
Cryptanalysis of Caesar using Quantum Support Vector Machine

Hyun-Ji Kim*, Gyeong-Ju Song*, Kyung-Bae Jang*, Hwa-Jeong Seo*
*IT Department, Hansung University, Seoul

{khj1594012, thdrudwn98, starj1023, hwajeong84}@gmail.com

Abstract
Recently, artificial intelligence-based cryptanalysis
techniques have been researched. In this paper, we
find the key of the Caesar cipher, which is a classical
cipher, by using a quantum machine learning
algorithm that learns by parameterized quantum
circuit instead of a classical neural network. In the
case of 4-bit plaintext and key, results could not be
obtained due to the limitations of the cloud
environment. But in the case of 2-bit plaintext and key,
an accuracy of 1.0 was achieved, and in the case of 3-
bit plaintext and key, an accuracy of 0.84 was
achieved. In addition, as a result of cryptanalysis for
a 2-bit dataset on IBM's real quantum processor, a
classification accuracy of 0.93 was achieved. In the
future, we will research a qubit reduction method for
cryptanalysis of longer-length plaintext and key, and
a technique for maintaining accuracy in real quantum
hardware.
Keywords: Cryptanalysis, Quantum support vector
machine, Quantum computer

1. Introduction

Cryptographic systems are designed to be secure
so that the key cannot be inferred or recovering
plaintext through confusion and diffusion.
Cryptoanalysis has various methods such as
differential cryptanalysis and linear cryptanalysis.
Recently, due to the development of artificial
intelligence technology, studies on encryption
analysis through artificial neural networks have been
actively conducted[1,2]. In this paper, we intend to
perform cryptographic analysis using an artificial
intelligence model on a quantum computer rather than
a conventional neural network.

2. Related Works

2.1 Support Vector Machine and Quantum SVM

A support vector machine (SVM) is one of the
supervised machine learning algorithms that finds the
optimal boundary between data points through a
hyperplane. The hyperplane is 𝑛 − 1 dimensional,
and is used to separate the 𝑛-dimensional space. A
kernel is used to separate data points, and the kernel
arranges various hyperplanes so that the data points
can be divided well. To find the hyperplane, a
nonlinear function must be applied to the data, which

is called a feature map. The functions used include
various kernel functions such as polynomial, gaussian,
and sigmoid functions. A quantum support vector
machine (QSVM)[3] performs the kernel operation of
classical SVM on quantum computer and proceeds in
the same way as the existing process. Because QSVM
is advantageous for working with more dimensional
data, it benefits from kernel optimizations, which are
difficult for SVMs to handle, and generally
outperforms classical SVMs.

2.2 Quantum Circuit [4]

Quantum circuits are constructed through bits and
gates like classical logic circuits, and instead of
classical bits and gates, qubits and quantum gates that
utilize the principles of superposition and
entanglement of quantum mechanics are used to
operate on a quantum computer. A qubit performs the
same role as a classical bit, but through the
superposition state, all values exist as probabilities
and are determined as a single value when observed.
In addition, for one logical qubit (without an error),
several physical qubits are required, and an error
correction technique is required. However, there is
still a lot of overhead with these techniques.

Figure 1 shows some of the quantum gates used in
quantum circuits. The Hadamard (𝐻) gate overlaps so
that it can have the states of 0 and 1 at the same time
in the initial state of the qubit. Also, when the same
qubit goes through the gate again, it returns to its
original state. The 𝑋 gate changes the state of a qubit.
And in a superposition state, it changes the probability.
The 	𝐶𝑁𝑂𝑇 gate applies a NOT operation to the
second qubit when the first qubit is 1, and the
𝑇𝑜𝑓𝑓𝑜𝑙𝑖	gate applies a NOT operation to the last qubit
when both the preceding two qubits are 1. That is,
both gates are gates that can observe the entanglement
state. Finally, the 𝑆𝑊𝐴𝑃	gate exchanges the values of
two qubits, and 𝐶𝑆𝑊𝐴𝑃	gate exchanges the values of
the following two qubits by the state of the first qubit.
When designing quantum circuits, it is necessary to
design faster and more efficient circuits by reducing
the use of expensive gates such as 𝐶𝑁𝑂𝑇 or 𝑇𝑜𝑓𝑓𝑜𝑙𝑖
gates and reducing the circuit depth (the width of the
circuit). In addition, as the depth decreases, the
quantum coherence decreases, resulting in higher
accuracy.

Quantum circuits can be implemented using host
languages such as Python, Java, and C# and quantum

language QASM in various frameworks such as
Qiskit, ProjectQ, and Q#.

Figure 1 Quantum gate

2.3 Quantum Neural Networks (QNN)

A quantum neural network is an artificial
intelligence that utilizes quantum mechanics
phenomenon (entanglement and superposition).
Quantum neural network consists of qubits and
quantum gates on a quantum computer. Therefore, it
learns quantum state data (parameterized quantum
circuit) by encoding the classical data into quantum
data. The parameters of the circuit are set using the
input data, and each qubit passes through gates and
then the value changes. When qubits are observed, the
state of the qubits is determined. Through this process,
a quantum neural network works.

3. Proposed Method

In this paper, we propose a cryptanalysis method
on a quantum computer using QSVM for Caesar
cryptography. Since the system performs a known-
plaintext attack, it is a structure that finds the used key
through a pair of plaintext and ciphertext. The overall
process is shown in Figure 2. As mentioned in Section
2.3, after encoding classical data into quantum data,
training is performed through a quantum circuit. That
is, the circuit runs, measures the qubits, and changes
the parameters over several iterations. Through this
process, a probability value indicating which class the
input data will be classified into is returned, enabling
data classification through a quantum circuit.

3.1 Dataset

As mentioned earlier, since we perform a known
plaintext attack, the data set configuration is shown in
Figure 2. Each plaintext and ciphertext is represented
by bits. And since the key value is used as a label, it
is expressed as a decimal number. That is, the
plaintext and ciphertext bits become input data, and
the key becomes the label.

Figure 2 Dataset for cryptanalysis of the Caesar
cipher

3.2 Data encoding
Data encoding is the process of transforming

classical data (𝑥!444⃗) into a quantum state (Φ(𝑥!444⃗) >) in
Hillbert space. Since the input data is expressed as a
parameterized quantum circuit, the parameters of the
corresponding quantum circuit are affected by the
input data. In addition, the circuit acts as a kernel of
QSVM because a non-linear function is applied to the
input data. Therefore, the quantum circuit
construction process is the kernel construction process
of QSVM, and this quantum circuit becomes a feature
map. Qiskit provides three feature maps, and among
them, ZZFeaturemap is used in the proposed method.
Currently, a gate that can express an expression
representing this feature map is not provided, so a
combination of two types of gates is used. If the
plaintext, ciphertext and key are 2-bit, the
parameterized quantum circuit is configured as shown
in Figure 3. First, a Hadamard gate (𝐻) is applied to
all qubits so that the input data is in a superposition
state. Then, the input data is assigned to the classical
nonlinear function (𝑃) according to Equation 2. In
addition, each qubit is entangled through the
𝐶𝑁𝑂𝑇	 gate, and the values of other qubits are
determined according to the state of one qubit. In
addition, the qubits can be controlled through the
linear option that makes the qubit entangled with one
next qubit, or the full option that makes the qubit
entangled with all the qubits following the qubit. In
the case of linear, since the circuit depth is smaller, the
execution time is shorter, and as mentioned earlier,
higher accuracy can be obtained due to less depth, so
the linear option is used. Through the above process,
a quantum circuit that serves as the kernel of the
QSVM is constructed.

Figure 3 Quantum circuit of ZZfeaturemap with 4
qubit (plaintext, ciphertext and key are 2-bit)

Φ",$(𝑥) = (𝜋 − 𝑥")(𝜋 − 𝑥$) (2)

3.3 Training and classification

By repeatedly executing the designed quantum
circuit, the parameters of the circuit are updated.
Measurements are performed on each qubit to
determine the state of the qubit with a single value,
and the measurement can be performed multiple times
to classify them with high probability. The trained

quantum circuit can act as a classifier. Therefore,
when test data is input, inference is performed.

4. Experiment and evaluations

In this experiment, Google Colaboratory, a cloud-

based service, was used, and it supports Intel Xeon
CPU (25GB RAM), Nvidia GPU (25GB RAM) and
Ubuntu 18.04.5 LTS. As the programming
environment, Python 3.7.11 and Qiskit library were
used. In Qiskit, real quantum hardware from IBM can
be used, but a token is required, so the experiment was
conducted through a simulator.

4.1 Dataset

As described in Section 3.1, plaintext and
ciphertext are expressed in bits and then concatenated
and used as input data, and the key value for the data
becomes a label. That is, the data set is configured so
that the plaintext and ciphertext pairs are classified
into a class corresponding to the key value used for
encryption. In the case of 2-bit plaintext and keys, it
is a problem of classifying into four classes, and in the
case of 3-bit plaintext and keys, it becomes a multi-
classification problem of classifying into eight classes.
Figure 4 shows part of the actual dataset, and Figure
5 shows the distribution of data points in 3-bit
plaintext and key. In Figure 5, dots of the same color
are data with the same class. As shown in Figure 4,
data is composed of 0 and 1, but the left side in Figure
5 is normalized to a value between -1 and 1 that
quantum states can have. Even the right side in Figure
5, dots of the same color are data having the same
class, but they have values of 0 or 1 without
normalization. In addition, plaintext and ciphertext
are concatenated, and each bit must be assigned to
each qubit. Therefore, 2𝑛-qubits are required for 𝑛-bit
plaintext and key.

Figure 4 2-bit(left) and 3-bit(right) dataset
(plaintext bit and ciphertext bit)

Figure 5 Visualization of data points in 3-bit
dataset (left: normalized, right: unnormalized)

4.2 Quantum circuit

After composing the data set as in Section 4.1, the
encoding process of converting classical data into
quantum state data is performed. In other words, it is
necessary to design a parameterized quantum circuit
whose parameters change according to the input data.
And it should be configured as a non-linear operation

so that it can perform the function of the feature map
(kernel) of QSVM. In the case of a 2-bit plaintext and
key, each bit of the input data was input by using 4
qubits to correspond to the qubits, and the case of 3-
bit is the same. Figure 3 is a quantum circuit for 2-bit
plaintext and key, and Figure 6 is a quantum circuit
for 3-bit plaintext and key. The circuit configured as
described above is repeatedly performed as many
times as the number of repetitions, and each qubit is
measured by repeating as many times as the set shots
value. Through this process, data encoding, training,
and inference are performed.

Figure 6 Quantum circuit (3-bit plaintext and key)

4.3 Evaluation

Table 1 shows the details of the quantum circuit
when the encryption key is found with the highest
accuracy, and is shown for two bit-type datasets. We
performed cryptanalysis with a quantum circuit
composed of these hyperparameters, and Table 2
shows the results. In the case of the 2-bit dataset, when
the number of shots, which is the number of times to
measure the state of each qubit, was 5, accuracy of 1.0
was achieved, and all keys were found. In the case of
the 3-bit dataset, the highest classification
performance was achieved when the shots value was
150, with 0.84. When the length of the plaintext and
key increased from 2-bit to 3-bit, the accuracy
decreased by about 0.16. In addition, as the value of
shots increased, the accuracy tended to increase, and
when it was measured more than a certain number of
times, the accuracy decreased.

However, in the bit-type dataset, when the
plaintext increases by 1-bit, the number of required
qubits increases by two, so it was not possible to
experiment with the 4-bit dataset due to the limitations
of the cloud environment (runtime shutdown and
RAM usage exceeded) and the token problem.
Therefore, after expressing the hexadecimal plaintext
and the ciphertext in decimal, the data set of the float
type was constructed by normalizing it to a value
between -1 and 1. In this method, only 2-qubit is

required even if the size of the plaintext and key
increases. As can be seen in Table 3, the classification
performance is worse than the proposed method.

Table 1 Details of quantum circuits (bit type
dataset : 2-bit dataset (2-bit plaintext and key), 3-
bit dataset (3-bit plaintext and key))

 2-bit dataset 3-bit dataset
Gate 𝐻, 𝐶𝑁𝑂𝑇, 𝑃 (non-linear)

Repetition 2 2
Shots 5 150

The number of
qubits 4 6

The number of
classes 4 8

Optimization
function

Simultaneous Perturbation
Stochastic Approximation

Table 2 Accuracy of classification for cryptanalysis
(with bit type dataset)

Shots 2-bit dataset 3-bit dataset
1 0.66 0.6
5 1.0 0.7

100 - 0.81
150 - 0.84

Table 3 Accuracy of classification for cryptanalysis
(with float type dataset)

Shots 2-bit dataset 3-bit dataset
5 0.33 0.19

100 0.46 0.33
150 0.53 0.46
500 0.46 0.4

Table 4 shows the execution time for each data
type. First, execution time is also affected by shots,
but the difference is not large. It can be seen that it is
determined according to the number of qubits used.
Even if only 2-qubit increases from 4-qubit to 6-qubit,
there is a difference of about 1600 seconds in
execution time. The float type dataset takes less time
to execute because the number of qubits is small, but
we think that the performance is not good due to the
small amount of data information. On the other hand,
the bit type dataset has a high data dimension, so the
number of qubits is relatively large. Therefore, it takes
a long time to perform, but achieves high
classification accuracy.

Table 4 Execution time according to qubits and
shots (unit : s)

 The number of shots
5 150

Bit
type The

number
of qubits

4 142.21 144.94

6 1618.06 1867.55

Float
type 2 110.27 114.09

Table 5 shows the results performed on IBM's
actual quantum processor. Currently, we do not have
tokens, so we can only use basic hardware, so we
cannot use more than 5-qubit. The actual hardware
used is 'ibmq_bogota', which provides 5-qubits and 32
quantum volumes. Therefore, we performed the
experiment only on the 2-bit dataset. This dataset
showed the highest accuracy when the shots were 5,
so we tested that case. When the circuit was executed
on the simulator, it took 142.21 seconds, but when the
actual quantum processor was used, it took about 5.5
times (780 seconds). In addition, the accuracy
decreased by 0.07 due to errors such as noise
generated in the operation process in the real
processor.
Table 5 Execution time and accuracy on real
quantum hardware (unit : s, the number of shots :
5, only 2-bit dataset : 4-qubits)

Execution time Accuracy
780 0.93

5. Conclusion

In this paper, we propose a cryptanalysis technique

to find the key of the caesar cipher, a classical cipher,
through the Quantum Support Vector Machine, a
machine learning algorithm on a quantum computer.
Therefore, it uses quantum state data and quantum
circuits (which perform non-linear operations like the
kernel of SVM) rather than classical data. Due to the
limitations of the experimental environment,
experiments were performed on 2-bit and 3-bit
plaintext and keys, and accuracies of 1.0 and 0.84
were achieved, respectively. In a real quantum
processor, an accuracy of 0.93 (for 2-bit dataset) was
achieved. In addition, as the number of qubits
increased, the execution time increased or the
execution was not completed. We will perform
cryptanalysis on longer-length plaintext and key in the
future. Finally, we think that additional control
algorithms should be used or the number of required
qubits should be reduced to maintain accuracy on the
real processor.

References

[1] Gohr, Aron. "Improving attacks on round-reduced
speck32/64 using deep learning." Annual International
Cryptology Conference. Springer, Cham, 2019.
[2] Jain, Aayush, Varun Kohli, and Girish Mishra. "Deep
Learning based Differential Distinguisher for Lightweight
Cipher PRESENT." IACR Cryptol. ePrint Arch. 2020
(2020): 846.
[3] Rebentrost, Patrick, Masoud Mohseni, and Seth Lloyd.
"Quantum support vector machine for big data
classification." Physical review letters, 113.13 (2014):
130503.
[4] Sleator, Tycho, and Harald Weinfurter. "Realizable
universal quantum logic gates." Physical Review Letters
74.20 (1995): 4087.

