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1 Introduction

The security of all standardized cryptographic algorithms used all around the
world is based on the complexity of several number-theoretical problems. The lat-
ter include the discrete logarithm and factorization problems. However, in 1994
P. Shor showed [1] that quantum computers could break all schemes constructed
this way. And in 2001 the Shor’s algorithm was implemented on a 7-qubit quan-
tum computer. Since then various companies have been actively developing more
powerful quantum computers. Potential progress in this area poses a real threat
to modern public-key cryptography.

This led to the emergence of so-called post-quantum cryptographic schemes.
Most of them can be categorized into the following classes: code-based, lattice-
based, multivariate, hash-based and isogeny-based. No successful quantum-com-
puter attacks on “hard” problems from these areas are known.

The interest in code-based schemes as post-quantum ones can be noticed
in the works submitted to the contest for prospective public-key post-quantum
algorithms which was announced in 2016 by the US National Institute of Stan-
dards and Technology (NIST) [2]. The algorithms that win this contest will be
accepted as US national standards. 21 of 69 applications filed (that is, almost
a third of all works) were based on coding theory. However, it is worth not-
ing that only three of them presented digital signature schemes. These were
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pqsigRM [3], RaCoSS [4] and RankSign [5] schemes. However, attacks on each
of them were built during the peer review. The attack on the RankSign scheme
was presented on Asiacrypt conference [6]. Out of the competition pqsigRM
and RaCoSS schemes were fixed and presented as Modified pqsigRM [7] and
RaCoSS-R [8], respectively. However, the RaCoSS-R scheme was also proven to
be insecure [9]. As a result, none of the signatures based on the error-correcting
codes made it to the final of the NIST competition.

In general, the development of code-based signature schemes was advancing
less successfully than of the encryption ones. The first signature scheme of this
type was KKS, presented by G. Kabatianskii, E. Krouk and B. Smeets in the
paper [10] in 1997. However, in 2007 it was shown [11] that re-signing on one
key pair leads to the disclosure of some information about the secret key. Thus
it is necessary either to use the signature as a one-time one or use additional
resources for building and maintaining auxiliary structure.

After that for a rather long time attacks on all proposed signature schemes
were built so quickly that there was a fear that such schemes could not be created
at all [12].

In 2001 N. Courtois, M. Finiasz and N. Sendrier presented a digital signature
CFS [13] based on encryption schemes by R. McEliece [14] and H. Niederreiter [15]
(provably secure version of this signature, called mCFS, was later proposed by
L. Dallot in [16]). The authors used a decryption algorithm as the signature
generation one. Unfortunately because of the inner decoding procedure with
extremely small probability of success on a random input, the signature genera-
tion algorithm had to be repeated many times. Also, a significant disadvantage
of CFS-type schemes is that their security depends on the assumption that the
base code is indistinguishable from a random one. This leads to the emergence
of attacks on signatures, previously considered provably secure. One of the latest
schemes of this type is Wave [17], based on generalized (U,U + V ) codes.

Another approach to constructing a signature scheme is to apply the Fiat–
Shamir transformation [18] to an identification protocol. For example, one may
use identification schemes by J. Stern [19], A. Jain et al. [20] or CVE [21]. This
method does not take into account features of codes. But it allows to prove the
security without assumptions that depend on their structure. However, due to
the fact that the basic scheme has a certain cheating probability, the signature
algorithm has to be repeated several times, that leads to an increase in its
operation time and in the resulting signature length.

This drawback is overcome in Lyubashevsky-type signatures, the original
version of which is lattice-based [22]. Despite of the fact the original version
remains secure, all known attempts to replace lattices with codes in Hamming
metric resulted in the loss of security. However, a code-based signature in the
rank metric called Durandal was proposed in [23] and is still secure. Yet it is
not proven that the signature distribution is independent from the secret key
and reveals no information on it. Moreover, the security proof is based on the
hardness of a new problem PSSI+. Therefore, Stern-type schemes remain the
only ones whose security proofs are based only on NP-hard problems.
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Despite the fact that the signature based on the Stern identification scheme
has been repeatedly mentioned in the literature, it has never been fully presented.
For example, the review [24] by R. Overbeck and N. Sendrier only mentions the
possibility of constructing such a signature, without giving the algorithm itself.
In the paper [25] the scheme is formulated with an error, which leads to the sig-
nificant decrease of the security level compared to the expected value. A correct,
but short description of the scheme can be found in [26].

Moreover, the security proof of the scheme is considered to be proved by
D. Pointcheval and J. Stern in [27]. This paper presents so-called Forking lemma
by which the security of the signature scheme to existential forgery under an
adaptively chosen-message attack in the random oracle model is proved. The
authors mention there the applicability of the Forking lemma to the Stern sig-
nature scheme. However this fact was not proven neither in this article nor
elsewhere later.

In our work we provide a complete description of the signature based on the
Stern identification scheme along with the proof of the existential unforgeability
under the chosen message attack (EUF-CMA) under assumptions of hardness of
syndrome decoding and hash function collision finding problems.

The rest of this paper is structured as follows. In Section 2 we give basic
definitions, describe some hard problems and show the original Stern identi-
fication protocol. We present the signature scheme together with the security
model in Section 3. Section 4 is devoted to the security proof of our signature
in the EUF-CMA model. We give some restrictions on the scheme parameters
and introduce an example parameter set in Section 5. Finally, conclusions are
presented in Section 6.

2 Definitions and Preliminary Results

Our signature is based on linear block error-correcting codes. We will call them
codes for brevity.

We denote by Sn the symmetric group of order n, i.e. the group of all
permutations of elements of the set {1, . . . , n}. If σ ∈ Sn, u ∈ {0, 1}n, then
σ(u) ∈ {0, 1}n, σ(u)i = uσ(i). The weight of the vector u is the number of its
nonzero elements. It is denoted by wt(u).

The security of the signature scheme is based on the hardness of the following
problems.

Problem SD(H,y, ω). Syndrome Decoding
Input: (n− k)× n parity-check matrix H of some binary code, nonzero vector
y ∈ {0, 1}n−k, called syndrome, and number ω > 0.
Output: vector e ∈ {0, 1}n such that wt(e) = ω and HeT = yT .

Problem Coll(h). Collision Finding
Input: hash function h : {0, 1}∗ → {0, 1}`.
Output: vectors x′, x′′ ∈ {0, 1}∗, x′ 6= x′′ such that h(x′) = h(x′′).
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The former problem is known to be NP-hard [28]. The best known algorithm
solves it in O

(
20.0885n

)
bit operations [29]. The complexity of latter problem

depends on the structure of the function h. In the general case, the complexity
of solving such a problem using the birthday paradox can be estimated as O

(
2
`
2

)
.

Let us recall the Stern identification protocol presented in [19]. The protocol
parameters depend on the parameters of the underlying code: its length n, di-
mension k and minimum distance ω. The parity-check matrix of this code is a
random matrix H ∈ {0, 1}(n−k)×n. Also, the protocol is based on a hash function
h(·) : {0, 1}∗ → {0, 1}`.

To generate a secret key one randomly uniformly chooses s = {0, 1}n such
that wt(s) = ω. Now public key can be derived as y = HsT . The description

of the identification protocol is shown on Fig. 1. Here the notation s
U← S

means that s is chosen from the set S uniformly at random. We also denote the
assignment of value v to x by x← v.

In his paper Stern proposes a strategy for an adversary to pass identification
without knowing the secret key with probability of success equal to 2/3. So to
reduce this value and to reach the required level of security one should repeat
the algorithm several times.

Recall the general definition of a digital signature scheme.

Definition 1. A digital signature scheme is a triple Σ = (KeyGen, Sig, V er)
of (possibly probabilistic) polynomial time algorithms, where

1. KeyGen() outputs a key pair (pk, sk).

2. Sig(sk,m) receives as input the secret key sk and a message m ∈ {0, 1}∗
and outputs a signature ζ.

3. V er(pk,m, ζ) receives as input the public key pk, a message m and a signa-
ture ζ. It outputs 0 or 1, where 1 means that ζ is accepted as a signature for
message m and public key pk. 0 means that the signature is not accepted.

3 Signature scheme

In this section we show the digital signature scheme that is the result of the Fiat–
Shamir transformation applied to the Stern identification scheme. The transfor-
mation consists of replacing the random value b, generated by the verifier, by
some function f of the message and values received from the prover. It is impor-
tant for f to depend on all of these values at once.

Parameters of the signature are the same as in the original identification
protocol described in Section 2. Additionally the scheme uses a hash function
f(·) : {0, 1}∗ → {0, 1, 2}δ. The length of the signature depends on the parame-
ter δ that is determined by the security parameter λ.
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Prover(s) Verifier(y)

u
U← {0, 1}n, σ U← Sn

c0 ← h(σ‖HuT )

c1 ← h(σ(u))

c2 ← h(σ(u⊕ s))

c0, c1, c2

b
U← {0, 1, 2}

b

if b = 0 : r0 ← σ, r1 ← u

if b = 1 : r0 ← σ, r1 ← u⊕ s
if b = 2 : r0 ← σ(u), r1 ← σ(s)

r0, r1

if b = 0 :

Check c0
?
= h(r0‖HrT1 ),

c1
?
= h(r0(r1))

if b = 1 :

Check c0
?
= h(r0‖(HrT1 ⊕ y)),

c2
?
= h(r0(r1))

if b = 2 :

Check c1
?
= h(r0),

c2
?
= h(r0 ⊕ r1),

wt(r1)
?
= ω

Fig. 1. Stern identification scheme

Stern.KeyGen()

1 : s
U←
{
{0, 1}n : wt(s) = ω

}
2 : y ← HsT

3 : return (y, s)

Stern.Sig(s,m)

1 : foreach 0 6 i < δ :

2 : ui
U← {0, 1}n, σi

U← Sn

3 : ci,0 ← h(σi‖HuTi )

4 : ci,1 ← h(σi(ui))

5 : ci,2 ← h(σi(ui ⊕ s))
6 : ci ← ci,0‖ci,1‖ci,2
7 : c← c0‖ . . . ‖cδ−1

8 : b← f(m‖c)
9 : foreach 0 6 i < δ :

10 : if bi = 0 : ri ← σi‖ui
11 : if bi = 1 : ri ← σi‖(ui ⊕ s)
12 : if bi = 2 : ri ← σi(ui)‖σi(s)
13 : r ← r0‖ . . . ‖rδ−1

14 : return c‖r
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Stern.V er(y,m, (c‖r))
1 : b← f(m‖c)
2 : foreach 0 6 i < δ :

3 : if
[
bi = 0

]
∧
[[
ci,0 6= h(ri,0‖HrTi,1)

]
∨
[
ci,1 6= h(ri,0(ri,1))

]]
:

4 : return 0

5 : if
[
bi = 1

]
∧
[[
ci,0 6= h(ri,0‖(HrTi,1 ⊕ y))

]
∨
[
ci,2 6= h(ri,0(ri,1))

]]
:

6 : return 0

7 : if
[
bi = 2

]
∧
[[
ci,1 6= h(ri,0)

]
∨
[
ci,2 6= h(ri,0 ⊕ ri,1)

]
∨
[
wt(ri,1) 6= ω

]]
:

8 : return 0

9 : return 1

To estimate the scheme security under different assumptions about the ad-
versary we construct experiments, where the adversary is represented by a prob-
abilistic polynomial-time Turing machine. The notation Exp⇒ b means that b
is the output of the experiment Exp. We write abort in the oracle pseudocode
to denote that experiment should stop and return 0. We denote the set of all
mappings from set A to set B by Func(A,B). To emphasize the fact that x is
the result of a probabilistic algorithm A we write x←$A(...).

To model a random oracle F : {0, 1}∗ → {0, 1, 2}δ we use lazy sampling. We
introduce the set ΠF , which contains pairs of form (α, F (α)). Further we write
(α, ·) ∈ ΠF for α ∈ {0, 1}∗ to show that there exists β ∈ {0, 1, 2}δ such that
(α, β) ∈ ΠF . As far as ΠF contains not more than one pair (α, β) for each α,
then ΠF (α) denotes either β if (α, β) ∈ ΠF or special value ⊥ if there is no such
a pair.

Definition 2. For the signature scheme Stern.Σ we denote the advantage of
the adversary A in qf -EUF-NMA model with random oracle access by

Adv
qf -EUF-NMA
Stern (A) = Pr[Exp

qf -EUF-NMA
Stern (A)⇒ 1],

where the experiment Exp
qf -EUF-NMA
Stern (A) is defined as follows:

Exp
qf -EUF-NMA
Stern (A)

1 : (pk, sk)←$Stern.KeyGen()

2 : ΠF ← ∅
3 : (m, ζ)←$AF (pk)

4 : return Stern.V er(pk,m, ζ)

Oracle F (α)

1 : if α ∈ ΠF : β ← ΠF (α)

2 : else

3 : β
U← {0, 1, 2}δ

4 : ΠF ← ΠF ∪ {(α, β)}
5 : return β

Parameter qf corresponds to the number of queries made by the adversary A to
the oracle F . If this does not cause ambiguity, we will omit this parameter.
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Definition 3. For the signature scheme Stern.Σ we denote the advantage of
the adversary A in (qf , qs)-EUF-CMA model with random oracle access by

Adv
(qf ,qs)-EUF-CMA
Stern (A) = Pr[Exp

(qf ,qs)-EUF-CMA
Stern (A)⇒ 1],

where the experiment Exp
(qf ,qs)-EUF-CMA
Stern is defined as follows:

Exp
(qf ,qs)-EUF-CMA
Stern (A)

1 : (pk, sk)←$Stern.KeyGen()

2 : L ← ∅
3 : ΠF ← ∅
4 : (m, ζ)←$ASign,F (pk)

5 : if m ∈ L : return 0

6 : return Stern.V er(pk,m, ζ)

Oracle F (α)

1 : if α ∈ ΠF : β ← ΠF (α)

2 : else

3 : β
U← {0, 1, 2}δ

4 : ΠF ← ΠF ∪ {(α, β)}
5 : return β

Oracle Sign(m)

1 : ζ ←$Stern.Sig(sk,m)

2 : L ← L ∪ {m}
3 : return ζ

Parameters qf and qs correspond to the number of queries made by the adversary
A to the oracles F and Sign, respectively. They can also be omitted.

4 Security bounds

Let us give several definitions that will be needed below.

Definition 4. If T is a ternary tree of depth δ with N leaves, then the density
of T is defined as N/3δ.

Definition 5. Let us call a tree a ρ-dense one if its density is not less than ρ.

Definition 6. We call a tree a uniformly ρ-dense one if each of its subtrees,
excluding leaves, is a ρ-dense tree.

Proposition 1. A ρ-dense tree T with all leaves having depth δ, considered as
a graph, contains a subgraph that is a uniformly ρ

δ -dense tree with the same root.
Moreover, each of its leaves has depth δ.

Proof. Let us describe the algorithm to choose such a subgraph. We start from
the (δ−1)-th level of the tree and move to the root (level 0) disposing of vertices
that are roots of subtrees of density less than θ = ρ

δ . Note that until the algorithm
stops (i.e. reaches the root) some leaves may have depth less than δ. However,
after the algorithm completion each of the survived leaves will have depth δ.



8 V. Vysotskaya, I. Chizhov

Let us show that at each step of this algorithm the root density decreases by
no more than θ. Suppose that there are κ vertices at the i-th level of the original
tree T . The densities of subtrees formed by them are ρi,1, . . . , ρi,κ. If we denote
the number of leaves of T by t, then

ρi,1 + · · ·+ ρi,κ =
t

3δ−i
= 3iρ.

After the step of the algorithm at the i-th level, some of these vertices may
be disposed of, namely those that have density less than θ. Thus the new density
ρ′i,j may either be equal to ρi,j or become 0 if ρi,j < θ. So

ρ′i,1 + · · ·+ ρ′i,κ > ρi,1 + · · ·+ ρi,κ − κθ > 3iρ− κθ.

Thus, for the new density of the root ρ′ holds 3iρ′ > 3iρ− κθ and

ρ′ > ρ− κ

3i
θ > ρ− θ.

As a result of all deletions, ρ has decreased by at most (δ− 1)θ. Since θ = ρ
δ ,

then

ρ− (δ − 1)
ρ

δ
=
ρδ − (δ − 1)ρ

δ
=
ρ

δ
= θ.

So the resulting tree is uniformly θ-dense.

Theorem 1. Let A be an adversary with time complexity at most T in the
EUF-NMA model for Stern signature scheme, making at most one query to the
hashing oracle F , then

Adv1-EUF -NMA
Stern (A) 6 6 · 3

√
δ2T

min{TSD, TColl}
+

(
2

3

)δ
,

where TSD and TColl are complexities of optimal algorithms solving SD(H, y, ω)
and Coll(h) problems with probabilities of success at least 1− 1

e .

Proof. Denote

ε = Adv1-EUF -NMA
Stern (A)−

(
2

3

)δ
. (1)

In case if ε 6 0 the proof is complete. Therefore, further we will consider the
case

Adv1-EUF -NMA
Stern (A) =

(
2

3

)δ
+ ε, ε > 0.

We can represent the execution of the adversary A at all outputs of the
random oracle F as an incomplete ternary tree T (x), each leaf of which has
depth δ. It is determined by A’s random tape x. Each output bi of the random
oracle corresponds to a certain path in the tree. If the corresponding bi equals 0
the vertex has the left child, if bi = 1 then the vertex has the middle one
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and if bi = 2 then it has the right one. If the adversary was not able to build a
signature for some output of the random oracle correctly, then the corresponding
branch is removed from the tree. Note that fixing the adversary’s random tape
we guarantee that at each level of the tree the same part of the signature,
corresponding to ci,0‖ci,1‖ci,2, is checked.

Let us show that if there exists a level i with a vertex with a left child, a
vertex with a middle child and a vertex with a right child (denoted respectively
vi,0, vi,1 and vi,2), then one of the SD(H, y, ω) and Coll(h) problems can be
solved. Note that some of vertices vi,0, vi,1 and vi,2 may coincide. Later we will
present the algorithm that let the adversary A find such vertices in the tree T (x)
with probability 1− 1/e.

Let the tree have such vertices. In this case the adversary has successfully
generated three signatures on outputs of random oracle that all differ in the
i-th trit. Let ri,0 = σ0 and ri,1 = u0 for bi = 0. For bi = 1 let ri,0 = σ1 and
ri,1 = w1, where w1 corresponds to ui ⊕ s. Finally, for bi = 2 let ri,0 = z2 and
ri,1 = t2, where z2 corresponds to σi(ui) and t2 corresponds to σi(s). Since c0
can be obtained in two cases (bi = 0 and bi = 1), then

ci,0 = h(σ0‖HuT0 ) = h(σ1‖HwT1 ⊕ y).

Hence, either collision of hash function h can be found or σ0 = σ1 and
HuT0 = HwT1 ⊕ y. Similarly it can be shown that if no collisions were found, then
z2 = σ0(u0) and z2 ⊕ t2 = σ1(w1). Note that as the third answer was accepted,
t2 satisfies the weight constraint. Denoting σ = σ0 = σ1 we have

t2 = z2 ⊕ (t2 ⊕ z2) = σ(u0 ⊕ w1).

Therefore, u0 ⊕ w1 also has the acceptable weight. Then

H(u0 ⊕ w1)T = HuT0 ⊕HwT1 = y

and u0 ⊕ w1 is an acceptable secret key.
Now let us describe an algorithm that finds a tree with vertices vi,0, vi,1 and

vi,2 with some probability.

Algorithm 1

1. Randomly choose a value x of the adversary’s random tape (i.e. fix the tree
T (x)).

2. Fix 6T
θ2 outputs of the random oracle (defining the number of branches of

the tree).
3. Traverse the tree level by level to find vertices vi,0, vi,1 and vi,2. If they are

found, then compute an equivalent secret key s′ as described above, create
a signature for a random message on this key using the original signature
algorithm and return this message and the signature. Otherwise return to
Step 1.

Lemma 1. Under the assumptions of Theorem 1, the probability of success of
each run of Algorithm 1 is not less than ε

4 , where ε is defined as in (1).
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Proof. Define the set X as

X = {x
∣∣ there are at least 2δ +

ε

2
· 3δ branches in T (x)}.

Then Pr[x ∈ X] > ε/2.
Let, on the contrary, Pr[x ∈ X] < ε/2. Let us denote the number of leaves

of T (x) by t. Then Pr[A ⇒ 1 ∧ x /∈ X] = t/3δ < (2/3)δ + ε/2. Therefore, the
success probability of A is

Pr[A ⇒ 1] = Pr[A ⇒ 1 ∧ x ∈ X] + Pr[A ⇒ 1 ∧ x /∈ X] 6 Pr[x ∈ X]+

+ Pr[A ⇒ 1 ∧ x /∈ X] < ε/2 +
(
(2/3)δ + ε/2

)
= (2/3)δ + ε.

And we came to a contradiction.
Let us consider separately the case x ∈ X. Note that X defines a set of

ε/2-dense trees. Therefore, by Proposition 1 one can select a uniformly θ-dense
subtree with leaves of depth δ from each such tree. Here θ = ε

2δ . Let us call this
tree T1(x).

For any index j, 0 6 j 6 δ we denote by nj the number of vertices at the
j-th level of T1(x). Also for 0 6 j < δ we define the value αj = nj+1/nj . Let

us denote θ′ = θ −
(
2
3

)δ
. Then, since n0 = 1 (j = 0 corresponds the root of the

tree),
δ−1∏
j=0

αj > 2δ + θ′ · 3δ

or, equivalently,
δ−1∑
j=0

log2(αj) > log2

(
2δ + θ′ · 3δ

)
.

Using the convexity of the logarithm, we can extend this inequality as

δ−1∑
j=0

log2(αj) > δ + θ′δ log2 3.

Let i = arg max
j=0,...,δ−1

{αj}. Then log2(αi) > 1 + θ′ log2 3. From this and the fact

that the inequality ex > 1 + x holds we obtain

αi > 2 · 2θ
′ log2 3 > 2 + 2θ′ ln 2 log2 3.

Denote by ni,62 and ni,3 the number of vertices of T (x) having no more than
two children and exactly three children at i-th level, respectively. Then

αi 6
2ni,62 + 3ni,3
ni,62 + ni,3

= 2 +
ni,3
ni

.

This shows that for the ratio of vertices with three children ∆ at i-th level it
holds

∆ > 2θ′ ln 2 log2 3 > 2θ. (2)
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Let there be κ vertices at this level: v1, . . . , vκ. Then

∆ =
κ

3i
. (3)

We denote by Li(π) the predicate that the path π lies in T1(x) and goes
through the left child of some vertex of level i. Similarly, we define predicates
Ci(π) and Ri(π). By Li we denote the predicate (∃π : Li(π)).

We can write for the probability of the event Li:

Pr[Li] = Pr[∃π : (v1 ∈ π ∨ v2 ∈ π ∨ · · · ∨ vκ ∈ π) ∧ Li(π)] =

=

κ∑
i=1

Pr[∃π : (vi ∈ π) ∧ Li(π)]

The probability Pr[∃π : (vi ∈ π)∧Li(π)] is equal to the number S of paths in
T1(x) passing through the left child of vi divided by 3δ. Since T1(x) is a uniformly
θ-dense tree, it holds that

θ 6
S

3δ−i−1
⇒ S > 3δ−i−1θ ⇒ Pr[∃π : (vi ∈ π) ∧ Li(π)] >

3δ−i−1θ

3δ
. (4)

From this, from (2) and (3) we can finally conclude that

Pr[Li] > κ · 3δ−i−1θ

3δ
>

2θ2

3
.

Now let us find the probability P that choosing 3/θ2 branches πj we find
vertices vi,0, vi,1 and vi,2 at the i-th level of T1(x).

P = Pr[∃j0, j1, j2 : Li(πj0) ∧ Ci(πj1) ∧Ri(πj2)] =

= 1− Pr[@j0 : Li(πj0) ∨ @j1 : Ci(πj1) ∨ @j2 : Ri(πj2)] >

> 1− Pr[@j0 : Li(πj0)]− Pr[@j1 : Ci(πj1)]− Pr[@j2 : Ri(πj2)] =

= 1− 3 Pr[@j0 : Li(πjL)] = 1− 3 Pr[Li]
3
θ2 = 1− 3(1− Pr[Li])

3
θ2 >

> 1− 3

(
1− 2θ2

3

) 3
θ2

> 1− 3

e2
.

Thus, the success probability of Algorithm 1 searching vertices vi,0, vi,1 and
vi,2 is obtained from the probability of choosing a dense tree T (x) and the
probability P . It equals p := ε/2 · (1− 3/e2) > ε/4.

The complexity of A builds up from the complexity of 3/θ2 runs of Algo-
rithm 1 and is equal to T ′ = 3T/θ2 = 12δ2T/ε2. In order to achieve a constant
probability of success, A must repeat the above algorithm 1/p times. The proba-
bility that after 1/p runs there is still no success is (1−p)1/p. ThenA’s probability
of success is 1− (1− p)1/p. Let us show that

1− (1− p)
1
p > 1− 1

e
.



12 V. Vysotskaya, I. Chizhov

Indeed, the Maclaurin series for 1/(1− p) and ep are:

1

1− p
= 1 + p+ p2 + . . . , ep = 1 +

p

1!
+
p2

2!
+ . . . ,

thus for all p ∈ (0, 1) holds

1/(1− p) > ep ⇒ (1− p) < 1

ep
⇒ (1− p)

1
p <

1

e
.

The resulting complexity of the adversary A is T ′′ := T ′/p = 48δ2T/ε3.
Let A solve SD(H, y, ω) and Coll(h) with probabilities p1 and p2, respectively.
Then

p1 + p2 > 1− 1

e
.

We denote by TSD,(1−1/e) and TColl,(1−1/e) complexities of optimal algorithms,
solving SD(H, y, ω) and Coll(h) with success probability 1− 1/e. Then

TSD,(1−1/e) 6
1

p1
TSD,p1 6

1

p1
T ′′,

TColl,(1−1/e) 6
1

p2
TColl,p2 6

1

p2
T ′′.

The first inequalities follow from the fact that repeating an algorithm with a
success probability p1 for 1/p1 times gives an algorithm with a success probability
of 1− 1/e, but possibly suboptimal. The second inequality follows from the fact
that A solves one of two problems. Accordingly, its complexity cannot be less
than the complexity of the algorithm that solves one of them.

Hence,
T ′′ > p1TSD,(1−1/e) and T ′′ > p2TColl,(1−1/e).

Therefore, denoting T̃ = min{TSD,(1−1/e), TColl,(1−1/e)}, we can write

T ′′ >
1

2

(
p1TSD,(1−1/e) + p2TColl,(1−1/e)

)
>

1

2
(p1 + p2)T̃ >

1− 1
e

2
T̃ .

Equivalently,
48δ2T

ε3
>

1− 1
e

2
T̃ .

Finding ε from the last inequality and noting that 3

√
96

1− 1
e

6 6, we obtain:

ε 6 6 · 3

√
δ2T

T̃
.

Finally,

Adv1-EUF-NMA
Stern (A) 6 6 · 3

√
δ2T

min{TSD, TColl}
+

(
2

3

)δ
.
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Theorem 2. Let A be an adversary in the EUF-NMA model for Stern signature
scheme, making at most qf queries to the hashing oracle F . Then there exists
an adversary B in the 1-EUF-NMA model for Stern signature scheme making at
most one query to the hashing oracle and satisfying

qf · Adv1-EUF-NMA
Stern (B) > AdvEUF-NMA

Stern (A)−
(

1

3

)δ
.

Furthermore, if the complexity of A is T , then the complexity of B is T+c′qf ,
where c′ is a constant depending on the model of computation.

Proof. Let Exp0 denote the original experiment in the EUF-NMA security
model with qf queries to the hashing oracle F . In this experiment A is the
adversary that makes an existential forgery for the Stern signature scheme using
the random oracle F . Therefore,

AdvEUF-NMA
Stern (A) := Pr[Exp0(A)⇒ 1].

Exp1(A)

1 : s
U←
{
{0, 1}n : wt(s) = ω

}
2 : y ← HsT

3 : ΠF ← ∅
4 : (m, c‖r)←$AF (y)

5 : return Stern.V er(y,m, c‖r)

Oracle F (α)

1 : if α ∈ ΠF : β ← ΠF (α)

2 : else

3 : β
U← {0, 1, 2}δ

4 : ΠF ← ΠF ∪ {(α, β)}
5 : return β

Now basing on the adversary A we construct an adversary B that makes an
existential forgery in the model with one query to the random oracle. B simulates
the oracle F that can give qf answers to A’s queries using algorithm SimFt. Here
the notation BSimFt means that the only B’s query to its own random oracle F ∗

matches the A’s t-th query to the oracle F . Note that the output of the oracle
F ∗ has a uniform distribution, i.e. values β obtained on lines 3 and 4 of SimFt
cannot be distinguished.

BF∗(y)

1 : ΠF ← ∅
2 : j ← 0

3 : t
U← {1, . . . , q′f}

4 : (m, c‖r)←$ASimFt(y)

5 : return (m, c‖r)

SimFt(α)

1 : j ← j + 1

2 : if (α, ·) ∈ ΠF : β ← ΠF (α)

3 : elseif j = t : β ← F ∗(α)

4 : else : β
U← {0, 1, 2}δ

5 : ΠF ← ΠF ∪ {(α, β)}
6 : return β

The adversary A can make a signature including answer for one of the queries
made to the oracle F or none of them. Let I be a random variable that corre-
sponds to the number of A’s query to the oracle F that it uses to create a forgery.
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In case A does not use any, let I = 0. Hence,

Pr[Exp1-EUF-NMA
Stern (B)⇒ 1] > Pr[Exp0(A)⇒ 1 ∧ t = I] >

> Pr[Exp0(A)⇒ 1 ∧ t = I ∧ I > 1].

Note that A’s probability of success in case it does not use any query to

random oracle F is no more than
(
1
3

)δ
as it has to guess full output b = F (α).

From this and the definition of conditional probability holds

Pr[Exp0(A)⇒ 1] 6 Pr[Exp0(A)⇒ 1 ∧ I > 1] + Pr[Exp0(A)⇒ 1 ∧ I = 0] 6

6 Pr[Exp0(A)⇒ 1 ∧ I > 1] +

(
1

3

)δ
.

Then

Pr[Exp1-EUF-NMA
Stern (B)⇒ 1] > Pr[t = I] Pr[Exp0(A)⇒ 1 ∧ I > 1] >

>
1

qf
Pr[Exp0(A)⇒ 1 ∧ I > 1].

Consequently,

Pr[Exp0(A)⇒ 1]−
(

1

3

)δ
6 qf · Pr[Exp1-EUF-NMA

Stern (B)⇒ 1].

From the above holds

qf ·Adv1-EUF-NMA
Stern (B) = qf ·Pr[Exp(B)⇒ 1] > Pr[Exp0(A)⇒ 1]−

(
1

3

)δ
=

= AdvEUF-NMA
Stern (A)−

(
1

3

)δ
.

B runs A and simulate qf queries to oracle F . I.e. if the complexity of A is T ,
then the complexity of B does not exceed T + c′qf for some constant c′.

Theorem 3. Let A be an adversary in the EUF-CMA model for Stern signature
scheme, making at most qf queries to the hashing oracle F and at most qs queries
to the signing oracle Sign. Then there exists an adversary B in the EUF-NMA
model for Stern signature scheme making at most qf queries to the hashing oracle
and

AdvEUF-NMA
Stern (B) > AdvEUF-CMA

Stern (A)− q2fqs
(

max

{
c̃

TColl
,

1

22nn!

})δ
,

where c̃ is a constant depending on the model of computation.
Furthermore, if the complexity of A is T , then the complexity of B is

T + c′′(qf + qs), where c′′ is another constant depending on the model of com-
putation.
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Proof. Let Exp0 denote the original experiment in the EUF-CMA security
model. In this experiment A is the adversary that makes an existential forgery
for the Stern signature scheme using the random oracle F and signing oracle
Sign. A can make at most qf queries to F and at most qs queries to Sign.

Exp0(A) = ExpEUF-CMA
Stern (A)

1 : s
U←
{
{0, 1}n : wt(s) = ω

}
2 : y ← HsT

3 : L ← ∅
4 : ΠF ← ∅
5 : (m, c‖r)←$ASign,F (y)

6 : if m ∈ L : return 0

7 : return Stern.V er(y,m, c‖r)

Oracle F (α)

1 : if α ∈ ΠF : β ← ΠF (α)

2 : else

3 : β
U← {0, 1, 2}δ

4 : ΠF ← ΠF ∪ {(α, β)}
5 : return β

Oracle Sign(s,m)

1 : foreach 0 6 i < δ :

2 : ui
U← {0, 1}n, σi

U← Sn

3 : ci,0 ← h(σi‖HuTi )

4 : ci,1 ← h(σi(ui))

5 : ci,2 ← h(σi(ui ⊕ s))
6 : ci ← ci,0‖ci,1‖ci,2
7 : c← c0‖ . . . ‖cδ−1

8 : b← F (m‖c)
9 : foreach 0 6 i < δ :

10 : if bi = 0 : ri ← σi‖ui
11 : if bi = 1 : ri ← σi‖(ui ⊕ s)
12 : if bi = 2 : ri ← σi(ui)‖σi(s)
13 : r ← r0‖ . . . ‖rδ−1

14 : L ← L ∪ {m}
15 : return c‖r

AdvEUF-CMA
Stern (A) := Pr[Exp0(A)⇒ 1].

The experiment Exp1 is a modification of Exp0 obtained by introducing sets
ΠS , Π ⊂ {0, 1}∗ × {0, 1, 2}δ. ΠS is filled while communicating with the oracle
Sign and Π = ΠF ∪ΠS .

Modifications of algorithms F and Sign do not affect the distributions of
their outputs, therefore,

Pr[Exp0(A)⇒ 1] = Pr[Exp1(A)⇒ 1].

The experiment Exp2 differs from Exp1 only in algorithm Sign. Now it does
not use the secret key, and the result is formed by a random vector b.

We show that the distributions of outputs c‖r of the algorithm Sign in
experiments Exp1 and Exp2 are indistinguishable if the condition on the line 23
was not satisfied. If we show that the distribution of each such part ci‖ri =
ci,0‖ci,1‖ci,2‖ri,0‖ri,1 for i = 0, . . . , δ− 1 in Exp2 coincides with the distribution
of the corresponding part in Exp1, then the distributions of the signatures also
coincide.

Further we will consider arguments of the hash function h corresponding
to ci,j instead of the values themselves. The reason for it is the fact that if
distributions of variables ξ and η coincide, then distributions of variables h(ξ)
and h(η) also coincide. Indeed,

Pr[h(ξ) = a] = Pr[ξ ∈ h−1(a)] = Pr[η ∈ h−1(a)] = Pr[h(η) = a].
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Exp1(A)

1 : s
U←
{
{0, 1}n : wt(s) = ω

}
2 : y ← HsT

3 : L ← ∅
4 : (ΠF , ΠS)← (∅,∅)

5 : Π ← ΠF ∪ΠS

6 : (m, c‖r)←$ASign,F (y)

7 : if m ∈ L : return 0

8 : return Stern.V er(y,m, c‖r)

Oracle F (α)

1 : if (α, ·) ∈ Π : return Π(α)

2 : β
U← {0, 1, 2}δ

3 : ΠF ← ΠF ∪ {(α, β)}

4 : Π ← ΠF ∪ΠS

5 : return β

Oracle Sign(s,m) (Exp1)

1 : foreach 0 6 i < δ :

2 : ui
U← {0, 1}n, σi

U← Sn

3 : ci,0 ← h(σi‖HuTi )

4 : ci,1 ← h(σi(ui))

5 : ci,2 ← h(σi(ui ⊕ s))
6 : ci ← ci,0‖ci,1‖ci,2
7 : c← c0‖ . . . ‖cδ−1

8 : if (m‖c, ·) ∈ Π : b← Π(m‖c)
9 : else

10 : b
U← {0, 1, 2}δ

11 : ΠS ← ΠS ∪ {(m‖c, b)}

12 : Π ← ΠF ∪ΠS

13 : foreach 0 6 i < δ :

14 : if bi = 0 : ri ← σi‖ui
15 : if bi = 1 : ri ← σi‖(ui ⊕ s)
16 : if bi = 2 : ri ← σi(ui)‖σi(s)
17 : r ← r0‖ . . . ‖rδ−1

18 : L ← L ∪ {m}
19 : return c‖r

Oracle Sign(m) (Exp2)

1 : s′
U←
{
{0, 1}n : wt(s′) = ω

}
2 : foreach 0 6 i < δ :

3 : bi
U← {0, 1, 2}

4 : u′i
U← {0, 1}n, σ′i

U← Sn,

5 : if bi = 0 :

6 : ci,0 ← h(σ′i‖Hu′Ti )

7 : ci,1 ← h(σ′i(u
′
i))

8 : ci,2 ← h(σ′i(u
′
i ⊕ s′))

9 : ri ← σ′i‖u′i
10 : if bi = 1 :

11 : ci,0 ← h(σ′i‖(Hu′Ti ⊕ y))

12 : ci,1 ← h(σ′i(s
′))

13 : ci,2 ← h(σ′i(u
′
i))

14 : ri ← σ′i‖u′i

15 : if bi = 2 :

16 : ci,0 ← h(σ′i‖H(u′i ⊕ s′)T )

17 : ci,1 ← h(σ′i(u
′
i ⊕ s′))

18 : ci,2 ← h(σ′i(u
′
i))

19 : ri ← σ′i(u
′
i ⊕ s′)‖σ′i(s′)

20 : ci ← ci,0‖ci,1‖ci,2
21 : c← c0‖ . . . ‖cδ−1

22 : r ← r0‖ . . . ‖rδ−1

23 : if (m‖c, ·) ∈ ΠF : abort

24 : ΠS ← ΠS ∪ {(m‖c, b)}

25 : Π ← ΠF ∪ΠS

26 : L ← L ∪ {m}
27 : return c‖r
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In case bi = 0 for an external observer the secret key s is a random vari-
able. And other values are randomly selected in the same way as in the original
protocol. So distributions, obviously, coincide.

If bi = 1, then the probability that in Exp1 the string ci‖ri equals
a1‖a2‖a3‖a4‖a5‖a6 is

Pa1,a2,a3,a4,a5,a6 =

= Pr
[
σi = a1, Hu

T
i = a2, σi(ui) = a3, σi(ui ⊕ s) = a4, σi = a5, ui ⊕ s = a6

]
=

= I
[
a1 = a5, H(a6 ⊕ s)T = a2, a1(a6) = a4

]
×

× Pr
[
σi = a1, s = a−11 (a3)⊕ a6, ui = a−11 (a3)

]
,

where I
[
θ
]

is the indicator of expression θ. In Exp2 this probability is

P̂a1,a2,a3,a4,a5,a6 =

= Pr
[
σ′i = a1, Hu

′T
i ⊕ y = a2, σ

′
i(s
′) = a3, σ

′
i(u
′
i) = a4, σ

′
i = a5, u

′
i = a6

]
=

= I
[
a1 = a5, Ha

T
6 ⊕ y = a2, a1(a6) = a4

]
Pr
[
σ′i = a1, s

′ = a−11 (a3), u′i = a6
]
.

As far as H(a6 ⊕ s)T = HaT6 ⊕ y, indicators of these two expressions coincide.
Let us evaluate the probabilities. Note that since all random variables are

selected independently, the probability of the conjunction of events equals to the
product of their probabilities. So we can find them separately.

Pr[σi = a1] = Pr[σ′i = a1] =
1

n!
,

Pr[s = a−11 (a3)⊕ a6 = a′] =
1

2n
,

Pr[ui = a−11 (a3) = a′′] =
1

2n
,

Pr[s′ = a−11 (a3) = a′′′] =
1

2n
,

Pr[u′i = a5] =
1

2n

for any constants a′, a′′ and a′′′. Then

Pr
[
σi = a1, s = a−11 (a3)⊕ a6, ui = a−11 (a3)

]
=

= Pr
[
σ′i = a1, s

′ = a3, u
′
i = a5

]
=

1

n!22n

and distributions are indistinguishable.
Finally, if bi = 2, then the similar probability in Exp1 is

Pa1,a2,a3,a4,a5,a6 =

= Pr
[
σi = a1, Hu

T
i = a2, σi(ui) = a3, σi(ui ⊕ s) = a4, σi(ui) = a5, σi(s) = a6

]
=

= I
[
a3 = a5, a3 ⊕ a6 = a4, H(a−11 (a3))T = a2

]
×

× Pr
[
σi = a1, ui = a−11 (a3), s = a−11 (a6)

]



18 V. Vysotskaya, I. Chizhov

and in Exp2 it is

P̂a1,a2,a3,a4,a5,a6 = Pr
[
σ′i = a1, H(u′i ⊕ s′)T = a2, σ

′
i(u
′
i ⊕ s′) = a3, σ

′
i(u
′
i) = a4,

σ′i(u
′
i ⊕ s′) = a5, σ

′
i(s
′) = a6) = I

[
a3 = a5, a4 ⊕ a6 = a3, H(a−11 (a3))T = a2

]
×

× Pr
[
σ′i = a1, u

′
i = a−11 (a4), s′ = a−11 (a6)

]
.

Reasoning similar to above

Pr
[
σi = a1, ui = a−11 (a3), s = a−11 (a6)

]
=

= Pr
[
σ′i = a1, u

′
i = a−11 (a4), s′ = a−11 (a6)

]
=

1

n!22n

and distributions coincide.

The check on the line 23 corresponds to the case when the value c, created
while generating a signature for the message m, already exists in the set ΠF .
Then let Eκ denote the event that strings c and ĉ coincide, where c is the κ-th
query to the signing oracle and ĉ is one of queries made to the oracle F . Also let
us introduce values di,j and d̂i,j that are inputs of the hash function h resulting
in values ci,j and ĉi,j :

ci,j = h(di,j), ĉi,j = h(d̂i,j).

Note that ci,j is generated according to the Exp2 Sign algorithm and ĉi,j — to
the Exp1 Sign algorithm.

Let us find the probability of the event that substrings ci and ĉi coincide.
Denote p = Pr[∃j ∈ {0, 1, 2} : ci,j = ĉi,j ∧ di,j 6= d̂i,j ]. To evaluate p, note that
there exists a suboptimal algorithm that solves Coll(h) problem choosing at
random three pairs of strings corresponding to Exp2 and Exp1 Sign algorithms
and comparing their hash values. The complexity of this algorithm is c̃p−1,
where c̃ is the complexity of one iteration. Then p 6 c̃T−1Coll, where TColl is the
complexity of an optimal algorithm solving Coll(h) problem with the probability
of success at least 1− 1/e.

Otherwise, for all j ∈ {0, 1, 2} holds di,j = d̂i,j . Let bi = 0. Then

Pr[∀j ∈ {0, 1, 2} : d0,j = d̂0,j ] = Pr[σ = σ′] Pr[u = u′] Pr[s = s′] =
1

22nn!
.

The same may be also shown for bi = 1 and bi = 2.

After the interaction with the oracle F at most qf strings can be obtained.
Hence, a pair of strings can be selected from them in q2f ways. Then

Pr[Eκ] 6 q2f

(
max

{
c̃

TColl
,

1

22nn!

})δ
.
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Now let us find the probability of the event G, that corresponds to the case
when the condition on the line 23 was never satisfied.

Pr[G] = 1− Pr[E1 ∨ E2 ∨ · · · ∨ Eqs ] > 1−
qs∑
κ=1

Pr[Eκ] >

> 1−
qs∑
κ=1

q2f

(
max

{
c̃

TColl
,

1

22nn!

})δ
= 1− q2fqs

(
max

{
c̃

TColl
,

1

22nn!

})δ
.

Since

Pr[Exp1(A)⇒ 1] = Pr[Exp1(A)⇒ 1 ∧G] + Pr[Exp1(A)⇒ 1 ∧G] 6

6 Pr[Exp2(A)⇒ 1] + Pr[G],

then

Pr[Exp1(A)⇒ 1]− Pr[Exp2(A)⇒ 1] 6 Pr[G] = q2fqs

(
max

{
c̃

TColl
,

1

22nn!

})δ
.

Now basing on the adversary A we construct an adversary B that makes an
existential forgery in the NMA model. It simulates oracles F and Sign using
algorithms SimF and SimSign. The algorithm SimSign repeats the algorithm
Sign in the experiment Exp2. The oracle F ∗ is the random oracle of B.

BF∗(y)

1 : L ← ∅
2 : (m, c‖r)←$ASimSign,SimF (y)

3 : if m ∈ L : return 0

4 : return (m, c‖r)

Oracle SimF (α)

1 : return F ∗(α)

Line 3 ensures that the forgery was built for a new message that had never
been the input of the oracle SimSign. Hence A used the random oracle F ∗ and
the forgery is valid for B. Note that the case m ∈ L is similarly processed in
Exp2(A). Thus

Pr[Exp2(A)⇒ 1] = Pr[ExpEUF-NMA
Stern (B)⇒ 1].

Consequently,

AdvEUF-NMA
Stern (B) > AdvEUF-CMA

Stern (A)− q2fqs
(

max

{
c̃

TColl
,

1

22nn!

})δ
.

The adversary B runs A and simulates qf queries to the oracle F and qs
queries to the oracle Sign. Hence, its complexity is T + c′′(qf + qs).

Corollary 1. Let A be an adversary in the EUF-CMA model for Stern signature
scheme, making at most qf queries to the hashing oracle F and at most qs queries
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to the signing oracle Sign. Then

AdvEUF-CMA
Stern (A) 6

6 6qf
3

√
δ2(T + ˜̃c(2qf + qs))

min{TSD, TColl}
+

(
2

3

)δ
· (qf + 1) + q2fqs

(
max

{
c̃

TColl
,

1

22nn!

})δ
,

where T is the maximum possible time complexity of A, TSD and TColl are
complexities of optimal algorithms solving SD(H, y, ω) and Coll(h) problems
with probabilities of success at least 1 − 1

e , c̃ and ˜̃c are constants depending on
the model of computation.

Proof. The complexity T ′ of an adversary in the 1-EUF-NMA model from The-
orems 1–3 is T + ˜̃c(2qf + qs), where T is the complexity of an adversary in the
EUF-CMA model and ˜̃c = max{c′, c′′}. Also

AdvEUF-NMA
Stern (B) 6 6qf · 3

√
δ2T ′

min{TSD, TColl}
+

(
2

3

)δ
· (qf + 1),

AdvEUF-CMA
Stern (A) 6 AdvEUF-NMA

Stern (B) + q2fqs

(
max

{
c̃

TColl
,

1

22nn!

})δ
6

6 6qf · 3

√
δ2T ′

min{TSD, TColl}
+

(
2

3

)δ
· (qf + 1) + q2fqs

(
max

{
c̃

TColl
,

1

22nn!

})δ
.

5 Parameters

In this section we mention different constraints on the signature parameters and
introduce some parameter sets.

5.1 Choosing general parameters

Stern showed [19] that his identification scheme can be forged with probability
equal to 2/3. Similar reasoning allows to assert that an adversary can build a
forgery of the signature without knowing the secret key with the probability
(2/3)δ. Thus parameter δ should be chosen to satisfy the condition:(

2

3

)δ
< 2−λ,

where λ is the security parameter.
The best known method to find collisions for hash functions used in practice

is based on the birthday paradox and has complexity about 2`/2, where ` is the
length of the hash value. Since we want to maximize this complexity, it is worth
using hash functions with the maximal `. This can be, for example, such well-
known functions as the American standard SHA3-512 or the Russian standard
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Streebog-512, in which ` = 512 bits. For them TColl ≈ 2256 bit operations.
Further we suppose that hash function Streebog is used.

We assume that the maximal complexity T of the adversary does not exceed
280 bit operations. Each of qf queries to the hashing oracle consists in evaluation
of the hash function of messages, which in practice can be several megabytes in
size. According to [30] the complexity of Streebog hash function is about 225 CPU
cycles or more than 230 bit operations. Signing oracle has to evaluate Streebog
hash function at least three times, thus qs 6 qf . As a result, an adversary with
complexity T is able to do no more that 250 queries to each oracle.

Then in order to maximize the value of min{TSD, TColl} it is necessary to
choose the length of the code so that TSD > TColl. From the fact [29] that
TSD ≈ 20.0885n a lower estimate for the length of the code n can be found. We
choose n so as the advantage of the adversary, estimated above, is not greater
than 1/2. We choose the code dimension as k = n/2 and require the code to lie
on the Varshamov–Gilbert boundary:

k

n
= 1−H

(ω
n

)
,

whence it follows that ω ≈ 0.11n.
Note that the last term is negligible and may not be taken into account in

calculations.

5.2 Public data and signature sizes

The public key is a vector y of n bits in size. The public parameter H is an
(n− k)× n-matrix that can be stored as k(n− k) bits in systematic form.

The size of c is 3δ` bits. The maximal size of ri is n + n log2 n bits and,
accordingly, size of r can be upper estimated as δ(n+n log2 n) bits. So the total
size of the signature can be estimated from above as δ · (3`+ n+ n log2 n) bits.

5.3 Example parameter sets

This part contains an example of the signature parameter set selected in accor-
dance with the conditions above. The adversary’s advantage in this case equals
approximately 0.39.

λ n k ω δ `
H,
MB

y,
KB

ζ,
MB

80 2896 1448 318 137 512 0.25 0.35 0.62

The fact that the first term depends linearly on the parameter qf does not
allow one to get parameter sets for a much higher level of security. Nevertheless,
we presume that our estimate is rather rough and in fact even the introduced
parameter set provides more security than 80 bit.
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6 Conclusion

The paper presents the security bounds for a digital signature based on the Stern
identification protocol. We connect the security of the scheme with the hardness
of syndrome decoding and hash function collision finding problems. Basing on
the security notions we introduce a parameter set providing 80-bit security of
the signature. As a direction for further research, we consider the extension of
the security proof to a model with quantum access to the random oracle.
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