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Abstract. In this article we propose three optimizations of indifferentiable hashing onto
(prime order subgroups of) ordinary elliptic curves over finite fields Fq. One of them is ded-
icated to elliptic curves E provided that q ≡ 2 (mod 3). The other two optimizations take
place respectively for the subgroups G1, G2 of some pairing-friendly curves. The performance
gain comes from the smaller number of required exponentiations in Fq for hashing to E(Fq),
G2 (resp. from the absence of necessity to hash directly onto G1). In particular, our results
affect the pairing-friendly curve BLS12-381 (the most popular in practice at the moment) as
well as a few ones from the international draft NIST SP 800-186. Among other things, we
present a taxonomy of state-of-the-art hash functions to elliptic curves.

Key words: BLS12 family of pairing-friendly curves, clearing cofactor, indifferentiable
hashing to elliptic curves, optimal ate pairings.

1 How to hash onto pairing-friendly curves

There is a lot of articles (including recent ones) on how to hash into or onto elliptic curves
over finite fields. So, with your permission, we do not provide a detailed introduction in order
to avoid repetition. Good surveys are represented in [1, §8], [2]. It is worth emphasizing that
throughout this text we mean hashing indifferentiable from a random oracle (in the sense of
[3, §2.2]).

Let E1 be an ordinary pairing-friendly elliptic curve of embedding degree k > 1 over a
finite field Fq. Besides, let E2 be a twist of E1 of degree d := #Aut(E1) over the field Fqe , where
e := k/d ∈ N. As is customary, for a common prime divisor r of the orders N1 := #E1(Fq) and
N2 := #E2(Fqe) denote by G1 ⊂ E1(Fq) and G2 ↪→ E2(Fqe) the eigenspaces of the Frobenius
endomorphism on E1[r] ⊂ E1(Fqk), associated with the eigenvalues 1, q respectively. Note that
the condition e ∈ N is not automatically met, i.e., this is our assumption. It is claimed (e.g., in
[1, Theorem 3.3.5]) that for any prime divisor r | N1 there is always a unique non-trivial Fqe-
twist E2 (of degree d) such that r | N2. By abuse of notation, we identify the order r subgroup
G2 ⊂ E1(Fqk) with its image under an Fqe-isomorphism E1 → E2. Thus G1 = E1(Fq)[r] and
G2 = E2(Fqe)[r]. Besides, d ∈ {2, 4, 6} and d = 2 if and only if j(Ei) 6= 0, 1728 (respectively,
d = 4 iff j(Ei) = 1728 and d = 6 iff j(Ei) = 0).

This section explains how to hash onto G2 more efficiently and why we do not need to hash
directly onto G1. In the first case, we significantly exploit the presence of clearing the cofactor
c2 := N2/r. In the second one, on the contrary, clearing the cofactor c1 := N1/r can be fully
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avoided. The fact is that optimal ate pairings a : G2×G1 → µr ⊂ F∗
qk

[1, Theorem 3.3.4] can

be painlessly (unlike E2(Fqe)×G1) extended to G2×E1(Fq), at least in main pairing-based
protocols.

At the moment, due to [4, Table 1] the curve BLS12-381 is a de facto standard in pairing-
based cryptography. More generally, the Barreto–Lynn–Scott family with k = 12 and d = 6
(see, e.g., [5, §3.1]) possesses the parameters

r(z) = z4 − z2 + 1, q(z) = (z − 1)2r(z)/3 + z.

By definition, BLS12-381 is generated by z := −0xd201000000010000 and hence

dlog2(−z)e = 64, dlog2(r)e = 255, dlog2(q)e = 381.

Notice that r � q in contrast to the Barreto–Naehrig family [1, Example 4.2].
Recall that almost all known hash functions Hi : {0, 1}∗ → Gi are the compositions Hi =

[c′i] ◦ hi ◦ ηi. Here ηi : {0, 1}∗ → Si are hash functions to some finite sets, h1 : S1 → E1(Fq) and
h2 : S2 → E2(Fqe) are just maps traditionally called encodings, and finally c′i ∈ N such that
ci | c′i, r - c′i. The scalar multiplication [c′i] on the curve Ei is said to be clearing cofactor.
Surprisingly, due to Fuentes-Castaneda et al. [6] it is more efficient to multiply points by
scalars c′i greater than ci. The sets Si are usually very simple, hence it is easy to combine ηi
from existing hash functions {0, 1}∗ → {0, 1}` for ` ∈ N. The most complicated component
of Hi is no doubt hi, because its essence is based on high-dimensional algebraic geometry.

The majority of pairing-based protocols require a hash function to at most one group G1

or G2. Of course, any such protocol can be equivalently implemented for hashing to the other
group. Without using point compression-decompression methods, elements of G1 (resp. G2)
are obviously represented by 2dlog2(q)e (resp. 2edlog2(q)e) bits. Therefore the choice often
depends on whether a hash value should be more compact than the second pairing argument
or vice versa. Besides, there are rare protocols, for example the Scott identity-based key
agreement [7], where both hash functions Hi are necessary. Thus the more cumbersome
hashing to G2 cannot be replaced by hashing to G1 in all situations.

1.1 How not to hash onto G1

As far as we know, (non-degenerate) optimal ate pairings a : G2×G1 → µr ⊂ F∗
qk

are only
used in today’s real-world cryptography. The fact is that the corresponding Miller loop has the
hypothetically smallest length ≈ log2(r)/ϕ(k), where ϕ is Euler’s totient function. However
it is more practical to take the whole group E1(Fq) instead of G1. In this case, the pairing
a : G2×E1(Fq)→ µr becomes degenerate, but this is not important. A similar trick is done
in [8, §5] for the Tate pairing in the context of isogeny-based cryptography, where, on the
contrary, G2 is replaced by E1(Fqk) in our notation.

Indeed, first, the length of the Miller loop depends only on the order of G2. Second, if for
points P ∈ E1(Fq) and Q ∈ G2 we have a(Q,P ) = 1, then a fortiori a(Q, c′1P ) = a(Q,P )c

′
1 =

1. Further, many popular protocols (such as the aggregated BLS signature [9]) work correctly
whether the order of P equals r or not. It should be borne in mind that the strong unforge-
ability property (unlike the usual existential one) is not satisfied anymore for this signature as
emphasized in [9, §5.2]. Nevertheless, in the opinion of [10, §7], the existential unforgeability
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is sufficient in practice. Finally, the complexity of computing a(Q,P ) remains the same as
that of computing a(Q, c′1P ), because P , c′1P are equally defined over Fq.

In [11] an encoding h1 : F2
q → E1(Fq) is constructed for elliptic curves E1 : y2 = x3 + b (of

j-invariant 0) provided that
√
b ∈ Fq. There it is proved that h1 is admissible in the sense of

[3, Definition 4], which leads (in compliance with [3, Theorem 1]) to the indifferentiable hash
function h1 ◦ η1. Moreover, h1 can be implemented in constant time of raising to some power
n1 ∈ N in the field Fq (not counting a few additions and multiplications). In particular, the
encoding is applicable to the curve BLS12-381 for which b = 4 and n1 = (q − 10)/27.

Recall that famous (indirect) Wahby–Boneh’s encoding hWB [12, §4] (based on the sim-
plified SWU one [3, §7]) is also valid for BLS12-381. It requires to extract one square root in
Fq, which for that curve is equivalent to raising in Fq to the power n2 := (q − 3)/4 ∈ N. The
hash function H2 from [12, §5] twice applies hWB in order to act as a random oracle. By the
way, the other indifferentiable hash function H3 is even less performant than H2 by virtue of
[12, Figure 1].

To be exact, the Hamming weight w(n1) = 192 and w(n2) = 228. Denote by `(ni) the
length of a shortest addition chain for ni. In accordance with [13, §9.2.1] we establish the
inequalities

382 ≤ `(n1) . 419, 385 ≤ `(n2) . 422.

We cannot claim that these upper bounds are mathematically correct, because we omit-
ted o(1) in the original inequality. However, in any case, the sought bounds are very close
(probably equal) to ours.

On the other hand, following the sliding window method [13, §9.1.3] (with k = 5), we
explicitly derive in Magma [14] an addition chain for n1 (resp. n2) whose length equals 449
(resp. 458). Curiously, a similar chain for n2 of the same length 458, obtained by means of
more advanced methods, appears in the optimized library blst [15]. Thus the encoding hWB

applied twice is much slower than the one h1 applied once. Indeed, 2·458− 449 = 467 is a
significant amount of multiplications in Fq that can be eliminated by giving priority to h1.

We provide in [16] a general reference implementation of h1 in Sage. The corresponding
Rust implementation and benchmarks for BLS12-381 are given in [17] by the author’s col-
league. He used the famous library arkworks as a base. The new encoding is actually more
efficient than the universal Shallue–van de Woestijne (SW) encoding [18]. Unfortunately,
there is currently no possibility to make a low-level comparison with hWB, because the latter
is not yet implemented in arkworks.

1.2 How to hash onto G2

To our knowledge, optimal ate pairings do not have a natural extension to E2(Fqe)×G1.
Conversely, (non-degenerate) twisted optimal ate pairings [1, Theorem 3.3.8] of the form
G1×G2 → µr are readily extended to G1×E2(Fqe). But for them the Miller loop is of a larger
length than for (usual) optimal ate pairings. It is widely recognized that a pairing is a more
laborious operation than an elliptic curve scalar multiplication. Therefore reducing the Miller
loop seems a better solution than avoiding the multiplication by c′2.

For the sake of convenience, introduce so-called tensor multiplication of any two maps
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h : S → G, g : T → G from sets S, T to the same group (G,+):

h⊗ g : S×T → G (s, t) 7→ h(s) + g(t).

We know (e.g., from [1, Theorem 2.11]) that E2(Fqe) ' Z/(mr)×Z/`, where ` | m and
m` = c2. Pick any independent points P0, P1 ∈ E2(Fqe) of orders m and ` respectively. The
independency means that P1 ∈ E2(Fqe) \ 〈P0〉 if ` > 1, and P1 = (0 : 1 : 0) if ` = 1. Consider
the set V := [0,m)×[0, `) and the maps

g : V → E2(Fqe) (v0, v1) 7→ v0P0 + v1P1,

F : Fqe×V → G2 F := [c′2] ◦ (h2 ⊗ g).

For the next theorem we need the notions of (B-)well-distributed encoding [19, Definitions
5] and (ε-)regular map [19, Definition 3] (with respect to the uniform distribution on its
domain).

Theorem 1. Assume that h2 : Fqe → E2(Fqe) is a B-well-distributed encoding (for B ∈ R>0).

Then the map F is ε-regular, where ε := B
√
r/qe. As a result, ε is negligible whenever e > 1.

This is an immediate consequence of [19, Corollary 1] and [3, Lemma 13].
Note that F is a samplable map (in the sense of [3, Definition 4]) if, as is often the case, h2

enjoys a large image, that is #Im(h2) = Θ(qe). Indeed, this property follows from [3, Lemma
13] and [19, Algorithm 1]. Eventually, we establish

Corollary 1. The map F is admissible.

Corollary 2. If a hash function η : {0, 1}∗ → Fqe is indifferentiable from a random oracle,
then the hash function [c′2] ◦ h2 ◦ η : {0, 1}∗ → G2 (denoted by H4 in [12, §5]) is so.

Proof. Take another random oracle θ : {0, 1}∗ → V . Therefore the functions (η, θ)(s) :=(
η(s), θ(s)

)
and hence F ◦ (η, θ) : {0, 1}∗ → G2 also act as a random oracle (the second fact

is [3, Theorem 1]). Finally, obviously, H4 = F ◦ (η, θ).

For the BLS12-381 curve E2 : y2 = x3 + 4(1 + i) (where i :=
√
−1 6∈ Fq) in the role of h2

the article [12, §5] proposes Wahby–Boneh’s encoding. However that article does not notice
the indifferentiability of H4. By the way, the other (indifferentiable) hash functions H5, H6

are even slower than H4 by virtue of [12, Figure 1].

2 How to hash onto E(Fq) if q ≡ 2 (mod 3)

Hash functions to classical (i.e., non-pairing-friendly) elliptic curves have become more
and more in demand. Indeed, according to [20, Table I] they are actively used in many PAKE
(Password Authenticated Key Exchange) protocols. Incidentally, several years ago CFRG
(Crypto Forum Research Group) conducted the PAKE selection process [21] in which the
protocols CPace [22] and OPAQUE [23] won. Besides, such hash functions are necessary for
some blind signatures (e.g., from [24, §3.3]), which serve as a basis of modern electronic vot-
ing systems. It is also worth mentioning that hashing to elliptic curves is applied in OPRFs
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(Oblivious Pseudorandom Functions) [25], among others, in the 2HashDH scheme [26, §3.1],
[27, §3].

Let us freely utilize notions arisen in previous sections. Consider an elliptic curve
E : y2 = x3 + ax+ b defined over a finite field Fq. Under the condition q ≡ 2 (mod 3) (resp.
j(E) 6= 0, 1728), Icart’s encoding hI [28] (resp. the simplified SWU one hsSWU) is available.
In accordance with [28, Lemma 4], [3, Lemma 6] for any P ∈ E(Fq) we have #h−1I (P ) 6 4
and #h−1sSWU(P ) 6 8. In fact, if an implementation of hsSWU takes into account the sign of
the y-coordinate, then #h−1sSWU(P ) 6 4. At the same time, by virtue of [29, §5] the encod-
ing hI (resp. hsSWU) is B-well-distributed with B = 13 (resp. B = 53) at least for q of a
cryptographic size. Applying [19, Corollary 1], we thus get

Lemma 1. Suppose that q ≡ 2 (mod 3) and j(E) 6= 0, 1728. Then the map F := hI ⊗ hsSWU :
F2
q → E(Fq) is ε-regular for the negligible value ε := 26

√
N/q, where N := #E(Fq).

From now on we assume in addition that q ≡ 3 (mod 4). Obviously,

q ≡ 2 (mod 3), q ≡ 3 (mod 4) ⇔ q ≡ 11 (mod 12).

For the sake of compactness, we put e := (q + 1)/4 and k := (q + 1)/12. Notice that for
Z = n/d such that n, d ∈ F∗q we obtain

z := Zk = nk ·dq−1−k = nk ·d(11q−13)/12 = nd9 ·(nd11)(q−11)/12, z6 = Z(q+1)/2 =
(Z
q

)
Z,

where
(
Z
q

)
is the Legendre symbol. In particular, z = 6

√
Z whenever Z is a quadratic residue

in Fq.
Given (t, s) ∈ F2

q we need to evaluate hI(t) and hsSWU(s). As is known, separately each
of these points can be computed in constant time of one exponentiation in Fq (the case of
hsSWU see in [12, §4.2]). Let’s show that this is also possible simultaneously for the two
points (and hence for F (t, s)). The only cumbersome part of hI (resp. hsSWU) consists in the
exponentiation 3

√
f = f (2q−1)/3 (resp. ±ge such that (ge)2 =

(
g
q

)
g), where

f :=

(
3a− t4

6t

)2

− b− t6

27
, g := − b

a

(
1 +

1

s4 − s2

)
.

Evidently, 3
√
f is the unique cubic root of f in Fq and for our purpose it is sufficient to find

ge up to a sign. For the sake of simplicity, let us exclude from consideration the zeros and
poles of the functions f , g. As usual, they can be processed individually.

We suggest to act in a similar way as in [30, §3], that is for Z := f 2g3 to compute z = Zk

(almost 6
√
Z) instead of separate computing 3

√
f and ±ge (almost

√
g). Note that

z = f (q+1)/6 ·ge =
(f
q

)
3
√
f ·ge, z2 = 3

√
f 2 ·
(g
q

)
g.

Introducing the auxiliary notation θ := fg/z2, we get the equalities

3
√
f =

(
g
q

)
fg

z2
=
(g
q

)
θ, ge =

z(
f
q

)
3
√
f

=
z(
fg
q

)
θ
.
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We see that θ3 =
(
g
q

)
f and z6 =

(
g
q

)
Z. Therefore the symbol

(
g
q

)
can be determined for free.

More formally,

(
3
√
f, ±ge

)
=


(
θ, z/θ

)
if θ3 = f, i.e., z6 = Z,(

−θ, z/θ
)

otherwise.

Bearing in mind the formula above for (n/d)k without the inversion operation, we em-
phasize again that

Remark 1. The map F (in contrast to h⊗2I and h⊗2sSWU) can be computed in constant time
of one exponentiation in Fq.

Of course, by analogy with [14] given q it is not difficult to derive explicit short addition
chains for raising to the power k. Besides, F is a samplable map due to [19, Algorithm 1],
which eventually leads to

Corollary 3. The map F : F2
q → E(Fq) is admissible.

Remark 1 is still valid when hsSWU is replaced by any encoding implementable with the
cost of extracting one square root in Fq. We chose hsSWU , because it is the most universal
among such encodings known in the literature. In particular, this encoding is relevant even if
N is a prime (that is the cofactor equals 1), which is the case for many classical elliptic curves.
Note that for q ≡ 11 (mod 12) curves of j-invariants 0, 1728 are supersingular in compliance
with [13, §24.2.1.c]. Since such curves pose special challenges for security by virtue of [1,
Remark 2.22], the map hsSWU does not have restrictions in the current context.

There is a lot of standardized elliptic curves over fields Fq such that q ≡ 11 (mod 12). It is
readily checked that this condition is fulfilled, e.g., for the (unique) French curve FRP256v1
[31], for the curves P-192, P-384, and Curve448-Goldilocks from NIST SP 800-186 [32, §4.2.1]
as well as for all Russian curves [33, Appendix B] except for id-GostR3410-2001-CryptoPro-B-
ParamSet. Possibly, Remark 1 can be generalized to the case q ≡ 2 (mod 3), q ≡ 5 (mod 8)
when a square root is still expressed via one exponentiation (see, e.g., [2, Appendix I.2]).
However we did not find standardized curves over such fields, hence we decided to stop in
order not to complicate the text.

3 Taxonomy of hash functions to elliptic curves

This section aims to systematize known results on hashing to elliptic Fq-curves E. Table
1 contains state-of-the-art admissible encodings of the form F2

q → E(Fq). For the sake of
completeness, we also include Table 2 exhibiting encodings Fq → E(Fq). The latter are not
regular, because their full images are only proportions of the whole group E(Fq). Nevertheless,
in a series of situations they are more efficient than the former. The point is that some
protocols remain secure whether a used hash function {0, 1}∗ → E(Fq) acts as a random
oracle or not. In the literature there is a lot of other encodings to elliptic curves. The tables
domenstrate only those, which arose earlier and which are at the same time the best at least
for certain E and Fq.
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Year Authors References Complexity Conditions

2005 Ska lba [34]

√
· and two

( ·
q

) a 6= 0

2006
Shallue, van de Woestijne

(modification)
[18]

2022
Chávez-Saab, Rodriguez-Henriquez,

Tibouchi (SwiftEC)
[35] [35, Theorem 3]

2009-

2010

Icart (combination with

the simplified SWU map)

[3, §7], [28],

Section 2
6
√
· q ≡ 2 (mod 3),

ab 6= 0

2022 K.
[11] 3

√
· a = 0,

√
b ∈ Fq

[36] 4
√
· b = 0

Table 1: Taxonomy of admissible encodings F2
q → E(Fq) to elliptic Fq-curves E : y2 = x3 +

ax+ b

Year Authors Reference Complexity Conditions

2009 Icart [28] 3
√
· q ≡ 2 (mod 3)

2010
Brier et al. (the

simplified SWU map)
[3, §7]

√
·

ab 6= 0

2019 Wahby, Boneh [12]
ab = 0, E has a vertical

Fq-isogeny of small degree

2022 K. [37]
ab = 0, the trace of E

has a small divisor

Table 2: Taxonomy of (non-admissible) encodings Fq → E(Fq) to elliptic Fq-curves E : y2 =
x3 + ax+ b
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The only exception is Ska lba’s encoding [34]. Indeed, in contrast to Shallue–van de Woesti-
jne’s encoding, it does not cover curves of j-invariant 0, not to mention that Ska lba’s formu-
las are quite awkward. So it is widely recognized that the former is worse than the latter.
Nonetheless, seminal Ska lba’s work merits to be cited, because it is historically the first in this
research area. Further, both encodings need to determine the values of two Legendre symbols.
However we have to bear in mind the recent breakthrhough [38], [39] in fast constant-time
implementations of the Legendre symbol. In other words, the computational complexity of
the encodings is close to that of one square root extraction.

It is necessary to explain why we consider Ska lba’s encoding to be admissible and what
we mean by modification of the SW one, which appears to be equally admissible. The original
encodings (of the form Fq → E(Fq)) are of course not so, because they are far from surjective.
First of all, recall that the threefold

T : y2 = f(x1)f(x2)f(x3) ⊂ A4
(x1,x2,x3,y)

,

where E : y2 = f(x) := x3 + ax+ b, is at the core of the encodings under discussion. To be
precise, we have the auxiliary map

h′ : T (Fq)→ E(Fq) h′(x1, x2, x3, y) :=


(
x1,
√
f(x1)

)
if

(
f(x1)
q

)
∈ {0, 1},(

x2,
√
f(x2)

)
if

(f(x2)
q

)
∈ {0, 1},(

x3,
√
f(x3)

)
otherwise, i.e.,

(
f(x3)
q

)
∈ {0, 1}.

Ska lba’s encoding is based on Fq-unirationality of the Châtelet surface (see, e.g., [40, §1-2]).
More concretely, one deals with the surface

S : y21 + 12ay22 = f(x) ⊂ A3
(x,y1,y2)

. [34, Equation (3)]

By definition, there is a dominant Fq-map ψ : A2
(t1,t2)

99K S in the sense of [13, Definition

4.43]. Such a map is given in [34, Lemma 3] and yet another rational Fq-map ϕ : S 99K T is
from [34, Lemma 2]. Besides, introduce the following notation:

ϕ ◦ ψ = (X1, X2, X3, Y ) : A2
(t1,t2)

99K T

with irreducible fractions

Xi =
numi

deni
, numi, deni ∈ Fq[t1, t2], and Y ∈ Fq(t1, t2).

Finally, for α ∈ Fq let’s define the curves

Ci,α := α·deni − numi, Ci,∞ := deni ⊂ A2
(t1,t2)

.

A “right” version of Ska lba’s encoding is given as follows:

h : F2
q → E(Fq) h(t1, t2) :=

(0 : 1 : 0) if ∃i : (t1, t2) ∈ Ci,∞,(
h′ ◦ ϕ ◦ ψ

)
(t1, t2) otherwise.
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In order to shorten a bit his formulas Ska lba restricts h to the line t1 = t2, because he does
not worry about the regularity property. Using the intuition confirmed by [11, Theorem 3],
[36, Theorem 1], we suggest that the curves Ci,α are probably absolutely irreducible except
for few α. The author does not possess sufficient computer resources to prove this statement,
since Skalba’s formulas are fairly cumbersome. If our assumption is true, then by analogy
with [11, Corollary 2], [36, Corollary 2] it follows that the encoding h is regular. As usual, h
is also efficiently computable and samplable in a clear way, which implies its admissibility.

The SW encoding is obtained in almost the same way. The difference consists in the
surface

S = y2 + (3x2 + 4a)t2 + f(x) ⊂ A3
(x,y,t) [18, Equation (15)]

or, equivalently,
S : −y2 = x3 + 3t2x2 + ax+ 4at2 + b ⊂ A3

(x,y,t).

Note that the projection π : S → A1
x is a conic bundle [41, Definition 6]. The original SW

encoding just picks a non-degenerate Fq-fiber π−1(β) ⊂ A2
(y,t) (for some β ∈ Fq) whose Fq-

parametrization A1 99K π−1(β) is taken in the role of ψ.
According to the quite constructive result [41, Theorem 1] the surface S is also Fq-

unirational, alhought in general it is not Fq-rational as stressed in [18, §5]. As before, it
is proposed to chose a dominant Fq-map ψ : A2 99K S of degree as little as possible. Once
again, if the resulting curves Ci,α (with respect to the new functions Xi) are absolutely irre-
ducible, then the modified SW encoding h is admissible. Unfortunately, explicit formulas of
ψ heavily depend on the specified a, b, q, hence we are not able to write out them generally.

Recently, Chávez-Saab, Rodriguez-Henriquez, and Tibouchi [35] completely studied the
case when S is an Fq(x)-rational conic, that is it has an Fq(x)-point. And thereby they
constructed the birational Fq-map ψ (of degree one). Be careful that Fq-rationality of the
surface S does not imply Fq(x)-rationality of S as a conic. The corresponding encoding h
was called SwiftEC. It is relevant for many elliptic curves arising in practice. Inter alia, all
ordinary curves of j-invariant 0 are covered.

Nevertheless, the applicability conditions of SwiftEC are too restrictive for a series of
interesting curves among which those of j-invariant 1728. That is why the work [36] does
not lose significance. Moreover, the encoding h1 from Section 1.1 is still much faster than
SwiftEC over highly 2-adic fields, i.e., 2v | q − 1 for a non-small v ∈ N. Lots of modern curves
[42] are defined over such fields. The point is that h1 extracts a cubic root in Fq rather than
a square one, not to mention two Legendre symbols. Undoubtedly,

√
· can be found through

the Tonelli–Shanks algorithm (see, e.g., [1, Section 5.1.7]). However it is slower than the
exponentiation operation in Fq.

In conclusion, the last three rows of Table 1 encourage to formulate very beautiful and
practically useful

Conjecture 1. For any elliptic Fq-curve E there is an admissible encoding F2
q → E(Fq) at

the cost of one radical n
√
· in Fq for some n ∈ N (in particular, without computing additional

power residue symbols
(
γ
q

)
m

:= γ(q−1)/m, where γ ∈ Fq and m | q − 1).
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