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Abstract. In this paper, we present a new secret trapdoor function for
the design of multivariate schemes that we call “Onyx”, suitable for en-
cryption and signature. It has been inspired by the schemes presented in
[19,20]. From this idea, we present some efficient encryption and signa-
ture multivariate schemes with explicit parameters that resist all known
attacks. In particular they resist the two main (and often very power-
ful) attacks in this area: the Gröbner attacks (to compute a solution
of the system derived from the public key) and the MinRank attacks
(to recover the secret key). Specific attacks due to the properties of the
function and its differential are also addressed in this paper. The “Onyx”
schemes have public key equations of degree 3. Despite this, the size of
the public key may still be reasonable since we can use larger fields and
smaller extension degrees. Onyx signatures can be as short as the “birth-
day paradox” allows, i.e. twice the security level, or even shorter thanks
to the Feistel-Patarin construction, like many other signatures schemes
based on multivariate equations.

Keywords: public-key cryptography, post-quantum multivariate cryptography,
UOV, HFE, Gröbner basis, MinRank problem, differential attacks.

1 Introduction

Many schemes in Multivariate cryptography have been broken. Among the most
spectacular attacks we can mention that the C scheme of Matsumoto and Imai
[21] has been broken in [22], the SFlash scheme submitted to the NESSIE compe-
tition has been broken in [7,13,14] , the LUOV scheme [4] submitted to the Post-
Quantum NIST competition has been broken in [11], and the GeMMS schemes
[8] has been broken in [26]. At present the two main general attacks in multi-
variate cryptography are the use of Gröbner bases in “direct attacks” (in order
to find a solution of the public equations involved without finding the secret
key, cf [15]), and the MinRank attacks in order to find the secret key [17,3]. In
many schemes the Gröbner attack is dangerous because the degree of regularity
of the public equations is smaller than for random quadratic equations. Recently



the MinRank attacks have become much more powerful than before due to the
introduction of the Minor equations [3].

Despite these dangerous and powerful attacks, multivariate cryptography re-
mains an interesting area of research. This is mainly due to three facts. First,
the schemes, if they can resist non-quantum attacks, are also expected to re-
sist quantum computers, i.e. multivariate cryptography is one of the family of
“post-quantum” cryptography (with lattices, codes, hash-based cryptography,
isogenies, combinatorial schemes). Second, the MQ problem (solving a set of
Multivariate Quadratic equations on finite field) is NP-hard on any finite field,
and seems to be very difficult to solve when the equations are random and the
number of variables is about the same as the number of equations. Third, some
properties can be obtained at present only with multivariate cryptography such
as ultra-short public-key signatures, or encryption with ultra-short blocs [24].

It is also interesting to notice that multivariate schemes (like many secret key
schemes) can benefit from small changes in their design (tweaks, perturbations,
etc.), offering them the ability to thwart otherwise dangerous attacks. See for
example Gemss [8].

Note also that it is in general much easier to design a signature scheme than
an encryption scheme: indeed at present, very few encryption candidates are
available. Hopefully, Onyx will be able to perform both modes.

2 Onyx: main ideas

2.1 Notations and context

As in all classical multivariate schemes, we use a finite field Fq with q elements
and we deal with the ring of polynomials in n variables (x1, . . . , xn) (or simply
x̄) over Fq, noted Fq[x̄] (implicitly modulo (xq1 − x1, . . . , xqn − xn)). Therefore
here Fq[x̄]m will refer to the algebra of n-ary m-dimensional polynomials, that
we call (n,m)-polynomials for short. The internal product of this algebra is
implicitly defined as the extension of the product defined over Fmq , itself defined
by the classical (field) product over Fqm and transferred by a proper isomorphism
Φ : Fqm → Fmq . By extension, for α ∈ Fqm , we denote ᾱ = Φ(α), ᾱ ∈ Fmq . We
denote ϕ the Frobenius mapping ϕ : Fqm 7→ Fqm , x → xq ; the multipliers
mappings Λα, α ∈ Fqm : Λα : Fqm 7→ Fqm , x → αx ; and finally the well known

linear mapping “trace”, Tr : Fqm 7→ Fq, x→
∑m−1
i=0 xq

i

.

When n = m, for a function F : Fqn → Fqn , we denote F̃ : Fnq → Fnq where

F̃ = Φ ◦ F ◦ Φ−1. For instance, the frobenius ϕ is a linear polynomial of degree
q of Fqn [x], whereas ϕ̃ is a linear (n, n)-polynomial of degree 1 of Fq[x̄]n.

We denote deg(f) the degree of a polynomial f . By extension, the degree of
a (n,m)-polynomial is the maximum degree of its (n, 1)-components.

We use Mn(Fq) to denote the set of square n× n-matrices with coefficients
in Fq, and we use the dot “.” to denote the (row) vector-matrix product or the
matrix-(column) vector. If x̄ is a (row) vector, then x̄t is its transposed (column)
vector.
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We call λ the security level, typically λ = 128. A scheme having a security
level λ means that an attacker can not break it by performing less than 2λ

operations.
Computer experiments evoked in this paper, related to Gröbner basis and

time measurement have been performed on the on-line site of MAGMA http:

//magma.maths.usyd.edu.au/calc/ [5].

2.2 The Onyx trapdoor and first properties

The Onyx function, following the example of HFE, specifically exploits the con-
struction of small field and big field. Here we will use odd characteristics > 3, q
will be therefore a small odd prime or odd prime power, typically q = 59. The
extension degree should also be preferably odd, such as n = 47, and m = n. In
what follows, whenever it makes sense, we have implicitly x̄ = Φ(x).

We define our Onyx function F as a univariate polynomial over Fqn :

F (x) = αx3 + βp(x̄)x, (1)

where α, β are random elements of Fqn and p is a homogeneous degree-2 (n, 1)-
polynomial of Fq[x̄]. That is to say we can express p(x̄) =

∑
i,j aijxixj , where

{aij} are random elements of Fq. It is worthwhile to note that we could also

express p(x̄) = Tr(
∑
i,j αijx

qi+j

), with some other elements {αij} of Fqn (de-
pending of {aij}). This latter expression shows that the degree of p ◦ Φ and
hence also F , is not bounded by a small value, but can be as big as 2qn−1,
contrary to the trapdoor functions of HFE.

We can note also that, due to the particular expression of F , F̃ is a degree-3
homogeneous (n, n)-polynomial. Classically, we can use two additional bijective
linear secret mappings S and T of Fnq , and publish P = S ◦ F̃ ◦ T , which also
will be a degree-3 homogeneous (n, n)-polynomial.

2.3 Equivalent keys

The study of equivalent keys is important to assess the security of a multivariate
scheme (see [18]). In our case, two tuples of secret keys (S, T, F ) and (S′, T ′, F ′)
are said equivalent if they lead to the same public key. A first step in this study
is to determine the “sustainders”, which are the families of linear mappings
(σ, τ), such that σ ◦ F ◦ τ keeps the shame “shape”. Notice that whatever the
linear mapping τ , then p′ = p ◦ τ̃ is eligible for the Onyx scheme. It follows
that if σ ◦ F ◦ τ is eligible for the scheme, then (S ◦ σ̃−1, τ̃−1 ◦ T, σ ◦ F ◦ τ)
is obviously an equivalent key. Among the sustainders, are the multipliers: Λγ ,

γ ∈ Fqn and the iterates of the Frobenius: ϕ(i) : x → xq
i

. Since we have:

Λγ ◦ (αx3 + p(x̄)βx) ◦ Λδ = αγδ3x3 + p(Φ(δx))βγδx, by choosing δ =
√
β/α,

γ = 1/βδ, we see that there exists always an equivalent key with α′ = β′ = 1(3).

3 If β/α is not a square, there must exist l ∈ Fq, l 6= 0 such that lβ/α is a square.
Therefore consider α′ = α, p′ = p/l, β′ = lβ, which leads of course to the same F .
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So from now, we may consider that the secret Onyx function is simply

F (x) = x3 + p(x̄)x, (2)

where p is still a homogeneous degree-2 polynomial of Fq[x̄], moreover unitary
(the coefficient of its leading monomial, for a given monomial order, is 1). With
this new definition, the equivalent keys are most probably only the n − 1 ones
induced by the iterated Frobenius (σ, τ) = (ϕ(i), ϕ(n−i)), i = 1, . . . , n−1, and the
q−1 ones induced by the “small” multipliers (σ, τ) = (Λ1/a3 , Λa), a ∈ Fq, a 6= 0.

2.4 Weak keys

Following the example of [6], we should also be careful about undesired properties
of F leading to structural attacks. We have just seen the existence of mappings
(σ, τ), such that σ ◦ F ◦ τ is (part of) an equivalent key. However, is it possible
to find (σ, τ) such that exactly σ ◦ F ◦ τ = F? Indeed, this would lead to the
following attack: find two linear mappings A and B such that P ◦A = B ◦ P,
then we would have something like : A = T−1 ◦ τ̃−1 ◦T , and B = S ◦ σ̃ ◦S−1. We
know that the small field multipliers are such candidates, however they lead to
trivial equations that reveal nothing about S and T. If we look at the Frobenius
and its iterates, then p satisfying for all x ∈ Fnq , p ◦ ϕ̃(x̄) = p(x̄) (this is the case

for instance if p(x̄) = Tr(xq
i+qj ) ) leads indeed to a weak key. Since p may be

chosen at random, it is very unlikely that it fulfills this condition.

2.5 Rank of the Onyx function

An important aspect of the Onyx function is its rank, since any rank defect in
the public key due to the secret function could be exploited by an attacker. Here
since the public equations are degree-3 polynomials, we must explain what kind
of rank we are talking about. Classically, the rank of a degree-2 polynomial P is
the minimum number r of products of two linear polynomials Lij , j = 1, 2, in the
possible sums P (x) =

∑r
i=1 Li1(x)Li2(x). By extension, the rank of a degree-3

polynomial P is the minimum number r of products of three linear polynomials
Lij , j = 1, 2, 3, in the possible sums P (x) =

∑r
i=1 Li1(x)Li2(x)Li3(x). Since we

have F (x) = x(x2 + p(x̄)), and since p is randomly chosen, we may assume that
with overwhelming probability, x2 + p(x̄) has rank n and therefore, F has also
rank n.

Notice also that, although the computation of the rank of a degree-2 poly-
nomial (i.e. quadratic) is well known and has polynomial complexity, the com-
putation of the rank of a degree-3 (cubic) polynomial is a NP-Hard problem.4

4 Degrees 2 and 3 behave totally differently: for instance, the maximum rank of a cubic
form is unknown, the best known upper bound is d(3/4)n2e, see [2].
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2.6 Special inversion of the Onyx function

The special shape of the Onyx function was chosen such that it is of course
possible to efficiently inverse it, that is to efficiently and practically compute
the solutions in x of the equation F (x) = y, for any given y in Fqn . Since the
degree of F is huge (possibly 2qn−1 + 1), a direct method such as the Berlekamp
algorithm cannot be used primarily. On the other hand, we can exploit the
property of p which is in Fq[x̄]. Moreover, we have chosen q small enough, so
that it is possible to make an exhaustive search of the value of p(x̄) which can take
only q possibilities. Therefore, a first method to solve F (x) = y is to solve the q
equations x3 + rx = y, r ∈ Fq, (easy to solve, since degree-3 polynomials), and
keep the solutions satisfying p(x̄) = r. A second method involves the elimination
of p(x̄) by using the natural field equation: for all x in Fqn , p(x̄)q = p(x̄). Hence
we get

x3q − xq+2 + yxq−1 − yq = 0 (3)

which can be solved using Berlekamp algorithm for a degree-3q polynomial. The-
ory and experiments show that solving q degree-3 polynomials (first method) is a
little bit more efficient than solving one degree-3q polynomial (second method).5

We also assume and have verified by experiments that the equation F (x) = y
behave almost as a random univariate equation over Fqn . Indeed, the probabil-
ities that the equation has zero solution and one solution are very close to the
theoretical value exp(−1) ; it has in average approximately one solution, like a
random equation. The only difference with a random equation is that it cannot
have more than 3q solutions (due to its special form) but the probability to
observe a random equation with so many solutions is very low.

3 Security analysis

3.1 Direct attacks

At the light of [10], we think that by choosing odd q big enough, we are safe
from the algebraic attacks that aims to invert directly the system using Gröbner
basis computation. Indeed, experiments with small values of n show that the
degree of regularity of the system F̃ (x̄) = ȳ (without field equation) is 2n + 1,
which is also the degree of regularity of a random system of degree 3 with same
dimensions (number of variables and equations). If we include the field equations
xqi = xi, we again observe the same degree of regularity with our system and
a random system of same dimensions with field equations added. We therefore
estimate that the hybrid attack (mix of exhaustive search and Gröbner basis
computation) is the best option for an attacker. See Table 1 for the complexity
of the Hybrid attack. Note that in the case of the signature mode, we choose to
have qn ≈ 22λ, which raises values of n much higher than what is needed to be
above the attack (at least for values of q less than 800). For encryption mode,
minimum values of n that are equal to or just above the threshold of the attack
can be chosen.
5 We can even use the Cardano’s formula since we deal with cubics (see Sec. A).
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q n C Dreg k

11 41 132.09 9 23

23 35 131.00 13 13

59 31 130.33 16 8

131 29 128.88 19 5

q n C Dreg k

11 65 204.24 13 35

23 53 194.88 15 23

59 47 192.92 26 9

131 47 203.28 26 9

q n C Dreg k

11 83 257.85 17 42

23 71 256.87 20 29

59 65 262.00 29 16

131 61 260.70 35 10

Table 1. Complexity (log2) of hybrid attack for various random systems of n degree-3
equations in n variables in Fq, k: number of variables to fix for the best trade-off, Dreg:
degree of regularity for the best trade-off, C = qk

(
n−k+Dreg

Dreg

)ω
, ω = 2.37

3.2 Rank attacks

Onyx was designed as the combination of an HFE-like polynomial, i.e. with
bounded degree, and a dense non-bounded degree polynomial which may in
some sense “vanish” at inversion time. As a desired effect, the secret function
has rank n. We know that by eliminating p, we can get

F (x)qx− F (x)xq = x3q+1 − xq+3. (4)

Said otherwise, there exists an equation satisfied by the secret function, and
hence also by the public equation, with small rank (it is the sum of only 2
products involving only x and xq). However, it is not possible to exploit it by
mounting an efficient MinRank attack. Indeed, if we transpose (4) into the pub-
lic space, we get the following “modified” MinRank Problem: find coefficients
of S−1 and T defined by

∑
tix

qi = T (x) and
∑
six

qi = S−1(x), such that∑
i,j (sqi−1tj − sit

q
j−1)Pq

i

xq
j

has low rank. We believe that this problem has an
exponential complexity, since it is clearly quadratic in the unknowns (si) and
(ti).

3.3 Key recovery attacks, differential and specific attacks

The differential is a very useful tool that gives a strong insight of a function. It
has been very useful for various cryptanalysis (see for instance [16,25,12].) The
differential of a function f at a point k is defined as: ∆k f(x) = f(x+k)−f(x)−
f(k) + f(0). When f is quadratic, it is well known that ∆k f is linear function.

When f is cubic, there exists a function ∆(2,1) f(k, x), quadratic in k and linear

in x such that: ∆k f(x) = ∆(2,1) f(k, x) + ∆(2,1) f(x, k). In the particular case of
the Onyx function, we have F (x) = x3+p(x̄)x. First we can write p(x̄) = x̄.M.x̄t,
where M is some symmetric matrix of Mn(Fq). Then we get :

∆(2,1) F (k, x) = 3k2x+ p(k̄)x+ 2(k̄.M.x̄t)k. (5)

The properties of the differential of the secret Onyx function are transferred
to the public equations due to the relation P = S ◦ F̃ ◦ T . Then, we get :
∆(2,1) P(k, x) = S(∆(2,1) F̃ (T (k̄), T (x̄))) or equivalently: ∆(2,1) P(k̄, .) = S ◦
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∆(2,1) F̃ (T (k̄), .)◦T , which means that ∆(2,1) P(k, .) and ∆(2,1) F̃ (T (k̄), .) are lin-

early equivalent. A thorough analysis shows that the linear mapping ∆(2,1) F (k, .)
is most of the time regular (full rank), and some times has rank n − 1. (From
now on, we implicitly do not consider the trivial case k = 0.) In the latter cases
indeed, its kernel is a vector line with basis k0 = k/(3k2 + p(k̄)), and the con-
dition 2(k̄.M.k̄t0) = −1 is met, which has roughly the probability 1/q to occur.
To be complete, we must say that the number of k that cancel 3k2 + p(k̄) is
negligible (at most the q elements of Fq), and may be even zero if p(1) 6= −3.

This knowledge in mind, by picking at random values k and computing when-
ever possible a vector k0 in the kernel of ∆(2,1) P(k, .), we then get some relations
involving known values k and k0 and the secret parameters T and p:

3T (k̄0)T (k̄)2 + p(T (k̄))T (k̄0) + 2(T (k̄).M.T (k̄0)t)T (k̄) = 0. (6)

We can get a lot of such equations by picking all possible values k, however
the dimension of the space spanned by them is of course limited. Since the n
coefficients of k appear in the equations with degree 1 and the n coefficients of k0
appear with degree 2, the dimension is bounded by n

(
n
1

)(
n+1
2

)
, which is O(n4).

The equations can be expressed in the n2 coefficients of T in degree 3 and the
n(n + 1)/2 coefficients of p (or M) in degree 1, which raises O(n8) monomials
of degree 4 in the unknowns. We estimate that these systems have a (huge)
exponential complexity (see Sec. B).

An other idea may be to get rid of p and M in these equations by using the
field equation. We get then :

T (k0)q
2+qT (k)2q+1 + T (k0)q

2+1T (k)2q
2+q + T (k0)q+1T (k)q

2+2

− T (k0)q
2+qT (k)2q

2+1 − T (k0)q+1T (k)q
2+2q − T (k0)q

2+1T (k)q+2 = 0. (7)

These equations can be expressed in the n2 unknown coefficients of T and the
2n coefficients of k and k0. They are homogeneous of degree 10: degree 5 in T ,
3 in k and 2 in k0. So we get O(n10) unknown monomials and the number of
independent equations is bounded by n

(
n+1
2

)(
n+2
3

)
= O(n6). Again we estimate

(see Sec. B) that solving these systems is less complex than the previous ones,
but nevertheless, has still an exponential complexity.

We can take an other path, knowing that among all the equations (6), about
one out of q may satisfy p(T (k̄)) = 0 (although we have no way to know which
ones). Then we would get a set of equations of the kind

3T (k̄0)T (k̄) + 2(T (k̄).M.T (k̄0)t) = 0. (8)

Suppose that we collect N couples (k, k0) satisfying equation (6) and select a
fraction 1/q of them supposedly satisfying (8), and suppose we could retrieve T ,
even at no cost, the attack would cost at least a factor

(
N
N/q

)
, which is exponential

since we should have N/q > n2 (at least more equations than the unknown
number of coefficients of T ).

All in all, it seems that this very specific property of the kernel of the dif-
ferential does not raise a system that can be solved efficiently nor can retrieve
information of the secret key.
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4 Signature mode

The Onyx function is appropriate for a signature scheme, with a small drawback
due to the failure rate. As it is, we have seen that the probability that the Onyx
function has no pre-image is about 1/e or 0, 37%.

To circumvent the failure rate, a first option is the following: let h be the hash
of the message M to be signed, draw a random string r, until F (x) = S−1(h‖r)
has a solution. Then the signature is T−1(x)‖r. To verify a signature σ‖r of a
message M , compute h the hash of M , and then just check that P(σ) = h‖r. The
length of the random string r should be chosen such that the resulting failure
rate become negligible (≈ dlog2 λe bits)6.

A second option is to introduce “vinegar” variables in the secret scheme. The
Onyx function with vinegar becomes:

F (x, x̄′) = x3 + (p(x̄‖x̄′) + Φ−1(Q(x̄′))x+ Φ−1(C(x̄′)), (9)

where x̄′ is a vector of v variables of vinegar, Q and C are respectively degree-
2 and degree-3 (v, n)-polynomials, p is now a degree-2 (n + v, 1)-polynomial.
We must also adapt T which is now a Fn+vq linear mapping. The general idea
is obviously that when x̄′ is set, the equation in F (x, x′) = y can be solved
efficiently in x. Again, choose the number of vinegar variables big enough, so
the failure rate become negligible (for instance chose v such that qv > λ)6. To
sign a message with hash h, compute ȳ = S−1(h), draw at random x̄′ until
F (x, x′) = ȳ has a solution in x, and finally a signature is σ = T−1(x̄‖x̄′). To
verify a signature σ of a message M , compute h the hash of M , and then just
check that P(σ) = h.

See Table 2 for possible parameters for signature mode.
In tables 2,3,4, we present the times in two columns, one is named “Serial” :

we assume that all calculations are carried out consecutively. The second one
is named “Parallel” : we assume that calculations are carried out in different
threads simultaneously. So roughly, for verification and encryption the parallel
time is the time required to evaluate one single public equation, (so it is evaluated
as the serial time divided by n); for decryption and signature the parallel time is
the time required to compute the roots of one single polynomial (so it is evaluated
as the serial time divided by q). These times could be of course greatly improved
according the platform, or by hardware since computations only require common
operations in the field Fq.

Verification ms. Signature ms.λ
Security Bits

q n
Serial Parallel Serial Parallel

Pub. Key
KBytes

Sig. size
Bits

128 11 77 1190 15,5 23 2,1 3045 267
128 23 59 364 6,2 41 1,8 1328 267
128 59 47 134 2,9 74 1,3 650 277
128 131 37 47 1,3 117 0,9 339 261

6 The failure rate after λ attempts is e−λ � 2−λ.
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Verification ms. Signature ms.λ
Security Bits

q n
Serial Parallel Serial Parallel

Pub. Key
KBytes

Sig. size
Bits

192 59 67 628 9,4 90 1,5 2633 395
192 131 55 254 4,6 162 1,2 1610 387
256 59 89 1900 21,3 140 2,4 8110 524
256 131 73 897 12,3 227 1,7 4930 514

Table 2: Various parameters for signature mode. Signature involves
here the Cardano’s formulas and does not include the length of a
random string which is whatsoever small (≈ 8 bits).

5 Encryption mode

The Onyx function is also suitable for encryption mode. However, a slight draw-
back is that the decryption may return more than one value. There are for-
tunately several ways to deal with that, by using an authentication function
H for instance. First option (external MAC): to encrypt a message x, one
sends (ȳ, h) = (P(x̄), H(x)). To decrypt a message (ȳ, h), for each solution of
F (x) = Φ−1(S−1(ȳ)), compute z̄ = T−1(x̄) and return the value z that matches
H(z) = h. Second option (internal MAC): to encrypt a message x, send ȳ =
P(x̄‖H(x)). To decrypt a message ȳ, for each solution of F (x) = Φ−1(S−1(ȳ)),
compute (z̄‖h) = T−1(x̄) and return the value z that matches H(z) = h.

See Table 3 for possible parameters for encryption mode.

Encryption ms. Decryption ms.λ
Security Bits

q n
Serial Parallel Serial Parallel

Pub. Key
KBytes

Block. size
Bits

128 11 41 75 1,83 5 0,45 253 141
128 23 35 37 1,06 11 0,48 170 158
128 59 31 21 0,68 23 0,39 127 182
128 131 29 15 0,52 51 0,39 131 203
192 59 47 135 2,87 47 0,80 650 276
256 59 65 559 8,60 53 0,90 2336 382
256 131 61 416 6,82 112 0,85 2423 429

Table 3: Various parameters for encryption mode. Decryption in-
volves here the Cardano’s formulas.

6 Short signatures

In the case of Onyx, it seems profitable to take advantage of the parameters
of the encryption mode and use them in signature mode, by the mean of the
iteration process used for instance in Gemss ([8]) or Quartz ([23]) also called the
“Feistel-Patarin” mode. The idea is to avoid the birthday paradox attack, while
keeping a signature size below the double of the security level, by chaining many
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inversion processes of the secret function. For L rounds, L values Y1, . . . , YL are
derived from the hash of the message to sign, and then L+ 1 values X0, . . . , XL

are computed, satisfying X0 = 0, and P(Xi) = Yi
⊕
Xi−1, for i = 1, . . . , i = L,

and finally XL is the signature. To produce a signature indeed, the inversion of
the secret function is used L times. To verify a signature, the L values Y1, . . . , YL
are computed from the message, the L + 1 values X0, . . . , XL are computed
in reversed order, starting with XL equal to the signature and then Xi−i =
P(Xi)

⊕
Yi, for i = L, . . . , 1. The signature is valid if and only if X0 is 0. For a

security level λ, and a block size b (input) of the secret function, the number L
of iterations must be chosen such that (see [23] or [8]) :

b
L

L+ 1
≥ λ.

λ
Bits

q n
L

Rounds
Verification ms. Signature ms Pub. Key

KBytes
Sig. size

BitsSerial Parallel Serial Parallel
128 11 41 10 750 18,3 80 7,3 253 171
128 23 35 5 185 5,3 88 3,8 170 183
128 59 31 3 63 2,0 110 1,9 127 200
128 131 29 2 30 1,0 162 1,2 131 217
192 59 47 3 405 8,6 224 3,8 650 294
256 59 65 3 1677 25,8 252 4,3 2336 400
256 131 61 2 832 13,6 355 2,7 2423 443

Table 4: Various parameters for short signature.

In table 4, times are deduced from those of table 3 by the following formulas :
Verification time is Encryption time ∗ L. Signature time is Decryption time
∗ L/(1 − e−1) (to take the failure rate into account). Signature size is : Block
size + Ldlog2(λ)e (to take into account a random string for dealing with failures).
Notice that (q = 59, n = 31) and (q = 131, n = 29) give very efficient schemes
compared to Gemss for instance.

A Cardano’s formula for depressed cubic

Let x3 + ax+ b = 0 a so-called “depressed” cubic to solve in an algebraic closed
field with characteristic 6= 2, 3. Let δ be a square root of b2 + 4a3/27 and u, v
be cubic roots of (−b + δ)/2 and (−b − δ)/2 satisfying uv = −a/3. Let j be
a solution of x2 + x + 1 = 0, then according to Cardano’s formula, the three
solutions of x3 + ax+ b = 0 are u+ v, uj + vj2, uj2 + vj.

More specifically, to get the solutions of the cubic in a particular field Fqn ,
we need to compute square and cubic roots in this field, and possibly in higher
extensions. In order to have simple and deterministic computations, we make the
following choices: qn ≡ 3 mod 4 and qn ≡ 2 or 5 mod 9. Notice that with this
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choices, e2, e3 and e′3 defined hereafter, are integers. With these parameters also,
computations require at most a quadratic extension. Indeed, in these fields −1
is not square (Euler’s criterion), and 3 is a square (law of quadratic reciprocity).
So we can define a quadratic extension Fqn [i] where i satisfies i2 = −1. In this
extension, we have j = (

√
3i−1)/2 and j2 = (−

√
3i−1)/2 where

√
3 is a square

root of 3 in Fq. Moreover, let e2 = ((qn − 1) + 2)/4. For all y in Fqn we have
0 = ye24−y2 = (ye22−y)(ye22+y), so the square roots of y are either ±ye2 in Fqn
or ±iye2 in Fqn [i]. Finally, let e3 = (2(qn−1)+1)/3 and e′3 = (2(q2n−1)+3)/9.7

For all y in Fqn , y = ye33, so y is a cube and ye3 is its cubic root. For all y in

Fqn [i] we have 0 = ye
′
3
9
− y3 = (ye

′
3
3
− y)(jye

′
3
3
− y)(j2ye

′
3
3
− y). Since j and j2

are not cubes in Fqn [i](8) then if y is a cube in Fqn [i], ye
′
3 and jye

′
3 and j2ye

′
3

are its three cubic roots in Fqn [i].
For example, to compute the solutions of x3 + ax + b = 0 in F5947 , we first

compute a square root of 3 in F59:
√

3 = 48, so j = (48i − 1)/2. Then we
compute ∆ = b2 + 4a3/27 and δ = ∆e2 in F5947 . If δ2 = ∆, then the cubic
has only one solution given by: ((−b + δ)/2)e3 + ((−b − δ)/2)e3 . Otherwise we
compute U = (−b+ iδ)/2 and u = u0 + iu1 = Ue

′
3 (in F5947 [i]). If u3 = U , then

the cubic has three solutions in F5947 given by 2u0,−u0 +
√

3u1,−u0 −
√

3u1.
Otherwise the cubic has zero solution in F5947 .

A.1 Primitive ninth root of unity in Fq

We suppose there exists en element j in a field Fq that satisfies j2 + j + 1 = 0,
q not being a power of 2 or 3, and would like to know on which condition upon
q the cubic roots of j and j2 are also in Fq. There are six of these roots, which
are also the roots of the polynomial pj(x) = x6 + x3 + 1. A simple proof by
induction shows that for l > 1, gcd (xl − x, pj) = pj if l ≡ 1 mod 9 and 1
otherwise. Therefore, the answer is simple: the cubic roots of j are in Fq if and
only if q ≡ 1 mod 9.

B XL algorithm and its complexity

In section 3.3 we are lead to evaluate the complexity for solving systems with
very large number of unknowns and equations. Since they are over-defined (more
equations than unknowns), they have most probably few solutions but they have
also large degrees, which makes difficult to evaluate their complexity. By fixing
a few unknowns, we can assume that a system has always 0 or 1 solution. So,
we suppose in this section that we want to solve a non-homogeneous system of
m equations of degree d in n variables over Fq which has probably one solution.
We follow here the idea of [9], which is to solve the system by linearization, that
is, find the smallest degree D such that, when multiplying all equations by all
monomials of degree D − d, we get more new equations than new monomials

7 if qn ≡ 2 mod 9, or e′3 = ((q2n − 1) + 3)/9 if qn ≡ 5 mod 9.
8 Fqn [i] has q2n elements and q2n ≡ 4 or 7 mod 9, see Sec. A.1
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(of degree at most D). Then linearization amounts to compute the row echelon
form of a matrix, hence the presence of ω in the formula of complexity.

Instead of finding a generic formula for D, it seems more appropriate to
search it with a simple routine, by try and error, since most probably in our
cases, D is bounded by n (or a polynomial function in n). Results corresponding
to values (q, n) of Table 3 are summarized in Table 5.

It has been shown that XL may be not as efficient as F4/F5 (see [1]), however
the results in Table 5 are so high that even if results with F4/F5 were half of
those, they would not still be threatening.

q n λ C1 D1 C2 D2

11 41 128 1189.38 78 575.06 35

23 35 128 983.68 67 488.06 31

59 31 128 853.63 60 426.82 28

131 29 128 795.01 57 402.51 27

59 47 192 1400.43 89 649.57 38

59 65 192 2046.13 121 905.45 49

131 61 256 1901.31 114 854.53 47

Table 5. Complexity Ci (log2) and degree Di of the XL attack for systems (i = 1)
issued from equations (6) and systems (i = 2) from equations (7), ω = 2.37.
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