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Abstract 
Recently, artificial intelligence-based cryptanalysis 
techniques have been researched. In this paper, we 
find the key of the Caesar cipher, which is a classical 
cipher, by using a quantum machine learning 
algorithm that learns by parameterized quantum 
circuit instead of a classical neural network. In the 
case of 4-bit plaintext and key, results could not be 
obtained due to the limitations of the cloud 
environment. But in the case of 2-bit plaintext and key, 
an accuracy of 1.0 was achieved, and in the case of 3-
bit plaintext and key, an accuracy of 0.84 was 
achieved. In addition, as a result of cryptanalysis for 
a 2-bit dataset on IBM's real quantum processor, a 
classification accuracy of 0.93 was achieved. In the 
future, we will research a qubit reduction method for 
cryptanalysis of longer-length plaintext and key, and 
a technique for maintaining accuracy in real quantum 
hardware. 
Keywords: Cryptanalysis, Quantum support vector 
machine, Quantum computer 
 
1. Introduction 
 

Cryptographic systems are designed to be secure 
so that the key cannot be inferred or recovering 
plaintext through confusion and diffusion. 
Cryptoanalysis has various methods such as 
differential cryptanalysis and linear cryptanalysis. 
Recently, due to the development of artificial 
intelligence technology, studies on encryption 
analysis through artificial neural networks have been 
actively conducted[1,2]. In this paper, we intend to 
perform cryptographic analysis using an artificial 
intelligence model on a quantum computer rather than 
a conventional neural network. 

 
2. Related Works 
 
2.1 Support Vector Machine and Quantum SVM 

A support vector machine (SVM) is one of the 
supervised machine learning algorithms that finds the 
optimal boundary between data points through a 
hyperplane. The hyperplane is 𝑛 − 1  dimensional, 
and is used to separate the 𝑛-dimensional space. A 
kernel is used to separate data points, and the kernel 
arranges various hyperplanes so that the data points 
can be divided well. To find the hyperplane, a 
nonlinear function must be applied to the data, which 

is called a feature map. The functions used include 
various kernel functions such as polynomial, gaussian, 
and sigmoid functions. A quantum support vector 
machine (QSVM)[3] performs the kernel operation of 
classical SVM on quantum computer and proceeds in 
the same way as the existing process. Because QSVM 
is advantageous for working with more dimensional 
data, it benefits from kernel optimizations, which are 
difficult for SVMs to handle, and generally 
outperforms classical SVMs. 

 
2.2 Quantum Circuit [4] 

Quantum circuits are constructed through bits and 
gates like classical logic circuits, and instead of 
classical bits and gates, qubits and quantum gates that 
utilize the principles of superposition and 
entanglement of quantum mechanics are used to 
operate on a quantum computer. A qubit performs the 
same role as a classical bit, but through the 
superposition state, all values exist as probabilities 
and are determined as a single value when observed. 
In addition, for one logical qubit (without an error), 
several physical qubits are required, and an error 
correction technique is required. However, there is 
still a lot of overhead with these techniques. 

Figure 1 shows some of the quantum gates used in 
quantum circuits. The Hadamard (𝐻) gate overlaps so 
that it can have the states of 0 and 1 at the same time 
in the initial state of the qubit. Also, when the same 
qubit goes through the gate again, it returns to its 
original state. The 𝑋 gate changes the state of a qubit. 
And in a superposition state, it changes the probability. 
The 	𝐶𝑁𝑂𝑇  gate applies a NOT operation to the 
second qubit when the first qubit is 1, and the 
𝑇𝑜𝑓𝑓𝑜𝑙𝑖	gate applies a NOT operation to the last qubit 
when both the preceding two qubits are 1. That is, 
both gates are gates that can observe the entanglement 
state. Finally, the 𝑆𝑊𝐴𝑃	gate exchanges the values of 
two qubits, and 𝐶𝑆𝑊𝐴𝑃	gate exchanges the values of 
the following two qubits by the state of the first qubit. 
When designing quantum circuits, it is necessary to 
design faster and more efficient circuits by reducing 
the use of expensive gates such as 𝐶𝑁𝑂𝑇 or 𝑇𝑜𝑓𝑓𝑜𝑙𝑖 
gates and reducing the circuit depth (the width of the 
circuit). In addition, as the depth decreases, the 
quantum coherence decreases, resulting in higher 
accuracy.  

Quantum circuits can be implemented using host 
languages such as Python, Java, and C# and quantum 



language QASM in various frameworks such as 
Qiskit, ProjectQ, and Q#.  

 
Figure 1 Quantum gate 

 
2.3 Quantum Neural Networks (QNN) 

A quantum neural network is an artificial 
intelligence that utilizes quantum mechanics 
phenomenon (entanglement and superposition). 
Quantum neural network consists of qubits and 
quantum gates on a quantum computer. Therefore, it 
learns quantum state data (parameterized quantum 
circuit) by encoding the classical data into quantum 
data. The parameters of the circuit are set using the 
input data, and each qubit passes through gates and 
then the value changes. When qubits are observed, the 
state of the qubits is determined. Through this process, 
a quantum neural network works. 

 
3. Proposed Method 
 

In this paper, we propose a cryptanalysis method 
on a quantum computer using QSVM for Caesar 
cryptography. Since the system performs a known-
plaintext attack, it is a structure that finds the used key 
through a pair of plaintext and ciphertext. The overall 
process is shown in Figure 2. As mentioned in Section 
2.3, after encoding classical data into quantum data, 
training is performed through a quantum circuit. That 
is, the circuit runs, measures the qubits, and changes 
the parameters over several iterations. Through this 
process, a probability value indicating which class the 
input data will be classified into is returned, enabling 
data classification through a quantum circuit.  
 
3.1 Dataset 

As mentioned earlier, since we perform a known 
plaintext attack, the data set configuration is shown in 
Figure 2. Each plaintext and ciphertext is represented 
by bits. And since the key value is used as a label, it 
is expressed as a decimal number. That is, the 
plaintext and ciphertext bits become input data, and 
the key becomes the label. 

 
Figure 2 Dataset for cryptanalysis of the Caesar 
cipher 

3.2 Data encoding 
Data encoding is the process of transforming 

classical data (𝑥!444⃗ ) into a quantum state (Φ(𝑥!444⃗ ) >) in 
Hillbert space. Since the input data is expressed as a 
parameterized quantum circuit, the parameters of the 
corresponding quantum circuit are affected by the 
input data. In addition, the circuit acts as a kernel of 
QSVM because a non-linear function is applied to the 
input data. Therefore, the quantum circuit 
construction process is the kernel construction process 
of QSVM, and this quantum circuit becomes a feature 
map. Qiskit provides three feature maps, and among 
them, ZZFeaturemap is used in the proposed method. 
Currently, a gate that can express an expression 
representing this feature map is not provided, so a 
combination of two types of gates is used. If the 
plaintext, ciphertext and key are 2-bit, the 
parameterized quantum circuit is configured as shown 
in Figure 3. First, a Hadamard gate (𝐻) is applied to 
all qubits so that the input data is in a superposition 
state. Then, the input data is assigned to the classical 
nonlinear function (𝑃) according to Equation 2. In 
addition, each qubit is entangled through the 
𝐶𝑁𝑂𝑇	 gate, and the values of other qubits are 
determined according to the state of one qubit. In 
addition, the qubits can be controlled through the 
linear option that makes the qubit entangled with one 
next qubit, or the full option that makes the qubit 
entangled with all the qubits following the qubit. In 
the case of linear, since the circuit depth is smaller, the 
execution time is shorter, and as mentioned earlier, 
higher accuracy can be obtained due to less depth, so 
the linear option is used. Through the above process, 
a quantum circuit that serves as the kernel of the 
QSVM is constructed. 

 
Figure 3 Quantum circuit of ZZfeaturemap with 4 
qubit (plaintext, ciphertext and key are 2-bit) 
 
Φ",$(𝑥) = (𝜋 − 𝑥")(𝜋 − 𝑥$)                               (2) 

 
3.3 Training and classification  

By repeatedly executing the designed quantum 
circuit, the parameters of the circuit are updated. 
Measurements are performed on each qubit to 
determine the state of the qubit with a single value, 
and the measurement can be performed multiple times 
to classify them with high probability. The trained 



quantum circuit can act as a classifier. Therefore, 
when test data is input, inference is performed. 

 
4. Experiment and evaluations 

 
In this experiment, Google Colaboratory, a cloud-

based service, was used, and it supports Intel Xeon 
CPU (25GB RAM), Nvidia GPU (25GB RAM) and 
Ubuntu 18.04.5 LTS. As the programming 
environment, Python 3.7.11 and Qiskit library were 
used. In Qiskit, real quantum hardware from IBM can 
be used, but a token is required, so the experiment was 
conducted through a simulator.  

 
4.1 Dataset 

As described in Section 3.1, plaintext and 
ciphertext are expressed in bits and then concatenated 
and used as input data, and the key value for the data 
becomes a label. That is, the data set is configured so 
that the plaintext and ciphertext pairs are classified 
into a class corresponding to the key value used for 
encryption. In the case of 2-bit plaintext and keys, it 
is a problem of classifying into four classes, and in the 
case of 3-bit plaintext and keys, it becomes a multi-
classification problem of classifying into eight classes. 
Figure 4 shows part of the actual dataset, and Figure 
5 shows the distribution of data points in 3-bit 
plaintext and key. In Figure 5, dots of the same color 
are data with the same class. As shown in Figure 4, 
data is composed of 0 and 1, but the left side in Figure 
5 is normalized to a value between -1 and 1 that 
quantum states can have. Even the right side in Figure 
5, dots of the same color are data having the same 
class, but they have values of 0 or 1 without 
normalization. In addition, plaintext and ciphertext 
are concatenated, and each bit must be assigned to 
each qubit. Therefore, 2𝑛-qubits are required for 𝑛-bit 
plaintext and key.  

 
Figure 4 2-bit(left) and 3-bit(right) dataset 
(plaintext bit and ciphertext bit) 

 
Figure 5 Visualization of data points in 3-bit 
dataset (left: normalized, right: unnormalized) 
 
4.2 Quantum circuit 

After composing the data set as in Section 4.1, the 
encoding process of converting classical data into 
quantum state data is performed. In other words, it is 
necessary to design a parameterized quantum circuit 
whose parameters change according to the input data. 
And it should be configured as a non-linear operation 

so that it can perform the function of the feature map 
(kernel) of QSVM. In the case of a 2-bit plaintext and 
key, each bit of the input data was input by using 4 
qubits to correspond to the qubits, and the case of 3-
bit is the same. Figure 3 is a quantum circuit for 2-bit 
plaintext and key, and Figure 6 is a quantum circuit 
for 3-bit plaintext and key. The circuit configured as 
described above is repeatedly performed as many 
times as the number of repetitions, and each qubit is 
measured by repeating as many times as the set shots 
value. Through this process, data encoding, training, 
and inference are performed. 

 

 
Figure 6 Quantum circuit (3-bit plaintext and key) 

 
4.3 Evaluation 

Table 1 shows the details of the quantum circuit 
when the encryption key is found with the highest 
accuracy, and is shown for two bit-type datasets. We 
performed cryptanalysis with a quantum circuit 
composed of these hyperparameters, and Table 2 
shows the results. In the case of the 2-bit dataset, when 
the number of shots, which is the number of times to 
measure the state of each qubit, was 5, accuracy of 1.0 
was achieved, and all keys were found. In the case of 
the 3-bit dataset, the highest classification 
performance was achieved when the shots value was 
150, with 0.84. When the length of the plaintext and 
key increased from 2-bit to 3-bit, the accuracy 
decreased by about 0.16. In addition, as the value of 
shots increased, the accuracy tended to increase, and 
when it was measured more than a certain number of 
times, the accuracy decreased. 

However, in the bit-type dataset, when the 
plaintext increases by 1-bit, the number of required 
qubits increases by two, so it was not possible to 
experiment with the 4-bit dataset due to the limitations 
of the cloud environment (runtime shutdown and 
RAM usage exceeded) and the token problem. 
Therefore, after expressing the hexadecimal plaintext 
and the ciphertext in decimal, the data set of the float 
type was constructed by normalizing it to a value 
between -1 and 1. In this method, only 2-qubit is 



required even if the size of the plaintext and key 
increases. As can be seen in Table 3, the classification 
performance is worse than the proposed method. 

 
Table 1 Details of quantum circuits (bit type 
dataset : 2-bit dataset (2-bit plaintext and key), 3-
bit dataset (3-bit plaintext and key)) 

 2-bit dataset 3-bit dataset 
Gate 𝐻, 𝐶𝑁𝑂𝑇, 𝑃 (non-linear) 

Repetition 2 2 
Shots  5 150 

The number of 
qubits 4 6 

The number of 
classes 4 8 

Optimization 
function 

Simultaneous Perturbation 
Stochastic Approximation  

  
Table 2 Accuracy of classification for cryptanalysis 
(with bit type dataset) 

Shots 2-bit dataset 3-bit dataset 
1 0.66 0.6 
5 1.0 0.7 

100 - 0.81 
150 - 0.84 

 
Table 3 Accuracy of classification for cryptanalysis 
(with float type dataset) 

Shots 2-bit dataset 3-bit dataset 
5 0.33 0.19 

100 0.46 0.33 
150 0.53 0.46 
500 0.46 0.4 

Table 4 shows the execution time for each data 
type. First, execution time is also affected by shots, 
but the difference is not large. It can be seen that it is 
determined according to the number of qubits used. 
Even if only 2-qubit increases from 4-qubit to 6-qubit, 
there is a difference of about 1600 seconds in 
execution time. The float type dataset takes less time 
to execute because the number of qubits is small, but 
we think that the performance is not good due to the 
small amount of data information. On the other hand, 
the bit type dataset has a high data dimension, so the 
number of qubits is relatively large. Therefore, it takes 
a long time to perform, but achieves high 
classification accuracy. 

 
Table 4 Execution time according to qubits and 
shots (unit : s) 

 The number of shots 
5 150 

Bit 
type The 

number 
of qubits 

4 142.21 144.94 

6 1618.06 1867.55 

Float 
type 2 110.27 114.09 

Table 5 shows the results performed on IBM's 
actual quantum processor. Currently, we do not have 
tokens, so we can only use basic hardware, so we 
cannot use more than 5-qubit. The actual hardware 
used is 'ibmq_bogota', which provides 5-qubits and 32 
quantum volumes. Therefore, we performed the 
experiment only on the 2-bit dataset. This dataset 
showed the highest accuracy when the shots were 5, 
so we tested that case. When the circuit was executed 
on the simulator, it took 142.21 seconds, but when the 
actual quantum processor was used, it took about 5.5 
times (780 seconds). In addition, the accuracy 
decreased by 0.07 due to errors such as noise 
generated in the operation process in the real 
processor. 
Table 5 Execution time and accuracy on real 
quantum hardware (unit : s, the number of shots : 
5, only 2-bit dataset : 4-qubits) 

Execution time Accuracy  
780 0.93 

 
5. Conclusion 

 
In this paper, we propose a cryptanalysis technique 

to find the key of the caesar cipher, a classical cipher, 
through the Quantum Support Vector Machine, a 
machine learning algorithm on a quantum computer. 
Therefore, it uses quantum state data and quantum 
circuits (which perform non-linear operations like the 
kernel of SVM) rather than classical data. Due to the 
limitations of the experimental environment, 
experiments were performed on 2-bit and 3-bit 
plaintext and keys, and accuracies of 1.0 and 0.84 
were achieved, respectively. In a real quantum 
processor, an accuracy of  0.93 (for 2-bit dataset) was 
achieved. In addition, as the number of qubits 
increased, the execution time increased or the 
execution was not completed. We will perform 
cryptanalysis on longer-length plaintext and key in the 
future. Finally, we think that additional control 
algorithms should be used or the number of required 
qubits should be reduced to maintain accuracy on the 
real processor. 
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