−1⊕zi2−1, zi1⊕zi2 , zi1+1⊕
zi2+1) and Γhj = (Γhi1 ⊕ Γ

h
i2

). For each guess of the B bits ûh ∈ {0, 1}B of the
initial state u, we evaluate the parity checks, get

T (ûh) =

M∑
j=1

(−1)
(α,β,γ)·Zj⊕Γh

j ·û
h

,

and predict the û that maximizes T (ûh) as the correct one. For the remaining
512−B bits, the above process can be repeated when the first B bits are known.
Thus, all the initial 512 bits of the LFSR can be recovered.

5.2 Success probability and complexity

For linear attacks, the relationship between the probability of success and the
number of check equations is given in [15]:
Definition 1 [15]. If a B -bit key is attacked and the right key is ranked r-th
among all 2B candidates, a = B − log2r is called the advantage provided by the
attack.

In this paper we refer to the advantage defined by Definition 1 as gain.

Lemma 1 [15]. Let ps be the probability that a linear attack on a B -bit subkey,
with a linear approximation of probability p = 1

2 + 1
2ρ and M known parity check

equations, delivers an a-bit or higher gain. Under the assuming that the linear
approximation’s probability to hold is independent for each guessed key and its
probability is equal to 1/2 for all wrong keys, we have for sufficiently large B
and M that

ps = Φ

(
2
√
M

∣∣∣∣p− 1

2

∣∣∣∣− Φ−1(1− 2−a−1)

)
,

where Φ(x) = 1√
2π

∫ x
−∞ e−

x2

2 dx is the distribution function of the standard nor-

mal distribution.

Corollary 1 With the assumptions of Lemma 1,

M =
1

ρ2
(
Φ−1(ps) + Φ−1(1− 2−a−1)

)2
parity check equations are needed in a linear attack to accomplish an a-bit gain
with a success probability of ps.

By the results of [2], we use the formula Φ−1(1−λ)
λ→0+

≈
√
−2 lnλ to approx-

imate Φ−1(1− 2−a−1). Hence, we have M ≈ 1
ρ2

(
Φ−1(ps) +

√
2(a+ 1) ln 2

)2
for

sufficiently large a.



The complexity can be evaluated as follows. In the preprocessing stage, we
evaluate and store each Γi ∈ {0, 1}512 for 1 ≤ i ≤ N . Then we sort Γi according
to the value of Γ li such that Γ li1 = Γ li2 holds for any i1 and i2 in the same set.
Thus we can construct a series of parity check equations which is only related to
the most significant B bits of initial state. The time complexity of preprocessing
stage is O(N) +O(N log2N), and memory complexity is O(N).

In the processing stage, T (ûh) is calculated for each guessed ûh ∈ {0, 1}B by
evaluating M parity check equations. When B > logM , denoting Γh1j and ûh1 as

the most significant dlogMebits, Γh2j and ûh2 as the least significant B−dlogMe
bits of Γhj and ûh respectively, we can accelerate the process using fast Walsh
transformation by

T (ûh) =

M∑
j=1

(−1)
(α,β,γ)·Zj⊕Γh

j ·û
h

=
∑

ζ∈{0,1}dlog Me

∑
j,Γh1

j =ζ

(−1)
(α,β,γ)·Zj · (−1)

Γh1
j ·û

h1

· (−1)
Γh2
j ·û

h2

=
∑

ζ∈{0,1}dlog Me

∑
j,Γh1

j =ζ

(−1)
(α,β,γ)·Zj · (−1)

Γh2
j ·û

h2

· (−1)
ζ·ûh1

=
∑

ζ∈{0,1}dlog Me

(−1)
ζ·ûh1 ∑

j,Γh
j =ζ

(−1)
(α,β,γ)·Zj · (−1)

Γh2
j ·û

h2

=
∑

ζ∈{0,1}dlog Me

(−1)
ζ·ûh1

gûh2(ζ),

where g(ζ) =
∑

j,Γh1
j =ζ

(−1)
(α,β,γ)·Zj⊕Γh2

j ·û
h2

.

For each guessed ûh2 ∈ {0, 1}B−dlogMe and ζ ∈ {0, 1}dlogMe, we compute

gûh2(ζ) and get T (ûh) =
∑

ζ∈{0,1}dlog Me
(−1)

ζ·ûh1

gûh2(ζ) by calculating the Walsh

transform of gûh2(ζ). This process can be done with time complexity

2B−dlogMe(M + dlogMe 2dlogMe) ≈ 2B(1 + dlogMe)

and memory complexity O(2B). By Corollary 1, we have

M =
1

ρ2
(
Φ−1(ps) + Φ−1(1− 2−B−1)

)2
when the correct uh is predicted as the top ranked, i.e. a = B. Therefore, we can
work out M with fixed ps and B, then compute N by M ≈ 2−(513−B)N2. Finally,
the values which minimize the time complexity N(logN + 1) + 2B(1 + dlogMe)
shall be taken to determine the total complexity.

We test different choices for ps and B and find that M ≈ 2207 and N ≈ 2240

under ps = 0.999211 and B = 240, which makes the total complexity lowest.



The time complexity of the preprocessing stage is 2247.91, memory complexity is
2240. In the processing stage the time complexity is 2247.7, memory complexity
is 2240. Thus, the attack can be done with the total time complexity 2248.81,
memory complexity 2240 and 2240 keystream words given. It is easy to see that
with the recovery of states of LFSR in encryption stage, one can recovery the
three memories R1, R2 and R3 in encryption stage with a time complexity less
than 2128. Thus the problem is remained that how to recovery the original key
effectively if one has recovered the internal states in encryption stage.

6 Correlation attack on SNOW-Vi

6.1 Linear approximation of SNOW-Vi

In March of 2021, Ekdahl et al. proposed SNOW-Vi. Besides the field and update

transformation of the LFSR, the tap T
(t)
2 = (a

(8t)
7 , a

(8t)
6 , · · · , a(8t)0 ) of SNOW-V

was changed to T
(t)
2 = (a

(8t)
15 , a

(8t)
14 , · · · , a(8t)8 ) as well. We have experimentally

confirmed that, regarding every bit in four taps T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 and T

(t)
2 as

the coefficient vector of the initial state, the 512× 512 binary matrix composed

of these vectors is full rank, i.e. T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 and T

(t)
2 do not have linear

relationship any more. Thus, we modify the six functions to be

f1(x, y, z, t, u, v, w) = ((x� u), y, z, t, v, w),
f2(x, y, z, u, v, w) = ((σ−1(x) � y)⊕ v, y, z, u, w),
f3(x, y, z, u, v) = (E−1(x), E−1(y), z, u, v),
f4(x, y, z, u, v) = (x, (y � z), u, v),
f5(x, y, z, u) = (x, y, z, E−1(u)),
f6(x, y, z, u) = (x, y, (z � u)).

The composite function becomes

F (x, y, z, t, u, v, w) = (f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1)(x, y, z, t, u, v, w),

with 7 input words and 3 output words. Using the same method and symbols as

in Section 3, we consider the linear approximation (γ, β, l,m, n, h, γ)
F−→ (α, α, β).

Taking 7 independent and uniform distributed words as the input variables:

(x, y, z, t, u, v, w)

= (σ(R2 � (R3 ⊕ T (t)
2 )) � T

(t+1)
1 , R2, T

(t−1)
1 , T

(t)
1 , T

(t+1)
1 , T

(t)
2 , E(R1)),

we have

f1(x, y, z, t, u, v, w) = (σ(R2 � (R3 ⊕ T (t)
2 )), R2, T

(t−1)
1 , T

(t)
1 , T

(t)
2 , E(R1)),

f2 ◦ f1(x, y, z, t, u, v, w) = (R3, R2, T
(t−1)
1 , T

(t)
1 , E(R1)),

f3 ◦ f2 ◦ f1(x, y, z, t, u, v, w) = (E−1(R3), E−1(R2), T
(t−1)
1 , T

(t)
1 , E(R1)),



f4 ◦ f3 ◦ f2 ◦ f1(x, y, z, t, u, v, w) = (E−1(R3), E−1(R2) � T
(t−1)
1 , T

(t)
1 , E(R1)),

f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1(x, y, z, t, u, v, w) = (E−1(R3), E−1(R2) � T
(t−1)
1 , T

(t)
1 , R1),

f6◦f5◦f4◦f3◦f2◦f1(x, y, z, t, u, v, w) = (E−1(R3), E−1(R2)�T (t−1)
1 , T

(t)
1 �R1).

Then the equation of the linear approximation (γ, β, l,m, n, h, γ)
F−→ (α, α, β) is

(γ, β, l,m, n, h, γ)

·(σ(R2 � (R3 ⊕ T (t)
2 )) � T

(t+1)
1 , R2, T

(t−1)
1 , T

(t)
1 , T

(t+1)
1 , T

(t)
2 , E(R1))

⊕(α, α, β) · (E−1(R3), E−1(R2) � T
(t−1)
1 , T

(t)
1 �R1)

= α · zt−1 ⊕ β · zt ⊕ γ · zt+1 ⊕ l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2
ρ
= 0.

The linear approximation above can be expressed as

(γ, β, l,m, n, h, γ)
f1−−−−−−−→

ρA(γ←a,n)
(a, β, l,m, h, γ)

f2−−−−−−−−−−−→
ρA(σT a←b⊕β,h)

(h, b, l,m, γ)

f3−−−−−−−−−−−−→
ρE(h←α)ρE(b←c)

(α, c, l,m, γ)
f4−−−−−−−→

ρA(α←l,c)
(α, α,m, γ)

f5−−−−−−→
ρE(γ←q)

(α, α,m, q)

f6−−−−−−−→
ρA(β←m,q)

(α, α, β),

and the correlation of a linear trail can be computed as

ρ(a, b, c, q) =ρA(γ ← a, n)ρA(σTa← b⊕ β, h)ρE(h← α)ρE(b← c)

ρA(α← l, c)ρE(γ ← q)ρA(β ← m, q),

where a, b, c, q are the free masks.

6.2 Compared with the linear approximation of SNOW-V

The correlation of a linear trail of SNOW-V is

ρ(a, b, c, d, q) =ρA(γ ← a, n⊕ d)ρA(σTa← b⊕ β, d⊕ h)ρE(d⊕ h← α)ρE(b← c)

ρA(α← e, c)ρE(γ ← q)ρA(β ← f, q).

Since d = 0, e = l, f = m holds for the 6 linear trails we have searched out, for
this type of trails, the expression can be reduced to

ρ(a, b, c, 0, q) =ρA(γ ← a, n)ρA(σTa← b⊕ β, h)ρE(h← α)ρE(b← c)

ρA(α← l, c)ρE(γ ← q)ρA(β ← m, q),

which is the same as the correlation ρ(a, b, c, q) of SNOW-Vi. Hence, we have
the straightforward observation.

Proposition 1 For any trail of the linear approximation process of SNOW-Vi
above, there exists a linear trail of SNOW-V with the same mask

(α, β, γ, l,m, n, h, a, b, c, q)



and the same correlation.

Proposition 1 indicates that the set consists of all linear trails of SNOW-Vi
is a subset of the set of linear trails of SNOW-V, so the results of SNOW-V in
this paper are also appropriate for SNOW-Vi. Therefore, we can confirm that
there is no linear approximation trail with correlation higher than 2−44, and we
could approximate SNOW-Vi with the same correlation of SNOW-V under

α = l = 0x1, 0, 0, 0
β = m = 0x80, 0, 0, 0
γ = h = 0x81ec5a80, 0, 0, 0
n = 0x81ec5a00, 0, 0, 0

with the 6 trails in Appendix. Similarly, the correlation attack presented in
Section 5 with time complexity 2248.81, memory complexity 2240 and 2240 words
given is effective for SNOW-Vi as well.

7 Conclusion

In this paper, we study the linear approximation of the nonlinear functions of
SNOW-V and SNOW-Vi by the composite function techniques. By the Walsh
spectrum theorem of composite function, we propose a method for searching
linear trails with high correlation of SNOW-V and SNOW-Vi in a wide range.
As the automatic search technique is available for this framework, the search
efficiency has been improved greatly. For SNOW-V, we search out a binary lin-
ear approximation with correlation 2−49.54, which improves greatly the results
in the design document. Using the linear approximation we launch a correlation
attack with time complexity 2248.81, memory complexity 2240 and 2240 words
given. For SNOW-Vi, the binary linear approximation is also valid, and the cor-
relation attack on SNOW-V is effective for SNOW-Vi as well. The results of this
paper show that SNOW-V and SNOW-Vi can be attacked with complexity less
than key exhaustion, with the design constraint that the maximum of keystream
length with a single pair of key and IV is 264 ignored. Due to the solver limi-
tation, the linear trails we have found may not be optimal. Therefore, in terms
of provable security, we only give a untight upper bound 2−44 of the correlation
of linear trails. It remains to be further verified whether SNOW-V and SNOW-
Vi still has linear trails or binary approximation with greater correlation, or
multi-bit distribution with larger SEI.
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18. Watanabe, D., Biryukov, A., De Canniére, C.: A distinguishing attack of SNOW
2.0 with linear masking method. In: International Workshop on Selected Areas in
Cryptography 2003. pp. 222–233.

19. Yang, J., Johansson, T., Maximov, A.: Vectorized linear approximations for attacks
on SNOW 3G. IACR Transactions on Symmetric Cryptology pp. 249–271 (2019)

20. Yang, J., Johansson, T., Maximov, A.: )Improved guess-and-determine and distin-
guishing attacks on SNOW-V. IACR Cryptol. ePrint Arch. 2021,544 (2021)

21. Zhang, B., Xu, C., Meier, W.: Fast correlation attacks over extension fields, large-
unit linear approximation and cryptanalysis of SNOW 2.0. In: Gennaro, R., Rob-
shaw, M. (eds.) Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015,



Appendix.

Six linear trails of SNOW-V with α = l = 0x1, 0, 0, 0, β = m = 0x80, 0, 0, 0, γ =
h = 0x81ec5a80, 0, 0, 0, n = 0x81ec5a00, 0, 0, 0

a b c d q −log2|ρ| Sign

0xc1000000,0,0,0 0x81ec5a80,0,0,0 0x1,0,0,0 0,0,0,0 0xa0,0,0,0 49.830 +

0xc1000000,0,0,0 0x81ec5a80,0,0,0 0x1,0,0,0 0,0,0,0 0xc0,0,0,0 51.830 +

0xa1000000,0,0,0 0x81ec5a80,0,0,0 0x1,0,0,0 0,0,0,0 0xa0,0,0,0 51.830 +

0xc1000000,0,0,0 0x81ec5a80,0,0,0 0x1,0,0,0 0,0,0,0 0x90,0,0,0 52.245 -

0xc1000000,0,0,0 0x81ec5a80,0,0,0 0x1,0,0,0 0,0,0,0 0x88,0,0,0 52.508 +

0xa1000000,0,0,0 0x81ec5a80,0,0,0 0x1,0,0,0 0,0,0,0 0xc0,0,0,0 53.830 -


