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Abstract. We present an implementation of the hash-based post-quantum signature
scheme SPHINCS+ that enables heavily memory-restricted devices to sign messages
by streaming-out a signature during its computation and to verify messages by
streaming-in a signature. We demonstrate our implementation in the context of
Trusted Platform Modules (TPMs) by proposing a SPHINCS+ integration and a
streaming extension for the TPM specification. We evaluate the overhead of our
signature-streaming approach for a stand-alone SPHINCS+ implementation and for
its integration in a proof-of-concept TPM with the proposed streaming extension
running on an ARM Cortex-M4 platform. Our streaming interface greatly reduces the
memory requirements without introducing a significant performance penalty. This
is achieved not only by removing the need to store an entire signature but also by
reducing the stack requirements of the key generation, sign, and verify operations.
Therefore, our streaming interface enables small embedded devices that do not have
sufficient memory to store an entire SPHINCS+ signature or that previously were
only able to use a parameter set that results in smaller signatures to sign and verify
messages using all SPHINCS+ variants. Since the streaming concept aggravates
fault attacks on hash-based signature schemes, we briefly discuss countermeasures to
attenuate such attacks in a signature-streaming scenario.
Keywords: SPHINCS+ · PQC · Signature Streaming · TPM · ARM Cortex-M4.

1 Introduction
Experts predict that within the next decade quantum computers may be available that will
be capable of breaking current asymmetric cryptography based on the integer factorization
and discrete logarithm problems by applying Shor’s algorithm. This creates a significant
pressure on academia and practitioners to propose, analyze, implement, and migrate to new
cryptographic schemes that are able to withstand attacks aided by quantum computing.
Such schemes are jointly referred to as Post-Quantum Cryptography (PQC). The research
effort on PQC has culminated in a standardization process by the National Institute of
Standards and Technology (NIST) in the US that started in December 2016 and is expected
to be finished in 20241.

Currently, at the time of writing this paper in summer 2021, the NIST standardization
process is in the third round with seven finalists that might get standardized as as
result of this round and eight alternate candidates that might either replace finalists if

1https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline
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vulnerabilities or implementation issues were to be found or that may be considered for
future standardization in a possible fourth round. One of these alternate candidates is the
hash-based PQC signature scheme SPHINCS+ [HBD+20].

Among the alternate candidates, SPHINCS+ has a somewhat special role: NIST has
stated in the 2nd round report [MAA+20] that “NIST sees SPHINCS+ as an extremely
conservative choice for standardization” and that if “NIST’s confidence in better performing
signature algorithms is shaken by new analysis, SPHINCS+ could provide an immediately
available algorithm for standardization at the end of the third round.” This statement has
been emphasised also in a posting to the NIST mailing list by NIST on January 21, 20212.

Two major obstacles for the widespread adoption of SPHINCS+ and also the reason
why SPHINCS+ was not selected by NIST as finalist in round 3 are its relatively large
signature sizes and the relatively high computational signing cost. These costs are not
prohibitive on larger computing systems like servers, PC, notebooks, tablets, and smart
phones — but they might be a burden for small embedded devices with small computing
power and small memory.

An example for such small devices are Trusted Platform Modules (TPMs). TPMs are
Hardware Security Modules (HSMs) that are tightly coupled with a computing system and
that provide an anchor of trust for sensitive applications. TPMs have a small protected
and persistent memory for the secure and temper-protected storage of secret encryption
and signature keys as well as public verification keys. Furthermore, TPMs can act as
cryptographic engines that can encrypt and decrypt data as well as sign and verify messages
using the securely stored key material. The idea is that secret keys never leave the TPM
and that public keys can be stored securely and protected from manipulation to reliably
authenticate communication partners. TPMs typically have a very limited amount of
RAM and fairly limited computational capabilities.

Hash-based signature schemes come in two flavors: They can be stateful, meaning that
a security-critical signature state needs to be maintained by the signer and updated after
each signature computation, and they can be state-free, meaning that such a state does
not need to be maintained. SPHINCS+ is a state-free hash-based signature scheme while
XMSS [BDH11] (published as an IETF-RFC [HBG+18]) is a closely related example for a
stateful scheme.

For TPMs, stateful signature schemes like XMSS might appear to be the better choice
among hash-based signature schemes: On the one hand, signatures of state-free schemes
like SPHINCS+ are so large that they might not fit into the TPM memory and on the
other hand, the tamper-proof and unclonable storage of TPMs mitigates many of the
commonly stated concerns when dealing with stateful schemes. However, the persistent
storage typically is implemented as flash memory that has a significant wear-down over
time. If too many write operations are performed at the same memory address, errors
might occur that would render stateful signature schemes insecure. Storing the sensitive
state persistently and securely in a TPM hence is not a simple task and might pose a
security risk. Therefore, using a state-less signature scheme like SPHINCS+ might be more
secure — if the larger signatures can be handled.

Depending on variant and parameter set, the size of SPHINCS+ signatures ranges
between 8 kB and 50 kB although private and public keys are very small with 64 B to 128 B
and 32 B to 64 B respectively. Some embedded devices (including TPMs) do not have
sufficient memory to store an entire signature during signing or verifying a message. As a
solution to this problem, splitting a signature into several smaller parts and streaming these
parts out of or into an embedded device has been proposed and evaluated for SPHINCS-256
signing and verification in [HRS16] and for SPHINCS+ verification in [GHK+21]. In this
paper, we are refining this approach and we are evaluating it exemplarily on TPMs.

2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/2LEoSpskELs/m/VB1jng0aCAAJ
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Contributions. Our contributions in this paper are:
• the integration of a signature streaming interface for signing and verification into

the reference implementation of SPHINCS+,

• a performance and stack-usage evaluation of this interface on ARM Cortex-M4,

• the design and prototypical implementation of a SPHINCS+ and streaming extension
for the TPM specification,

• the evaluation of this TPM-streaming protocol with our streaming modification of
SPHINCS+ on the Cortex-M4 platform, and

• a brief discussion of the impact of fault attacks on SPHINCS+ in the context of this
signature-streaming scenario with the proposal of a mitigating countermeasure.

The source code of our implementation together with the TPM prototype integration is
available at https://github.com/QuantumRISC/mbedSPHINCSplusArtifact under BSD
license.

Related Work. There is some work on computing hash-based signatures on embed-
ded devices. Wang et al. propose hardware accelerators for XMSS on a RISC-V plat-
form in [WJW+19] and Amiet et al. introduce hardware accelerators for SPHINCS-256
in [ACZ18] (SPHINCS-256 is a predecessor of SPHINCS+). Kölbl describes an implemen-
tation of SPHINCS on a relatively large ARMv8-A platform in [Köl18] and Campos et al.
compare LMS and XMSS on an ARM Cortex-M4 in [CKR+20]. The pqm4 project [KRS+]
provides performance measurements of several PQC schemes including SPHINCS+ on a
Cortex-M4 platform. All of these implementations assume that the embedded platform
has sufficient memory to store an entire hash-based signature.

As mentioned above, the idea to stream signatures has been applied to SPHINCS+ (or
its predecessors) before. In [HRS16], an implementation is presented that computes a 41 kB
signature of SPHINCS-256 [BHH+15] on a Cortex-M3 processor with 16 kB of RAM. The
authors show that key generation, signature generation, and signature verification are
possible on the device by splitting the SPHINCS-256 signature into several relatively large
parts, which are streamed separately. In [GHK+21] Gonzalez et al. investigate signature
and public key streaming for verification for several PQC schemes including SPHINCS+ in
only 8 kB of RAM using relatively large blocks for streaming. We extend and refine their
work to cover also signing (and key generation) and we provide a more detailed analysis
for more SPHINCS+ parameter sets and for the use of signature streaming for TPMs.

Streaming of PQC schemes has also been discussed in other publications. For example,
Gonzalez et al. also apply their streaming approach for signature verification to the
PQC signature schemes Rainbow, GeMSS, Dilithium, and Falcon [GHK+21]. Roth et al.
in [RKK20] are streaming the large public key of the code-based scheme Classic McEliece
into and out of a Cortex-M4 processor.

Structure of this paper. This paper is structured as follows: We provide an overview
of SPHINCS+ and TPMs in Section 2. We then describe the implementation of our
streaming interface and its integration into a TPM prototype in Section 3 and evaluate
our implementation in Section 4. We briefly discuss the impact of signature streaming
for SPHINCS+ on random fault attacks with potential countermeasures in Section 5 and
conclude our paper.

2 Preliminaries
This section provides an introduction to the signature scheme SPHINCS+ and to TPMs.

https://github.com/QuantumRISC/mbedSPHINCSplusArtifact
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Figure 1: Illustration of a small SPHINCS+ structure (figure from [BHK+19]).

2.1 SPHINCS+

The state-free hash-based post-quantum signature scheme SPHINCS+ has been described
in [BHK+19] and has been submitted to the NIST PQC standardization process as defined
in the submission document [HBD+20]. It is composed of a hypertree of total height h
with d layers of Merkle signature trees. These trees have WOTS+ one-time signatures at
their leaves such that the inner trees sign Merkle trees at the next hypertree layer and the
leaves of the bottom layer sign FORS few-time signatures, which in turn are used to sign
message digests. Figure 1 shows an example of the hypertree structure of SPHINCS+ with
reduced (hyper-)tree sizes for illustration. The output length n (in byte) of the underlying
hash function defines the security level of a SPHINCS+ signature.

Key generation of SPHINCS+ is relatively expensive, since the entire first-layer tree of
the hypertree including all WOTS+ public keys on its leaf nodes needs to be computed in
order to obtain the root node of the first-layer tree as public key.

The process of signing a message using SPHINCS+ is very similar to signing with an
XMSS multi-tree [BDH11; HBG+18] with a notable distinction that XMSS does not use a
few-time signature scheme at the bottom layer of the hypertree. For signing a message
using SPHINCS+, a FORS private key at the leaves of the trees at the bottom layer is
selected and the message is signed with this few-time signature key. The resulting public
key is then signed with the corresponding WOTS+ one-time signature, an authentication
path (the gray nodes in Figure 1) through the Merkle tree is computed as part of the
signature, and the root node of the Merkle tree is obtained. This tree root is then signed
using the corresponding WOTS+ one-time signature of the corresponding tree at the next
higher layer. The WOTS+ public key is computed and again authenticated by computing
an authentication path with the corresponding Merkle tree root. This process is repeated
over the layers of the inner trees until finally the root tree of the hypertree is reached and
the authentication path of the root tree have been computed.

Verification works equivalently: First, the FORS signature is used to compute a
candidate for the FORS public key on the bottom layer of the hypertree. This candidate
is then used to compute a candidate for the Merkle tree root of that bottom-layer tree
using the WOTS+ one-time signature and the authentication path. This root node is then
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used together with the WOTS+ one-time signature and the authentication path on the
next layer of the hypertree to compute a candidate for the Merkle-tree root at that layer
and so forth. Finally, the candidate of the root node of the root tree of the hypertree is
compared to the public key of the proclaimed signer of the message to verify the signature.

WOTS+. The one-time signature scheme WOTS+ is based on the idea to use hash chains
(attributed by Merkle to Winternitz in [Mer90]). For key generation, random bit-strings of
length n are generated and each hashed w times to obtain the end node of the chain. These
end nodes are then concatenated and hashed to obtain the WOTS+ public key. (Note that
XMSS instead uses an unbalanced binary l-tree to compute the corresponding public key.)

For signing a message, the signer splits the message digest into words of w bits and
computes a checksum over these words, which is split into w-length words as well. Each of
these w-bit long words then serves as index into the hash chains: The signer iteratively
recomputes the hash chain starting from the corresponding secret value until the node
indexed by the w-bit word is reached and includes this value in the signature.

For verifying a WOTS+ signature, the verifier recomputes the w-bit indices from the
message digest and hashes each intermediate chain value in the signature up to the end
node of that chain. The signature is valid if the hash over all concatenated end nodes is
equal to the public key.

WOTS+ is a one-time signature scheme since an attacker learns some of the chain
nodes from a given signature. Due to the construction of the checksum over the w-bit
words, a single signature does not enable an attacker to forge signatures. However, if
the same public/private WOTS+ key pair was used for several different signatures, an
attacker would be able to learn a sufficient number of internal nodes and to eventually
forge arbitrary messages.

FORS. FORS is short for Forest Of Random Subsets. It is a few-time signature scheme
based on Merkle hash trees. FORS uses k trees of height a with t = 2a leaf nodes to sign
a message digest of ka bits. The root nodes of the k trees are hashed together to obtain
the FORS public key.

For FORS key generation, for each of the k trees t secrets of n-bytes are generated
(temporarily from a secret seed using a derivation function). The public key is computed
by hashing the secrets, by computing Merkle-tree nodes from the hashed secrets (using
pairwise hashing), and by then concatenating and hashing the resulting k root nodes.

For generating a FORS signature, the signer computes a message digest of ka bits for
the message, splits this digest into k a-bit strings, and interprets each of the a-bit strings
as index into the corresponding tree. The secret indexed by each a-bit string is copied into
the signature together with a verification path in the corresponding Merkle tree.

For verifying a FORS signature, the verifier recomputes the root nodes of the k trees
by hashing the leaf node from the signature and using the verification path and obtains a
public key candidate by hashing the root nodes together. This public key candidate is
then authenticated by the SPHINCS+ hypertree.

The parameters k and t are chosen according to the desired number of signatures that
can be computed with this few-time signature scheme such that the secrets revealed in
each signature do not provide enough information to an attacker in order to forge arbitrary
signatures.

Hashing in SPHINCS+. Hash-based signature schemes like SPHINCS+ require a huge
amount of hash-function calls: WOTS+ is using many hash calls for computing the
hash chains and the computations for FORS and Merkle trees are based on pairwise
hashing of child nodes. Kannwischer et al. report in [KRS+19] that 87 % to 98 % of the
time in SPHINCS+ operations is spent for hashing. Therefore, efficient hash-function
implementations are important in order to achieve a high performance for SPHINCS+.
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Table 1: SPHINCS+ parameter sets as proposed for NIST Round 3 [HBD+20].

Parameter Set n h d log(t) k w
Bit-

security
Security
Level

Signature
[bytes]

SPHINCS+-128f 16 66 22 6 33 16 128 1 17 088
SPHINCS+-128s 16 63 7 12 14 16 133 1 7 856
SPHINCS+-192f 24 66 22 8 33 16 194 3 35 664
SPHINCS+-192s 24 63 7 14 17 16 193 3 16 224
SPHINCS+-256f 32 68 17 9 35 16 255 5 49 856
SPHINCS+-256s 32 64 8 14 22 16 255 5 29 792

Parameter sets. The parameters and parameter sets for SPHINCS+ are shown in Table 1.
The SPHINCS+ specification offers a total of 36 parameter sets for three security levels,
three different hash functions, “simple” and “robust” variants, and “small” as well as “fast”
parameter sets. For the reminder of this paper we only consider variants that are using
SHA-256 and SHAKE256 as hash functions.

The “s” (small) and “f” (fast) variants provide a trade-off between signature sizes and
computational cost. The “s” parameter sets have a smaller number d of layers in the
hypertree and hence taller subtrees of height h/d. Therefore, the “s” parameter sets provide
smaller signatures (since fewer WOTS+ signatures, one per layer, are required) at the cost
of key generation and signing time (since the subtress are taller and exponentially more
leaf nodes need to be generated). However, verification time is reduced since accordingly
fewer WOTS+ verifications are required. The “f” parameter sets significantly speed up key
generation and signing while increasing signature sizes and verification time.

The security argument for the “simple” parameter sets involves an invocation of the
Random Oracle Model (ROM) while the “robust” variants have a security proof that
assumes pre-image resistance and the Pseudo Random Function (PRF) property for the
hash-function constructions. The “robust” variants require more hash-function invocations,
because additional inputs for tweakable hash functions need to be computed. This difference
is equivalent to the difference between XMSS [HBG+18] (“robust”) and LMS [MCF19]
(“simple”) [HBD+20, Section 8.1.6].

2.2 Trusted Platform Modules
Trusted Platform Modules (TPMs) are passive co-processors that perform cryptographic
operations and store key material in a secure way. A TPM typically contains a small
processor that handles the communication protocol, a random number generator, hardware
accelerators for cryptography, and a secure non-volatile memory region. The vendors of
these devices apply proprietary hardening measures to the hardware structures within the
TPM to defeat side-channel and fault-injection attacks. TPMs do not work stand-alone
but they always are connected to a host system. Either they are an integral part of the
host system or they are connected to the host system via a low level bus system. For
example, a TPM can be attached to the host system using the Serial Peripheral Interface
(SPI) bus. The TPM 2.0 specification was developed by the Trusted Computing Group
(TCG) in 2013 [TCGb] and has since been adopted as ISO/IEC 11889 standard in 2015.

Communication with the host system is realized using a command/response protocol
in which the host system issues commands for a variety of tasks and receives responses
upon completion of the requested task. For example, the TPM2_CreateLoaded command
requests the TPM to create a key pair of the specified type and load it into its transient
memory. The response in this case includes the created public key as well as an identifier
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for the transient key-pair object that can be used to perform public and private operations
with the key pair. The “Commands“ part of the specification [TCGc] lists all standard
TPM commands and their semantics.

TPMs are used to implement a variety of protocols such as Secure Boot, Remote
Attestation, and Secure Firmware Updates, where they are the central component for key
storage and for performing operations in a way that cannot be influenced by the attached
host system. An integrated random number generator allows to create cryptographic keys
that are never exported from the TPM. This provides the capability to pin an identity to a
specific host system respective TPM. In order to cope with the limited storage resources of a
TPM, it is possible to store key material on the host system (encrypted and authenticated)
and to load it into the TPM at the time of use.

The TPM 2.0 standard mandates the use of the Rivest-Shamir-Adleman (RSA) public
key cryptosystem and optionally that of Elliptic-Curve Cryptography (ECC) for the
purposes of digital signatures. These options are however not secure against attackers
equipped with sufficiently large quantum computers. Therefore, an integration of post-
quantum cryptography into the TPM standard is urgently desired. The FutureTPM
project3 is a European effort to evaluate post-quantum cryptography for the use in TPMs.
With the recent mandatory requirement for TPM 2.0 by the Microsoft Windows operating
system4, we can expect an even more widespread adoption of TPMs.

3 Implementation
In this section, we describe the implementation of our streaming interface as well as
its integration into our PQC-TPM prototype. Our implementation of the streaming
interface is based on the SPHINCS+ reference implementation5. We consider only the
detached signature API of SPHINCS+, i.e., messages are not included in the signature.
Our PQC-TPM prototype is based on the Microsoft TPM 2.0 reference implementation6.

3.1 Streaming Interface
A SPHINCS+ signature consists of multiple parts as illustrated in Figure 2. First, there is
the randomness R followed by a FORS signature. The FORS signature in itself consists
of k private key values, each combined with an authentication path in the corresponding
Merkle tree. A hypertree signature follows which consists of d Merkle signatures, which
each again consist of a WOTS+ signature and an authentication path. A WOTS+ signature
is the concatenation of multiple hash-chain nodes that are computed by the WOTS+

chaining function.
Each of the described parts, in turn, consists of one or more n-byte blocks. More

precisely, the randomness R, the FORS private key values, every node in the authentication
paths, as well as every hash-chain node are all separate byte arrays of size n — because
they are each the result of an invocation of the instantiated hash functions that output n
bytes. This makes it natural to split signatures into chunks of n bytes as well.

The reference implementation directly accesses a large memory buffer that stores the
signature to either write or read signature data. It maintains a pointer to keep track of
the current position in the buffer. After a chunk of data has been processed, the pointer is
incremented by the corresponding amount of bytes and the next part of the signature is
processed.

3https://futuretpm.eu
4https://www.microsoft.com/en-us/windows/windows-11-specifications#primaryR2
5https://github.com/sphincs/sphincsplus
6https://github.com/microsoft/ms-tpm-20-ref/
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R FORS FORS . . . FORS Merkle Merkle . . . Merkle

priv. key node node . . . node

node node . . . node node node . . . node

n byte

n byte n byte

n byte n byte

authentication path

WOTS+ signature authentication path

Figure 2: SPHINCS+ signature format.

Our streaming interface can be thought of as an abstraction from a buffer that is
sequentially written to during signing a message or read from during verifying a signature
respectively. Instead of directly accessing the memory at an address inside a buffer, the
implementation requests to sequentially read or write one or more blocks of size n from or
to the SPHINCS+ signature stream. Since the signature is exactly in the order in which
the bytes are processed (for the sign and verify operation alike), this abstraction works.
Also, once a chunk of one or more blocks of n bytes has been written, it is not needed
for further computations, i.e., it does not need to remain in memory. The same holds for
reading: Once the requested chunk has been processed, it is not needed any longer and
the chunk does not need to be kept in memory anymore. Only the part of the signature
that is currently processed needs to reside in memory.

The streaming API. First, we describe how the integration of our streaming API affects
the usage of SPHINCS+. Figure 3 shows the SPHINCS+ API calls for signing and
verifying in the reference code. In order to compute a signature, the signature buffer
with its length., the message and its length, as well as the secret key are passed into the
crypto_sign_signature function. For verification, instead of the secret key, the public
key is passed into the crypto_sign_verify function instead.

Our streaming interface replaces the pointer to the signature (and its length) with a con-
text data structure and requires a few additional functions as shown in Figure 4. Here, the
streaming context streaming_ctx_t is a data structure that has to be defined depending
on the concrete streaming implementation. It is supposed to store all context-related data
that is necessary to handle reading from the stream with the read_stream function and
writing to the stream with the write_stream function. The init_streaming_ctx and
destroy_streaming_ctx calls are supposed to handle the initialization and finalization of
the stream context. The data structure may also contain buffers for the signature data,
e.g., if it is desired to only interact with the I/O layer once a specific amount of data is
available for I/O. This can be useful for non-buffered I/O in order to reduce communication
overhead resulting from sending and receiving many small messages.

All of the four streaming functions are protocol-dependent and need to be tailored to
the specific implementation and usage scenario. Apart from this, no further changes to the
application code are required to enable streaming of a signature. The streaming context is
passed to the sign and verify functions, respectively, and passed on to subsequent functions
to make it available for calls to read_stream and write_stream as needed. Those two
functions are called throughout the SPHINCS+ code instead of accessing a signature buffer
directly. Since we removed the the signature buffer from the SPHINCS+ interface, it is now
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1 int crypto_sign_signature ( uint8_t *sig , size_t *siglen ,
2 const uint8_t *m, size_t mlen ,
3 const uint8_t *sk);
4

5 int crypto_sign_verify (const uint8_t *sig , size_t siglen ,
6 const uint8_t *m, size_t mlen ,
7 const uint8_t *pk);

Figure 3: SPHINCS+ API for detached signatures.

1 int crypto_sign_signature_streaming ( streaming_ctx_t *ctx ,
2 const uint8_t *m, size_t mlen ,
3 const uint8_t *sk);
4

5 int crypto_sign_verify_streaming ( streaming_ctx_t *stream_ctx ,
6 const uint8_t *m, size_t mlen ,
7 const uint8_t *pk);
8

9 void init_streaming_ctx ( streaming_ctx_t *ctx , ...);
10

11 void destroy_streaming_ctx ( streaming_ctx_t *ctx);
12

13 void write_stream ( streaming_ctx_t *ctx ,
14 unsigned char *data , unsigned data_len );
15

16 void read_stream ( streaming_ctx_t *ctx ,
17 unsigned char *data , unsigned data_len );

Figure 4: Our streaming API.

1 int ret; // return value
2

3 streaming_ctx_t stream_ctx ;
4 init_streaming_ctx (& stream_ctx ); // initalize I/O
5

6 /* Sign the message , stream_ctx handles I/O */
7 ret = crypto_sign_signature_streaming (& stream_ctx , m, mlen , sk);
8

9 destroy_streaming_ctx (& stream_ctx ); // finalize I/O

Figure 5: Using the streaming API to sign a message m.

the responsibility of the streaming abstraction consisting of the functions read_stream
and write_stream to read and write the corresponding data.

Figure 5 shows a typical signing call where the streaming context stream_ctx, the
message m, its length mlen, and the secret key sk are passed to the streaming version
of the signing function crypto_sign_signature_streaming by the caller. Verification is
done analogously. Aside from providing the streaming context, as well as initializing and
finalizing it, there is not much difference compared to using the non-streaming reference
code.

Eliminating the signature buffer. The streaming API hides the details of what is buffered
at which point. In theory, the data could be read from or written to I/O directly without
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any buffering (effectively replacing memory operations with data I/O) or the entire
signature could be buffered (effectively maintaining the data handling of the reference
implementation). In practice, a buffer of a certain size optimal for the underlying I/O
interface can be maintained and flushed as data is being written or read.

We first demonstrate that the signature buffer can be reduced to only operating on
one n byte chunk of signature data at a time. That means that at no point in time
some signature data that has previously been accessed is needed to continue the signature
operation, and at no point in time, more than one n byte chunk needs to be accessed.

The following is described from a signer’s perspective for simplicity. Although the
computations are slightly different for the verifier, it is easy to see that the same general
abstraction applies. The components of a SPHINCS+ signature are:

• R: This value is generated by combining the message with a secret PRF key and
optional randomness using a hash function. After it has been used to compute the
message digest, which is going to be signed by FORS, the value can be written to
the stream and removed from memory.

• FORS: Each FORS signature consists of some private keys that are released as part
of the signature and an authentication path in a corresponding Merkle tree:

– Private Keys: A FORS private key is computed by applying the PRF to the
SPHINCS+ secret key seed and the appropriate FORS address, according to
the SPHINCS+ address scheme. It can be immediately streamed out.

– Authentication Path: The authentication-path node at a given height is the
root of a subtree and can be computed with the tree-hash algorithm directly,
given that the index of the left-most leaf in this subtree is specified. In this
way it is possible to compute the nodes of the authentication path in order
and the buffer for the authentication path can be omitted. To avoid costly
recomputations of leaf nodes, the root-node computation is intertwined with
the computation of the authentication-path nodes.

– Public Key: FORS public keys are only an implicit part of the signature, but
handling them in an efficient streaming implementation warrants some attention
(i.e., no recomputations of nodes, and no large memory overheads). The FORS
root nodes are combined to form the public key by computing a tweakable
hash over the nodes. This value is then signed by the bottom layer of the
SPHINCS+ hypertree. Instead of buffering all root nodes in order to compute
the tweakable hash function, we maintain a state of the tweakable hash function
and update this state with each newly computed root node, after streaming the
corresponding authentication path.

• SPHINCS+Hypertree: The signature components of the SPHINCS+hypertree consist
of WOTS+ signatures and nodes in the authentication path of corresponding Merkle
trees:

– WOTS+Signature: The details of the WOTS+signature generation are described
in Section 2.1. Here, we only roughly outline how buffering is avoided. A
WOTS+ signature consists of a number of hash-chain nodes that are derived
from the private key values and authenticates the tree on the layer below. The
computation is typically intertwined with the computation of the WOTS+public
key that is also needed for generating the corresponding leaf in the hypertree.
In order to compute the public key, all hash-chain nodes are computed in order.
Writing out the signature thus basically only means writing out the correct node
while the public key is computed. Finally, for computing the corresponding
leaf in the hypertree, the public key values are combined with a tweakable
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hash-function call. Instead of buffering the end node of each hash chain and then
applying the tweakable hash function, we update the tweakable hash function
after each hash-chain end node has been computed.

– Authentication Path: This is analogous to the FORS authentication paths.

Since all elements of the signature can be computed in order, the signature buffer can be
reduced to just processing the current chunk of n bytes.

In comparison to this approach, in [HRS16], the authors split a SPHINCS-256 signature
into larger chunks. For example, WOTS+ signatures are processed as a single chunk.
This does not hinder the computation in 16 kB of RAM though, as the memory is only
temporarily required, and the WOTS+ public key is quickly reduced to a single leaf node.
Another notable difference is that in [HRS16], the signature format is slightly changed.
This is due to a design decision in HORST, the few-time signature scheme that is used for
SPHINCS-256 instead of FORS: The top of the tree is cut off at some layer — here layer
six — such that only authentication paths up to this layer are computed. This prevents
duplications in the top layers, however, it also complicates streaming, since the nodes
on the sixth layer are appended at the end of the signature, instead of being part of the
respective authentication paths. The solution in [HRS16] is that HORST nodes are tagged
with their actual position in the hypertree, rather than producing the nodes in the correct
order of the signature. These signature elements are put into the correct order on the
receiving end by reordering the nodes accordingly. We want to emphasize that this is not
necessary for SPHINCS+ and that the signature format does not need to be changed in
our SPHINCS+ streaming implementation.

Details of the implementation. While it is not necessary to rigorously avoid buffering
small quantities of n byte chunks, implementing the streaming interface goes hand in
hand with reducing the size of the internal buffers that hold parts of the signature. The
advantage of working with the granularity of only n bytes — or small multiples of n bytes
— is only noticeable when there are no large internal buffers for the signature data. As an
example, the reference implementation computes a tweakable hash over a WOTS+ public
key by first buffering it entirely. The size of the buffer amounts to up to 67× 32 = 2144
bytes for n = 32.

Whenever a tweakable hash function is applied to a buffer with more than two elements,
we decided to incrementally update the hash computation instead. This is done for hashing
the WOTS+ public key and the FORS root nodes. Instead of applying one single thash
call for the tweakable hash function, we implement an incremental API with the functions
thash_init, thash_update, and thash_finalize for each of the four instantiations
SHA-256-simple, SHA-256-robust, SHAKE256-simple, and SHAKE256-robust. As this
incremental API stretches the computation over multiple separate calls, a state has to be
kept. For the SHAKE256-simple and SHAKE256-robust instantiations, this state amounts
to the SHAKE256 state, where for the robust variant, a SHAKE256 state for computing
the bitmasks is kept as well. The SHA-256-simple state consists of the SHA-256 state, as
well as a buffer to account for the possibility that the current input does not fill an entire
block. For SHA-256-robust, an additional state is kept for the Mask Generation Function
(MGF) that SPHINCS+ uses for generating masks.

In most places, it is straightforward to change the code to use the stream read and write
functions with a granularity of n bytes. Figure 6 shows as an example an excerpt from the
WOTS+ leaf-generation reference code. As can be seen in Line 8, the currently computed
WOTS+ hash-chain node is copied sequentially to the signature if it is part of the signature.
The memcpy call can simply be replaced by a write_stream call. Likewise, the pk_buffer
that holds the WOTS+public key is only needed for the thash function call in Line 14. This
can be replaced by using the thash_init, thash_update, and thash_finalize functions.
Public key nodes are computed sequentially and consumed with a thash_update call.
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1 for (i=0, buffer = pk_buffer ; i< SPX_WOTS_LEN ; i++, buffer += SPX_N) {
2 ...
3 /* Iterate down the WOTS chain */
4 for (k=0;; k++) {
5 /* Check if this is the value that needs to be saved as a */
6 /* part of the WOTS signature */
7 if (k == wots_k ) {
8 memcpy ( info -> wots_sig + i * SPX_N , buffer , SPX_N );
9 }

10 ...
11 }
12 }
13 /* Do the final thash to generate the public keys */
14 thash(dest , pk_buffer , SPX_WOTS_LEN , pub_seed , pk_addr );

Figure 6: Excerpt from the SPHINCS+ reference code (wots_gen_leafx1 function).

For the treehash function, the reference implementation always generates the tree
nodes in the same order. This means that in general, the authentication-path nodes are not
computed in the order in which they appear in the signature. Thus, to enable streaming of
the authentication paths as well, we modified it to produce the authentication-path nodes
in the order in which they are ordered in the signature. This allows us to eliminate the
authentication-path buffer as well.

By applying the outlined changes systematically throughout the code, the signature
buffer is completely eliminated. While we presented this from the signer’s perspective, the
same can be done for the verifier. The main difference is that the signer has to traverse
each tree with the treehash function. For the verifier, all required nodes are provided
to directly hash up to the SPHINCS+ root. For each tree, in addition to the provided
authentication path, one leaf has to be computed from either the released FORS private key
value, the FORS root nodes, or the WOTS+ signature. The WOTS+ and FORS signatures
are implicitly verified if the computed root of the hypertree matches the SPHINCS+ public
key.

The described streaming implementation does not reduce the storage size, i.e., the size
that a signature will require when stored on a medium, such as flash memory. Further,
this does not reduce network bandwidth requirements. However, it greatly reduces the
memory requirements for the sign and verify operation, since no buffer is required to hold
the signature. Furthermore, the key-generation operation also benefits from the changes.
While there is no signature buffer that can be eliminated, large intermediate buffers are
eliminated, for example to hash the WOTS+ public keys.

General applicability of the streaming implementation. We want to emphasize that
in principle our streaming API can be used in every case in which the non-streaming
reference API can be used. Neither the public key format nor the signature format are
changed (nor the private key format). In general, it is not possible to distinguish between
a communication that makes use of the streaming API and the reference implementation,
apart from possible timing differences. Since the streaming API is designed as an abstraction
from the signature buffer, it can naturally also be used on a signature buffer that resides in
memory. In this case, the stream_write function merely performs the appropriate memcpy
calls and keeps track of the currently written bytes and the stream_read function simply
returns a pointer to the correct location inside the signature buffer.

The streaming API introduces a slight computational overhead, but apart from this and
a slightly increased complexity due to implementing and using the streaming context related



Ruben Niederhagen, Johannes Roth and Julian Wälde 13

functions, there is no loss in generality. Moreover, due to the generality, it is easy to integrate
our streaming interface into different protocols. The following section demonstrates this
on the example of TPMs. As another example, integrating our implementation into
a TCP/IP communication can be as simple as calling the respective read and write
network-interface functions from inside the stream_read and stream_write functions.
The streaming_ctx_t structure would store all necessary context-related data, i.e, typically
a file descriptor in socket-APIs. For an established session, the file descriptor can be passed
to the init_streaming_ctx function. In case the communication needs to be established
first, the init_streaming_ctx and destroy_streaming_ctx calls can open and close the
connection.

3.2 TPM Prototype and Streaming Extension
We forked the official TPM 2.0 reference implementation7 by Microsoft as basis for our
prototype TPM with SPHINCS+ signatures and a TPM streaming protocol. The TPM
reference implementation can be compiled with different crypto libraries for the required
cryptographic primitives, either with the OpenSSL or with the wolfSSL. We chose to use
the wolfSSL library, since it is better suited for the use on resource-restricted embedded
systems. However, within SPHINCS+ we are using the implementations of the hash
functions SHA-256 and SHAKE256 from the SPHINCS+ reference implementation for
better comparison with prior art in Section 4.

We needed to apply two major changes to the TPM reference implementation for
the integration of SPHINCS+ as signature scheme. The first was to add data structures
so that SPHINCS+ can be used for generating keys, as well as for signature generation
and verification. The key generation is covered by adding a data structure that stores a
SPHINCS+ key pair. We used the data structures that are used for RSA keys as templates
for SPHINCS+.

The second major change was the definition of additional commands for signing and
verifying using SPHINCS+. The TPM commands RSA_Encrypt and RSA_Decrypt can
be used to perform data signing and signature verification with RSA keys. This is not
the only way to use a signature primitive with TPMs, it is however the most direct way
to instruct the TPM to sign a message or verify a signature using only one command
per operation. We added two commands PQC_Private and PQC_Public for signing and
verification respectively, again using the RSA code as template. We implemented a unit-
test on the host for covering key generation, signing, and verification on the TPM using
the three commands TPM_CreateLoaded, PQC_Private, and PQC_Public. The command
TPM_CreateLoaded has a parameter for the selection of the cryptographic scheme that we
defined for SPHINCS+. This parameter is used to set the SPHINCS+ parameters during
key-pair generation and is stored along-side the key pair on the TPM for use during signing
and verification.

In order to send commands to the TPM and to receive its responses, we implemented
a variant of the TPM Interface Specification (TIS) protocol [TCGa]. TIS defines a 24 bit
address space that is mapped to control registers and data buffers inside the TPM. Read
and write operations on specific addresses are used to transfer commands and data to the
TPM, to receive responses from it, and to initiate the execution of commands.

The specification describes a simple SPI-based protocol for implementing read and
write operations for TPMs that are not directly connected to a memory bus. Messages in
this SPI protocol start with a byte that uses the first bit to indicate whether a read or
write operation is performed and the remaining 7 bit to define the length of the data in
bytes. This initial byte is followed by a 24 bit address indicating the source (for a read
operation) or destination (for a write operation). After this, data is transferred.

7https://github.com/microsoft/ms-tpm-20-ref/

https://github.com/microsoft/ms-tpm-20-ref/
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The host system initiates all communication with the TPM and polls a 32 bit status
register using the SPI-based protocol to detect if the TPM is ready to receive commands
or if a response is ready. We only implemented a minimal subset of the address space
that is defined in the TIS specification. The two most important addresses are the
32 bit status register STS at address 000018h and the 32 bit FIFO command-and-response
register DATA_FIFO at address 000024h. Specific bits of the STS are used by the TPM to
communicate its readiness to receive commands or transmit responses as well as for the
host system to initiate the execution of a previously written TPM command.

We propose an extension to this communication protocol for the streaming of data
between the host and the TPM. We extend the TIS interface by two addresses, the
32 bit IOSTREAM FIFO register at address 000030h for the streaming of data and the
32 bit STREAMSIZE register at address 000040h to communicate the size of the data to be
streamed. The STS register is polled by the host platform regularly. Several of its bits
are marked as reserved by the TIS specification. We decided to use two of those reserved
bits to signal that the TPM is ready to send (STS bit 23) or receive (STS bit 24) data.
If one of these bits is set when the host system reads the STS register, it reads out the
STREAMSIZE register, which holds the number of bytes that the TPM is able to send or
receive. The data is then read from or written to the IOSTREAM register, which acts as a
FIFO. This helps to reduce additional polling during streaming, since the host system is
already polling the STS register during the execution of any TPM command to detect if a
response is ready.

An alternative would be to formalize the sequence of streaming messages in a state
machine and to issue special commands asking for further data or to transmit data via
the DATA_FIFO register. This approach however would introduce a significant overhead in
transmitted data and all data would have to pass through the serialization and deserializing
layers of the TPM firmware. Furthermore, the implementation of a cryptographic scheme
using such a state-machine-based communication layer would require significant changes
to the program flow into a state-machine as well instead of being able to handle I/O
transparently during the cryptographic computations as described in Section 3.1 for
SPHINCS+.

We used the SPI controller (in the SPI “slave” role) of the STM32F4 SoC to implement
the TIS protocol. Our implementation is driven by an interrupt service routine that is
triggered every time a byte is received on the SPI bus. The interrupt operates a small state
machine that handles writing to and reading from the available addresses, including the
streaming of signature data. This approach results in an interruption of the code for every
byte that is transferred. These frequent interrupts could be avoided using a dedicated
hardware implementation of the TIS protocol on an actual TPM.

4 Evaluation
Each of the parameter sets in Table 1 can be instantiated with different choices for the hash
functions. These variants determine the implementation of the tweakable hash function and
also what has to be maintained in the hash states. This directly influences the considered
metrics, i.e., cycle count and stack usage. Therefore, we give separate measurements for the
different instantiations. We consider the four variants SHA-256-simple, SHA-256-robust,
SHAKE256-simple and SHAKE256-robust.

We built the binaries with GCC 9.2.1 and the “–O2” flag which seems to offer a
good trade-off between the different metrics. We are evaluating our implementation on a
STM32F4 Discovery board with an ARM Cortex-M4 CPU. The board offers several choices
for clock frequencies. We are using the default frequency of 168 MHz if not explicitly
stated differently. For our measurements with the TPM integration we used a Raspberry
Pi 4 Model B in the role of the host system, because it provides an SPI controller for
communication with our TPM prototype.



Ruben Niederhagen, Johannes Roth and Julian Wälde 15

Table 2: Relative performance of the streaming modifications compared to the reference
implementation and the pqm4/PQClean implementation.

reference impl. pqm4/PQClean

Parameter Set Keygen Sign Verify Keygen Sign Verify
sphincs-sha256-128f-robust 100.8% 100.8% 101.2% 117.9% 111.3% 123.4%
sphincs-sha256-128s-robust 97.5% 97.6% 96.1% 117.9% 117.8% 123.0%
sphincs-sha256-192f-robust 100.4% 100.4% 101.2% 119.1% 113.1% 120.2%
sphincs-sha256-192s-robust 100.4% 100.5% 100.0% 119.2% 118.7% 121.4%
sphincs-sha256-256f-robust 100.0% 100.1% 100.0% 118.5% 115.4% 120.1%
sphincs-sha256-256s-robust 99.8% 99.9% 98.3% 118.7% 118.1% 117.8%

sphincs-sha256-128f-simple 102.3% 102.3% 107.9% 110.1% 103.8% 114.6%
sphincs-sha256-128s-simple 98.9% 99.0% 105.1% 110.0% 110.0% 114.6%
sphincs-sha256-192f-simple 101.6% 101.7% 100.4% 110.3% 104.7% 112.7%
sphincs-sha256-192s-simple 101.9% 101.9% 104.1% 110.4% 110.1% 114.7%
sphincs-sha256-256f-simple 100.9% 100.9% 98.7% 110.9% 107.9% 110.9%
sphincs-sha256-256s-simple 100.5% 100.6% 93.6% 111.3% 110.8% 106.8%

sphincs-shake256-128f-robust 100.4% 100.4% 101.8% 261.8% 247.3% 262.0%
sphincs-shake256-128s-robust 94.2% 94.2% 96.3% 261.8% 261.5% 254.3%
sphincs-shake256-192f-robust 100.4% 100.4% 99.1% 260.4% 246.7% 258.7%
sphincs-shake256-192s-robust 100.4% 100.4% 97.3% 260.4% 259.9% 256.8%
sphincs-shake256-256f-robust 100.3% 100.3% 94.3% 259.0% 251.9% 252.4%
sphincs-shake256-256s-robust 100.6% 100.6% 99.1% 259.1% 258.1% 261.7%

sphincs-shake256-128f-simple 100.5% 100.5% 96.7% 257.0% 242.6% 252.0%
sphincs-shake256-128s-simple 94.2% 94.2% 102.6% 257.0% 256.7% 255.1%
sphincs-shake256-192f-simple 100.4% 100.4% 98.9% 255.0% 241.6% 253.2%
sphincs-shake256-192s-simple 100.4% 100.4% 103.4% 255.1% 254.7% 261.7%
sphincs-shake256-256f-simple 100.2% 100.2% 101.5% 253.2% 246.3% 250.8%
sphincs-shake256-256s-simple 100.4% 100.4% 95.8% 253.4% 252.6% 256.3%

4.1 Streaming Interface
The mupq project provides implementations and optimizations for several PQC schemes
for several embedded platforms. It’s subproject pqm48 is dedicated to the Cortex-M4
platform using the STM32F4 Discovery board. For SPHINCS+, it uses the implementation
from the PQClean project9, which is based on the SPHINCS+ reference implementation.

In order to verify that our streaming interface does not introduce a significant perfor-
mance penalty, we compare the cycle counts and the stack sizes of the selected SPHINCS+

parameter sets with the reference implantation and the mupq/PQClean implementation
of SPHINCS+ on the Cortex-M4 platform. The mupq project provides performance mea-
surements that are frequently updated. We compare the performance of our streaming
interface to the measurements in the file “benchmarks.csv” from git commit 12d5e56.

Performance. Table 2 shows the relative runtime of the streaming interface compared to
the reference and to the pqm4/PQClean implementations. The pqm4 project is running
the STM32F4 Discovery board at only 24 MHz in order to avoid memory-access effects
when reading instructions from the slow flash memory. Therefore, we performed the
measurements of our streaming interface at the frequencies 168 MHz for comparison to the
reference implementation and at 24 MHz for comparison to mupq and report the respective
relative performance to the reference and the pqm4/PQClean implementations in percent
(detailed cycle counts are listed in Table 5 in the Appendix).

8https://github.com/mupq/pqm4
9https://github.com/PQClean/PQClean

https://github.com/mupq/pqm4
https://github.com/PQClean/PQClean
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For the reference implementation the difference in the cycle count to our streaming
implementation varies between one or two percent for key generation and signing. Besides
the integration of the streaming interface, our code also replaces the compile-time selection
of the parameter set in the reference code with a runtime-selection, introducing some
if-then clauses, which might be the cause of some of the cycle-count differences. There
are two outliers for the SHAKE256-128s parameter sets (both robust and simple) in the
comparison with the reference implementation where our implementation requires only
94.2 % of the time of the reference implementation. However, overall our modifications to
the control flow of the reference implementation when integrating the streaming interface
do not have a major impact on the performance.

The difference to pqm4/PQClean is more pronounced: The pqm4/PQClean performance
for key generation and signing is 10 % to 20 % faster than our version for the SHA-256
variants and even about 2.5 times faster for the SHAKE256 variants. This is due to the
fact that the pqm4 project is using optimized SHA-256 and SHAKE256 code for the
Cortex-M4 CPU. We did not incorporate these optimizations in order to remain closer
to the reference implementation. On an actual PQC-TPM, we would recommend to use
hardware acceleration for all hash computations to achieve a significant improvement over
both our and the pqm4/PQClean code.

The runtime varies more significantly for the verification operation — since the veri-
fication time itself varies for different inputs (as opposed to key generation and signing
which have a runtime that is quite independent from inputs). However, the performance
differences for verification are qualitatively similar to those of key generation and signing.

Stack size. For stack measurements we are using an implementation of the streaming
interface that is simply writing into a large buffer similar to the reference implementation.
This signature buffer is not part of the stack-size measurements for all, the reference, the
pqm4/PQClean, and our streaming implementation.

Table 3 shows the stack sizes of the reference implementation (columns “ref.”) and the
pqm4/PQClean implementation (columns “pqm4”) compared to our streaming variant
(columns “strm.”). We also provide the signature sizes to emphasise that both the reference
and the pqm4/PQClean implementations require a large data buffer for storing the
signature in addition to the stack requirements.

Due to the modifications to the data handling on the stack and in buffers, we are
reducing the stack size significantly even if the buffer for storing the complete signature
required by the reference and the pqm4/PQClean implementations is not taken into account.
The buffer for our streaming variant can be entirely avoided if all data is transferred or
consumed right away or it can be any size up to the size of an entire signature. For the
TPM example, we are using a 1 kB buffer (see Section 4.2).

The stack requirements of pqm4/PQClean are significantly lower than those of the
reference implementation. However, our streaming implementation requires even less stack
than pqm4/PQClean — except for a few corner cases for the SHAKE256 parameter sets
with n = 16. Our implementation requires only 1 296 kB to 2 976 kB of stack, which is
between 23 % to 73 % of the stack size of the reference implementation; the difference
is most significant for the higher security levels using both SHA-256 and SHAKE256.
Compared to pqm4/PQClean, in some cases we achieve a reduction in stack usage to 33%.

Comparison to prior streaming approaches. Our implementation cannot directly be
compared to the work by Hülsing et al. in [HRS16], since they are investigating signature
streaming for the predecessor SPHINCS-256 of SPHINCS+. SPHINCS-256 uses different
performance parameters and a different few-time signature scheme than SPHINCS+. Their
primary goal is to fit into the 16 kB RAM of their Cortex-M3 CPU. They require much
fewer cycles for key generation but many more cycles for signing with their SPHINCS-256
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Table 3: Stack sizes for the SPHINCS+ reference implementation (“ref”), the
pqm4/PQClean implementation (“pqm4”), and our streaming interface implementation
(“strm.”) as well as the corresponding signature sizes in bytes.

Parameter Set
(sphincs-. . . )

Keygen Sign Verify
Sig.

ref. pqm4 strm. ref. pqm4 strm. ref. pqm4 strm.
sha256-128f-robust 3 688 2 256 1 960 3 176 2 320 2 000 3 344 2 808 1 728 17 088
sha256-128s-robust 3 984 2 472 2 056 3 264 2 544 2 088 2 592 2 112 1 656 7 856
sha256-192f-robust 6 536 3 680 2 192 5 336 3 832 2 264 4 848 4 040 1 856 35 664
sha256-192s-robust 6 928 4 104 2 336 5 472 3 992 2 360 4 728 3 376 1 888 16 224
sha256-256f-robust 10 456 5 792 2 456 8 272 5 760 2 512 7 424 5 656 2 088 49 856
sha256-256s-robust 10 816 6 064 2 584 8 400 5 904 2 616 7 424 5 360 1 960 29 792

sha256-128f-simple 2 904 2 104 1 632 2 392 2 168 1 688 2 592 2 656 1 384 17 088
sha256-128s-simple 3 096 2 432 1 736 2 480 2 392 1 768 1 904 1 960 1 296 7 856
sha256-192f-simple 5 072 3 520 1 840 3 872 3 560 1 896 3 816 3 880 1 480 35 664
sha256-192s-simple 5 464 3 944 1 992 4 008 3 832 2 016 3 160 3 216 1 456 16 224
sha256-256f-simple 8 160 5 512 2 080 5 872 5 592 2 104 5 424 5 488 1 876 49 856
sha256-256s-simple 8 416 5 896 2 216 6 000 5 736 2 232 5 024 5 080 1 868 29 792

shake256-128f-robust 4 052 2 012 2 336 3 544 2 176 2 392 3 708 2 556 2 208 17 088
shake256-128s-robust 4 352 2 336 2 432 3 632 2 288 2 464 2 956 1 860 2 120 7 856
shake256-192f-robust 6 892 3 436 2 560 5 696 3 576 2 632 5 204 3 788 2 328 35 664
shake256-192s-robust 7 288 3 856 2 704 5 832 3 736 2 728 4 980 3 124 2 176 16 224
shake256-256f-robust 10 912 5 436 2 816 8 624 5 504 2 872 7 880 5 404 2 448 49 856
shake256-256s-robust 11 168 5 816 2 944 8 752 5 648 2 976 7 772 4 996 2 320 29 792

shake256-128f-simple 3 476 2 012 2 104 2 968 2 068 2 144 3 164 2 556 1 960 17 088
shake256-128s-simple 3 776 2 336 2 200 3 056 2 288 2 232 2 468 1 860 1 800 7 856
shake256-192f-simple 5 660 3 436 2 320 4 464 3 468 2 368 4 404 3 788 1 956 35 664
shake256-192s-simple 6 056 3 856 2 464 4 600 3 736 2 488 3 748 3 124 1 936 16 224
shake256-256f-simple 8 644 5 436 2 568 6 464 5 504 2 592 6 012 5 404 2 072 49 856
shake256-256s-simple 9 008 5 816 2 696 6 592 5 648 2 712 5 612 4 996 2 112 29 792

parameter set compared to us using the SPHINCS+ parameter sets. Their stack usage is
between 6 kB and 9 kB depending on compiler parameters.

Gonzalez et al. are providing performance and stack measurements for two SPHINCS+

parameter sets for verifying a streamed signature in [GHK+21] on a Cortex-M3 platform
with 8 kB of memory. Their cycle counts are not comparable to our implementation since
we are using a different CPU for our measurements but their stack size is similar to our
version. However, they are splitting the signature in relatively large parts of up to 5 kB
along the layers of the SPHINCS+ hypertree, while our implementation is more flexible
in regard to the streaming interface and buffer sizes and independent of the SPHINCS+

hypertree structure.

4.2 TPM Integration
Table 4 shows performance measurements of the SPHINCS+ variants integrated into our
prototype TPM implementation. We compute the I/O overhead (column “Embedded –
I/O”) as the relative difference between the cycle counts from the measurements of the
stand-alone streaming implementation (column “Embedded – strm.”) and the cycle count
of the corresponding operation in the TPM integration (column “Embedded – TPM”)
as “(TPM - strm.) / (TPM * 100)”. We also report the overall wall clock time of the
corresponding TPM operation (including TPM-protocol overhead etc.) as seen from the
host in seconds (column “Host – total”).
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Table 4: Performance data for key generation, signing, and verification on the embedded device and on the host. For the embedded device, we list
the cycle counts of the reference implementation including the streaming interface as “strm.” in mega cycles, the integration of SPHINCS+ into the
TPM prototype as “TPM” in mega cycles, and the communication overhead, i.e., the difference between the two in percent, as “I/O ∆”. For the
host, we list the overall wall-clock time from issuing a TPM command until its completion (including I/O) as “total” in seconds.

Key Generation Signing Verification

Embedded Host Embedded Host Embedded Host

strm. TPM I/O total strm. TPM I/O total strm. TPM I/O total
Parameter Set [mcyc] [mcyc] ∆ [s] [mcyc] [mcyc] ∆ [s] [mcyc] [mcyc] ∆ [s]
sphincs-sha256-128f-robust 55.0 60.5 9.1% 0.531 1 280 1 960 34.9% 11.8 82.7 470 82.4% 2.90
sphincs-sha256-128s-robust 3 520 3 870 9.1% 23.3 26 400 29 500 10.3% 176 27.8 206 86.5% 1.33
sphincs-sha256-192f-robust 81.8 91.3 10.4% 0.727 2 160 3 580 39.8% 21.4 123 928 86.8% 5.63
sphincs-sha256-192s-robust 5 240 5 840 10.4% 35.0 48 400 54 600 11.4% 326 44.3 406 89.1% 2.52
sphincs-sha256-256f-robust 300 330 9.0% 2.17 6 120 8 340 26.7% 49.8 177 1 320 86.6% 7.98
sphincs-sha256-256s-robust 4 800 5 280 9.0% 31.6 58 900 65 800 10.5% 392 90.0 767 88.3% 4.67

sphincs-sha256-128f-simple 27.3 29.7 8.2% 0.340 640 1 250 48.9% 7.54 39.8 420 90.5% 2.61
sphincs-sha256-128s-simple 1 750 1 900 8.2% 11.5 13 300 14 800 10.2% 88.2 13.6 189 92.8% 1.23
sphincs-sha256-192f-simple 40.2 44.4 9.6% 0.447 1 080 2 360 54.3% 14.1 58.4 850 93.1% 5.17
sphincs-sha256-192s-simple 2 570 2 840 9.6% 17.1 24 400 27 700 11.6% 165 21.2 386 94.5% 2.40
sphincs-sha256-256f-simple 106 120 10.9% 0.914 2 230 4 110 45.8% 24.6 60.6 1 180 94.9% 7.14
sphincs-sha256-256s-simple 1 700 1 910 10.9% 11.6 22 000 25 800 14.7% 154 28.9 689 95.8% 4.21

sphincs-shake256-128f-robust 410 450 8.9% 2.85 9 520 11 000 13.5% 65.7 580 1 030 43.7% 6.25
sphincs-shake256-128s-robust 26 300 28 800 8.9% 172 197 000 217 000 9.1% 1 290 202 389 48.1% 2.42
sphincs-shake256-192f-robust 601 660 8.9% 4.12 15 200 17 900 14.9% 107 849 1 750 51.6% 10.6
sphincs-shake256-192s-robust 38 500 42 200 8.9% 252 335 000 369 000 9.2% 2 200 294 689 57.3% 4.21
sphincs-shake256-256f-robust 1 590 1 750 9.0% 10.6 31 200 36 000 13.2% 214 855 2 060 58.4% 12.4
sphincs-shake256-256s-robust 25 400 27 900 9.0% 167 288 000 318 000 9.4% 1 900 429 1 120 61.7% 6.77

sphincs-shake256-128f-simple 212 234 9.3% 1.56 4 970 6 030 17.6% 36.0 298 698 57.3% 4.26
sphincs-shake256-128s-simple 13 600 15 000 9.3% 89.5 103 000 114 000 9.5% 680 104 286 63.6% 1.81
sphincs-shake256-192f-simple 311 344 9.5% 2.23 8 040 10 100 20.0% 60.0 429 1 250 65.7% 7.54
sphincs-shake256-192s-simple 19 900 22 000 9.5% 131 179 000 198 000 9.8% 1 180 152 517 70.6% 3.18
sphincs-shake256-256f-simple 823 910 9.7% 5.63 16 500 19 900 17.0% 119 438 1 580 72.2% 9.50
sphincs-shake256-256s-simple 13 200 14 600 9.7% 87.0 156 000 174 000 10.3% 1 040 214 883 75.8% 5.36
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The modified reference implementation of the TPM firmware performs serialization
and deserialization, formatting of commands, and parsing the responses of the TPM. On
the host system we measured “wall-clock” time with a resolution of milliseconds for the
complete execution of three commands, including transmission of the command, reception
of the response, and streaming I/O that occurs in between.

I/O overhead. Since the prototype TPM is connected to the host via SPI, the throughput
of the communication is rather low. In addition, since the development board that is
running the TPM code does not have dedicated hardware for SPI communication, all
SPI interrupts and data transfers need to be handled by the CPU. The speed of the SPI
communication can be controlled by the SPI host. Therefore, we gradually increased the
SPI bus speed on the Raspberry Pi to find the maximum speed without transmission
errors and conducted the experiments at the resulting speed of 4 MHz.

For key generation, there is an about 10 % overhead caused by the general host-TPM
communication and the SPI interrupt handling due to frequent polling from the host on
the SPI bus, despite the fact that there is no data I/O during the computation of the
keys. For signing, the I/O overhead is large for the “f” parameter sets due to their large
signature sizes. The effect is quite significant for the SHA-256 parameter sets compared
to the SHAKE256 variants since the computational cost of SHAKE256 is higher for our
implementation.

For verification, the communication overhead is even more pronounced. In case of
SHA-256, communication takes well over 80 % of the time; also for the SHAKE256 variants,
the communication overhead is around or more than half. Therefore, the performance
advantage of the “s” over the “f” parameter sets for verification is rather dominated by the
communication time of the around two times smaller signatures than by the up to three
times faster verification time.

Wall-clock time. The key-generation time using the TPM command TPM_CreateLoaded
for the fast “f” parameter sets overall is relatively low with under 3 s for the SHA-256
variants and under 12 s for the SHAKE256 variants. The key-generation time for the slower
size-optimized “s” parameter sets is one order of magnitude slower. Signing time using the
command PQC_Private is quite high for SHA-256 and extremely high for some SHAKE256
variants. Verification time is relatively low for all parameter sets but in particular for the
“s” parameter sets.

As mentioned in Section 2.1, most of the time in all SPHINCS+operations is spent in the
hash-functions. Therefore, providing optimized implementations or hardware acceleration
for SHA-256 and SHAKE256 in a PQC-TPM will significantly speed up the wall-clock
time for SPHINCS+ operations. In our experiments, verification is dominated by the
communication time and also for signing using the “f” parameters the communication
time is significant. However, communication time can be reduced as well with dedicated
hardware for SPI or when the TPM is tightly coupled with the host system.

The “f” parameter sets are intended to provide faster key generation and signing time
at the cost of larger signatures and slower verification. This effect is clearly visible in
our TPM-prototype measurements. Therefore, we recommend the “s” parameter sets
for applications where a TPM verifies SPHINCS+ signatures and the “f” parameter sets
when a TPM is the owner of a SPHINCS+ private key (i.e., performs key generation and
signing). If a TPM is required to perform all the operations key generation, signing, and
verification, then the “f” parameter sets may overall be the better choice. Our streaming
interface enables even TPMs and embedded devices with very restricted memory resources
to handle the larger “f” signatures.
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Figure 7: Example for fault countermeasure for streamed signatures.

5 Fault Attacks

Kannwischer et al. describe a random fault attack on hash-based signature schemes
including SPHINCS+ in [GKP+18]. Their fault attack operates by causing a random fault
in the second highest layer of the hypertree. This randomizes the corresponding tree root
at that layer, which is subsequently signed using the WOTS+ scheme. Repeating the
fault injection several times leads to a number of faulty signatures for “different random
messages” (i.e., different root nodes on the second highest layer) that are getting signed
by the same WOTS+ signing key. If the attacker can obtain a large enough number of
faulty signatures, sufficient information on the secret WOTS+ signing key can be recovered,
which effectively reveals an equivalent signing key. Hence, the attacker can sign arbitrary
messages under an equivalent private key.

The streaming method described in this paper for the signature computation is particu-
larly susceptible to random fault attacks, because the communication during the signature
computation clearly signals the current part of the signature that is being computed. An
attacker can use this to facilitate triggering the random fault at the correct hypertree layer.

The general countermeasure against this kind of random fault attacks on signature
schemes is to store and verify the signature after its computation before releasing it to the
communication channel. This, however, is impossible in a streaming scenario — since the
main purpose of the signature streaming is to avoid storing the entire signature.

To protect against a random fault attack in the TPM signature-streaming scenario,
we propose the following solution: The TPM encrypts the signature stream with an
ephemeral symmetric key. Once the entire signature has been generated, the host streams
the encrypted signature back to the TPM. The TPM decrypts the signature stream and
verifies the signature (again using our streaming API without storing the entire signature).
If and only if the signature is correctly verified, the TPM then sends the symmetric key
to the host, who then can decrypt and further process the signature. If the TPM cannot
verify the signature, the symmetric key is not transmitted and discarded. Figure 7 shows
a diagram for this protocol. This solution can be transferred to other signature-streaming
scenarios where an encrypted signature can be streamed back to the signer.

The additional cost for this countermeasure is that every signature computation requires
additional communication overhead for streaming the encrypted signature back to the
signer and additional computational cost for encrypting the signature as well as for the
signature verification. However, since signature verification is relatively cheap compared
to the signature computation, this overhead can be relatively small (see Table 4). This
countermeasure forces the attacker to inject the exact same fault during verification
as during the signature generation, which renders random fault attacks impossible and
increases the cost for fault attacks significantly. Therefore, SPHINCS+ signatures can be
streamed securely into and out of resource-restricted embedded devices like TPMs and
Smart-Cards that do not have sufficient memory to store an entire signature.
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Appendix
Table 5: Cycle counts (in mega cycles) for key generation, signing, and verification for the reference implementation and the streaming API at
168 MHz as well as for the pqm4/pqclean implementation the streaming API at 24 MHz rounded to three significant figures.

stream vs. reference impl. (168 MHz) stream vs. pqm4/pqclean (24 MHz)

Keygen Sign Verify Keygen Sign Verify

Parameter Set ref. strm. ref. strm. ref. strm. pqm4 strm. pqm4 strm. pqm4 strm.
sphincs-sha256-128f-robust 54.6 55.0 1 270 1 280 81.7 82.7 30.5 36.0 750 835 43.9 54.2
sphincs-sha256-128s-robust 3 610 3 520 27 100 26 400 28.9 27.8 1 950 2 300 14 700 17 300 14.8 18.2
sphincs-sha256-192f-robust 81.5 81.8 2 150 2 160 121 123 45.2 53.8 1 250 1 420 67.1 80.6
sphincs-sha256-192s-robust 5 220 5 240 48 100 48 400 44.3 44.3 2 890 3 440 26 800 31 700 23.9 29.1
sphincs-sha256-256f-robust 300 300 6 110 6 120 177 177 165 195 3 450 3 980 95.8 115
sphincs-sha256-256s-robust 4 810 4 800 58 900 58 900 91.5 90.0 2 630 3 130 32 400 38 200 49.6 58.5

sphincs-sha256-128f-simple 26.7 27.3 625 640 36.9 39.8 16.1 17.7 400 416 22.6 25.8
sphincs-sha256-128s-simple 1 770 1 750 13 400 13 300 12.9 13.6 1 030 1 140 7 850 8 630 7.71 8.84
sphincs-sha256-192f-simple 39.5 40.2 1 060 1 080 58.1 58.4 23.7 26.2 669 701 33.6 37.9
sphincs-sha256-192s-simple 2 520 2 570 24 000 24 400 20.4 21.2 1 520 1 670 14 400 15 800 12.0 13.8
sphincs-sha256-256f-simple 106 106 2 210 2 230 61.4 60.6 62.6 69.4 1 340 1 450 35.5 39.4
sphincs-sha256-256s-simple 1 700 1 700 21 900 22 000 30.9 28.9 998 1 110 12 900 14 300 17.6 18.7

sphincs-shake256-128f-robust 409 410 9 480 9 520 570 580 113 297 2 790 6 890 160 420
sphincs-shake256-128s-robust 27 900 26 300 209 000 197 000 210 202 7 260 19 000 54 600 143 000 57.5 146
sphincs-shake256-192f-robust 598 601 15 100 15 200 856 849 167 435 4 460 11 000 238 615
sphincs-shake256-192s-robust 38 300 38 500 333 000 335 000 302 294 10 700 27 900 93 300 242 000 83.0 213
sphincs-shake256-256f-robust 1 580 1 590 31 100 31 200 907 855 445 1 150 8 990 22 700 246 620
sphincs-shake256-256s-robust 25 300 25 400 287 000 288 000 433 429 7 120 18 400 81 000 209 000 119 311

sphincs-shake256-128f-simple 211 212 4 950 4 970 308 298 59.8 154 1 480 3 590 85.4 215
sphincs-shake256-128s-simple 14 400 13 600 110 000 103 000 102 104 3 830 9 830 29 100 74 700 29.6 75.4
sphincs-shake256-192f-simple 310 311 8 010 8 040 433 429 88.3 225 2 410 5 820 123 310
sphincs-shake256-192s-simple 19 800 19 900 178 000 179 000 147 152 5 650 14 400 50 800 129 000 42.1 110
sphincs-shake256-256f-simple 821 823 16 500 16 500 431 438 235 596 4 860 12 000 127 317
sphincs-shake256-256s-simple 13 100 13 200 156 000 156 000 223 214 3 760 9 540 44 900 113 000 60.5 155
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