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Abstract

ChaCha has been one of the prominent ARX designs of the last few years because of its use in several systems. The
cryptanalysis of ChaCha involves a differential attack which exploits the idea of Probabilistic Neutral Bits (PNBs). For a long
period, the single-bit distinguisher in this differential attack was found up to 3 rounds. At Crypto 2020, Beierle et. al. introduced
for the first time single bit distinguishers for 3.5 rounds, which contributed significantly in regaining the flow of research work
in this direction. This discovery became the primary factor behind the huge improvement in the key recovery attack complexity
in that work. This was followed by another work at Eurocrypt 2021, where a single bit distinguisher of 3.5-th round helped to
produce a 7-round distinguisher of ChaCha and a further improvement in key recovery.

In the first part of this paper, we provide the theoretical framework for the distinguisher given by Beierle et. al. We
mathematically derive the observed differential correlation for the particular position where the output difference is observed
at 3.5 rounds. Also, Beierle et. al. mentioned the issue of the availability of proper IVs to produce such distinguishers, and
pointed out that not all keys have such IVs available. Here we provide a theoretical insight of this issue.

Next we revisit the work of Coutinho et. al. (Eurocrypt 2021). Using Differential-Linear attacks against ChaCha, they claimed
distinguisher and key recovery with complexities 2218 and 2228.51 respectively. We show that the differential correlation for 3.5
rounds is much smaller than the claim of Coutinho et. al. This makes the attack complexities much higher than their claim.

Index Terms
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I. INTRODUCTION

Symmetric key ciphers play an important role in secure communication. The ARX (Addition, Rotation and XOR) based
symmetric key ciphers are very popular because of their security and efficiency in software. Also, the algebraic degree of
round functions of ARX ciphers increases highly after some rounds. The Salsa20 is an ARX based stream cipher designed
by Bernstein in 2005 and Salsa20/12 was selected in eStream project as a finalist in software portfolio [5]. In this paper, we
will discuss the ARX-based stream cipher ChaCha, which is a variant of Salsa20. ChaCha was also designed by Bernstein in
early 2008 for high performance in software implementation. Google adopted ChaCha for symmetric encryption in TLS [13].
ChaCha is also used as a pseudo-random number generator in different systems, for example, in any operating system running
Linux kernel 4.8 or newer [17], [20]. Additionally, ChaCha is used in several applications, like WireGuard (VPN), Keepass
(password manager), and Veracrypt (disk encryption).

So it is necessary to do third-party analysis for a cipher with such extensive use, to understand its security level. There are
many crypatanalysis results available on reduced version of ChaCha till now. Security analysis has been done mainly using
differential cryptanalysis. Differential attack is a very popular statistical attack, the main idea of which is as follows: In the
initial state some difference is given in the input and we suppose after r rounds we get some biases in the output. Then we
say that this cipher is distinguishable up to r rounds and this bias is called forward bias.

Initially some attacks on this cipher were proposed in [9], [12], [21]. One of the most effective attack was proposed in [1]
by introducing the Probabilistic Neutral Bits (PNBs) against the reduced round versions of Salsa20 and ChaCha with time
complexities 2251 and 2248 respectively. In 2012, Shi et. al. [19] gave the concept of Column Chaining Distinguisher(CCD)
to further enhance the attack complexity of both Salsa20 and ChaCha. Later Maitra et. al. [14] did some improvement on
the existing attack by the idea of chosen IV. Dey and Sarkar in [10] showed how to choose PNB for further enhancement of
previous works. At FSE 2017, Choudhuri and Maitra [2] gave a technique to construct multiple bit distinguishers in the next
rounds and perform a differential-linear attack.

In [1], a distinguisher was observed in the 3rd round of ChaCha. Using this distinguisher a key recovery attack was provided
for 7-round ChaCha using a meet-in-the-middle approach. After that, several works have added ideas in this approach and
reductions have been achieved in the complexity. But for a long period of more than ten years, no significant improvement
was made in finding a distinguisher in the next rounds. In this meet-in-the-middle attack approach, the attack can be improved
up to the next round in two possible ways, either by finding a distinguisher in the fourth round, or by improving the technique
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of coming back from the final round. The idea of Choudhuri and Maitra, provided a significant progress in creating multi-bit
distinguishers in the next rounds, but the source of this multi-bit distinguisher was a single bit distinguisher in third round
only. So, though this idea significantly improved the key recovery attack complexity for fewer rounds, for 7-round ChaCha
the improvement was not very significant. Up to 2020, there was no single bit distinguisher known for more than 3 rounds
of ChaCha. This is the reason why no major breakthrough was achieved in the key recovery. Finally, at Crypto 2020, a vital
contribution in this direction has been given by Beierle et. al. [4]. In their work they have found a single bit distinguisher
in the 3.5 rounds. The correlation observed for this distinguisher is very low compared to the known distinguishers in the
third round. But this extension by half a round resulted in a significant jump in the complexity reduction for 7 round ChaCha.
According to [4] the new time complexity has come down to 2230.86 from 2235.22. For the 6-round version of ChaCha, this
work provided for the first time a partial key recovery attack with very low complexity 277.4. As an impact of the discovery
of the 3.5 rounds distinguisher, an immediate further improvement in this direction came from Coutinho et. al., which will
appear at Eurocrypt 2021 [8]. They used the linear correlation of a single bit of 3.5 rounds to the XOR of 2 bits of the 4-th
rounds, thus found a 4-rounds distinguisher of 2 bits only. Using this they produced a key recovery attack of time complexity
2228.51 for 7 rounds of ChaCha.

A full mathematical explanation of the observed correlation is important for a theoretical foundation of the result. In this
paper, we have taken care of the theoretical side of the distinguisher. We derived mathematically the observed result for the
input-output pairs. Also, for the 3.5 rounds distinguisher, the authors of [4] mentioned about the minimization of the Hamming
weight of the difference matrix in the first round. But it has been also mentioned that such minimization of the Hamming
weight is not possible for any random key. Approximately 70% of the keys have been considered as weak keys for which such
IVs are available which minimizes the Hamming weight. The remaining keys they have considered as strong keys. Here, we
have also given a theoretical insight into this and figured out the reason behind this. Also, we reviewed the 3.5 rounds single
bit distinguisher of ChaCha from Eurocrypt 2021 paper by Coutinho et. al. [8]. We provided theoretical illustration of the
correlations at position (0, 0) and (1, 0) of 3.5 rounds ChaCha from [8]. Then we identified incompatibility between our result
and their experimental result. After that, we experimented with all the single bit distinguishers of 3.5 rounds ChaCha with a
sufficient number of random samples and found a mismatch between their and our results. If we use our 3.5 distinguisher at
position (5, 0) to compute the key recovery attack complexity, it increases the time complexity over that of the Crypto 2020
paper [4]. Therefore the key recovery attack at Eurocrypt 2021 paper by Coutinho et. al. [8] has not improved the existing
work. Finally, the novelty of our work is that we have provided theoretical interpretation of experimentally obtained 3.5 rounds
distinguisher of ChaCha from Crypto 2020 paper [4] and also, we have shown that the recently improved distinguisher and
key recovery attack complexities of Eurocrypt 2021 paper [8] are not accurate.

Roadmap: We organize the paper in the following manner: section II describes the structure of the cipher. In section III we
discuss some results related to correlation in mathematical operations, mainly addition. After that, in section IV we provide
theoretical results related to the first round of the cipher. This involves the bit positions containing the differences after the
first round (corresponding to an input difference) and the issue of availability of IVs to produce the 3.5 round distinguisher.
After this, we move to the theoretical part of explaining the distinguisher. Here we observe that the distinguisher at 3.5 rounds
depends on the correlations of two positions (2, 0) and (7, 0) at the third round. So, our entire analysis of this distinguisher has
been divided into two parts. section V discusses about the generation of correlation at (2, 0) step by step and section VI analyzes
the same for (7, 0). Then in section VII, we combine the two results to find the correlation value for the final distinguisher
and discuss the generation of multi-bit distinguishers in the 5-th round. In section VIII we discuss the correctness of the 3.5
rounds single bit distinguisher of ChaCha from the Eurocrypt 2021 paper [8]. In this section, we have pointed out that there
is a huge gap between their obtained time complexity and the actual time complexity.

Notations: Here we give some notations which we have used throughout this paper.
• A general state of ChaCha consists of 32-bit numbers called ‘word’. A n-bit word is basically a concatenation of n bits.

In our paper, for convenience we use both tuple form and concatenation form to express a word. A n-bit word x is also
treated as an n-tuple vector from Fn2 .

• ⊕ denotes the bit-wise XOR and + denotes Addition modulo 2n and a≪ b is used for Left cyclic shift of word a by b
bits.

• We treat a n bit word as a n tuple vector and for a Boolean function f : Fn2 −→ F2 we define correlation as:
Cor[f(x)] = 1

2n

∑
x∈Fn

2
(−1)f(x).

• [i] denotes the unit vector of Fn2 whose i-th bit is 1, i.e.,

[i] = (0, 0, 0, · · · , 1
↑

i−th bit

, · · · , 0).

• The sum of n unit vectors is denoted as [i1, i2, · · · , in] = ⊕nk=1[ik]
• x[i]: i-th bit of word/vector x i.e, x = x[n− 1]x[n− 2] · · ·x[i] · · ·x[0] or x = (x[n− 1], x[n− 2], · · · , x[i], · · · , x[0]).
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• Car[i]: The addition operation involves a carry at each bit. In an addition operation of two n-bit numbers x, y modulo
2n, considering all the n carry bits together as vector Car[i] denotes the i-th carry bit. Similarly, C̃ar[i] is the same for
two n-bit numbers x̃, ỹ.

• Equality function: For two n-bit vectors/words u and v, the equality function is defined as

eq(u, v) =

{
1, if u = v,
0, if u 6= v

• x[i2, i1]: For any word/vector x, this denotes the word/vector formed by the bits starting from x[i1] to x[i2],
i.e, if x = x[n− 1]x[n− 2] · · ·x[i2] · · ·x[i1] · · ·x[0] where i2 > i1.
then x[i2, i1] = x[i2]x[i2 − 1] · · ·x[i1].

• x(i2, i1) : For an n-bit vector/word x, x(i2, i1) denotes the n bits vector/word whose bits from i1 to i2 are same as
that of x[i2, i1] and all other bits are zero. This means, for x = x[n − 1]x[n − 2] · · ·x[i2] · · ·x[i1] · · ·x[0], x(i2, i1) =
00 · · · 0x[i2]x[i2 − 1] · · ·x[i1]0 · · · 0.

• |A| denotes the cardinality of a set A.

• Pr denotes the probability. Suppose A is an event defined on x, y ∈ Fn2 , then Pr(A) =
|set of values (x,y) satisfying A|
|set of all possible values of (x,y)| .

For a Boolean function f , if we consider the event f(x) = 0, then probability and correlation is related as follows:
Pr(f(x) = 0) = 1

2 [1 + Cor[f ]]
• For two bits x[i] and x̃[i] the XOR-difference is denoted by ∆x[i] i.e, ∆x[i] = x[i]⊕ x̃[i]. In a differential attack, for a

chosen input difference, any initial state x generates an another initial state x̃, where ∆x = x⊕ x̃. Running the operations
of the cipher on both x, x̃, if y, ỹ is produced and for any chosen position i, ∆y[i] is computed, then x → y[i] is a
function. For this function we can compute Cor[∆y[i]] and we use θy[i] to denote it, i.e, θy[i] = Cor[∆y[i]].

• In a state matrix of ChaCha, position (p, q) means q-th bit of p-th word.
• X(r), X ′, X ′′ : Usually, the state matrix at r-th round is denoted by X(r). Here we have used this notation very occasionally,

in the cipher description and in linear correlation between 3.5 round and the 5-th round. In our proofs we avoided this
notation to avoid unnecessary cluttering. Rather, in each round we have gone for X,X ′, X ′′ to denote initial state, middle
state (half round) and final state. However, in the statements of the results in section V, section VI, section VII we have
used only the X notation since the stage is obviously clear to the reader.

II. DESCRIPTION OF THE STRUCTURE OF CHACHA

A general state of ChaCha is of size 64 bytes or 512 bits, which is divided into 16 words, each of which is of 32 bits.
These words are framed in the form of a 4 × 4 matrix. In the initial matrix, which we denote by X(0), the 1st row consists
of 4 constant words c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.

The second and third row consist of 8 key words k0, k1, · · · , k7 and the fourth row consists of the two 32 bits nonce v0, v1

and two 32 bits counter t0, t1. We have considered the nonce and the counter as IVs.

X(0) =


X

(0)
0 X

(0)
1 X

(0)
2 X

(0)
3

X
(0)
4 X

(0)
5 X

(0)
6 X

(0)
7

X
(0)
8 X

(0)
9 X

(0)
10 X

(0)
11

X
(0)
12 X

(0)
13 X

(0)
14 X

(0)
15

 =


c0 c1 c2 c3
k0 k1 k2 k3

k4 k5 k6 k7

t0 t1 v0 v1

 .

The rows and columns are updated by an operation called quarter-round(QR) which operates on a 4 tuple (a, b, c, d) and
updates it as follows.

a′ = a+ b,

d′ = ((d⊕ a′)≪ 16),

c′ = c+ d′,

b′ = ((b⊕ c′)≪ 12),

a′′ = a′ + b′,

d′′ = ((d′ ⊕ a′′)≪ 8),

c′′ = c′ + d′′,

b′′ = ((b′ ⊕ c′′)≪ 7).

i.e,
QR(a, b, c, d)→ (a′′, b′′, c′′, d′′)
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This operation is applied on the 4 words of each column in the odd rounds and each diagonal in the even rounds. These rounds
are therefore called column rounds and diagonal rounds respectively. The order of choosing (a, b, c, d) for each column and
diagonal is from top to bottom i.e, more specifically for the column round or odd round it operates on the input state matrix
as follows

{QR(X0, X4, X8, X12),QR(X1, X5, X9, X13),QR(X2, X6, X10, X14),QR(X3, X7, X11, X15)}

and after that the state matrix is updated and for the diagonal round or even round it operates on the input sate matrix as
follows

{QR(X0, X5, X10, X15),QR(X1, X6, X11, X12),QR(X2, X7, X8, X13),QR(X3, X4, X9, X14)}

and then the state matrix is updated. Also, later on in the paper we have used the term first half of the round and second half of
the round which means in the QR operation update of (a, b, c, d) to (a′, b′, c′, d′) and update of (a′, b′, c′, d′) to (a′′, b′′, c′′, d′′)
respectively. Suppose after r rounds the updated state matrix is denoted by X(r).

X(r) =


X

(r)
0 X

(r)
1 X

(r)
2 X

(r)
3

X
(r)
4 X

(r)
5 X

(r)
6 X

(r)
7

X
(r)
8 X

(r)
9 X

(r)
10 X

(r)
11

X
(r)
12 X

(r)
13 X

(r)
14 X

(r)
15


The output key-stream block Z is executed as Z = X(0) + X(R) for ChaCha20/R, where X(R) denotes the state after R
rounds. The quarter round(QR) operation is reversible which means if we know the values of (a′′, b′′, c′′, d′′), we can compute
the values of (a, b, c, d). Hence the rounds of ChaCha are also reversible. For more details description of ChaCha we refer
to [6].

In this paper, in every round, we have used the notation X,X ′, X ′′ to denote initial, middle and final state. This means, X ′′

in r-th state becomes X in (r + 1)-th state.

III. SOME RESULTS ON THE DIFFERENTIAL AND LINEAR PROPERTIES OF MATHEMATICAL OPERATIONS

We start by stating the well-known Piling-up Lemma [15] in our notation which we use afterwards in several proofs.

Lemma 1
(Piling-up Lemma): Let Yi(1 ≤ n) be n independent random variables such that Cor[Yi] = εi. Then Cor[Y1⊕Y2⊕ · · · ⊕Yn]
is
∏n
i=1 εi.

Next we discuss some properties on the correlation of the bits when two terms are added modulo 2n. In this regard, we
introduce a n-tuple Car, which represents the carries of n positions in the addition operation. In the addition z = x + y,
Car[i] denotes the i-th carry bit which is added to x[i], y[i] to generate z[i]. So, z[i] = x[i]⊕y[i]⊕Car[i]. By C̃ar we denote
the carry vector for z̃ = x+ ỹ.

For x, y ∈ Fn2 , we define ỹ[i] = y[i] ∀ i ∈ [1, n − 1] ∩ Z and ỹ[0] = y[0] ⊕ 1. Now, considering all these vectors as
n-bit numbers, suppose z = x + y (mod 2n) and z̃ = x + ỹ (mod 2n). We define for any k ∈ [0, n − 1] ∩ Z, fk =
eq(∆z(k, 0), [k, k − 1, k − 2, · · · , 0]). Therefore fk is a Boolean function from Fn2 × Fn2 to F2. For any such fk we have the
following theorem:

Theorem 1
For any fk : Fn2 × Fn2 → F2 as defined above:

Cor[fk] = 1− 1

2k−1
.

Proof. We have 2n possible x and 2n possible y. So, (x, y) has 22n possible values. In the 0-th bit, clearly, z[0] 6= z̃[0].
Therefore for all values of (x, y) this is true. So, eq(∆z(0, 0), [0]) = 1 for any (x, y). Therefore, for k = 0,

Cor[eq(∆z(0, 0), [0])] =
1

22n

∑
(x,y)∈F 2n

(−1)1 = −1 = 1− 1

2k−1
.

So, we prove it for k = 0. Now, z[1] 6= z̃[1] if and only if the carry generated at the 0-th bit of z and z̃ is different. Now,
this is possible iff x[0] = 1, which is true for half of the possible values. In general, all the bits from 0-th to the k-th bit
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of z and z̃ are different iff in all the bits the generated carry is different for z and z̃. This is possible if for all of the bits
x[0], x[1], x[2], · · · , x[k− 1], x[i] 6= y[i], i.e., x[i] = y[i]⊕ 1. This is true for a fraction 1

2k of all possible values of (x, y). So,

Cor[eq(∆z(k, 0), [k, k − 1, · · · , 0])] =
1

22n
[22n−k.(−1)1 + (22n − 22n−k)(−1)0]

=
1

22n
[− 22n−k + (22n − 22n−k)]

=
1

22n
[22n − 22n+1−k]

= 1− 1

2k−1
.

Next we generalise this idea further. Consider x, y same as above. But construct ỹ as: for some integer r ∈ [0, n− 1] ∩ Z,
ỹ[i] = y[i] ∀ i ∈ [0, n − 1] ∩ Z except i = r and ỹ[r] = y[r] ⊕ 1. Then, for z, z̃ same as before we define f ′k as f ′k =
eq(∆z(r + k, r), [r + k, r + k − 1, r + k − 2, · · · , r]). Then we have the following theorem.

Theorem 2
For any f ′k as defined above where k ≥ 0 and r + k ≤ n− 1, Cor[f ′k] = 1− 1

2k−1 .

Proof. Now, if Car[r] = C̃ar[r] = 0, then this situation is analogous to Theorem 1, except for the fact that here the difference
is at the r-th bit. So, in similar manner as in Theorem 1, we have the result.
Now, if Car[r] = C̃ar[r] = 1, then the carry difference would propagate to the next bit iff x[r] = 0. In general, iff
x[r] = x[r+ 1] = · · · = x[r+ k− 1] = 0, then the carry difference would propagate to the k-th bit. This is true for a fraction
1
2k of all possible values of (x, y). So, again in similar manner as Theorem 1, we have the same result.

Corollary 1
Let x, y, ỹ be n-bit numbers such that ỹ[i] = y[i] ∀i ∈ [0, n−1]∩Z except ỹ[i] = y[i]⊕1 for i ∈ [0, r−1]∩Z. Then between
z = x+ y and z̃ = x+ ỹ, Cor[eq(∆z(r + k, r), [r + k, r + k − 1, r + k − 2, · · · , r])] = 1− 1

2k−1 .

Proof. This is a special case of Theorem 2.

Now, in the quarter round function of ChaCha we see that an addition is followed by a XOR-cum-rotation and then another
addition operation occurs. Now, in the last two theorems we have got the idea that if the initial difference is at a single position
then what happens to the correlation of the bits of the sum (i.e., (z, z̃)) after the addition. Now, the correlation values of the
sum moves to another word and then that updated word is used in the next addition operation. So, the scenario no is as follows:
we have addition between x + y and x + ỹ where (y, ỹ) is selected from a distribution which already follows the property
that Cor[eq(∆z(r+ k, r), [r+ k, r+ k− 1, r+ k− 2, · · · , r])] = 1− 1

2k−1 . For a formal representation, we construct a set of
values for (y, ỹ) which would follow this correlation.

Let us fixed some r, where r ∈ [0, n−1]∩Z. Then for any y ∈ Fn2 we define an n bit vector ỹk,where k ∈ [0, n−r−1]∩Z
such that

ỹk[i] =

{
1⊕ y[i] if i ∈ [r, r + k] ∩ Z
y[i] otherwise.

Now, let us construct a set Sk = {(y, ỹk) : y ∈ Fn2} ⊂ Fn2 × Fn2 such that |Sk| = 1
2k |S0| for k ∈ [0, n − r − 2] ∩ Z and

|Sn−r−2| = |Sn−r−1|. Let S =
⋃n−r−1
k=0 Sk, where S0, S1, · · ·Sn−r−1 are disjoint and so |S| = 2|S0|. Then one can easily

verify that in the set S

Cor[eq(∆z(r + k, r), [r + k, r + k − 1, · · · , r])] = 1− 1

2k−1

holds.

Theorem 3
For S as defined above, let us define the function gk : Fn2 × S → Fn2 as

gk = ∆z[k], (k ≥ 1)

where z = x+ y, z̃ = x+ ỹ and x ∈ Fn2 ; y, ỹ ∈ S. Then

Cor[gk] = 1− k + 1

2k
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Proof. For convenience we assume that r = 0. Let us take set S′ = Fn2 × S and similarly, S′i = Fn2 × Si, where S and Si
defined as above. Also, |S′| = 2n × 2|S0| = 2n+1|S0| and |S′i| = 2n × |Si| = 2n−i|S0| for i ∈ [0, n− 2] ∩ Z. Now, consider

Cor[∆z[k]] =
1

|S′|
Σ(x,y,ỹ)∈S′(−i)∆z[k]

and for S′i,

Cor[∆z[k]] =
1

|S′i|
Σ(x,y,ỹk)∈S′i(−i)

∆z[k].

Now in the proof of Theorem 1 we see ∆Car[1] = 1 for exactly half of the cases. Now if ∆Car[1] = 1, without loss of
generality let us assume Car[1] = 0 and C̃ar[1] = 1. Then ∆Car[2] = 1 iff x[1] = 0 (as ∆y[1] = 1). Also, if ∆Car[1] = 0
then ∆Car[2] = 1 iff x[1] = 1. So, both of these occur for exactly half of the cases. Therefore, ∆Car[2] = 1 for exactly half
of the cases. Thus we can proceed up to the k-th bit and so ∆Car[i] = 1 for exactly half of the cases. Now, from (i+ 1)-bit
onward the scenario becomes same as Theorem 2. So, in S′i we have Cor[∆z[k]] = 1− 1

2k−i−1 . Therefore, in S′ we get

Cor[∆z[k]] =
1

|S′|
[Σk−1

i=0 (1− 1

2k−i−1
) · |S′i|+ |S′k ∪ S′k+1 ∪ · · · ∪ S′n−1|]

Now for the set S′k∪S′k+1∪· · ·∪S′n−1, all the pairs (y, ỹ) have a difference up to the k-th bit. Therefore, in this set, ∆Car[k] = 0

for exactly half of the samples and ∆z[k] = 0 for exactly half of the samples. Therefore, in this set, Cor[∆z[k]] = 0. So,

Cor[∆z[k]] =
1

|S′|
[Σk−1

i=0 (1− 1

2k−i−1
) · |S′i|]

=
1

2n+!|S0|
[Σk−1

i=0 (1− 1

2k−i−1
) · 2n−i|S0|]

=
1

2
[Σk−1

i=0 (
1

2i
− 1

2k−1
)]

= 1− k + 1

2k

Next, for our convenience we introduce a notation θ. For any vector pair x, x̃; θx[i] represents Cor[∆x[i]]. Suppose all the
notations are same as in the last theorem. Then we have the following two theorems.

Theorem 4
Consider x, y, x̃, ỹ, z, z̃ such that z = x+ y, z̃ = x̃+ ỹ. If θx[i], θy[i], θCar[i] is known for some i, we can compute θCar[i+1]

as follows:
θCar[i+1] =

1

4
[θx[i] + θy[i] + θCar[i](1 + θx[i]θy[i])].

Proof. We consider two different cases, i.e., ∆Car[i] = 0 and ∆Car[i] = 1.

∆Car[i] = 0 : We focus on the situation when Car[i] = C̃ar[i] = 0. We divide the event of Car[i+ 1] 6= C̃ar[i+ 1] in two
sub-cases, ∆y[i] = 1 and ∆y[i] = 0. If ∆y[i] = 1, without loss of generality we assume that y[i] = 1, ỹ[i] = 0. Then, the
carry difference would propagate to the next bit if and only if x[i] = 1. So, for this case the probability is

Pr(∆Car[i+ 1] = 1,∆y[i] = 1|∆Car[i] = 0) = Pr(x[i] = 1) · Pr(∆y[i] = 1)

=
1

2
· 1

2
(1− θy[i]) =

1

4
(1− θy[i]).

If ∆y[i] = 0, then the carry difference would occur if and only if y[i] = ỹ[i] = 1 and ∆x[i] = 1, whose probability is

Pr(∆Car[i+ 1] = 1,∆y[i] = 0|∆Car[i] = 0) = Pr(y[i] = ỹ[i] = 1).Pr(∆x[i] = 1)

=
1

8
(1 + θy[i])(1− θx[i]).

We can obtain the same values for the case Car[i] = ˜Car[i] = 1.
Therefore, for the case ∆Car[i] = 0,

Pr(∆Car[i+ 1] = 1|∆Car[i] = 0) =
1

4
(1− θy[i]) + ·1

8
(1 + θy[i])(1− θx[i])

=
1

8
(3− θy[i] − θx[i] − θy[i]θx[i]).
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∆Car[i] = 1 : Without loss of generality we assume that Car[i] = 1, C̃ar[i] = 0. Now, if x[i] = 1, x̃[i] = 0, then whatever
value y[i] and ỹ[i] takes, Car[i+ 1] 6= ˜Car[i+ 1]. The probability of this is Pr(x[i] = 1, x̃[i] = 0) = 1

4 [1− θx[i]]. Secondly,
if x[i] = 0, x̃[i] = 1, carry difference would occur if and only if ∆y[i] = 1. Probability of this event is

Pr(∆Car[i+ 1] = 1) = Pr(x[i] = 0, x̃[i] = 1) · Pr(∆y[i] = 1)

=
1

4
(1− θx[i]) ·

1

2
(1− θy[i]).

For x[i] = x̃[i] = 0, the carry difference occurs if y[i] = 1. Its probability is 1
8 (1 + θx[i]). Similarly, if x[i] = x̃[i] = 1, the

carry difference occurs if ỹ[i] = 0. Probability is again 1
8 (1 + θx[i]).

So, in this case, the total probability is the sum of these four cases, which is
Pr(∆Car[i+ 1] = 1|∆Car[i] = 1) = 1

8 (5− θx[i] − θy[i] + θx[i]θy[i]).
Now, multiplying both the probabilities with the probability of their corresponding condition and then adding, we get:
Pr(∆Car[i+ 1] = 1)
= 1

2 (1 + θCar[i]) · 1
8 (3− θy[i] − θx[i] − θy[i]θx[i]) + 1

2 (1− θCar[i]) · 1
8 (5− θx[i] − θy[i] + θx[i]θy[i])

= 1
16 [8− 2θx[i] − 2θy[i] + θCar[i](−2− 2θx[i]θy[i])]

= 1
8 [4− θx[i] − θy[i] − θCar[i](1 + θx[i]θy[i])]

= 1
2 −

1
8 [θx[i] + θy[i] + θCar[i](1 + θx[i]θy[i])].

So, Pr(∆Car[i+ 1] = 0) = 1
2 + 1

8 [θx[i] + θy[i] + θCar[i](1 + θx[i]θy[i])]. Therefore

θCar[i+1] =
1

4
[θx[i] + θy[i] + θCar[i](1 + θx[i]θy[i])].

Theorem 5
Considering all the notations same as above, θz[i] can be computed as:

θz[i] = θCar[i] · θx[i] · θy[i].

Proof. We know that z[i] = Car[i]⊕ x[i]⊕ y[i].
Suppose z1[i] = x[i]⊕ y[i] and z̃1[i] = x̃[i]⊕ ỹ[i].
Now ∆z1[i] = 0 iff ∆x[i] = ∆y[i] = 0 or 1.
So,

θz1[i] =2[Pr(∆z1[i] = 0)− 1

2
]

=2[Pr(∆x[i] = ∆y[i] = 0) + Pr(∆x[i] = ∆y[i]) = 1)− 1

2
]

=2[
1

4
(1 + θx[i])(1 + θy[i]) +

1

4
(1− θx[i])(1− θy[i])−

1

2
]

=
1

2
(2 + 2θx[i]θy[i])− 1

=θx[i]θy[i].

Now, ∆z[i] = ∆z1[i]⊕∆Car[i].
Hence, in a similar manner;
θz[i] = θCar[i] · θz1[i] = θCar[i] · θx[i] · θy[i].

Next we state a lemma on the linear properties of subtraction modulo 2n.

Lemma 2
Let z = x− y modulo 2n where all are n-bit numbers and x, y are randomly chosen. Then for any i ∈ [1, n− 1] ∩ Z,

1) Cor[z[i]⊕ x[i]⊕ y[i]]⊕ x[i− 1]] = −2−1,
2) Cor[z[i]⊕ x[i]⊕ y[i]]⊕ y[i− 1]] = 2−1.

Proof. For this we use Lemma 2 of [4], According to that, if x[i − 1] 6= y[i − 1], then z[i] = 1 ⊕ x[i] ⊕ y[i] ⊕ x[i − 1].
Therefore, for 1

2 possible pairs, Cor[z[i] ⊕ x[i] ⊕ y[i]] ⊕ x[i − 1]] = −1. For remaining 1
2 possible pairs, due to randomness

Cor[z[i]⊕ x[i]⊕ y[i]]⊕ x[i− 1]] = 0. Therefore the final value would be the average of −1 and 0, i.e. −2−1.
In a similar manner we can prove the other one.
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IV. ANALYSIS OF THE DIFFERENCE PROPAGATION IN THE FIRST ROUND

In the attack of [4] the authors finally give a 5-rounds multi-bit distinguisher. These 5 rounds of the cipher they have
decomposed into three parts:

E = E2 ◦ Em ◦ E1

where E1 consists of 1-st round, and Em consists of next 2.5 rounds and E2 consists of the remaining part. In the key recovery
attack, the distinguisher is observed for 3.5 rounds (Em ◦E1). This distinguisher is exploited in two different ways to attack
6-rounds and 7 rounds, respectively. In 6 rounds ChaCha, in the Em part the distinguisher is extended to 1.5 more rounds
by the help of linear cryptanalysis. Therefore, E2 ◦ Em ◦ E1 constructs a 5 rounds distinguisher. Then a key recovery F is
done in the 6th round. In the 7-rounds ChaCha the E2 part is replaced by PNBs approach, where the 3.5 rounds distinguisher
(Em ◦ E1) is used to construct a meet-in-the-middle attack.
Therefore our work focuses on the Em ◦E1 part, where the initial input difference is (∆X(0) = X(0)⊕ X̃(0)) provided in the
6-th bit of one of the IV words. Since the structure of ChaCha is symmetric with respect to all the columns, we take the case
for the IV word X13.
In the first round E1, the IV is chosen in such a way that the Hamming weight of ∆X(1)(= X(1)⊕X̃(1), which is the difference
matrix after the first round) is minimum. In this case the differences are at positions {(1, 2), (5, 5), (5, 29), (5, 17), (5, 9),
(9, 30), (9, 22), (9, 10), (13, 30), (13, 10)} after the 1-st round, as already mentioned in [4].

A. Analysis of the availability of IVs for minimum Hamming weight

In the paper [4] it has been mentioned that for approximately 70% of the keys there exist IVs which give minimum number
of differences (Hamming weight: 10) after the first round. Here we try to provide a theoretical explanation of why it is not
possible to avail IVs for all keys.
There are 4 addition operations in a round. To minimize the number of differences, it is necessary that in each of these
operations, the difference would not propagate to the next bit. This means, in the operation x + y, if the initial difference is
at i-th bit of y, then in the sum also the difference would be in the i-th bit only and would not propagate to the (i + 1)-th
bit. However, in the second (X ′′0 = X ′0 +X ′4) operation, there is an initial difference at X4[2]. Now, this difference would not
propagate to the next bit only if the carry difference is 0. This depends on the values of X ′0 and X ′4 after the first half.

Theorem 6
If the last three bits of X4 i.e, X4[2, 0] are 111, there is no IV which can produce the minimum number of differences.

Proof. Since the last three bits of X0 are 101, if the last three bits of X4 are 111, after the addition the last three digits of
X ′0 become 100. Now, in the second half, whatever be the value of X4, since the last two bits of X0 are 0, no carry would
be generated from these bits. Now, since X ′0[2] = 1 and X ′4[2] contains the difference, therefore in the sum there must be a
carry difference generated at this position which would propagate to the next bit. Therefore a minimum difference can not be
produced.

This theorem has been explained in Figure 1. The square boxes are the bit positions which contain a difference. Since
X ′0[2] = 1, the difference at X ′4[2] propagates to Car[3].

Theorem 7
If the last three bits of X4 i.e, X4[2, 0] are 011, there always exists an IV which can produce the minimum number of
differences.

Proof. If the last three bits of X4 are 011, after the first addition the last three bits of X ′0 become 000. Since the last 3 bits
are 0, in the second half whatever be the value of X4, there is no carry produced in any of these bits. So the carry differences
for X ′0 and X̃ ′0 are zero at the second bit. So IV would be available.

This theorem has been explained in Figure 2. Since X ′0[2] = 0, the difference at X ′4[2] is unable to propagate to Car[3].
So Car[3] does not contain a difference.

For all the remaining possible values for four bits of X4 we can not say for sure whether there exists an IV generating
minimum difference, because in these cases the carry difference propagation also depends on the corresponding values of X ′4.
X ′4 is generated at the fourth step of the first half. So, it is difficult to put conditions on the initial matrix to control X ′4.

In Table I, we provide the percentage of weak keys available for each possible value for the last four bits of X4.
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Carry: ( · · · Car[3] 0 0 0 )

X ′0: ( · · · 1 1 0 0 )

X ′4: ( · · · X ′4[3] X ′4[2] X ′4[1] X ′4[0])
�

Sum : ( · · · · · · · · · )

Fig. 1: Difference Propagation in the X ′′0 = X ′0 +X ′4 operation in the second half for the case of Theorem 6
(

denotes the

bits which contain a difference
)

Carry: ( · · · Car[3] 0 0 0 )

X ′0: ( · · · X ′0[3] 0 0 0 )

X ′4: ( · · · X ′4[3] X ′4[2] X ′4[1] X ′4[0])
�

Sum: ( · · · · · · · · · · · · )

Fig. 2: Difference Propagation in the X ′′0 = X ′0 +X ′4 operation in the second half for the case of Theorem 7
(

denotes the

bits which contains difference
)

V. ANALYZING THE PATH FOR THE CORRELATION AT (2, 0)

In this section we analyze the propagation of difference which results in the correlation at (2, 0) after the third round. This
section contains the results up to the first half of the third round. To derive our results, we use the theorems of Section III. The
initial conditions of the results do not accurately fit into the criteria to apply the theorems. But the difference do make any
impact on the result. In such scenario we use the relevant theorem, ignoring the negligible difference. For example, Theorem 2
requires difference at exactly 1 bit of y. But in our results we arrive at scenarios where there are differences in more than 1
bit, but the positions are far from each other, therefore have negligible influence on each other. In such scenario we apply the
theorem.

TABLE I: Percentage of weak keys for different possible values of the last 3 bits of X4

Values 0 1 2 3 4 5 6 7
Percentage of weak keys 64% 77% 86% 100% 87% 75% 63% 0%
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A. Second round

Result 1
In the cell X6 we have the correlation values for the following 4 bit positions.

I. Cor[∆X6[3]] = 1
4 ,

II. Cor[∆X6[4]] = 1
2 ,

III. Cor[∆X6[0]] ≈ 0.94,
IV. Cor[∆X6[20]] ≈ 0.56.

Proof. 1) In the first half of the second round, in the diagonal (X1, X6, X11, X12), the first operation is X ′1 = X1 + X6.
Since initially there is a difference in X1[2], we can apply Theorem 2 here. Therefore, putting z = X1 and r = 2 in
Theorem 2, we have after the first half, Cor[eq(∆X ′1, [2 + k, 1 + k, k, · · · , 2])] = 1− 1

2k−1 .
Then, in the next operation X ′12 = (X12 ⊕ X ′1) ≪ 16, these Cor values go to X12 and move 16 bits rightward. In
the second half, in operation X ′′12 = (X ′12 ⊕ X ′′1 ) ≪ 8, these move to the right further by 8 bits. Therefore by total
16 + 8 = 24 bits rotation, we have in the second round, Cor[eq(∆X ′′12, [26 + k, 25 + k, k + 24, · · · , 26])] = 1− 1

2k−1 .
Now, in the next step, the same addition X ′′11 = X ′11 +X ′′12 occurs. Here, since initially there is no influence of difference
yet at the corresponding bits of X ′11, we can apply Theorem 3 to find the Cor[∆X ′′11[26 + k]]. Applying Theorem 3 for
k = 2, 3 respectively, we get Cor[∆X ′′11[28]] = 1

4 , Cor[∆X ′′11[29]] = 1
2 . Therefore, in the next XOR with X6 and rotation

by 7 bits, we get the results.
2) As mentioned in the first part, after the operation X ′12 = (X12⊕X ′1)≪ 16 we have Cor[eq(∆X ′12, [18 +k, 17 +k, 16 +

k, · · · , 18])] = 1− 1
2k−1 . In the immediate next addition X ′11 = X11 +X ′12, we can apply Theorem 3. So, we get in X ′11,

Cor[∆X ′11[18 + k]] = 1− k+1
2k .

We are particularly interested in k = 7, which gives us the value 0.94. In the second half, X ′11 is again updated to
X ′′11 = X ′11 +X ′′12. However, by this time the respective bits of X ′12 gets rotated during the update to X ′′12 and the present
bits of X ′′12 at those positions does not have difference, which results no change in the correlation values of X ′′11[25] from
X ′11[25]. This X ′′11 is XOR-ed with X ′6 and rotated by 7 bits. So, X ′6 receives the same value of correlation with rotation
by 7 bits. So, X ′′6 [25 + 7] = X ′′6 [0] (since we compute in modulo 232), which has Cor[∆X ′′6 [0])] = 0.94.

3) In the addition X ′1 = X1+X6, the difference of (1, 2) propagates to the next bits. By Corollary 1 we have Cor[∆X ′1[4])] =
1
2 and Cor[∆X ′1[5])] = 3

4 . In the second half, in the XOR with X ′12 and rotation, we get Cor[∆X ′′12[13])] = 0.75 and
Cor[∆X ′′12[12])] = 0.5. In the next operation X ′′11 = X ′11 + X ′′12, by Theorem 4 we find out that in this addition,
θCar[13] = 1

4 [(1 + 0.5) + 1 × (1 + 0.5)] = 0.75. Therefore, by Theorem 5, in the updated X ′′11, Cor[∆X ′′11[13])] =
0.75× 1× 0.75 ≈ 0.56. This value comes to X ′′6 [20] in the next XOR and rotation.

Result 2
At the end of the second round, we observe the following result in X14 : Cor[∆X14[4]] ≈ 0.91.

Proof. At the end of the first round, there is a difference at (9, 10). In the second round first half, in the operation X ′9 = X9+X14

this difference propagates to the left side by Theorem 2. Therefore Cor[∆X ′9[10 + k]] = 1− 1
2k−1

After that in the next operation X ′4 = (X4⊕X ′9)≪ 12, this values comes to X ′4[22+k]’s. In particular, we look for k = 4, 5, 6,
which gives: Cor[∆X ′4[26]] = 1− 1

23 ≈ 0.88, Cor[∆X ′4[27]] = 1− 1
24 ≈ 0.94 and Cor[∆X ′4[28]] = 1− 1

25 ≈ 0.97.
In the second half of the second round the following operation takes place. X ′′3 = X ′3 +X ′4. X ′3 does not have any difference

at positions 27 and 26 up to 1.5 round, i.e Cor[∆X ′3[26]] = Cor[∆X ′3[27]] = 1. For X ′4 we use the results just obtained. So,
using Theorem 4, at first we find

θcar[27] =
1

4
[θX′4[26] + θX′3[26] + θCar[26][1 + θX′3[26]θX′4[26]]]

=
1

4
[0.88 + 1 + 1× [1 + 0.88× 1]]

=0.94.

Then,

θCar[28] =
1

4
[θX′4[27] + θX′3[27] + θCar[27][1 + θX′3[27]θX′4[27]]]

=
1

4
[0.94 + 1 + 0.94× [1 + 0.94× 1]]

≈0.94.

After that, using Theorem 5, we have Cor[∆X ′′3 [28]] = 1× 0.97× 0.94 ≈ 0.91. In the next XOR with X ′14, this value comes
to X ′′14[4] by rotation.
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The framework of this proof has been shown in Figure 3.

θcar[26]

θX′4[26]

θX′3[26]

θcar[27]

θX′4[27]

θX′3[27]

θcar[28]

θX′4[28]

θX′3[28]

θX′′4 [28] θX′′14[4]

Th. 4 Th. 4

Th. 5

Fig. 3: Framework for the proof of Result 2

Result 3
We observe the following result in X10 : Cor[∆X10[20]] ≈ 0.47.

Proof. In the first round (5, 9) has a difference. In the first step of the second round X ′0 = X0 +X5, this difference comes to
X ′0 and propagates by Theorem 2. In the next operation X ′15 = (X15 ⊕X ′0)≪ 16, these values come to X ′15, being rotated
by 16 bits. So, Cor[eq(∆X ′15, [25 + k, 24 + k, 23 + k, · · · , 25])] = 1 − 1

2k−1 . In the next addition with X ′10, these come to
X ′10 using Theorem 3. In particular, for k = 6, we get Cor[∆X ′10[31]] = 1 − 1+6

26 ≈ 0.9. This comes to X ′5[11] in the next
XOR and rotation.
On the other hand, Cor[∆X ′0[16]] = 1− 1

26 ≈ 0.984. This comes to Cor[∆X ′5[12]].
Again, Cor[∆X ′0[12]] = 0.75 and Cor[∆X ′0[11]] = 0.5 by the same reason. From these two, we get by applying Theorem 4
and Theorem 5 that after the second round, Cor[∆X ′′0 [12]] = 0.68 and Cor[∆X ′′0 [11]] = 0.46. Therefore, in the next XOR
with X ′15 and rotation by 8 bits, we get Cor[∆X ′′15[20]] = 0.68,Cor[∆X ′′15[19]] = 0.46.
On the other hand, Cor[∆X ′10[20]] = 0.97,Cor[∆X ′10[19]] = 0.94. After that the addition X ′′10 = X ′10 + X ′15 occurs. Using
Theorem 4, we can find for the propagation difference at the 20-th bit

θCar[20] =
1

4
[θX′10[19] + θX′15[19] + θCar[19](1 + θX′10[19]θX15[19])]

=
1

4
[0.94 + 0.46 + (1 + 0.94× 0.46)]

=
2.83

4
≈ 0.71.

Then, applying Theorem 5, we get Cor[∆X ′′10[20]] = 0.71× 0.68× 0.97 ≈ 0.47.

B. First half of the third round

Result 4
After the first half of the third round, Cor[∆X6[0]] ≈ 0.08.

Proof. In the first step of the third round, X2 is updated by the operation X ′2 = X2 + X6. We have observed in 1 that
Cor[∆X6[3]] = 1

4 and Cor[∆X6[4]] = 1
2 . Since the corresponding bits of X2 are not yet influenced by the difference,

Cor[∆X2[3]] = Cor[∆X2[4]] = 1.
We apply Theorem 4 here and use θCar[3] = 1. Therefore,

θCar[4] =
1

4
[θX6[3] + θX2[3] + θCar[3](1 + θX6[3]θX2[3])]

=
1

4
[
1

4
+ 1 + [1 +

1

4
.1]]

=
1

4
[
5

4
+

5

4
]

=
5

8
.
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Therefore, using Theorem 5 we have,

Cor[∆X ′2[4]] =θCar[4] · θX6[4] · θX2[4]

=
5

8
× 1

2
× 1

=
5

16
≈ 0.31.

Then a XOR operation between X ′2 and X14 and a rotation by 16 bits take place. So, X ′2[4] and X14[4] generates X ′14[20].
Applying Theorem 5 with θX′2[4] = 0.31 and θX14[4] = 0.91, we have Cor[∆X ′14[20]] = 0.29.
In the Addition operation between X10 and X ′14, applying Theorem 5 we get Cor[∆X ′10[20]] = 0.29 × 0.47 ≈ 0.14. X ′10 is
XOR-ed with X6 and rotated by 12 bits. So, by Theorem 5, Cor[∆X ′6[0]] = θX6[20] · θX′10[20] = 0.56× 0.14 = 0.08.

VI. ANALYZING THE PATH FOR THE CORRELATION AT (7, 0)

Same as the last section, here we discuss the results up to 2.5 rounds which generates the correlation at (7, 0) at the end of
the third round.

A. Second round

Result 5
After the second round,

I. Cor[∆X11[13]] ≈ 0.5,
II. Cor[∆X11[25]] ≈ 0.94,

III. Cor[∆X11[24]] ≈ 0.88.

Proof. After the first round (1, 2) has a difference. Now, in the addition X ′1 = X1 +X6 in the second round, this difference
propagates by 1. Therefore, for r = 2 in Corollary 1, Cor[eq(∆X ′1, [5, 4, 3, · · · , 2])] = 1 − 1

2k−1 . Next, in the operation
X ′12 = (X12 ⊕ X1) ≪ 8, this value comes to ∆X12 and gets rotated by 8 bits. Therefore, Cor[eq(∆X ′12, [10 + k, 9 +
k, · · · , 10])] = 1− 1

2k−1 . In the next addition, X ′11 = X11 +X ′12, using Theorem 3, we get that for k = 3, r = 10

Cor[∆X11[13]] = 1− 1 + 3

23
=

1

2
.

For the second and third, we know that initially (1, 2) contains a difference. In the first addition it propagates toward right
by Theorem 2. In the update of X12, all these get rotated by 16 bits. Then in the addition X ′11 = X11 +X ′12, these come to
X ′11. Here, by Theorem 4 we get the results for the 24-th and 25-th bit. The values remain same in the addition of the second
half since the other component has correlation 1.

Result 6
We have the following results for X15 at the end of the second round:

I. Cor[∆X15[1]] ≈ 0.77,
II. Cor[∆X15[29]] ≈ 0.86,

III. Cor[∆X15[21]] ≈ 0.86,
IV. Cor[∆X15[20]] ≈ 0.74.

Proof. (5, 9) has a difference after the first round. In the second half it comes to (5, 21) after rotation by 12 bits. Another
difference at (5, 29) comes to (0, 29) in the first addition, then to (15, 13) in the operation X ′15 = (X15 ⊕X ′0)≪ 16. In the
next addition and then XOR, it comes to X ′5[25]. So, after 1.5 rounds, both ∆X ′5[25] and ∆X ′5[21] are 0. In the next addition
X ′′0 = X ′5 +X ′0, these differences come to the same bits of X ′′0 . The difference at X ′′0 [21] propagates to 25-th bit, for which
we get using Corollary 1, Cor[∆X ′′0 [25]] ≈ 7

8 , which becomes negative because of the difference already at the 25-th bit.
Similarly, in the first half addition X ′0 = X5 +X0, the initial difference at (5, 5) and (5, 9), together results in Cor[∆X ′0[9]] ≈
− 3

4 , in the first half. Next XOR with X ′15 and rotation by 16 bits result in Cor[∆X ′15[25]] ≈ − 7
8 . After this, in the operation

X ′′15 = (X ′15 ⊕X ′′0 )≪ 8, using Theorem 5 we get

Cor[∆X ′′15[1]] = Cor[∆X ′15[25]] · Cor[∆X ′′0 [25]] ≈ 49

64
≈ 0.77.

In the first addition of the second round, i.e, X ′0 = X0 + X5, the initial difference at (5, 17) propagates by Corollary 1.
Therefore, here for r = 17 Cor[∆X ′0, (17 + k, 16 + k, · · · , 17)] = 1 − 1

2k−1 . In the second half, in the operation X ′′15 =
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(X ′15 ⊕X ′′0 )≪ 8, these values come to X ′′, getting rotated by 8 bits. So, Cor[∆X ′′15, (25 + k, 24 + k, · · · , 25)] = 1− 1
2k−1 .

For k = 4, we achieve the result.
In exactly similar way, the difference at (5, 9) results in the same value for Cor[∆X ′′15[21]] and 0.74 for Cor[∆X ′′15[20]]. Note
here that the difference between (15, 29) and (15, 21) is 8 bits, which is same as the difference between (5, 17) and (5, 9).

Result 7
For X3, the following values are observed after the second round:

I. Cor[∆X3[29]] ≈ 0.98,
II. Cor[∆X3[21]] ≈ 0.97,

III. Cor[∆X3[20]] ≈ 0.94.

Proof. (9, 10) has a difference after the first round. In the operation X ′9 = (X9 + X ′14) this difference stays at the same
position. Then, in the operation X ′4 = (X4⊕X ′9)≪ 12, this difference comes to X ′4[22]. Then in the addition X ′′3 = X ′3 +X ′4
it comes to X ′′3 [22] and propagates. By Corollary 1, for r = 22, k = 7, we have Cor[∆X ′′3 [29]] = 1 − 1

27−1 ≈ 0.98. In the
second one, a similar reason is valid.

Result 8
In the word X7, we have the following values:

I. Cor[∆X7[17]] ≈ 0.83,
II. Cor[∆X7[16]] ≈ 0.67,

III. Cor[∆X7[13]] ≈ −0.56,
IV. Cor[∆X7[29]] ≈ −0.92.

Proof. The initial difference at (13, 10) and (13, 30) after the first round shifts to (13, 14) and (13, 26) respectively when X13

is updated in the first half of the second round. Then it gets added with X8. Therefore, the difference at (13, 14) comes to
X ′8[14] and propagates by Corollary 1. Then it is XOR-ed with X7 and rotated by 12 bits. So, the differences at X ′8[14 + k]
shift to X ′7[26 + k]. Then, it the second half it is added with X ′2, which gives the values of Cor[∆X ′′2 [26 + k]] by Theorem 2.
Then, in the update of X ′13, these values come to X ′′13 by getting rotated by 8 bits. Therefore, Cor[∆X ′′13[2 + k]] can be given
by Theorem 3. However, the difference at (13, 2) is neutralised by the initial difference at (13, 26) that we already mentioned.
For the rest, the values follow the theorem. We find Cor[∆X ′′13[8]],Cor[∆X ′′13[9]],Cor[∆X ′′13[10]] using this. Then we use them
to find Cor[∆X ′′8 [9]] and Cor[∆X ′′8 [10]] as 0.9 and 0.94 respectively, which is the next addition operation X ′′8 = X ′8 +X ′′13.

On the other hand, the same difference at (13, 26) in the first half, when added with X8, produces a difference in X ′8[26] which
propagates by Corollary 1. These values of Cor[∆X ′8[26+k]] come to X ′7[6+k] in the next operation X ′7 = (X7⊕X ′8)≪ 12.
In particular, we use the values Cor[∆X ′7[9]] ≈ 0.88 and Cor[∆X ′7[10]] ≈ 0.74 along with the previously found values
Cor[∆X ′′8 [9]] and Cor[∆X ′′8 [10]] to get the results by Theorem 5.

B. First half of the third round

Here, we obtain the correlation values for some particular bits of three words from the column containing X7, i.e., X11, X7

and X15.

Result 9
After 2.5 rounds, we have the following result for X15 :

I. Cor[∆X15[17]] ≈ 0.67,
II. Cor[∆X15[25]] ≈ 0.9.

Proof. In the third round we have the operation X ′3 = X3 + X7. At the end of the second round, Cor[∆X7[1]] = 7
8 , which

comes to X ′3 in this addition. So, Cor[∆X ′3[1]] = 7
8 . In the next XOR, using Theorem 5 we get

Cor[∆X ′15[17]] = Cor[∆X15[1]] · Cor[∆X ′3[1]] = 0.77× 7

8
≈ 0.67.

Similarly we can prove the other one also.

Result 10
For X11 we have the correlation values for the two following bits as follow:

I. Cor[∆X11[5]] ≈ 0.71,
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II. Cor[∆X11[25]] ≈ 0.66.

Proof. In the first half of the third round the following XOR and rotation take place.

X ′15 = (X15 ⊕X ′3)≪ 16

Here, from Result 7 and 6, using Theorem 5 we can compute that

Cor[∆X ′15[5]] =Cor[∆X ′3[21]] · Cor[∆X15[21]]

=0.97× 0.86 ≈ 0.83.

and similarly Cor[∆X ′15[4]] = 0.94 × 0.74 ≈ 0.70. After that, an addition between X11 and X ′15 takes place. Since the
corresponding bits of X11 have negligible influence of difference yet, so using these results, by Theorem 4 we get

θcar[5] =
1

4
[1 + 0.70 + 1× (1 + 1× 0.70)]

=
1

4
[1.70 + 1.70] =

1

4
× 3.40 ≈ 0.85.

Therefore, using Theorem 5 we get: Cor[∆X ′11[5]] = 0.85× 1× 0.83 ≈ 0.71.
Then, in the same operation X ′11 = X11+X ′15. We use the fact that after the second round, Cor[∆X11[25]] ≈ 0.94,Cor[∆X11[24]] ≈

0.88 (Result 5) and Cor[∆X15[25]] ≈ 0.88 (Result 9) after 2.5 rounds. Therefore, we apply first Theorem 4 on the 24-th bit
and then Theorem 5 to get the result.

Result 11
After 2.5 rounds, Cor[∆X7[25]] ≈ 0.21.

Proof. After the second round, Cor[∆X3[29]] ≈ 0.98 (Result 7). Now, after its addition with X7, by Theorem 5 we
have Cor[∆X ′3[29]] = 0.98 × (−0.92) = −0.9 (Result 8). Then, in the XOR with X15 and rotation by 16 bits, we get
Cor[∆X ′15[13]] = 0.82 × (−0.9) ≈ −0.74 (using Lemma 1). Now, we know from Result 5 that Cor[∆X11[13]] = 0.5. So,
when X ′15 is added with X11, we have Cor[∆X ′11[13]] = 0.5 × (−0.74) = −0.37. After this, a XOR between X ′11 and X7

takes place and it is rotated by 12 bits. From Result 8 we know that Cor[∆X7[13]] = −0.56. Therefore, in X ′7, we have
Cor[∆X ′7[25]] = (−0.56)× (−0.37) ≈ 0.21.

VII. ANALYSIS OF THE 3-RD AND 3.5-TH ROUND

In the 2.5 round, in the sum X ′′3 = X ′3 + X ′7, Cor[∆X ′3[17]] can be found to be 0.64 using Theorem 4 and Theorem 5.
Similarly it can be found that after 2.5 round Cor[∆X ′7[17]] = 0.5. Therefore, in the sum X ′′3 = X ′3 +X ′7 at the second half
of the third round, by Theorem 5 we get that Cor[∆X ′′3 [17]] = 0.64× 0.5 = 0.32. Then, it is XOR-ed with X ′15, which gives
that

Cor[∆X ′′15[25]] = Cor[∆X ′′3 [17]] · Cor[∆X ′15[25]] = 0.32× 0.67 ≈ 0.21 (Result 9).

Then, in the addition with X ′11, we have

Cor[∆X ′11[25]] = Cor[∆X ′′15[25]] · Cor[∆X ′11[25]] = 0.66× 0.21 = 0.14.

In the next XOR with X ′7 and rotation by 7 bits, from Result 11 we get by Theorem 5, Cor[∆X ′′7 [0]] = 0.2× 0.14 = 0.03.
Similarly, in the second half of 3rd round, X2 is updated by addition with X6. We know from 4, Cor[∆X6[0]] = 0.08. This

value comes to X2[0] after this addition since X2[0] was negligibly influenced by the difference before this. Now, in the fourth
round first half, we have X ′2 = X2 +X7. Since we are interested in the 0-th bit, we don’t worry about carry difference. So,

Cor[∆X ′2[0]] = Cor[∆X2[0]] · Cor[∆X7[0]] = 0.08× 0.03 ≈ 0.0024 ≈ 2−8.7.

According to [4], the experimentally observed value is 2−8.3. In other words, among all possible states, for approximately
1
2 [1 + 2−8.3] = 0.5016 fraction of states gives equal value at position (2, 0) for X and X̃ after 3.5 rounds. According to our
theoretical analysis this fraction is 0.5012, which matches up to 3 decimal places with the experiment.

A. Extension to multi-bit distinguisher of the 5-th round

In [4], a linear trail between the single bit distinguisher of 3.5 rounds and two different multi-bit distinguishers of the 5-th
round has been used. This linear relation has correlation 2−1. Here we explain this linear trail in 3 steps.
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1) 3.5 round to 4-th round
X2[0] is updated as X ′′2 [0] = X ′2[0]⊕X ′7[0] (since least significant bit).

Again, from X ′′7 = (X ′7 ⊕X ′′8 )≪ 7 we have

X ′′7 [7] = X ′7[0]⊕X ′′8 [0]

i.e,X ′7[0] = X ′′8 [0]⊕X ′′7 [7].

Therefore, X ′2[0] = X ′′2 [0]⊕X ′′8 [0]⊕X ′′7 [7].
2) 4 round to 4.5-th round
In this column-round each of the three bits X2[0], X8[0] and X7[7] of 4-th round in terms of bits of 4.5 round we now

express in terms of bits of 4.5 round.
From, X ′2 = X2 +X7 we get in similar manner as before:

X2[0] = X6[0]⊕X ′2[0]

= X ′6[12]⊕X ′10[0]⊕X ′2[0] (since X ′6 = (X6 ⊕X10)≪ 12)

From, X ′7 = (X7 ⊕X ′11)≪ 12 we get X7[7] = X ′7[19]⊕X ′11[7].
From, X ′8 = X8 +X ′12 we get X8[0] = X ′8[0]⊕X ′12[0].
Therefore, we have

X2[0]⊕X8[0]⊕X7[7] = X ′2[0]⊕X ′6[12]⊕X ′10[0]⊕X ′8[0]⊕X ′12[0]⊕X ′7[19]⊕X ′11[7].

3) 4.5 round to 5-th round
In a similar manner as before,

X ′2[0] = X ′′2 [0]⊕X ′6[0]

= X ′′2 [0]⊕X ′′6 [7]⊕X ′′10[0].

From, X ′′6 = (X ′6 ⊕X ′′10)≪ 7 we get X ′6[12] = X ′6[19]⊕X ′10[12].
From, X ′′10 = X ′10 +X ′′14 we get X ′10[0] = X ′′10[0]⊕X ′′14[0].
From, X ′′7 = X ′7 +X ′′11 we get X ′7[19] = X ′′7 [26]⊕X ′11[19].
From, X ′′8 = X ′8 +X ′′12 we get X ′8[0] = X ′′8 [0]⊕X ′′12[0].
From, X12 = (X12 ⊕X0)≪ 8 we get X12[0] = X12[8]⊕X0[0].
Now only for the expression X ′11[7], we can’t directly write it as linear sum of 5-th round elements since X ′′11 = X ′′15 +X ′11

involves carry from the previous term.
Here we use Lemma 2. We have, X ′11 = X ′′11 −X ′′15. From Lemma 2 we have

Cor(X ′11[7]⊕X ′′11[7]⊕X ′′15[7]⊕X ′′11[6]) = −2−1

Cor(X ′11[7], X ′′11[7]⊕X ′′15[7]⊕X ′′15[6]) = 2−1

We denote φ, φ′, φ′′ as follows:
• φ′ = X ′2[0]⊕X ′6[12]⊕X ′10[0]⊕X ′8[0]⊕X ′12[0]⊕X ′7[19]⊕X ′11[7],
• φ′′1 = X ′′2 [0]⊕X ′′6 [7]⊕X ′′10[0]⊕X ′6[19]⊕X ′10[12]⊕X ′′10[0]⊕X ′′14[0]⊕X ′′7 [26]⊕X ′11[19]⊕X ′′8 [0]⊕X ′′12[0]⊕X12[8]⊕
X0[0]⊕X ′′11[7]⊕X ′′15[7]⊕X ′′11[6],

• φ′′2 = X ′′2 [0]⊕X ′′6 [7]⊕X ′′10[0]⊕X ′6[19]⊕X ′10[12]⊕X ′′10[0]⊕X ′′14[0]⊕X ′′7 [26]⊕X ′11[19]⊕X ′′8 [0]⊕X ′′12[0]⊕X12[8]⊕
X0[0]⊕X ′′11[7]⊕X ′′15[7]⊕X ′′15[6].

Thus

Cor(φ′ ⊕ φ′′i ) =

{
−2−1 if i = 1
2−1 if i = 2.

Therefore,

Cor(X3.5
2 [0]⊕ φ′′i ) =

{
−2−1 if i = 1
2−1 if i = 2.

This linear relation between single bit of 3.5-th round and multi-bit of 5-th round, combined with the distinguisher of 3.5
round, gives a distinguisher of the 5-th round.
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VIII. REVISITING THE ATTACK OF EUROCRYPT 2021 PAPER

At Eurocrypt 2021 Coutinho et al. [8] improved the key recovery attack for 7 round ChaCha with complexity 2228.51 and also
gave a distinguisher attack for 7 round ChaCha with complexity 2218. For key recovery attack they used the probabilistic neutral
bit technique which is an old idea in [1]. They found a 3.5 rounds differential distinguisher at (5, 0) by experimental approach
which they have used for both key recovery and distinguisher attack. They extended the 3.5 rounds differential distinguisher to
7 rounds using linear approximation and they unveiled the reason of linear approximation by both theoretical and computational
results. In their theoretical proofs of the linear approximations they used two probabilistic equations and Piling up lemma to
approximate the nonlinear operations. For more details of their theoretical explanation of linear approximation we refer to [8].

The IV’s are chosen in such a way that the Hamming weight of the output difference is minimized. They have chosen the IV in
the third column of the state matrix and the input difference was given at (14, 6). This input difference influences the following
bit positions (2, 2), (6, 5), (6, 29), (6, 17), (6, 9), (10, 30), (10, 22), (10, 10), (14, 13), (14, 10) on average with probability 2−5

after the first round which has been shown in [4].

Distinguishing Attack Procedure: Now we discuss how to compute differential-linear correlation and corresponding distin-
guisher complexity. Suppose the differential state matrix is denoted by ∆X(r) = X(r) ⊕ X̃(r), the differential of a word as
∆X

(r)
i = X

(r)
i ⊕ X̃

(r)
i and the differential of j-th bit of i-th word as ∆X

(r)
i [j] = X

(r)
i [j]⊕ X̃(r)

i [j]. Consider the state matrix
X(r) and X̃(r) after r rounds and suppose the linear combinations of bits of X(r) and X̃(r) is denoted by σ =

⊕
i,j X

(r)
i [j]

and σ′ =
⊕

i,j X̃
(r)
i [j] respectively. Then ∆σ =

⊕
i,j ∆X

(r)
i [j] denotes the linear combination of differentials. Now

Pr(∆σ = 0|∆X(0)) =
1

2
(1 + ε)

where ε is the differential correlation.
Finally, it is possible to extend the differential distinguisher to few more rounds (R > r) using linear cryptanalysis by finding
relations between initial state matrix and state matrix after R rounds. For that we take the linear combinations of bits after
R(> r) rounds which are denoted as ρ =

⊕
i,j X

(R)
i [j] and ρ′ =

⊕
i,j X̃

(R)
i [j]. Therefore, ∆ρ = ∆

⊕
i,j X

(R)
i [j], which is

computed similarly as above. The linear correlation is denoted by εl and is defined by Pr(σ = ρ) = 1
2 (1 + εl). Our target is to

find the differential-linear correlation ε∗ such that Pr(∆ρ = 0|∆X(0)) = 1
2 (1 + ε∗). Therefore, we can compute the ε∗ using

the following probabilistic relations (for simplification ∆X(0) is omitted). Now,

Pr(∆σ = ∆ρ) = Pr(σ = ρ) · Pr(σ′ = ρ′) + Pr(σ = ρ̄) · Pr(σ′ = ρ̄′) =
1

2
(1 + ε2l ),

where ρ̄ = ρ⊕ 1 and others are similarly follows. Then,

Pr(∆ρ = 0) = Pr(∆σ = 0) · Pr(∆σ = ∆ρ) + Pr(∆σ = 1) · Pr
(
∆σ = ∆ρ

)
=

1

2
(1 + εε2l ).

Therefore, the obtained differential-linear correlation is ε∗ = εε2l and the corresponding distinguisher complexity will be
O( 1

ε2ε4l
). Generally we require O

(
1
pq2

)
random samples when we like to distinguish between two events, one with probability

p and the other with probability p(1 + q), where q is small.

At Eurocrypt 2021 paper [8] the authors have presented several 3.5 rounds differential correlations of ChaCha for single
output bit and these are listed in Table 3 of [8]. For this 3.5 rounds differential distinguisher they have used the idea that after one
round the Hamming weight of the differential is minimized. They have given the input difference at (14, 6) and experimentally
obtained the differential correlation for the output difference at (5, 0) after 3.5 rounds. Then the linear correlation has been
found out between the bit (5, 0) after 3.5 rounds and some bits after 6 rounds and 7 rounds respectively to give better
differential-linear distingushers of 6 rounds and 7 rounds ChaCha than existing works. They have found out the distinguisher
complexity using the above discussed method and the corresponding complexities for 6 rounds is 277 and for 7 rounds is 2218.

Key recovery attack procedure: Till now all the key recovery attacks against reduced round ChaCha have been presented
using the probabilistic neutral bits (PNBs) approach which was introduced in [1]. Now we describe a glimpse of PNBs on
key recovery attack albeit this is a fully experimental approach. We give an input difference at any desired bit Xi[j] of the
initial state matrix X(0) and obtain the new matrix X̃(0). Our target is to obtain some correlation of output difference at some
particular bit or combination of bits of the output matrix at some r-th round. We can compute Pr(∆σ = 0|∆Xi[j]

(0) = 1)
and suppose this value is 1

2 (1 + ε), where ε is the differential correlation of the output difference. We can also find out the
differential correlation in backward direction from final state matrix of ChaCha as the rounds of ChaCha are reversible.

Notion of PNB: The idea of PNB was introduced in [1]. Later on this idea was reviewed by Maitra et al. [14] to come up
with an improved attack. At first, we give a brief idea of Probabilistic Neutral Bits or PNB as given in [1], [14].
The main aim of this idea is to reduce the complexity of searching 256 bits of the unknown key. We try to partition the set
of key bits into two parts:
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1) Significant Key bits: key bits which have high influence on the output.
2) Non-significant Key bits: key bits which have low influence on the output.
To be more precise, we find a set of key bits such that, if the values of the key bits of this set is changed arbitrarily, the

probability that the output will change too, is lower than usual. These key bits are considered to have low influence on the
output (Non-significant key bits). If we can find a set of such key bits, we try to find the values of the remaining key bits, i.e,
the significant key bits, by guessing randomly and considering a distinguisher to identify the correct set of values. After finding
the significant bit values, we can find the values of non-significant bits by similar guessing and identifying. The advantage
of this idea is that, since the number of significant key bits is much less than the total size of the key (256), the maximum
number of guesses required is significantly less than 2256.

To identify PNBs, we consider a predetermined threshold probability 1
2 (1 + γ). So, the whole set of key bits are divided

into two sets, PNBs and non-PNBs. We suppose the size of these sets are m and n respectively (m+ n = 256).

Actual attack after PNB construction: Now, in main attack, attacker’s aim is to find the values of the non-PNBs, without
knowing the correct values of PNBs. Since changing PNBs affect the output with low probability, we take a random value
for each PNB and set it to that fixed value. Instead of an exhaustive search over all possible 2256 values for the key bits,
the concept of PNB helps to reduce the complexity of search. If the size of PNB set is m, then the number of non-PNBs is
n = 256−m.

Complexity Estimation: Here we briefly repeat the estimation provided by [1] for the reader’s convenience. We have 2n

possible sequences of random values for the n non-PNBs. Out of them, only 1 sequence is correct and remaining 2n − 1
sequences are incorrect. In our hypothesis testing, we consider the null hypothesis H0 as: The chosen sequence is incorrect.
So, 2n − 1 sequences satisfy the null hypothesis and only 1 sequence satisfies the alternative hypothesis H1 (chosen sequence
is correct).

Two possible errors can occur in this attack:
1) Error of Non-Detection: The chosen sequence A is correct, i.e, A ∈ H1, but it can’t be detected. The probability of this

error is Pnd.
2) False Alarm Error: The chosen sequence A is incorrect, i.e, A ∈ H0, but it gives a significant bias. As a result, wrong

sequence is accepted. The probability of this event is Pfa.
Now, to achieve a bound on these probabilities, authors [1] used a result given by Neyman- Pearson decision theory.

According to this result, the number of samples is

N ≈
(√

α log 4 + 3

√
1− (ε · εa)

2

ε · εa

)2

,

where ε is the correlation in forward direction and εa is the correlation in the backward direction, where all PNB bits are fixed
to zero and non-PNB bits are fixed to the correct ones. These samples can be used to achieve the bound of Pnd = 1.3× 10−3

and the bound of Pfa by 2−α. Based on these values, the time complexity can be given by

2n
(
N + 2mPfa

)
= 2n ·N + 2256−α.

At Eurocrypt paper [8] the authors have reported 3.5 rounds differential correlation which they have found out in experimental
approach. In the key recovery attack they extended this 3.5 rounds differential distinguisher at (5, 0) to 4 rounds with linear
correlation one and the corresponding linear relation is X3.5

5 [0] = X4
5 [7] ⊕ X4

10[0] which directly follows from the QR
operations. Also, their reported 4 rounds differential-linear correlation is ε = 0.0000002489 which is the correlation in the
forward direction. Also, using the threshold γ = 0.35 they have provided 108 PNBs and they have found out the correlation in
the backward direction which is εa = 0.000169. Also, they have written that the parameter α the attacker can choose. Using
these values they have computed N = 275.51 and the corresponding time complexity is 2223.51. As in [4], they have repeated
this attack 25 times on average. Thus, the final attack has data complexity of 280.51 and time complexity 2228.51.
We have checked using their obtained values of ε and εa that the value of N and time complexity will be optimal when
α = 37.56. So, the actual data complexity of their attack will be 275.64+5 = 280.64. In this case the time complexity will be
2223.68. So, the final time complexity will be 2228.68.

A. Theoretical Interpretation and Experimental Results

We were trying to analyse theoretically the differential distinguisher of Eurocrypt 2021 paper [8] for 3.5 rounds ChaCha
which they found out by fully experimental approach. At that time we have found out some mismatch between our theoretical
results and their experimental results. Theoretical demonstration of the correlation for the bit position (0, 0) has been presented
in the following.
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Output Difference |ε|
Eurocrypt 2021 [8] Our

∆X3.5
0 [0] 0.000307 0.0000328273

∆X3.5
1 [0] 0.000124 0.0000017375

∆X3.5
12 [0] 0.000017 0.0000052242

∆X3.5
13 [0] 0.000016 0.0000064889

∆X3.5
5 [0] 0.0000002489 0.0000000568

TABLE II: Comparison of experimentally found 3.5 rounds differential correlation

As the number of rounds increases, the values of the correlation decreases. So, to find or verify a small correlation in higher
round, we have to perform the simulation for high margin. Therefore, we also provide a mathematical explanation in support
of our claim where we express the 3.5 rounds bit in form of 3 rounds bits. We try to provide a mathematical explanation which
would help the reader to understand why the claimed bias at Eurocrypt 2021 paper [8] of the position (0, 0) is not correct. In
the update function of (0, 0) we have

X
(3.5)
0 [0] = X

(3)
0 [0] +X

(3)
5 [0].

Now, in such scenario, we generally use Theorem 5 to find the correlation of X(3.5)
0 from the known correlations of X(3)

0 [0] and
X

(3)
5 [0]. But Theorem 5 is based on the assumption of the independence of the correlations of the two i.e, Cor[∆X

(3)
0 [0]] given

∆X
(3)
5 [0] = 0 is same as Cor[∆X

(3)
0 [0]] given ∆X

(3)
5 [0] = 1. For high correlation values this assumption of independence

does not deviate the theoretical result much from the experiment. But here since the correlation is very small, for an accurate
computation we don’t take the assumption of independence. Rather we deal with the two conditions ∆X

(3)
5 [0] = 1 and

∆X
(3)
5 [0] = 0 separately. We have, given ∆X

(3)
5 [0] = 0, Cor[X

(3)
0 [0]] = 0.006304 and given ∆X

(3)
5 [0] = 1, Cor[X

(3)
0 [0]] =

0.006262. We take the probability approach to compute the correlation of ∆X
(3.5)
0 [0],

Pr(∆X
(3.5)
0 [0] = 0) = Pr(∆X

(3)
0 [0]⊕∆X

(3)
5 [0] = 0)

= Pr(∆X
(3)
0 [0] = ∆X

(3)
5 [0] = 0) + Pr(∆X

(3)
0 [0] = ∆X

(3)
5 [0] = 1)

= Pr(∆X
(3)
5 [0] = 0) · Pr(∆

(3)
0 [0] = 0 | ∆X

(3)
5 [0] = 0)+

Pr(∆X
(3)
5 [0] = 1) · Pr(∆

(3)
0 [0] = 1 | ∆X

(3)
5 [0] = 1)

= (0.500287× 0.503152) + (1− 0.500287)× (1− 0.503131)

≈ 0.5000123.

Therefore the correlation is approximately 0.0000246. By experiment we find this value to be approximately 0.0000328,
(Table II). Though there is a difference between this mathematically obtained result from the third round correlations and
the full experimental result, both of them show that the correlation claimed by [8] for this position is incorrect. A similar
theoretical approach can be used to verify the other results as well.

Keeping this knowledge in mind we have experimented with all other distinguishers which are listed in Table II with sufficient
number of random samples. For this computation we have used the CPU Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz,
the OS is 64-bit Ubuntu-20.04. To achieve the required correlation we have run the programs parallelly using GCC compiler
version 9.3.0 and for random number generation we have used drand48() function in the programs. We need O

(
1
pq2

)
random

samples to distinguish between two events, one with probability p and the other with probability p(1 + q), where q is small.
We have computed the correlations at output difference positions (0, 0), (1, 0), (12, 0), (13, 0) for 3.5 rounds ChaCha with
random samples 237. So in these cases we are using 6476.74

pq2 , 1056.63
pq2 , 19.86

pq2 and 17.59
pq2 samples and these should give success

probability around 100%, 100%, 99% and 98% respectively. But our experimental results do not match with their experimental
results. We have listed a comparison of the experimentally obtained differential correlations in the Table II.

We have used 246 ≈ 2.18
pq2 random samples to verify the correlation at position (5, 0) of 3.5 rounds ChaCha but we got a lower

correlation value than their claim. In this case, we have seen that when the number of random samples increases the correlation
decreases. The major change in the paper [8] compared to the previous existing best result in [4] is that in the 3.5 rounds it uses
an output difference position in the second row instead of first row of the state matrix (as in Crypto paper [4]). This approach
is definitely interesting because the words in the second row are updated much later than in the first row. Therefore, it has a
larger number of PNBs when one comes back from the 7-th round. This is also evident from the fact that they used 108 PNBs
in there key recovery attack whereas in [4] the authors used only 74 PNBs. However, the forward 3.5 rounds correlations
that they claimed in [8] are not accurate. As a result, we see that their attack does not actually improve the complexity
of [4]. Rather according to our calculation, the distinguisher and key recovery time complexities are as follows. To calculate
the linear correlation we have used the computational results 6-10 of [8, page 19 & page 21] which are 0.00867 ≈ 2−6.85,
0.0416 ≈ 2−4.59, 0.0278 ≈ 2−5.19, 0.000398 ≈ 2−11.29, 0.000047 ≈ 2−14.38 and the corresponding linear correlation is
εl = 2(−6.85−4.59−5.19−11.29−14.38) = 2−42.3. Then using our obtained differential correlation ε = 0.0000000568 = 2−24.07,
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we get the differential-linear correlation for 7 rounds ChaCha which is ε · ε2l = 2−108.67. This gives us a distinguisher for 7
rounds of ChaCha with complexity 2217.34+5 = 2222.34

(
here the procedure has to be repeated 25 times on average as in [8]

)
.

Using 246 random values, we can claim with confidence 77% that the mentioned correlation for 3.5 rounds at position (5, 0)
in [8] is not correct and the actual value is much smaller than 0.0000002489. However, more experimental values are required
to find the accurate value of ε.

Using our obtained forward correlation ε = 0.0000000568 and their obtained backward correlation εa = 0.000169 and 108
PNBs we get the data complexity N = 279.78 for optimal α = 33.27 and the time complexity will be 2227.83. Then for the
key recovery attack the final data and time complexities are 284.78 and 2232.83 respectively (since the procedure has to be
repeated 25 times on average as in [4], [8]). This time complexity is higher than the existing complexity 2230.86 of Crypto
2020 paper [4].

IX. CONCLUSION

We analysed the newly found 3.5 rounds single bit distinguisher in [4] which has a great impact on the key recovery attack
of ChaCha. Also, we revisited the recently improved key recovery attack of 7 rounds ChaCha from Eurocrypt 2021 [8] and
showed that their obtained 3.5 rounds single bit distinguishers are not accurate. The single bit distinguisher at position (5, 0)
has huge influence on the 7 rounds distinguisher and key recovery attack time complexities. Finally, we can conclude that the
best key recovery attack till now has been given by Beierle et. al. at Crypto 2020 [4] with time complexity 2230.86. In general,
theoretical analysis of such differential-linear attacks against ARX standards are not very frequent. In fact, the researches in
these areas are mostly done by treating the cipher like a black box and obtaining results experimentally. But the works in
this direction in the last few years have shown the importance of studying the various operations mathematically. Moreover,
these studies are not only useful to one cipher, but can be also helpful to cryptanalyse other ARX ciphers such as Sparkle [3]
permutation based authenticated cipher and hash function which is a finalist in the NIST lightweight competition [18]. Also,
there are other ARX based designs such as the MAC algorithm Chaskey [16], block cipher Sparx [11] etc. Therefore, we
believe that more importance should be given on mathematical studies of the ciphers for theoretical justification about security
analysis.
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