
Reflection, Rewinding, and Coin-Toss in EasyCrypt

Denis Firsov
Guardtime

Tallinn University of Technology
Tallinn, Estonia

denis.firsov@guardtime.com

Dominique Unruh
Tartu University
Tartu, Estonia
unruh@ut.ee

Abstract—In this paper we derive a suit of lemmas which allows users to internally reflect EasyCrypt programs into
distributions which correspond to their denotational semantics (probabilistic reflection). Based on this we develop techniques
for reasoning about rewinding of adversaries in EasyCrypt. (A widely used technique in cryptology.) We use reflection and
rewindability results to prove the security of a coin-toss protocol.

Index Terms—cryptography, formal methods, EasyCrypt, reflection, rewindability, commitments, binding, coin-toss

Contents

1 Introduction 1
1.1 Challenges . 2
1.2 Probabilistic Reflection . 2
1.3 Rewinding . 3

2 Preliminaries 3

3 Toolkit for Probabilistic Reflection 5
3.1 Probabilistic Reflection . 5
3.2 Probabilistic Toolkit . 6
3.3 Reflection of Composition . 7

4 Rewinding 7
4.1 Transformations . 8
4.2 Multiplication Rule and Commutativity . 9
4.3 Rewinding with Initialization . 10

5 Case Study: Commitments and Coin-Toss 10
5.1 Commitments . 10
5.2 Coin-Toss Protocol . 12

6 Conclusions 13

Index 13

References 14

1. Introduction

Handwritten cryptographic security proofs are inher-
ently error-prone. Humans will make mistakes both when
writing and when checking the proofs. To ensure high
confidence in cryptographic systems, we use frameworks
for computer-aided verification of cryptographic proofs.
One widely used such framework is the EasyCrypt tool [1].
In EasyCrypt, a cryptographic proof is represented by
a sequence of “games” (simple probabilistic programs),
and the relationship between programs are analyzed in a
probabilistic relational Hoare logic (pRHL). EasyCrypt has
been successfully used to verify a variety of cryptographic

schemes, e.g., (electronic voting [2], digital signatures [3],
differential privacy [4], security of IPsec [5], and many
others).

However, there is one cryptographic proof technique
that seems very difficult to implement in EasyCrypt, namely
rewinding. Rewinding is ubiquitous in more advanced
proofs, especially when involving zero-knowledge proofs,
multi-party computation, but also in relatively simple cases
such as building a coin-toss from a commitment. (The latter
case we will explore in Sec. 5.) In a nutshell, rewinding
refers to the proof technique in which we take a given
(usually unknown) program A (an adversary), and convert
it into an adversary B that performs the following or

1

similar steps:

1) Remember the initial state of A.
2) Run A.
3) Restore the original initial state of A.
4) Run A again.
5) Combine the results from the runs and/or repeat

this until it yields a desired outcome.

While the above steps seem simple, we run into numer-
ous challenges when trying to implement rewinding in
EasyCrypt, both due to restrictions in the type system,
and due to the necessity for reasoning about probability
distributions of program outputs in a way that is not directly
supported by EasyCrypt’s tactics.

To the best of our knowledge, rewinding has not been
implemented in EasyCrypt, nor in other frameworks for rea-
soning about cryptographic proofs such as CryptHOL [6]
in Isabelle, FCF [7] in Coq, CryptoVerif [8] in OCaml,
Verypto [9] in Isabelle, CertiCrypt [10] in Coq.

Our contribution. In this work, we design a set of
tools to address rewindability in the EasyCrypt framework,
and for reasoning about the probabilistic semantics of
programs inside EasyCrypt (probabilistic reflection). We
validate our results by developing a formal proof of a
coin-toss protocol based on rewinding. This paper is
accompanied by EasyCrypt code which can be found
here [11].

1.1. Challenges

To understand the motivation behind our project, let us
look at the example of a pen-and-paper derivation using
rewinding. When analyzing a coin-toss protocol based on
a commitment, we are faced with the following situation:
We have an adversary A that can open the commitment
to contain b given input b = false, true (with some non-
zero probability). We want to show that this means that
A could also, in the same run, produce openings to both
false and true. This is done by defining a different adversary
B that runs A.commit (to produce the commitment), stores
the state of A, runs A.open(false) (to produce the first
opening), restores the state of A, and runs A.open(true)
(to produce the second opening). Then we show that the
probability that B produces two valid openings is lower-
bounded in terms of the probability that A is successful
in producing one valid opening. As we will see in more
detail in Sec. 5.1, the core theorem for showing this is the
following.
Theorem 1.1. Let A be a probabilistic program and let m

denote a memory configuration which represents an
initial state of A. We write Pr [r ← X.p() @ m : M]
to denote the probability of a predicate M satisfying
the result of running the procedure p() of a module X
on the initial memory m. In this case, the following
inequality holds:

Pr

 A.init(); s← A.getState();
r1 ← A.main(); A.setState(s);
r2 ← A.main() @ m : r1 ∧ r2

≥ Pr [A.init(); r ← A.main() @ m : r]

2
.

Proof: Step (1) applies “the averaging technique” by
representing A.init() as a family of distributions Dm

A . We

write µ1(Dm
A,n) for the probability that Dm

A assigns to n.
Then µ1(Dm

A,n) is the probability of A.init() terminating
in the memory state n given that it starts in the initial state
m. The rest of the computations are then run starting from
memory n.

Pr

 A.init(); s← A.getState();
r1 ← A.main(); A.setState(s);
r2 ← A.main() @ m : r1 ∧ r2

(1)
=
∑

n

µ1(Dm
A,n) · Pr

 s← A.getState();
r1 ← A.main();A.setState(s);
r2 ← A.main() @ n : r1 ∧ r2

(2)
=
∑

n

µ1(Dm
A,n) · Pr [r ← A.main() @ n : r]

2

(3)

≥

(∑
n

µ1(Dm
A,n) · Pr [r ← A.main() @ n : r]

)2

(4)
= Pr [A.init(); r ← A.main() @ m : r]

2
.

Step (2) makes use of the fact that the probability of
a success (i.e., A.main returning true) in both of two
independent runs equals to the square of a probability
of a success in a single run. Step (3) is an application of
Jensen’s inequality. The final step undoes the averaging.

There are number of challenges in performing this
proof formally in EasyCrypt:

1) Our proof turns the program A.init() into a param-
eterized distribution of final memories (memories
after A.init() terminates). While EasyCrypt has a
notion Pr [A.init() @ m : M] it does not formally
recognize that this defines a distribution, not
withstanding the suggestive syntax.

2) Also, our proof makes use of results about
probability distributions (e.g., Jensen’s inequality)
which can be easily stated and proved in terms
of probabilistic distributions while they would
be much harder to express and prove directly
using Pr [. . .] expressions or similar program logic
constructs and tactics.

3) Another challenge is that EasyCrypt does not have
a type “memory”; we cannot define a distribution
over memories because we cannot even assign it
a type. In EasyCrypt, memories are recognized
purely syntactically by prepending the variable
names with &.

4) Finally, it is not immediate how one can generi-
cally specify the interface of programs (modules)
which can return their own state. In other words,
what must be the type of the return value of the
function A.getState()?

1.2. Probabilistic Reflection

As explained above one of the challenges is that we
cannot access the distribution which corresponds to the
semantics of the program. To enable this, we introduce a
suit of lemmas which allows us to access the distribution
corresponding to a program.

This turned out to be a powerful tool for rewinding
proofs, but we also believe that it can be useful when
one needs to derive facts for programs based on their

2

denotational semantics. For example, in a situation when
a particular tactic is not available in EasyCrypt, but in
a pen-and-paper proof one would show it simply based
on probability theory reasoning (e.g., Jensen’s inequality,
averaging). In the following, we sketch our solution for
probabilistic reflection.

Recall that there are no valid types which refer to
distribution of final memories. These would be needed to
give a type to the denotational semantics of a program, let
alone define those semantics. However, in EasyCrypt each
program has an associated variable Gm

A (the type of Gm
A is

GA) which refers to the part of the memory m accessible
by module A. It is guaranteed that running a program A
will never change anything outside Gm

A . So “effectively”,
the semantics of a program can be described by looking
only at the GA-part of a memory. So, we define a family
of distributions Dg

A for g of type GA such that µ1(Dg
A, h)

is the probability that we get h in GA-part of the final
memory configuration when starting with g in GA-part of
the initial memory configuration.

Another problem is that we cannot refer to the type
GA in the top-level definitions (global definitions of op-
erators/constants). So, in particular, we cannot define a
distribution Dg

A parameterized by GA-values in EasyCrypt.
In our workaround to this problem, we prove lemmas of
the existence of that family of distributions, but we do not
define a constant referring to that family. This works since
we only need to refer to the type of Dg

A locally in the
theorem statement. Then, when reasoning, one can inside a
proof refer to “the” distribution that exists by our lemmas.

In conclusion, our lemma for probabilistic reflection
looks roughly as follows:

Theorem 1.2. For all memories m and programs A there
exists a family of distributions Dg

A (with g of type GA)
such that for all predicates M on values of type GA:

Pr
[
A.main() @ m : M(Gfin

A)
]

= µ(D
Gm
A

A ,M).

Here, fin is the final memory after execution of A.main()
and µ(d,M) denotes the probability that the predicate
M holds for values distributed according to d. Actual
reflection lemma adds generality, e.g., referring also to the
inputs/outputs of A.main, see Sec. 3.1.

However, being able to reflect the distribution cor-
responding to a given program is not enough. If we
want to reason about composite programs, we will also
need to understand how the different constructs in our
language operate on the distributions. For example, given
a program A;B, the distribution DAB of the final state
can be expressed in terms of the distributions DA, DB

corresponding to A and B (monadic bind). This does
not follow merely from the existence of the reflected
distribution for A;B since it would hypothetically be
possible for A;B to have a semantics completely unrelated
to those of A and B individually. Thus we prove additional
lemmas for this and other cases that allow us to derive
the distribution of a more complex program from the
distribution of its components (see Sec. 3.3).

Altogether this gives us a library for probabilistic
reflection in EasyCrypt, independent of the results on
rewinding below. See Sec. 3 for details.

1.3. Rewinding

The final challenge in the formal derivation of Thm. 1.1
is that in EasyCrypt, we cannot define a generic interface
of modules which return their own state. Morally, we want
A.getState() to return a value Gm

A of type GA. However,
this is impossible since the type GA is only allowed to
appear in the logical statements and program code of other
modules but not in the code of the module A itself.

We solve the above problem by defining what it means
for a module to be rewindable. In essence, a module is
rewindable if and only if the state of the program can
be encoded as a bitstring (or equivalently, as any other
countable type). In particular, a program with variables of
type “real” (which is uncountable) would not be rewindable
in that sense. A security proof using rewinding would
then only apply to rewindable adversaries which is not a
restriction from the cryptographic point of view. (Typically,
cryptographic adversaries are assumed to operate on data
that is representable in a computer. Such data can always
be encoded as a bitstring.)

In conclusion, our definition for rewindable modules
(programs) roughly requires a module to have procedures
getState and setState. The execution of A.getState() in state
m must return the value f(Gm

A) where f is an arbitrary
injective mapping from the type GA to some parameter type
sbits. The setState procedure gets an argument x : sbits
and sets Gm

A to f−1(x) if f−1(x) is defined.
Altogether this gives an approach for working with

rewindable adversaries in EasyCrypt. See Sec. 4 for details.

2. Preliminaries

In this section we review the syntax and semantics of
the main EasyCrypt constructs. Readers familiar with Easy-
Crypt can skip this section and just familiarize themselves
with our syntactic conventions in this footnote1. The top-
level definitions in EasyCrypt consist of types, operators,
lemmas/axioms, module types, and modules. In EasyCrypt
one can specify datatypes and operators, where types
intuitively denote non-empty sets of values and operators
are typed pure functions on these sets. EasyCrypt provides
basic built-in types such as unit, bool, int, etc. The
standard library includes formalizations of lists, arrays,
finite sets, maps, probability distributions, etc. EasyCrypt
also allows users to implement their own datatypes and
functions (including inductive datatypes and functions
defined by pattern matching). For example, we can give a
definition of a polymorphic identity function as follows:
op id [’a] : ’a → ’a = λ x. x.

In this paper, for ease of readability, we use a more compact
notation λ x. x for lambda-abstractions. In the original
EasyCrypt code, this would be written as fun x => x.

The ambient logic in EasyCrypt is based on a classical
(i.e., non-constructive) set theory which we can use to

1. We write ← for both <- and <@, $← for <$, ∧ for /\, ∨ for \/,
≤ for <=, ∀ for forall, ∃ for exists, m for &m, GA for glob A,
Gm
A for (glob A){m}, λx. x for fun x => x, × for *, t L for t

list, t D for t distr, µ for mu, µ1 for mu1, t O for t option.
Furthermore, in Pr-expressions, in abuse of notation, we allow sequences
of statements instead of a single procedure call. It is to be understood that
this is shorthand for defining an auxiliary wrapper procedure containing
those statements.

3

state and prove properties. (The term ambient logic refers
to a built-in logic in EasyCrypt. Ambient logic is not
specific to reasoning about programs). For example, we
can prove that application of id to any x equals to x. In
lemmas and axioms we will use symbols ∀ and ∃ instead
of the EasyCrypt syntax which uses keywords forall
and exists, respectively.

lemma id_prop [’a] : ∀ (x : ’a), id x = x.
proof. trivial. qed.

In EasyCrypt, the proof starts with keyword proof. The
steps of the proof consist of tactic applications (e.g., auto,
trivial, etc.) which either discharge the proof obligation
or transform it into subgoal(s). The qed finishes the proof.

Types and operators without definitions are abstract and
can be seen as parameters to the rest of the development.
Parameters can additionally be restricted by axioms. For
example, we can parameterize the development by a
uniform distribution of elements of type bits.

type bits.

op bD : bits D.
axiom bDU : is_uniform bD.

The theory containing this axiom can later be “cloned” and
the operator bD instantiated with a value for which the
axiom bDU is actually provable. (This enables modular
design of theories.)

In this paper we will use notation bits D as a more
concise version of the EasyCrypt syntax bits distr
which denotes the type of distributions of bits. Simi-
larly, we will use bits L instead of bits list, and
bits O instead of bits option.

Modules. In EasyCrypt, modules consist of typed
global variables and procedures. The set of all global
variables of a module is the union of the set of global
variables that are declared in that module and the set of
all global variables (declared in other modules) which the
module could read or write by a series of procedure calls
beginning with a call of one of its procedures. In EasyCrypt,
the whole memory (state) of a program is referred to by &m
(or &n etc.). We can refer to the tuple of all global variables
of the module A in &m as (glob A){m}. The type of all
global variables of A (i.e., the type of (glob A){m}) is
denoted by glob A. For readability, we will use syntax
GA for the type glob A. Memories &m will be typed in
bold without the & (i.e., m for &m). And Gm

A will denote
the EasyCrypt value (glob A){m}.

For illustration, we implement the following example
of a guessing-game module GG:

module GG = {
var win : bool
var c, q : int

proc init(q : int) = {
c ← 0;
win ← false;
GG.q ← q;

}

proc guess(x : bits) : bool = {
var r;
if (c < q){

r $← bD;
win ← win || r = x;
c ← c + 1;

}
return win;

}
}.

The module GG has three global variables: c and q
of type int, and win of type bool. Hence, for any
memory m, Gm

GG has type GGG which equals to a product
bool × int × int. The GG module allows a player
to guess (call the GG.guess procedure) a next value
sampled from distribution bD. The player has at most q
attempts (set during initialization by procedure GG.init).
The player wins if they guess correctly at least once.

Module types. In EasyCrypt, module types specify
the types of a set of module procedures [12]. Therefore,
module types in EasyCrypt are similar to interfaces in
other programming languages (e.g., Java). We can specify
the module type of GG as follows:
module type GuessGame = {

proc init() : unit
proc guess(x : bits) : bool

}.

Note that module types say nothing about the global
variables a module could have and only specify the input
and output types of the module procedures.

Next, we define a module type of protocol parties
(adversaries), who receive an instance G of a guessing
game as a module parameter. An adversary must have a
play procedure which starts the game:
module type Adversary(G : GuessGame) = {

proc play() : unit {G.guess}
}.

To forbid adversaries to reinitialize the game the play
procedure can only execute the guess procedure of the
parameter game G. This is optionally expressed by listing
the allowed method(s) in the curly braces next to the
procedure.

Probability expressions. EasyCrypt has built-
in Pr-expressions which can be used to refer to
the probabilities of events in program executions:
Pr[r ← X.p() @ m : M r] denotes the
probability that the return value r of procedure
p of module X given initial memory m satisfies
the predicate M. (I.e., the general form is
Pr[program @ initial memory : event].)
The Pr-notation in EasyCrypt is somewhat restrictive,
the program can only be a single procedure call. In our
presentation, we relax this notation and allow multiple
statements; it is to be understood that in the actual
EasyCrypt code this is implemented by defining an
auxiliary wrapper procedure that contains those statements.

For example, we can express that for any adversary A
the probability of winning the guessing-game is smaller
or equal than q

n , where n is the size of the support of
distribution used by GG and q is the maximal allowed
number of guesses.
lemma winPr m : ∀ (A <:Adversary {GG}) q, 0 ≤ q
⇒ Pr[GG.init(q); A(GG).play() @ m : GG.win]
≤ q / (supp_size bD).

(In EasyCrypt, X :> T states that the module X sat-
isfies the module type T.) Note that the module type
Adversary also includes adversaries who simply set

4

the value GG.win to true. Luckily, EasyCrypt allows
us to write Adversary{GG} to denote a subset of
adversaries who has disjoint set of global variables from
the module GG.

3. Toolkit for Probabilistic Reflection

In this section, we discuss a derivation of probabilistic
reflection for programs (i.e., modules) in EasyCrypt. Recall
that by probabilistic reflection, we mean tools to get
access to probabilistic denotational semantics of imperative
programs inside EasyCrypt proofs. (Without needing any
meta-reasoning.) Also, we use the probabilistic reflection
to derive a powerful toolkit of lemmas which is common
to pen-and-paper proofs when arguing about distributions
underlying programs.

3.1. Probabilistic Reflection

Recall that in Sec. 1.2, we introduced Thm. 1.2 that
proves the existence of a distribution corresponding to
a program’s denotational semantics. In EasyCrypt, we
formally state this theorem as follows:

lemma reflection_simple : ∃ (D : GA → GA D),
∀ m M, µ (D GmA) M = Pr[A.main() @ m : M GfinA].

Here, D g corresponds to the family Dg
A from Thm. 1.2,

i.e., D GmA is the supposed distribution of final states of
the program after running on initial memory m.

Inside an EasyCrypt proof, this lemma could be used
as elim (reflection_simple A) ⇒ D H_D; this
will introduce a variable D in the environment of the
proof, together with its defining property H_D stating the
relationship between D and Pr[A.main(). . .].

However, reflection_simple as stated is not gen-
eral enough for many purposes. In particular, if A.main
takes an argument a or returns a value r then we cannot
reason about the distribution of r and express how D
depends on r. The following more general reflection lemma
removes these limitations:

lemma reflection :
∃ (D : GA → at → (rt × GA) D),
∀ m M a, µ (D GmA a) M
= Pr[r ← A.main(a) @ m : M (r, GfinA)].

The intuition behind this lemma and the previous one
is the same. The only difference is that D now has an
additional argument a, referring to the input of A.main,
and the resulting distribution (D GmA a) is a distribution
over pairs (r, GfinA) of output and final memory.

Note that while EasyCrypt allows us to all-quantify
over the module A and over the argument and input types
(i.e., at and rt), we cannot quantify over the name main
of the procedure. Similarly, the number of arguments
of procedure main is fixed in the lemma. Fortunately,
this only constitutes a minor inconvenience, not a real
restriction because we can always define a wrapper module
A’ that has a procedure main with a single argument a
(possibly of a tuple type). Then main can untuple a and
invoke the procedure that we actually want to investigate. A
simple call to the tactic inline A’.main in the proof
will then unwrap this wrapper procedure.

In EasyCrypt, we directly prove reflection and
derive reflection_simple as an immediate corol-
lary. For readability, here we describe a direct proof of
reflection_simple instead.

Proof: We start the proof by defining a predicate P
on probabilities which is parameterized by an initial state
g of type GA and an element x of type GA. Below we use
the EasyCrypt tactic pose to give a definition which is
local to the proof.

pose P g x := λ p. ∀ n,
GnA = g ⇒ Pr[r ← A.main() @ n : GfinA = x] = p.

The probability p satisfies the predicate (P g x) if it
equals to the probability of A.main terminating in the
state x by starting its run from a memory n which has GA
variables equal to g.

Before continuing with the proof, we explain that the
standard library of EasyCrypt provides the formalization of
the Axiom of Choice in the form of the operator choiceb
and its corresponding property choicebP:

op choiceb [’a] : (’a → bool) → ’a.

axiom choicebP [’a] : ∀ (P : ’a → bool),
(∃ (x : ’a), P x) ⇒ P (choiceb P).

It states that for any predicate P if there exists an el-
ement which satisfies it then the element denoted by
(choiceb P) satisfies P. Here, it is worth mentioning
that all propositions in EasyCrypt have type bool.

The next step of the proof is to define a function
(Q g x) which uses the choice operator on the predicate
(P g x) to assign a probability to x.

pose Q g x := choiceb (P g x).

Intuitively, (Q g x) returns “the” probability
Pr[A.main() @ n : GfinA = x] for all n with
GnA = g. Note that a priori we do not know that there
is such a probability, because probability could depend
on n. To show that (Q g x) is a well-defined we need
to prove that the value (Q g x) satisfies the predicate
(P g x). Because in the lemma, (D g) is only used
for g of the form GmA, we specifically need to show the
following claim:

have Q_well_def : P GmA x (Q GmA x).

(Here we use the EasyCrypt tactic have name : fact
which allows to locally prove the fact and call it name.)

If we can show that there exists a probability q, so that
P GmA x q then the proof Q_well_def amounts to a
simple application of the choicebP property. The obvi-
ous candidate for this probability q is the Pr-expression:

Pr[A.main() @ m : GfinA = x].

To show that this candidate satisfies (P GmA x), we must
prove the following (by definition of P):

have good_q : ∀ n, GnA = GmA ⇒
Pr[A.main() @ m : GfinA = x]

= Pr[A.main() @ n : GfinA = x].

The good_q is intuitively simple and we prove it using
the pRHL which is available in EasyCrypt.

Now, as we know that (Q g) assigns adequate prob-
abilities to elements of type GA, we use the standard

5

EasyCrypt constructor mk which turns any function of
type ’a → real into distribution of type ’a D.

pose D g := mk (Q g).

The above defines a parameterized distribution D typed
as GA → GA D. We skip the technical details of a proof
which shows that D is a well-formed probability distribu-
tion. We only show the final derivation which proves that D
is the denotation of A.main. To achieve this we show the
point-wise equality of distribution D and Pr-expression.
Let x be an element of type GA:

have pointwise :
µ1(D GmA) x = Pr[A.main() @ m : GfinA = x].

The proof is as follows:

µ1(D GmA) x
= µ1(mk (Q GmA)) x
= Q GmA x
= choiceb (P GmA x)
= Pr[A.main() @ m : GfinA = x].

The first equality is by definition of D, in the second
equality µ1 cancels application of mk since D is a well-
defined distribution (see muK from EasyCrypt standard
library), the third equality is by definition of Q, the
fourth equality is an application of the proved property
Q_well_def.

At the first glance, it seems that this implies that
(D GmA) indeed describes the probability distribution
corresponding to A.main. That is, we want:

have onsubs :
µ (D GmA) M = Pr[A.main() @ m : M GfinA].

meaning that the probability that a value sampled
from (D GmA) satisfies M equals the probability that
the final state of A.main satisfies M. Unfortunately,
this is not immediate. For example, hypothetically, the
function M 7→ Pr[A.main() @ m : M GfinA] might
not be a discrete probability measure and thus it
might not be determined by its values on singleton
sets. To show onsubs, we need to use one more
trick: We define an auxiliary module and procedure
P.sampleFrom such that P.sampleFrom(d) sim-
ply returns some x $← d. Then (µ (D GmA) M) is
Pr[x ← P.sampleFrom(D GmA) @ m : M x]. So,
onsubs becomes:

have aux1 : Pr[x ← P.sampleFrom(D GmA) @ m : M x]
= Pr[A.main() @ m : M GfinA].

For goals of this shape, we use a combination of the
byequiv and bypr tactics from EasyCrypt; byequiv
changes this goal into a pRHL judgment relating the
programs P.sampleFrom and A.main. And bypr
converts such a pRHL judgment back to an equality of
probabilities. It seems that we are back at onsubs now.
However, the final equality is actually:

have aux2 : ∀ x,
Pr[r ← P.sampleFrom(D GmA) @ 1 : r = x]
= Pr[A.main() @ 2 : GfinA = x].

(for memories 1 and 2 that are equal to m in global
variables GmA.) But this follow from pointwise proven
above.

Note that in our proof we rely on the fact that the
tactics byequiv and bypr in combination imply that
Pr[. . .: M x] can be related to y 7→ Pr[. . .: x = y],
even for infinite M. This is fortunate because these facts
are not accessible in EasyCrypt as explicit lemmas. (For
all we know, Pr[. . .] might have defined a content (in
the measure-theoretic sense) instead of a measure without
contradicting any of the tactics and theorems derivable in
EasyCrypt. Our proof shows that this is not the case.)

3.2. Probabilistic Toolkit

In this section, we present well-known results from
probability theory which we formalized and used exten-
sively in our EasyCrypt development. In particular, recall
that in Thm. 1.1 we used averaging and Jensen’s inequality
in the derivation of the key lemma needed for proving
the security of a coin-toss protocol (see Sec. 5). In turn,
proofs of Jensen’s inequality and averaging depend on finite
probabilistic approximation. (To the best of our knowledge,
these results were not previously formalized in EasyCrypt.)

Finite Pr-approximation. We prove that the support
of a distribution can be finitely approximated with arbitrary
precision. We formally prove finite approximation for
distributions and then use the probabilistic reflection to
extend this result to programs.

Let d be a distribution of type ’a D. Then there exists
a sequence of lists (L n) so that the probability that an
element sampled from d is not in the list (L n) converges
to 0 (for n → ∞). (This holds for discrete distributions
only.)

lemma fin_pr_approx_distr_conv [’a] :
∀ (d : ’a D), ∃ (L : int → ’a L),
convergeto (λ n. µ d (λ x. x /∈ L n)) 0.

Having the finite probabilistic approximation for dis-
tributions allows us to use the probabilistic reflection
mechanism to extend the finite probabilistic approximation
to programs. More specifically, let A.main be a procedure
which takes an argument of type at and produces the result
of type rt. In this case, there exists a sequence of lists
(L n), so that the result and the final state produced by
A.main(a) are not in (L n) with probability converg-
ing to 0.

lemma fin_pr_approx_prog_conv : ∀ m a,
∃ (L : int → (rt × GA) L),
convergeto

(λ n. Pr[r ← A.main(a) @ m : (r, GA) /∈ L n])
0.

Averaging. Averaging allows us to express the proba-
bility corresponding to a program x $← d; A.main(x)
in terms of probabilities corresponding to a program
A.main(x) and probability assigned to x by distribu-
tion d. In this sense, the averaging technique can be seen
as a generalized version of case-analysis.

In our EasyCrypt formalization we state and prove a
general version of averaging for an arbitrary distribution
d : rt D which might have an infinite support:

lemma averaging : ∀ m M i d,
Pr[x $← d; r ← A.main(x,i) @ m : M r]
= sum (λ x. µ1 d x ··· Pr[r ← A.main(x,i) @ m: M r]).

6

Here, the value sum f denotes Σxf(x). (Note that the
sum in EasyCrypt does not have to range over a finite set.)

Jensen’s inequality. Jensen’s inequality is another
well-known result which is widely used in cryptography.
In general, it relates the value of a convex function of an
integral (or sum) to the integral (or sum) of the convex
function. In the context of probability theory, it is generally
stated in the following form: if X is a distribution, g
maps elements of X to reals, and f is a convex function,
then f (E X g) ≤ E X (f ◦ g). Here, E X h is
an expected value and ◦ denotes function composition.

We prove a slightly restricted version of Jensen’s
inequality. In particular, we assume that on the support
of X the function g takes values in an interval between
some parameter-values a and b and that the f x takes
values in an interval between parameter-values c and
d if a ≤ x ≤ b. Also, the standard assumptions are
that f is convex, that the distribution X is lossless (i.e.,
µ X (λ x. true) = 1), and that the expectations
E X g and E X (f ◦ g) exist.

lemma Jensen_inf [’a] :
∀ (X : ’a D) g f (a b c d : real),
is_lossless X
⇒ hasE X g
⇒ hasE X (f ◦ g)
⇒ (∀ (a b : real), (convex f a b))
⇒ (∀ x, a ≤ x ≤ b ⇒ c ≤ f x ≤ d)
⇒ (∀ x, x ∈ X ⇒ a ≤ g x ≤ b)
⇒ f (E X g) ≤ E X (f ◦ g).

(The EasyCrypt standard library derives Jensen’s inequality
for distributions with finite support only.)

3.3. Reflection of Composition

In this section we address the probabilistic re-
flection of the sequential composition of programs.
For example, let us analyze the following pro-
gram: r1 ← A.ex1(); A.ex2(r1). We can use the
reflection_simple lemma from Sec. 3.1 to get
access to a distribution D 12 such that:

∀ m M, µ (D12 GmA) M
= Pr[r1 ← A.ex1(); A.ex2(r1) @ m : M GfinA].

The distribution D 12 corresponds to a composite program
as a whole. However, being able to reflect the distribution
corresponding to a composite program is not enough to
enable reasoning about composite programs based on the
properties of its components; we do not know how D 12

is related to A.ex1 and A.ex2 separately.
In the following, we prove a lemma for reflection of

composition which allows us to show that there exist distri-
butions D1 and D2 which are the probabilistic reflection of
procedures A.ex1 and A.ex2 , and that the composition
of D1 and D2 is D 12 . So, the main goal is to prove lemmas
that allow us to derive the distribution of a more complex
program from the distributions which correspond to its
components.

In EasyCrypt, the composition of distributions
is implemented as an operator dlet which has the
following type: ’a D → (’a → ’b D) → ’b D.
Intuitively, the distribution dlet d1 d2 could
be described as the following imperative program:
x1

$← d1; x2
$← d2 x1; return x2 .

We can formally state the theorem of reflection of
composition as follows:
lemma refl_comp_simple :
∃ (D1 : GA → (rt1 × GA) D)
(D2 : GA → rt1 → GA D),

(∀ m M, µ (D1 GmA) M
= Pr[r1 ← A.ex1() @ m : M r1]) ∧

(∀ m M r1, µ (D2 (r1, GmA)) M
= Pr[r2 ← A.ex2(r1) @ m : M r2]) ∧

∀ m M, µ (dlet (D1 GmA) D2) M
= Pr[r1 ← A.ex1(); A.ex2(r1) @ m : M GfinA].

We give only a rough sketch of the proof. First, by using the
reflection lemma from Sec. 3.1 we get distributions
D1 and D2 which correspond to procedures A.ex1 and
A.ex2 , respectively. Next, we use pRHL reasoning to
prove that the imperative composition of D1 and D2

corresponds to composition of A.ex1 and A.ex2 :
Pr[x1

$← D1; x2
$← D2 x1 @ m : M x2]

= Pr[r1 ← A.ex1(); A.ex2(r1) @ m : M GfinA].

Finally, we prove that the imperative composition of
D1 and D2 corresponds to their declarative composition,
namely, dlet D1 D2 :
Pr[x1

$← D1; x2
$← D2 x1 @ m : M GfinA]

= µ (dlet (D1 GmA) D2) M.

This step uses averaging (see Sec. 3.2).
In our EasyCrypt formalization we prove a more

powerful lemma refl_comp which generalizes
refl_comp_simple in the following aspects:

• The procedures A.ex1 and A.ex2 take all-
quantified arguments i1 of type at1 and i2 of
type at2 , respectively. As a result, the distributions
D1 and D2 also become parameterized by values
of types at1 and at2 , respectively.

• The distribution (D2 i g) is over pairs
(r, GfinA) of output of A.ex2 and final memory
(not just the final memory).

• In the event part of the probability expression (i.e.,
Pr[. . .: M (r1, r2, GfinA)]) we allow the
predicate M to depend on the r1 (output of A.ex1),
r2 (output of A.ex2), and the final memory GfinA
(not just the final memory).

In EasyCrypt, we prove the following general version of
reflection of composition:
lemma refl_comp :
∃ (D1 : at1 → GA → (rt1 × GA) D)
(D2 : at2 → rt1 × GA → (rt2 × GA) D),

(∀ m M i1, µ (D1 i1 GmA) M
= Pr[r1 ← A.ex1(i1) @ m : M (r1, GfinA])) ∧

(∀ m M r1 i2, µ (D2 i2 (r1, GmA)) (M r1)
= Pr[r2 ← A.ex2(i2, r1) @ m : M r1 (r2, GfinA)]) ∧
∀ m M i1 i2, µ (dlet (D1 i1 GmA)

(λ r. dmap (D2 i2 r) (λ x. (r.1, x)))) M
= Pr[r1 ← A.ex1(i2); r2 ← A.ex2(i2, r1)

@ m : M (r1, r2, GfinA)].

Here dmap d f denotes the distribution of f x for
x $← d.

4. Rewinding

In Sec. 1, we briefly explained that rewinding is a
commonly used technique which allows one module (i.e.,

7

program) to save a state of another module and also restore
that state at some later time. More precisely, we say that
a module A is rewindable iff:

1) There exists an injective mapping f from GA to
some parameter type sbits2.

2) The module A must have a terminating procedure
getState, so that whenever A.getState is
called from the state g : GA, the result of the
call must be equal to (f g) and the state of A
must not change.

3) The module A must have a terminating procedure
setState, so that whenever it is given an
argument x : sbits so that x = (f g) for
some g : GA then A must be set into a state g.

In EasyCrypt, we start formalizing this definition by
defining a module type Rew for rewindable programs:
module type Rew = {
proc getState() : sbits
proc * setState(s : sbits) : unit

}.

(Here, the symbol * next to the procedure setState
tells EasyCrypt that after the execution of that procedure
all global variables of a module must be (re)initialized.)

We formalize the rewinding properties of getState
and setState procedures as a predicate RewProp on
modules typeable as Rew. Unfortunately, in EasyCrypt
we cannot define an operator like RewProp because its
definition depends on a module which is not allowed. As
a result, in the actual EasyCrypt code the workaround is
to copy-and-paste the verbose definition of RewProp(A).
This reduces readability, but is conceptually the same.
op RewProp(A : Rew) : bool =
∃ (f : GA → sbits), injective f ∧
(∀ m, Pr[r ← A.getState() @ m

: GfinA = GmA ∧ r = f GmA] = 1) ∧
(∀ m (g : GA), Pr[A.setState(f g) @ m

: GfinA = g] = 1) ∧
islossless A.setState.

(In EasyCrypt, islossless X.p expresses that the
procedure p of module X must terminate on all inputs.)

Then, whenever we do a proof using rewinding, we
will need to explicitly assume that our adversary A sat-
isfies RewProp(A), or, equivalently, quantify only over
adversaries of module type Rew satisfying RewProp(A).

The first litmus test of our definition of rewindability is
to show that modules without global variables are (trivially)
rewindable. For a module without global variables, GA
will be a singleton type (i.e., ∀(x y : GA), x = y).
Then we can generically state that A will be rewindable,
as long as we implement getState and setState as
terminating procedures (it does not matter what they do):
lemma no_globs_rew : ∀ (A <: Rew),
(∀ (x y : GA), x = y)
⇒ islossless A.getState ∧ islossless A.setState
⇒ RewProp(A).

2. Intuitively, sbits is the type of bitstrings. To keep our development
more general, we do not require this, but only assume the existence of
embeddings nat_sbits: nat → sbits (to ensure that sbits
is infinite) and pair_sbits: sbits × sbits → sbits. The
EasyCrypt theory cloning mechanism makes it possible to later replace
this sbits type by a concrete type such as lists of bits.

On the necessity of the RewProp axiom. The reader
may wonder whether adding the explicit assumption in a
security proof that the adversary A satisfies RewProp(A)
does not weaken the security proof. After all, it means
that security only holds with respect to such adversaries,
but not with respect to adversaries that do not satisfy
RewProp(A). We argue that RewProp(A) is not a
true restriction of the adversary, merely a requirement
that the adversary has a certain interface with certain
properties. The only actual restriction about the inner
workings of the adversary that RewProp(A) makes is
that the adversary’s state can be encoded as a sequence
of bits (sbits). Usually, in cryptography, we make even
stronger assumptions about the adversary, namely that its
state is a sequence of bits (or a Turing machine tape). In
contrast, here we only assume that its state can be encoded
as a sequence of bits.

We stress that we only need to make this assumption
for abstract (i.e., all-quantified) adversaries. For adversaries
that we explicitly construct as part of a reduction, we can
actually prove RewProp, see the next section.

4.1. Transformations

Cryptographic proofs are commonly based on trans-
formations of adversaries (or reduction of adversaries). In
EasyCrypt, a transformation is a module which receives
other modules as parameters, defines its own global
variables, and has procedures which can call procedures
of its parameter-modules. Typically, one of the parameter-
modules will be the original adversary.

In this section, we show how to prove rewindability of
a module which is parameterized by rewindable modules
and which has at most countable state. We illustrate this
by implementing a module T which is parameterized by
rewindable modules A and B and has a global variable x of
a parameter type ct. As a result, the global state of module
T(A,B) consist of variable T.x and all global variables of
modules A and B. (i.e., GT (A,B) = (GA × GB × ct)).
Since, by the definition of rewindability, we need to
embed elements of type GT (A,B) into sbits then we
parameterize our development by an injection from ct to
sbits:
op ct_sbits : ct → sbits.
axiom bcu : injective ct_sbits.

module T(A : Rew, B : Rew) : Rew = {

var x : ct

// add your own procedures here

proc getState(): sbits = {
var stateA, stateB, xsbits : sbits;
stateA ← A.getState();
stateB ← B.getState();
xsbits ← ct_sbits x;
return pair_sbits
(xsbits, pair_sbits(stateA, stateB));

}

proc setState(state: sbits): unit = {
var stateA, stateB, xsbits : sbits;
(xsbits, s) ← unpair_sbits state;
(stateA, stateB) = unpair_sbits s;

A.setState(stateA);

8

B.setState(stateB);
x ← unct_sbits xsbits;

}
}.

The procedure getState stores the global states of A and
B in the local variables stateA and stateB, respectively.
Then the global variable T.x is converted into sbits and
saved in variable xsbits. The resulting state is an embed-
ding of a nested tuple (xsbits,(stateA,stateB))
into sbits. (Recall that pair_sbits is an embedding
sbits × sbits → sbits.)

The procedure setState receives an sbits argu-
ment which is then “untupled” into sbits variables
xsbits, stateA, and stateB. The state of A is set
by passing argument stateA to its implementation of
setState procedure (similarly for B, mutatis mutandis).
The variable T.x is set to the preimage of xsbits.
Finally, we use pHL to prove that T(A,B) is also
rewindable:
lemma trans_rew : ∀ (A :> Rew) (B :> Rew{A}),

RewProp(A) ∧ RewProp(B) ⇒ RewProp(T(A,B)).

Note, that in the statement of the lemma we additionally
require a state of B to be disjoint from a state of A
(i.e., B :> Rew{A}). This is required because in case
of possibly overlapping states not all values of type
GT (A,B) are valid states. For example, if GmA and GnB have
overlapping variables with different values then the value
(GmA,GnA,x) is typeable as GT (A,B) (for any x of type
ct), but does not represent a possible state of T(A,B).
Unfortunately, in EasyCrypt, it is not possible to express
“consistency” of possibly overlapping states of abstract
modules.

4.2. Multiplication Rule and Commutativity

The multiplication rule from probability theory states
that the probability of independent events occurring simul-
taneously is found by multiplying the probabilities of each
event.

In terms of probabilistic programs it is natural to say
that an execution of a procedure P.run is independent of
an execution of Q.run if after termination of P.run the
state of Q is not affected. In EasyCrypt, it is easy to prove
the multiplication rule for modules with disjoint states:
lemma rew_mult_simple : ∀ (P :> Runnable)

(Q :> Runnable{P}) m M1 M2 i1 i2,
Pr[r1 ← P.run(i1); r2 ← Q.run(i2) @ m

: M1 r1 ∧ M2 r2]
= Pr[r1 ← P.run(i1) @ m : M1 r1]
··· Pr[r2 ← Q.run(i2) @ m : M2 r2].

However, if we need independent runs of the procedure(s)
of the same module then we need rewinding. Recall,
that the main goal of rewindability is to be able to
restore the state of a module after running one of its
procedures. Let A be a rewindable module (i.e., A satisfies
RewProp(A)) with procedures ex1 and ex2 which take
all-quantified arguments i1 : at1 and i2 : at2 and
compute results r1 : rt1 and r2 : rt2 , respectively.
Let us analyze the following program.

(1) Save the initial state of A by calling
s ← A.getState().

(2) Run a procedure r1 ← A.ex1(i1).
(3) Restore the initial by calling A.setState(s).
(4) Run a procedure r2 ← A.ex2(i2).

First, we analyze the steps (1)–(3) as a standalone program.
In particular we must show that the getState and the
setState calls do not affect the result computed by
A.ex1 procedure and also show that the final state of A
equals to its initial state.
lemma rew_clean : ∀ m M1 i1,

Pr[s ← A.getState(); r1 ← A.ex1(i1);
A.setState(s) @ m : M1 r1 ∧ GmA = GfinA]

= Pr[r1 ← A.ex1(i1) @ m : M1 r1].

(The proof requires only basic pHL tactics and rewindabil-
ity axioms.) This result allows us to derive the multiplica-
tion rule which states that the probability of a joint event
M1 r1 ∧ M2 r2 for the program (1)–(4) on memory m
equals to the product of probabilities of events M1 r1

and M2 r2 occurring after independent runs of A.ex1

and A.ex2 on m, respectively. In EasyCrypt this is stated
as follows:
lemma rew_mult_law : ∀ m M1 M2 i1 i2,

Pr[s ← A.getState(); r1 ← A.ex1(i1);
A.setState(s); r2 ← A.ex2(i2) @ m
: M1 r1 ∧ M2 r2]

= Pr[r1 ← A.ex1(i1) @ m : M1 r1]
··· Pr[r2 ← A.ex2(i2) @ m : M2 r2].

In its essence, rew_mult_law is derived by a single call
to the built-in seq tactic.

Commutativity. In its turn, the multiplication rule
opens for us an easy route to proving commutativity
for rewindable modules. Consider a program consisting
of steps (1)–(4)–(3)–(2) (i.e., A.ex1 and A.ex2 calls
are swapped). We can prove that it computes the same
distribution of pairs (r1, r2) as the program (1)–(4).
lemma rew_comm_law_simple : ∀ m M i1 i2,

Pr[s ← A.getState(); r1 ← A.ex1(i1);
A.setState(s); r2 ← A.ex2(i2) @ m

: M (r1, r2)]
= Pr[s ← A.getState(); r2 ← A.ex2(i2);

A.setState(s); r1 ← A.ex1(i1) @ m
: M (r1, r2)].

By using the combination of byequiv and bypr tactics
we reduce the above lemma to a point-wise equality of
programs:
have aux1 : ∀ x1 x2,

Pr[s ← A.getState(); r1 ← A.ex1(i1);
A.setState(s); r2 ← A.ex2(i2) @ m
: r1 = x1 ∧ r2 = x2]

= Pr[s ← A.getState(); r2 ← A.ex2(i2);
A.setState(s); r1 ← A.ex1(i1) @ m
: r1 = x1 ∧ r2 = x2].

Then:
have aux2 : ∀ x1 x2,

Pr[s ← A.getState(); r1 ← A.ex1(i1);
A.setState(s); r2 ← A.ex2(i2) @ m
: r1 = x1 ∧ r2 = x2]

= Pr[r1 ← A.ex1(i1) @ m : r1 = x1] // rew_mult
··· Pr[r2 ← A.ex2(i2) @ m : r2 = x2]
= Pr[r2 ← A.ex2(i2) @ m : r2 = x2] // comm of ···
··· Pr[r1 ← A.ex1(i1) @ m : r1 = x1]
= Pr[s ← A.getState(); r2 ← A.ex2(i2);

A.setState(s); r1 ← A.ex1(i1) @ m
: r1 = x1 ∧ r2 = x2]. // rew_mult

9

(In the second invocation of rew_mult, the procedure
names ex1 and ex2 are exchanged. Since lemmas in
EasyCrypt are not parametric in the procedure names, we
achieve this by using a wrapper module.)

In the actual EasyCrypt formalization, we prove a
slightly more general version of commutativity for rewind-
able modules. In particular, we allow the program to start
with a call to B.init (which might not be disjoint from
A). As a result of this change, the proof starts by reflecting
the composition of B.init with the rest of the program
and then using the lemma rew_comm_law_simple.

lemma rew_comm_law : ∀ m M i0,
Pr[r0 ← B.init(i0); s ← A.getState();

r1 ← A.ex1(r0); A.setState(s);
r2 ← A.ex2(r0) @ m : M (r0, r1, r2)]

= Pr[r0 ← B.init(i0); s ← A.getState;
r2 ← A.ex2(r0); A.setState(s);
r1 ← A.ex1(r0) @ m : M (r0, r1, r2)].

Note that the reflection of composition relies on “averaging
technique” which relies on finite probabilistic approxima-
tion (see Sec. 3.2).

4.3. Rewinding with Initialization

In Thm. 1.1 we sketched a derivation of the equation
which is needed to prove sum-binding property for com-
mitments (see Sec. 5). More specifically, we analyzed a
program which starts with an explicit state initializer, saves
the resulting state of module A, runs a procedure A.run
for the first time, restores the saved state, and then runs
the A.run procedure for the second time. We proved that
the probability of a success (according to some predicate)
in two sequential runs of A.run is lower-bounded by a
square of probability of a success in a “initialize-then-
run” case (i.e., initialize the state and execute the A.run
procedure once).

In EasyCrypt, we derive a similar equation, but for a
more general case:

• The initialization is done with a procedure
B.init, where B is a module with a state which
can possibly intersect with the state of module A.

• The initialization produces a result r0 of a param-
eter type which is then supplied to A.run.

• The procedures B.init receives all-quantified
argument i of a parameter type.

• The procedure A.run returns a result of a param-
eter type rt. The success of a run is defined by
a parameter predicate M (r0, ri), where r0

and ri are the values returned by B.init and
A.run procedures, respectively.

The EasyCrypt statement of the lemma is as follows:

lemma rew_with_init : ∀ m M i,
Pr[r0 ← B.init(i); s ← A.getState();

r1 ← A.run(r0); A.setState(s);
r2 ← A.run(r0) @ m : M (r0, r1) ∧ M (r0, r2)]

≥ Pr[r0 ← B.init(i); r ← A.run(r0) @ m
: M (r0, r)]2.

We skip the proof as it roughly follows the steps sketched
in Thm. 1.1.

5. Case Study: Commitments and Coin-Toss

As a case study for our techniques we prove the
security of a coin-toss protocol based on bit-commitment.
Historically, Blum described the problem of coin-toss
protocol with the following example: Alice and Bob are
recently divorced, living in two separate cities, and want to
decide who gets to keep the car. To decide, Alice wants to
flip a coin over the telephone. However, Bob is concerned
that if he were to tell Alice heads, she would flip the coin
and automatically tell him that he lost. Thus, the problem
with Alice and Bob is that they do not trust each other; the
only resource they have is the telephone communication
channel, and there is not a third party available to read
the coin [13].

In the following, we describe the coin-toss protocol
based on a bit-commitment scheme which is similar to the
original Blum’s solution to the coin-toss problem:

1) Alice chooses a random bit r1 and then generates
a commitment c containing that bit (let d be the
respective opening).

2) Alice sends the commitment c to Bob.
3) Bob chooses a random bit r2 and sends it to

Alice.
4) Alice opens her commitment by sending the bit

r1 and the opening d to Bob.
5) Bob verifies that d is a valid opening of r1 for

c. Otherwise Bob aborts.
6) Alice and Bob compute the final bit as r1 ⊕ r2

(xor).

The coin-toss protocol must ensure the following
property: if at least one of the parties correctly generates
a random bit, then the final bit will be (nearly) random.

Security of the coin-toss is almost immediate if the
commitment scheme satisfies a property called “sum-
binding” in [14]. This property says that the probability
of Alice opening the commitment to false and the
probability of Alice opening it to true add to at most 1
(plus a negligible error). This property in turn is implied
by the usual “computationally binding” property which
says that Alice cannot open to both false and true
simultaneously (except with negligible probability). Show-
ing that “computationally binding” implies “sum-binding”,
however, requires rewinding. Therefore that proof is a
prime candidate for our case-study. (In the post-quantum
setting, for example, computationally binding does not
imply sum-binding [15]. This illustrates that this seemingly
trivial implication is not as easy as it might seem, and that
we indeed need rewinding here.)

5.1. Commitments

In the standard library of EasyCrypt, the module type
CommitmentScheme requires a commitment scheme S
to implement the following procedures:

1) p ← S.gen() generates the public-key of a
commitment scheme (also known as the public
parameters).

2) (c, d) ← S.commit(p, m) produces a
commitment c and an opening d for a message
m and a public-key p.

10

3) b ← S.verify(p, m, c, d) returns
b = true iff d is a valid opening for message
m, commitment c, and public-key p.

For our development, we additionally require the existence
of a verification function Ver (an “operator” in EasyCrypt-
parlance) which must agree with the procedure S.verify
on all arguments:

op Ver : pubkey × message × commitment × opening
→ bool.

axiom verify_det : ∀ m a,
Pr[r ← S.verify(a) @ m : r = Ver a] = 1.

This means that verification is side-effect free (and de-
terministic). Otherwise, two runs of the verification algo-
rithm could interfere with each other (and with calls to
S.commit) and give different results.

In cryptography, a commitment scheme is called com-
putationally binding iff the probability that adversary A
can produce a commitment with openings of two different
messages is negligible. The EasyCrypt standard library
defines a module type Binder with a single procedure
bind; we can then define the probability of success of
adversary A : Binder in the “binding-game”:

op binding_pr(A, m) = Pr[p ← S.gen();
(c, m1, d1, m2, d2) ← A.bind(p);
v1 ← S.verify(p,m1,c,d1);
v2 ← S.verify(p,m2,c,d2) @ m

: v1 ∧ v2 ∧ m1 6= m2].

(Here, binding_pr is only a shortcut notation
used in this text.) Hence, scheme is binding if
binding_pr(A,m) is negligible for all A and m.

Sum-Binding. Next, we define the “sum-binding” prop-
erty of commitments. Let A be an adversary and pb be
a probability that A can open the commitment to con-
tain b given input b = false,true. The commitment
scheme is sum-binding iff for all such adversaries the
pf + pt ≤ 1 + ε , where ε is negligible. We define
a module type SumBinder with procedures commit
and open. Then we define the probability of success of
adversary A : SumBinder in the “sum-binding-game”:

op sum_binding_pr(A, m) =
Pr[p ← S.gen(); c ← A.commit(p);

d ← A.open(0); v ← S.verify(p,0,c,d)
@ m : v]

+ Pr[p ← S.gen(); c ← A.commit(p);
d ← A.open(1); v ← S.verify(p,1,c,d)

@ m : v].

(Again, sum_binding_pr is only a shortcut nota-
tion.) Hence, scheme is sum-binding if and only if
for all A and m, there exists a negligible ε , so that
sum_binding_pr(A, m) ≤ 1 + ε . Before address-
ing the sum-binding property for commitments, we prove
a more generic sum-binding inequality which shows that
the sum of probabilities of success of independent runs
of arbitrary procedures A.ex1 and A.ex2 is related to
the probability of joint success in the same run.3 More
specifically, assume that module A is rewindable and

3. This generic lemma may also be useful when analyzing certain
extractors for proof of knowledge protocols with two challenges, e.g.,
the zero-knowledge protocols for Hamiltonian cycles [16] and for graph
isomorphism [17].

B.init is some initialization procedure. We let p1 be the
probability that after initialization the procedure A.ex1

succeeds according to some predicate M (similarly for
p2 and A.ex2 , mutatis mutandis). In this case, we can
prove that the sum of probabilities p1 + p2 is upper-
bounded by a sum 1 + 2 ··· q, where q is the probability
that A.ex1 and A.ex2 both succeed in the same run
(i.e., both starting from the same initial state produced by
B.init). In EasyCrypt, we state this equation as follows:

axiom rewindable_A : RewProp(A).

lemma sum_binding_generic : ∀ m M i,
Pr[r0 ← B.init(i); r ← A.ex1(r0) @ m : M r]

+ Pr[r0 ← B.init(i); r ← A.ex2(r0) @ m : M r]
≤ 1 + 2 ··· Pr[r0 ← B.init(i); s ← A.getState();

r1 ← A.ex1(r0); A.setState(s);
r2 ← A.ex2(r0) @ m : M r1 ∧ M r2].

Proof: Let us define the following shortcut-notation:

Pj = Pr[r0 ← B.init(i); r ← A.exj(r0) @ m : M r].
Pj k= Pr[r0 ← B.init(i); s ← A.getState();

r1 ← A.exj(r0); A.setState(s);
r2 ← A.exk(r0) @ m : M r1 ∧ M r2].

P$ = Pr[r0 ← B.init(i); j $← {1,2};
r ← A.exj(r0) @ m : M r].

P $$ = Pr[r0 ← B.init(i);
s ← A.getState(); j $← {1,2};
r1 ← A.exj(r0); A.setState(s); k $← {1,2};
r2 ← A.exk(r0) @ m : M r1 ∧ M r2].

Here, Pj denotes a probability of success of a run of a
procedure A.exj (in EasyCrypt, we implement A.exj
using the if-then-else construct). Pj k denotes a
probability of a joint success of a run of procedures
A.exj(r0) and A.exk(r0) from the same initial state.
P$ denotes a success of a run of a procedure A.exj where
j is sampled uniformly from {1,2}. Finally, P $$ denotes
a probability of a joint success of a run of procedures
A.exj and A.exk where both j and k are uniformly
sampled from {1,2}.

Using our notation, the statement of the lemma
sum_binding_generic can be therefore expressed
as:

have goal : P1 + P2 ≤ 1 + 2 ··· P12.

Before continuing with the proof we list some basic facts
about these definitions:

have f1 : P$ = 1/2 ··· (P1 + P2).
f2 : P $$ = 1/4 ··· (P11 + P12 + P21 + P22).
f3 : ∀ x y, Px ≥ P xy .
f4 : P $$ ≥ P$ 2.

The facts f1 and f2 are by case analysis. The fact
f3 is by event inclusion. The fact f4 is by rewinding
with initialization equation rew_with_init derived in
Sec. 4.3.

To prove the goal we first derive an equation which
connects P 12 and P 21 to P1 and P2 :

have aux : P12 + P21 ≥ P1 + P2 - 1.

To prove aux we argue as follows:

P12 + P21

= 4 ··· (1/4 ··· (P12 + P21 + P11 + P22)
- 1/4 ··· (P11 + P22)) // math

= 4 ··· (P $$ - 1/4 ··· (P11 + P22)) // f2

11

≥ 4 ··· (P $$ - 1/4 ··· (P1 + P2)) // f3

= 4 ··· (P $$ - 1/2 ··· P$) // f1

≥ 4 ··· (P$ 2 - 1/2 ··· P$) // f4

≥ 2 ··· P$ - 1 // math
= P1 + P2 - 1. // f1

Finally, the goal is concluded by using the aux inequality
and observing that P 12 = P 21 (due to commutativity
rule rew_comm_law, see Sec. 4.2).

Equipped with the generic sum-binding inequality we
can now finish the proof that binding commitment schemes
are also sum-binding. We start by implementing a reduction
R(A) which runs A.commit (to produce the commit-
ment), stores the state of A, runs A.open(false) (to
produce the first opening), restores the state of A, and runs
A.open(true) (to produce the second opening). Then
we show that the probability that R(A) produces two valid
openings (i.e., breaks binding) is lower-bounded in terms
of the probability that A is successful in producing one
valid opening.

module R(A : SumBinder) : Binder = {
proc bind(p : pubkey) = {
var c,s,d1,d2;
c ← A.commit(p);
s ← A.getState();
d1 ← A.open(false);
A.setState(s);
d2 ← A.open(true);
return (c,false,d1,true,d2);

}
}.

Next, we implement wrapper-modules B and A’, so that
B.init is a wrapper around “commitment initialization”
phase p ← S.gen(); c ← A.commit(p). The pro-
cedure A’.ex1 is defined as A.open(false), and
A’.ex2 as A.open(true). In this case, sum-binding
for commitments becomes an immediate consequence of
the sum_binding_generic inequality and we can
conclude:

axiom rew_A : RewProp(A).

lemma commitment_sum_binding : ∀ m,
sum_binding_pr(A, m)
≤ 1 + 2 ··· binding_pr(R(A), m).

5.2. Coin-Toss Protocol

Recall, that a coin-toss protocol is considered secure
if it is ensured that if at least one of the parties correctly
generates a random bit then the final bit will be (nearly)
random.

In the first case, we assume that Alice is honest and
Bob is cheating. To simplify this case, we additionally
assume that the commitment scheme is perfectly hiding.
(The case of cheating Bob does not involve rewinding
and is therefore not the focus of this paper.) This means
that Bob gets no information about r1 after receiving the
commitment c. Therefore, if Alice follows the protocol
honestly and r1 is uniformly random and independent
of r2 (due to the perfect hiding) then the resulting bit
(r1 ⊕ r2) is also uniformly random.

In the second case, we are left to show that if
Bob honestly follows the protocol, then for any Alice
(adversary A : CoinTossAlice) the resulting bit is

nearly uniform. Below we assume that module type
CoinTossAlice requires a module to have procedures
commit and toss, where commit produces a commit-
ment c, and toss gets a Bob’s bit r2 as an argument and
then computes a bit together with its opening for c. We
write coin_toss_pr(A,m,b) to denote a probability
of A being able to open the commitment to Boolean b.
op coin_toss_pr(A,m,b) =

Pr[p ← S.gen(); r2
$← {0,1}; c ← A.commit(p);

(r1,d) ← A.toss(r2) @ m
: Ver (p,r1,c,d) ∧ r1 ⊕ r2 = b].

(Here, sum_binding_pr is only a shortcut notation.)
We define Bf(A) and Bt(A) as the transformations of
coin-toss adversary into an adversary that breaks binding
for the cases b = false and b = true, respectively:
module Bt(A : CoinTossAlice) : SumBinder = {

proc commit(p : pubkey) = {
return A.commit(p);

}
proc open(x : bit) = {

var d, r1;
(r1, d) ← A.toss(not x);
return d;

}
}.

module Bf(A : CoinTossAlice) : SumBinder = {
proc commit(p : pubkey) = {

return A.commit(p);
}
proc open(x : bit) = {

var d, r1;
(r1, d) ← A.toss(x);
return d;

}
}.

Bf(A) delegates the commitment generation to A and
when asked to open a commitment to bit x then x is
submitted to A.toss and the resulting opening is returned.
Bt(A) is different in that the negation of x is submitted
to A.toss. Finally, we can derive that if Bob is honest
then for any Alice the resulting bit is nearly uniform.
lemma coin_toss_alice : ∀ m b,
coin_toss_pr(A,m,b)
≤ 1/2 + max binding_pr(R(Bt(A)),m)

binding_pr(R(Bf(A)),m).

Proof: We start the proof by analyzing the case
when b = true (i.e., r1 ⊕ r2 = true). We prove
that this case is upper-bounded by 1/2 + ε , where ε is
the probability of breaking the binding of S by R(Bt(A)).
have coin_toss_alice_true :
coin_toss_pr(A,m,true)
≤ 1/2 + binding_pr(R(Bt(A)),m).

We prove this case by arguing as follows:
Pr[p ← S.gen(); r2

$← {0,1}; c ← A.commit(p);
(r1,d) ← A.toss(r2) @ m
: Ver (p,r1,c,d) ∧ r1 ⊕ r2 = true]

(1)
= 1/2 ··· (Pr[p ← S.gen(); c ← A.commit(p);

(r1,d) ← A.toss(false) @ m
: Ver (p,r1,c,d) ∧ r1 ⊕ false = true]

+ Pr[p ← S.gen(); c ← A.commit(p);
(r1,d) ← A.toss(true) @ m
: Ver (p,r1,c,d) ∧ r1 ⊕ true = true])

(2)

≤ 1/2 ··· (Pr[p ← S.gen(); c ← A.commit(p);
(r1,d) ← A.toss(false) @ m

12

: Ver (p,1,c,d)]
+ Pr[p ← S.gen(); c ← A.commit(p);

(r1,d) ← A.toss(true) @ m
: Ver (p,0,c,d)])

(3)
= 1/2 ··· (Pr[p ← S.gen(); c ← A.commit(p);

d ← B(A).open(true) @ m
: Ver (p,false,c,d)]

+ Pr[p ← S.gen(); c ← A.commit(p);
d ← B(A).open(false) @ m

: Ver (p,true,c,d)])
(4)

≤ 1/2 + binding_pr(R(Bt(A)),m).

(Here {0,1} denotes a uniform distribution of Booleans.)
Step (1) is by case distinction of r2 . Step (2) is by
simplification and event-inclusion. Step (3) is by defini-
tion of transformation Bt . Step (4) is the application of
commitment_sum_binding from Sec. 5.1.

In a similar way we handle the case when b = false
and show:
have coin_toss_alice_false :
coin_toss_pr(A,m,false)
≤ 1/2 + binding_pr(R(Bf(A)),m).

Finally, coin_toss_alice is a trivial con-
sequence of coin_toss_alice_true and
coin_toss_alice_false.

6. Conclusions

In this paper we focused on probabilistic reflection
and rewindability of adversaries. First, we implemented
a powerful toolkit for probabilistic reflection which in-
cludes finite probabilistic approximation, averaging, and
reflection of composition inside EasyCrypt. Second, we
described a notion of rewindable adversaries and derived
their basic properties: transformations, multiplication rule,
commutativity, rewinding with initialization. Third, by
combining these results together we were able to derive
a generic sum-binding equation for arbitrary rewindable
computations. Fourth, we instantiated the sum-binding
property for commitments and proved that if a commitment
scheme is binding then it is also sum-binding. Finally, we
used this result to prove the security of a bit-commitment
based coin-toss protocol.

To the best of our knowledge, neither probabilistic
reflection, rewindable adversaries, nor security of a coin-
toss protocol were not yet addressed in theorem provers.

Acknowledgement

This work was partially supported by the ESF-funded
Estonian IT Academy research measure (project 2014-
2020.4.05.19-0001) and by the ERC consolidator grant
CerQuS (819317), by the Estonian Centre of Excellence
in IT (EXCITE) funded by ERDF, by PUT team grant
PRG946 from the Estonian Research Council.

Index

ambient logic, 3
averaging, 6
averaging (lemma), 6
axiom (keyword), 4

bind (in Binder), 11

Binder (module type), 11
binding game, 11
binding_pr (abbreviation), 11

choiceb (operator), 5
choicebP (lemma), 5
coin-toss protocol, 10
coin_toss_alice (lemma), 12
coin_toss_pr (abbreviation), 12
CoinTossAlice (module type), 12
commit (in CoinTossAlice), 12
commit (in CommitmentScheme), 10
commit (in SumBinder), 11
commitment scheme, 10
commitment_sum_binding (lemma), 12
CommitmentScheme (module type), 10
computationally binding, 11

disjoint global variables, 5
distr (type), 4
dlet (operator), 7
dmap (operator), 7

elim (tactic), 5

fin_pr_approx_distr_conv (lemma), 6
fin_pr_approx_prog_conv (lemma), 6
Finite Pr-approximation, 6

gen (in CommitmentScheme), 10
getState, 3
glob A, 4
global variables of a module, 4

have (tactic), 5

inline (tactic), 5

Jensen’s inequality, 7
Jensen_inf (lemma), 7

lemma (keyword), 4

memory, 4
module types, 4
modules, 4

no_globs_rew (lemma), 8

op (keyword), 3, 4
open (in SumBinder), 11

pose (tactic), 5
probabilistic reflection, 2, 5
probabilistic reflection of the sequential composition, 7
probabilistic relational Hoare logic

pRHL, 1, 5
probability expressions, 4
proof (keyword), 4

qed (keyword), 4

refl_comp (lemma), 7
refl_comp_simple (lemma), 7
reflection (lemma), 5

13

reflection_simple (lemma), 5
rew_clean (lemma), 9
rew_comm_law (lemma), 10
rew_comm_law_simple (lemma), 9
rew_mult_law (lemma), 9
rew_mult_simple (lemma), 9
rew_with_init (lemma), 10
rewindable, 3
rewinding, 3

setState, 3
state, 4
sum-binding, 11
sum_binding_generic (lemma), 11
sum_binding_pr (abbreviation), 11
SumBinder (module type), 11

toss (in CoinTossAlice), 12
trans_rew (lemma), 9
type (keyword), 4

Ver (operator), 11
verify (in CommitmentScheme), 11

winPr (lemma), 4

References

[1] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-
aided security proofs for the working cryptographer,” in Annual
Cryptology Conference. Springer, 2011, pp. 71–90.

[2] V. Cortier, C. C. Drăgan, F. Dupressoir, B. Schmidt, P.-Y. Strub, and
B. Warinschi, “Machine-checked proofs of privacy for electronic
voting protocols,” in 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 2017, pp. 993–1008.

[3] D. Firsov, H. Lakk, and A. Truu, “Verified multiple-time
signature scheme from one-time signatures and timestamping,”
in 2021 2021 IEEE 34th Computer Security Foundations
Symposium (CSF). Los Alamitos, CA, USA: IEEE Computer
Society, jun 2021, pp. 653–665. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00051

[4] G. Barthe, G. Danezis, B. Grégoire, C. Kunz, and S. Zanella-
Béguelin, “Verified computational differential privacy with appli-
cations to smart metering,” in 2013 IEEE 26th Computer Security
Foundations Symposium, 2013, pp. 287–301.

[5] J. Nussbaumer, “Security analysis for IPsec with EasyCrypt,”
Master’s thesis, University of Bonn, 2019.

[6] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL: Game-
based proofs in higher-order logic,” Journal of Cryptology, vol. 33,
no. 2, pp. 494–566, 2020.

[7] A. Petcher and G. Morrisett, “The foundational cryptography
framework,” in International Conference on Principles of Security
and Trust. Springer, 2015, pp. 53–72.

[8] B. Blanchet, “A computationally sound mechanized prover for
security protocols,” IEEE Transactions on Dependable and Secure
Computing, vol. 5, no. 4, pp. 193–207, 2008.

[9] M. Berg, “Formal verification of cryptographic security proofs,”
Ph.D. dissertation, Saarland University, 2013.

[10] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal certifi-
cation of code-based cryptographic proofs,” in Proceedings of the
36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 2009, pp. 90–101.

[11] “Accompanying EasyCrypt development,” http://firsov.ee/
ec-reflection-rewinding-coin-toss.zip, accessed: 2021-08-21.

[12] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and
P.-Y. Strub, “EasyCrypt: A tutorial,” in Foundations of security
analysis and design vii. Springer, 2013, pp. 146–166.

[13] M. Blum, “Coin flipping by telephone: a protocol for solving
impossible problems,” ACM SIGACT News, vol. 15, no. 1, pp.
23–27, 1983.

[14] D. Unruh, “Computationally binding quantum commitments,” in
Advances in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S.
Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 497–527.

[15] A. Ambainis, A. Rosmanis, and D. Unruh, “Quantum attacks on
classical proof systems: The hardness of quantum rewinding,” in
2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, 2014, pp. 474–483.

[16] M. Blum, “How to prove a theorem so no one else can claim it,” in
In: Proceedings of the International Congress of Mathematicians,
1987, pp. 1444–1451.

[17] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, ser. STOC
’88. New York, NY, USA: Association for Computing
Machinery, 1988, p. 103–112. [Online]. Available: https:
//doi.org/10.1145/62212.62222

14

https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00051
https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00051
http://firsov.ee/ec-reflection-rewinding-coin-toss.zip
http://firsov.ee/ec-reflection-rewinding-coin-toss.zip
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222

	Introduction
	Challenges
	Probabilistic Reflection
	Rewinding

	Preliminaries
	Toolkit for Probabilistic Reflection
	Probabilistic Reflection
	Probabilistic Toolkit
	Reflection of Composition

	Rewinding
	Transformations
	Multiplication Rule and Commutativity
	Rewinding with Initialization

	Case Study: Commitments and Coin-Toss
	Commitments
	Coin-Toss Protocol

	Conclusions
	Index
	References

