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Abstract

The Messaging Layer Security (MLS) project is an IETF effort aiming to establish an industry-
wide standard for secure group messaging (SGM). Its development is supported by several major
secure-messaging providers (with a combined user base in the billions) and a growing body of
academic research.

MLS has evolved over many iterations to become a complex, non-trivial, yet relatively
ad-hoc cryptographic protocol. In an effort to tame its complexity and build confidence in
its security, past analyses of MLS have restricted themselves to sub-protocols of MLS—most
prominently a type of sub-protocol embodying so-called continuous group key agreement (CGKA).
However, to date the task of proving or even defining the security of the full MLS protocol has
been left open.

In this work, we fill in this missing piece. First, we formally capture the security of SGM
protocols by defining a corresponding security game, which is parametrized by a safety predicate
that characterizes the exact level of security achieved by a construction. Then, we cast MLS as
an SGM protocol, showing how to modularly build it from the following three main components
(and some additional standard cryptographic primitives) in a black-box fashion: (a) CGKA, (b)
forward-secure group AEAD (FS-GAEAD), which is a new primitive and roughly corresponds
to an “epoch” of group messaging, and (c) a so-called PRF-PRNG, which is a two-input hash
function that is a pseudorandom function (resp. generator with input) in its first (resp. second)
input. Crucially, the security predicate for the SGM security of MLS can be expressed purely as
a function of the security predicates of the underlying primitives, which allows to swap out any of
the components and immediately obtain a security statement for the resulting SGM construction.
Furthermore, we provide instantiations of all component primitives, in particular of CGKA with
MLS’s TreeKEM sub-protocol (which we prove adaptively secure) and of FS-GAEAD with a
novel construction (which has already been adopted by MLS).

Along the way we introduce a collection of new techniques, primitives, and results with
applications to other SGM protocols and beyond. For example, we extend the Generalized
Selective Decryption proof technique (which is central in CGKA literature) and prove adaptive
security for another (practical) more secure CGKA protocol called RTreeKEM (Alwen et al.,
CRYPTO ’20). The modularity of our approach immediately yields a corollary characterizing
the security of an SGM construction using RTreeKEM.
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1 Introduction

End-to-end encrypted asynchronous secure group messaging (SGM) is becoming one of the most
widely used cryptographic applications with billions of daily users. To help solidify the foundations
of this trend, the IETF is in the final stages of standardizing the Messaging Layer Security (MLS)
SGM protocol [7]. The effort is being lead by industry (e.g. by Cloudflare, Cisco, Facebook, Google,
Mozilla, Twitter, Wickr and Wire) with a lot of help from academia. Thus, MLS holds the potential
to be widely deployed with in the coming years.

Due to the expected feature set and the multi-faceted security goals, MLS is quite complex.
Furthermore, the description of MLS is quite monolithic. In an effort to come to terms with the
complexity (both of the construction and desired security notions) all work formally analyzing MLS
has restricted itself in scope. Besides simplifying the PKI [1, 3] the trend has been to focus only
on a subset of the complete protocol. In particular, the majority of work has considered so-called
continuous group key agreement (CGKA) [1, 3, 5]. First introduced by Cohn-Gordon et al. [12]
(under the name ”Group Ratcheting”), a CGKA protocol is often motivated by the folklore belief
that CGKA encapsulates the essence of building SGM (not unlike how KEMs capture the essence of
PKE). Indeed, this folklore has motivated a host of new CGKA protocols designed to improve on
the CGKA protocol implicit to MLS. Some constructions aim for stronger security properties [3, 4],
others for a more flexible communication model [21, 9], while the construction in [1] is optimized for
certain common SGM settings.

CGKA abstracts the basic task of asynchronously maintaining secrets in a group with an evolving
set of members. To this end, each time a member joins, leaves or updates their cryptographic
state (in an effort to heal from past compromises and defend against future ones) a new epoch in
the ongoing session is initiated. Each epoch is equipped with a symmetric group key that can be
derived by all parties that are in the group during that epoch. The CGKA most often identified
as underpinning MLS is a protocol called TreeKEM [24, 6]. Although, it has undergone at least
2 major iterations before reaching its current version [7] it remains, at most, a passively secure
protocol, i.e., with no authenticity mechanisms included. Moreover, it provides weaker guarantees
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(for the group key) than is expected of the (encryption keys) in the full MLS protocol. Thus, there
are clearly further significant security mechanisms at work in MLS beyond the underlying passively
secure CGKA, i.e., the protocol requires additional components.

Indeed, [5] extends the abstraction boundary around TreeKEM including more of the MLS
protocol to obtain an actively secure CGKA which they dub ITK (for ”Insider Secure TreeKEM”).
Yet even ITK is only a CGKA and not an SGM protocol, and so here too there clearly remains a
gulf between the full MLS protocol and what has actually been formally analyzed in [5].

Two exceptions to the focus on CGKA are: [14], which focuses exclusively on how to optimize the
bandwidth required to updated cryptographic state concurrent sessions with overlapping membership
sets, and [10], which considers the key derivation paths within MLS. While the paths extend beyond
the CGKA (even ITK) into parts of MLS specific to messaging (e.g., key/nonce derivation for
message encryption) the work leaves much open when it comes to a holistic understanding of MLS’s
security. For example, the work makes no statements at all about authenticity. So for example,
it leaves out the relatively involved and interdependent mechanisms used by MLS to provide this
property. Moreover, the work forgoes any formal modeling of network communication, leaving open
the questions around how a network adversary can generally impact the security of a session by, say,
arbitrarily manipulating packets in transit.

Our contributions

From a practice-oriented view point, the primary contribution in this work is a rigorous security
proof showing that the basic instantiation of MLS is an SGM protocol. More generally, we validate
the folklore claim that CGKA embodies the essence of SGM. In doing so, we make progress on
several fronts in coming to terms with the complexity involved in describing MLS (and other SGM
protocols) as well as defining (and proving) security for such protocols.

Black-Box Construction. In more detail, we give a black-box construction of an SGM protocol
from a passively secure CGKA and several other primitives. Instantiated appropriately, the con-
struction recovers the basic SGM protocol in MLS.1 Besides passive CGKA, the construction also
uses a new primitive called a Forward Secure Group AEAD (FS-GAEAD). Intuitively, it combines a
forward secure key schedule with an authenticated encryption with associated data (AEAD) scheme,
to allow a group of sender’s sharing a single secret to send any number of AEAD encrypted messages
with no further synchronization or communication such that any receiver can immediately decrypt
any ciphertexts they receive regardless of the order in which they are delivered. We further abstract
the key schedule of an FS-GAEAD with a new primitive called a Forward Secure KDF (FS-KDF)
which captures a generic forward-secure symmetric key schedule supporting the derivation of keys in
any order. Due to its improved efficiency profile, our construction of an FS-KDF has since replaced
the original FS-KDF in the MLS standard.

History graphs. We introduce the first formal security notion for SGM.2 Intuitively, it ensures
correctness as well as privacy and authenticity in the form of post-compromise forward secrecy

1That is, the part of MLS that allows parties to manage group membership, update their cryptographic states
at will and send/recieve encrypted and authenticated messages. We do not analyze more advanced features such
as importing/exporting secrets, meta-data hiding and so called ”external commits” where an external party makes
changes to the group state.

2We note that, concurrently to our work, [8] introduced a security notion for SGM defined using formal verification
tools which we discuss in the Related Work section below.
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(PCFS) [3]. That is, messages in a given epoch are both private and authenticated despite arbitrary
state leakage of participants sufficiently in the past and future.

In effort to manage the complexity inherent in such a definition we developed the history graph
(HG) paradigm for defining security of asynchronous group protocols like MLS and CGKA protocols.
The paradigm allows for an intuitive (even visual) understanding of an otherwise complicated notion
by representing the (security-relevant) semantics of an execution as an annotated graph. This allows
cleanly separating functionality and communication model from the security details being captured.
Those details are formalized as a predicate defined over HG and a particular challenge message (or
group key for CGKA). The output of the predicate indicates if we can expect the challenge to be
secure given the execution represented by the HG. This modular approach makes our SGM and
CGKA definitions easy to adapt to, say, future versions of MLS. It also allows for more immediate
comparison of the security enjoyed by different constructions of the same type.

PKI. Another contribution to the analysis of MLS is a more accurate modeling of the PKI used
by MLS. With the notable exceptions of [14, 5]), the PKI in the works of [1, 3] the analysis of
(earlier versions of) TreeKEM is based on simplified PKI models that encode strong (but implicit)
assumptions. For example, their PKI precludes the adversary from registering ephemeral keys even
for recently corrupted parties. Instantiating this faithfully seems to require strong authenticity checks
by the PKI that may not rely on any state that can be leaked during a compromise. In contrast, the
PKI in our work can be realized under assumptions more compatible with E2E security. Concretely,
our PKI can be realized if parties use an out-of-band mechanism to authenticate each other’s
long-term keys while distributing ephemeral public keys via an untrusted key server. Reflecting
the MLS standard, the out-of-band authentication mechanism is not made concrete but common
instantiations include peer-to-peer key verification via 2D bracodes or (in the enterprise setting)
certification authorities binding long term keys to a users identity.

Security Proofs. Armed with our HG based security notions for SGM and passively secure CGKA
we prove security for the black-box SGM protocol there by making progress not just in validating
the design of MLS but also the more general folklore motivating the study of CGKA protocols.
At a high level the proof follows the outline of proof for the double-ratchet in [2]. However the
similarities end there as we require new arguments and hybrids to instantiate this outline in light of
the substantial differences between the two protocols and 1-on-1 vs. group settings they operate in.

To recover MLS security we also show that TreeKEM (as implicit to the current version in Draft
11 of MLS) [7] is indeed a passively secure CGKA according to our definition. In particular, in
comparison to the TreeKEM analysis in [1], we more accurately model the PKI, capture transcript
consistency and secure group management. Meanwhile, in comparison to the analysis in [3] we
improve the PKI model and allow for a much more capable network adversary that can, e.g. deliver
packets in different orders to different participants; a potentially unrealistic restriction for real world
adversaries that controls, say, the network connection of a user (let alone the delivery server used by
the session).

Beyond MLS and TreeKEM we also prove that RTreeKEM [3] is a passively secure CGKA.
For this we extend the generalized selective decryption (GSD) technique to account for encrypting
keys using the so-called updatable public-key encryption (UPKE) [3], used by RTreeKEM. GSD
lies at the heart of almost all adaptive security proofs for CGKA protocols. To the best of our
knowledge, it remains the only technique for proving adaptive security with meaningful security loss
(e.g. quadratic in the group size). In contrast, the proof of the ART CGKA protocol in [12] suffers
from an exponential loss in group size. Extending GSD to allow for protocols using UPKE is likely
to have applications beyond analyzing RTreeKEM as UPKE is a very natural drop in replacement
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for standard PKE but with improved forward security [19]. Indeed, recent results in [16] construct
post-quantum secure UPKE with an aim towards building a PQ variant of MLS.

Related work.

The history graph paradigm was conceived early on in this project. In an effort to keep pace with
the rapid development of MLS the paradigm was shared with other researchers before this work was
published. Consequently, the paradigm has been used in subsequent work appearing before this one
(that cite this one as the source of the paradigm) [4, 5].3 Symbolic representations of an execution,
equipped with safety predicates, have been used in [13, 2]. The GSD proof technique, introduced by
Panjwani [23] and generalized by Jafargholi et al. [18], was first applied to CGKA protocols in [1].

The most influential precursor to TreeKEM, the asynchronous ratchet tree (ART) protocol,
was introduced by Cohn-Gordon et al. [12], focusing on adaptive security (informally sketched)
for static groups. It inspired the initial version of TreeKEM [24] which was updated to provide
secure group management in [6] and finally to its current form in [7]. Meanwhile, ART uses an
older technique called “Tree-based DH groups” [25, 26, 28] which is also used by [20] to build
key agreement. However, TreeKEM and ART differ significantly from [20], as discussed in [3].
TreeKEM is also related to schemes for (symmetric-key) broadcast encryption [17, 15] and multicast
encryption [22, 28, 11]. Cremers et al. [14] note MLS/TreeKEM’s disadvantages w.r.t. PCS for
multiple groups, and Weider [27] suggests Causal TreeKEM, a variant that requires less ordering of
protocol messages. Finally, in concurrent work appearing recently, [8] analyzed an older version of
TreeKEM (from MLS Draft 7) using formal verification techniques.

2 Preliminaries

Notation. We use associative arrays which map arbitrary key strings to item strings. For array
A we use “.” to denote all entries. In particular, we (implicitly) declare variable A to be a (1-
dimensional) array and set all of its entries empty string by writing A[.]← ε. Similarly, we declare a
new 2-dimensional array B with empty entries by B[., .]← ε. We use the shorthand B[x, .]← A to
denote that ∀y with A[y] 6= ε we set B[x, y] ← A[y]. For subset Y ′ ⊆ Y the term Y ′ ⊆ A returns
true iff A contains all elements in Y ′; that is ∀y ∈ Y ′ ∃x : A[x] = y. For vector x = (x1, . . . , xd) with
all components xi ∈ X we write A[x] to denote the vector (A[x1], . . . , A[xd]). We denote the empty
list with [.] and the length of a list L by |L|. The following special keywords are used to simplify the
exposition of the security games: req is followed by a condition; if the condition is not satisfied, the
oracle/procedure containing the keyword is exited and all actions by it are undone. let is followed
by a variable and a condition. After evaluating the expression the variable is assigned with the value
that satisfies the condition, if such value exists, and ⊥ otherwise. chk is followed by a condition; if
the condition is not satisfied, the oracle/procedure containing the keyword returns false, otherwise
the next instruction is executed.

3 Secure Group Messaging

In this section we formally define secure group messaging (SGM). In more detail, in Section 3.1 we
present a high-level overview of how SGM schemes work and what type of security one expects from

3While not ideal, we felt this approach was necessary given the strong incentive to make progress on MLS’s analysis
prior to it being to widely deployed.
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them. Then, the formal syntax of SGM schemes is introduced in Section 3.2. Finally, and most
crucially, Section 3.3 introduces the security game for SGM schemes.

3.1 Overview

Setting, PKI, Propose-and-commit. SGM schemes are run by parties wishing to engage in
secure group communication, i.e., each transmitted message is sent to all group members. They are
run over an asynchronous network, where, in the SGM context, “asynchronous” means that parties
are not constantly online and, when they are, not necessarily at the same time. The communication
between parties is assumed to be handled by an untrusted third party, the delivery service (DS),
which is supposed to buffer protocol messages for offline parties until they come back online. In
addition to the DS, there is a PKI (service) that parties use to exchange initial key material. The
PKI is untrusted as well, but it is assumed that there are some kind of incorruptible long-term secrets
that can be used to bind signature public keys to particular identities. These “bound” signature
keys can then be used to authenticate the initial key material sent to the PKI.4

SGM schemes in this work adopt the so-called propose-and-commit (P&C) paradigm. That is,
whenever a party wishes to change the group state (in particular, to add or remove group members
or to update the internal key material), it issues a corresponding proposal. In arbitrary intervals,
any party may subsequently collect a set of proposals and commit to them, which is when the group
state is changed to reflect the proposals.

State. For security reasons, specifically, to limit the damage of state exposures, group members
do not usually know all the secret values of the “global” group state. Each party only knows their
own slice of the global state, where slices can intersect. In addition, each party stores some personal
secret values only known to themselves.

Components of SGM schemes. The main components of an SGM scheme are the following:

• Initialization: An SGM’s initialization algorithm sets up a party’s state with basic values and
parameters.

• Interaction with the PKI: An SGM scheme provides several algorithms to interact with the
PKI; to create and register (with the PKI) as well as to remove signature public keys, to
create and register initial key material, and to store signatures and initial key material of other
parties.

• Group creation: A party may create a new group with only itself in it, using the group-creation
algorithm.

• Issue proposals: A group member may issue three types of proposals: to add a new group
member, remove a current group member, and update personal secrets. New proposals are
delivered to all group members, and each party buffers them locally in order to be able to
either create or process a commit.

• Commit creation: Occasionally, a party may pick an arbitrary (ordered) subset of the buffered
proposals and create a commit. A commit produces a commit message that is to be sent
to all group members for processing; if new group members are added as part of one of the
committed proposals, the commit process also outputs a corresponding welcome message used
by the new members to join. Each commit operation starts a new so-called epoch.

4One way to bind signature keys to identities would be to have them certified by a certificate authority.
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• Sending and receiving: Finally, an SGM scheme provides algorithms for sending and receiving
messages. The send algorithm takes a plaintext as well as associated data (AD) and outputs a
ciphertext that encrypts the plaintext and authenticates both the plaintext and the AD. The
receive algorithm takes as input a ciphertext and AD, and outputs a plaintext (or an error
message if authentication fails).

In the remainder of this paper, proposals, commit messages, and welcome messages are referred to as
control messages, and ciphertexts as application messages. Besides sending and receiving application
messages, an SGM scheme provides algorithms for processing control messages.

Security and updates. SGM schemes are expected to protect the confidentiality and authenticity
of sent messages. Furthermore, they must provide so-called post-compromise forward secrecy (PCFS),
which combines forward-secrecy (FS), i.e., delivered messages remain secure even upon future state
compromise, with post-compromise security (PCS), i.e., the protocol recovers from state compromise
as soon as all compromised group members heal.5 There are two ways in which a party may heal:
either by only updating their personal secrets or by updating their entire slice of the global state.
The former is achieved via update proposals, whereas the latter occurs whenever a party creates
a commit. It is important to note that both ways of updating key material constitute a heal, i.e.,
both ways must contribute to PCS. Generally, the difference between updates and commits is that
commits help reduce the size of future ciphertexts while updates do not.

An additional property SGM schemes must possess is that the absence of high-quality random
values only affects PCS, but none of the other properties of an SGM scheme. Finally, it is also
required that SGM schemes defend against parties who purposely do not delete old values (i.e.,
expired key material); such parties must not be able to use said values to break the security of
messages after they are removed from the group.

3.2 Syntax

This section introduces the formal syntax of an SGM scheme. Parties are identified by unique party
IDs ID chosen from an arbitrary fixed set. In the following, s and s′ denote the internal state of
the SGM scheme before and after an operation, respectively. An SGM scheme SGM consists of 15
algorithms grouped into the categories above:

• For initialization:

– s← Init(ID): takes as input a party ID ID and generates the initial state.

• For interaction with the PKI:

– (s′, spk)← Gen-SK(s): generates new signature key pair and outputs the public key;

– s′ ← Rem-SK(s, spk): removes the key pair corresponding to spk from the state;

– s′ ← Get-SK(s, ID′, spk′): stores signature public key spk′ for party ID′;

– (s′, kb) ← Gen-KB(s, spk): generates new key bundle (aka initial key material), signed
with spk;

– (s′, ok) ← Get-KB(s, ID′, kb′): stores key bundle kb′ for party ID′ — can reject kb′ by
outputting ok = false.

5Observe that protocols that only satisfy FS and PCS individually do not necessarily provide PCFS. Hence, PCFS
is a strictly stronger property than FS and PCS together.
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Key bundles have the format kb = (wpk, spk, sig), where sig is a signature of wpk under spk,
and wpk is so-called welcome key material, which can be used to encrypt secret information
for joining group members.

• For group creation:

– s′ ← Create(s, spk,wpk): creates group with self, where the party uses key pair corre-
sponding to spk to sign in this group, while control messages for which the recipient is
the group creator, will be encrypted under keys in wpk.

• For proposals:

– (s′, P )← Add(s, ID′): generates a proposal to add party ID′;

– (s′, P )← Remove(s, ID′): generates a proposal to remove party ID′;

– (s′, P )← Update(s, spk): generates a proposal for self to update the personal key material;
the new signing verification key will be spk;

– (s′,PI)← Proc-PM(s, P ): adds proposal P to the state and outputs information PI about
P .

• For commits:

– (s′, E,W, T )← Commit(s,P): creates a commit corresponding to a vector P of proposals
and outputs an epoch ID E, an array of welcome messages W (where W[ID] is the
welcome message for newly added party ID), and a commit message T (for existing group
members);

– (s′,GI)← Proc-CM(s, T ): used by existing group members to process a commit message
T and reach a new epoch; outputs updated group information GI (where GI = ⊥ if T is
considered invalid);

– (s′,GI) ← Proc-WM(s,W ): used by newly added group members to process welcome
message W and join a group; outputs group information GI (where GI = ⊥ if W is
considered invalid).

• For sending and receiving messages:

– (s′, e)← Send(s, a,m): generates a ciphertext e encrypting plaintext m and authenticating
AD a;

– (s′, E, S, i,m)← Rcv(s, a, e): decrypts ciphertext e to plaintext m and verifies AD a; also
outputs a triple (E,S, i) consisting of epoch ID E, sender ID S, and message index i.

3.3 Security

Apart from satisfying correctness, i.e., messages sent by some party are received correctly by all
other parties, the basic security expectation of SGM protocols is quite simple: they must provide
confidentiality of messages, authenticity of messages and AD, as well as PCFS. Capturing this simple
intuition, however, turns out to be quite involved and subtle, and, consequently, the SGM security
game is somewhat complex.

The security game allows the adversary A to control the execution of and attack a single group.6

6All results in this work will carry over to the multi-group setting, but in order to tame the already high complexity,
defining and proving security for multi-group settings is left to future work.
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In particular, A controls who creates the group, who is added and removed, who updates, who
commits, who sends, and who receives messages. The attacker is also allowed to leak the state of
any party (whether currently part of the group or not) at any time. The security of messages is
captured by considering a challenge oracle that allows A to have any particular group member send
one of two messages. Which of the two messages is chosen by the game by sampling an internal
random bit b, which must be guessed by A at the end of the game.

Given the adversarial power of leaking parties’ states, the game must keep track of which messages
can be expected to be secure given the attackers’s knowledge. In order to avoid trivial attacks, A
must be barred from (a) issuing challenges whenever it would know the key material used to encrypt
the message and (b) leaking the state of a party that is yet to receive already issued challenges.
This captures non-trivial privacy breaks. With respect to authenticity, A is assumed not to attempt
to inject control messages whenever there is at least one group member in the process of healing.
Without this restriction, the attacker could craft malicious control messages that destroy the group
state. While this behavior could theoretically be defended against, it does appear that the necessary
techniques would be quite expensive and the resulting schemes impractical. Note, however, that the
attacker is allowed to forge ciphertexts at any time. The SGM scheme is expected to simply output
the forged plaintext and AD and continue to function normally.

3.3.1 Bookkeeping.

The complexity of the SGM security definition stems from the bookkeeping required to determine
which messages are safe to challenge and when the attacker is allowed to inject. The security game
keeps track of all the relevant execution data with the help of a so-called history graph. The recorded
data informs three safety predicates (each pertaining to privacy, authenticity, or both) used to
determine whether a given execution was legal. These predicates are kept generic and considered
parameters of the security definition.

History graphs. A history graph is a directed tree whose nodes correspond to the group state
in the various epochs of an execution: The root of the tree is a special node vroot that corresponds
to the state of not being part of a group. The children of the root node are vcreate-nodes, which
correspond to the creation of groups.7 The remaining nodes all correspond to the group state after
a particular commit operation. Two nodes v and v′ are connected by an edge (v, v′) if the commit
operation leading to v′ was created in v. Concretely, a history graph node consists of the following
values: v = (vid, orig, data,pid), where vid is the node’s (unique) ID, orig is the party that caused the
node’s creation, i.e., orig is either the group creator or the committer, data is additional data, and
pid is the vector of (IDs of) proposals (see below) that were included in the commit. The history
graph is accessed by the security-game oracles via the “HG object” HG, which provides information
via several methods (explained later as they are needed). The (ID vid of the) node corresponding to
a party ID’s current state is stored by the array V-Pt[ID].

Proposals. Similarly to HG and the history graph, the object Props keeps track of proposals. The
information recorded about each proposal is a vector p = (pid, vid, op, orig, data), where pid is the
proposal’s (unique) ID, vid is the (ID of) the HG node corresponding to the epoch in which the
proposal was created, op ∈ {add, rem, upd} is the type of proposal, orig is the party that issued the

7The security game allows multiple groups to be created (when multiple parties simultaneously create a group).
However, in order to remain in the single-group setting, the attacker is required to pick a single one of these groups as
the “canonical group.” Parties may only join the canonical group.
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proposal, and data is additional data. Similarly to the HG object, Props will also export several
useful methods (also explained later) to the oracles of the security game.

PKI bookkeeping. Just as epochs and proposals are kept track of symbolically, so are welcome
keys and signature keys. Specifically, each welcome key has a (unique) welcome-key ID wkid, and
each signature key has a (unique) signature-key ID skid. The arrays WK-ID[·] and SK-ID[·] map
wkid and skid values to the ID of the party that owns the corresponding secret keys; the arrays
WK-PK[·] and SK-PK[·] map wkid and skid values to the corresponding public keys. Moreover, the
array WK-SK[·] remembers the binding of welcome keys to signature keys; these bindings are created
by key bundles: when wpk with wkid is signed under spk with skid in a key bundle, the game sets
WK-SK[wkid]← skid.

The array CL-KB[·, ·] keeps track of the contact list for each party. Specifically, CL-KB[ID, ID′] is
a queue of pairs (wkid, skid) of (IDs of) initial key material that ID would use if it were to add ID′ to
the group.

Stored and leaked values. In order to stay on top of the information attacker A accumulates
via state compromise, the security game maintains the following arrays/sets. Stored values: V-St[ID]
contains pairs (vid, flag) of (i) (IDs of) the epochs for which ID currently stores information and
(ii) a flag recording whether said information can be used to infer information about subsequent
states. This array is organized as a queue with maximum capacity r, where r is a parameter of the
definition and of SGM protocols: it stands for the maximum number of “open” epochs a party keeps
at any point in time.8 P-St[ID] contains the (IDs of) the proposals currently stored by ID. WK-St[·]
and SK-St[·] contain the (IDs of) the welcome and signing keys, respectively, currently stored by
ID. Leaked values: V-Lk is a set that contains triples (vid, ID). Each such tuple means that the
attacker learned the state of ID in epoch vid, that for that state flag = true, which implies that leaked
information can be used to infer information about subsequent epochs. WK-Lk and SK-Lk contain
the (IDs of) the welcome and signing keys, respectively, for which the attacker has learned the secret
keys. AM-Lk records application messages for which the attacker has learned the key material.

Deletions, and lack thereof. The SGM definition also requires that parties who fail to delete old
values can not use them to their advantage after they are removed from the group. Correspondingly,
the array Del keeps track of which parties are deleting values as they are supposed to (those with
Del[ID] = true) and which ones are not. Formally, a party with Del[ID] = false will simply move such
values to a special “trash tape,” instead of deleting them; the contents of the trash tape will be
revealed to A upon state leakage. Consequently, there are several “trash arrays” that keep track
of what is stored on the trash tape of each party: V-Tr (for undeleted information about epochs),
AM-Tr (for undeleted information about application messages), WK-Tr (for undeleted information
about welcome keys), and SK-Tr (for undeleted information about signature keys).

Challenges. The array Chall[vid] stores, for each vid, pairs (S, i), indicating that the ith message
from S in epoch vid was a challenge message.

8The intuition behind the flag is that only the information stored about newest epoch should allow the attacker
(upon state leakage) to compute key material for subsequent epochs (which is unavoidable). Information corresponding
to older epochs, which are only kept open to receive delayed application messages, should not lend itself to compromise
the security of subsequent epochs.
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SGM Security Game: Initialization

// General

b← {0, 1}
idCtr++
∀ID : s[ID]← Init(ID)

// Communication

CM[·, ·]← ε
WM[·, ·]← ε
PM[·, ·]← ε
AM[·, ·, ·, ·]← ε

// History Graph

vidroot ← HG.init
V-Pt[·]← vidroot
V-St[·]← [(vidroot, false)]
V-Tr[·]← ∅
V-Lk← ∅
P-St[·]← ∅
Ep-ID[·]← ε

// App. Messages

AM-Tr[·]← ∅
AM-Lk← ∅

// Miscellaneous

Chall[·]← ∅
Del[·]← true
BR[·]← false

// PKI

CL-KB[·, ·]← ε

WK-SK[·]← ε
WK-ID[·]← ε
WK-PK[·]← ε
WK-St[·]← ∅
WK-Tr ← ∅
WK-Lk← ∅
SK-ID[·]← ε
SK-PK[·]← ε
SK-St[·]← ∅
SK-Tr ← ∅
SK-Lk← ∅

Figure 1: Initialization of the security game for secure group-messaging schemes.

Epoch IDs. The receiving algorithm Rcv must correctly output a “sequence number” for each
message received. A natural way to identify application messages is by the triple of epoch ID, sender,
and index (as above). However, the SGM scheme cannot be expected to output epoch identifiers vid
used by the security game. Instead, the scheme gets to label the epochs itself whenever a commit
is created by outputting an epoch ID E. Algorithm Rcv will use the same E to refer to messages
sent in the corresponding epoch. The security game stores the E used by the SGM scheme in array
Ep-ID[vid].

Bad randomness. The game keeps track of which update proposals and commits were created
with randomness known to the attacker with the help of the Boolean array BR[·]. This information
must be recorded because such proposals/commits will not contribute to PCS.

In the oracles below that correspond to randomized SGM algorithms, the attacker gets to possibly
supply the random coins r used by the affected party. Whenever A does not wish to specify said
coins, it sets r = ⊥, in which case uniformly random coins (unknown to A) are used.

3.3.2 Initialization.

At the onset of the execution, the SGM security game initializes (cf. Figure 1) all of the bookkeeping
variables listed above. Additionally, it randomly chooses the challenge bit b, initializes a counter
idCtr that serves to provide IDs for epochs (vid), for proposals (pid), for welcome keys (wkid), as
well as for signature keys (skid), and sets up communication arrays (explained where they are used)
dedicated to control and application messages.

The initialization also initializes the state of all possible parties by running the Init algorithm
and storing the result in the state array s[·].9

Finally, the first node of the history graph is created via a call to the HG.init method. This
causes HG to create the root node vroot = (.vid← idCtr++, .orig ← ⊥, .data← ⊥, .pid← ⊥) and
return vidroot = vroot.vid.

3.3.3 Oracles.

All adversary oracles described below proceed according to the same pattern: (a) verifying the
validity of the oracle call, (b) retrieving values needed for (c), (c) running the corresponding SGM
algorithm, and (d) updating the bookkeeping. Validity checks (a) are described informally in the
text below; a formal description is provided in Figure 6. Note that, most of the time, (b) and (c) are

9Of course, this is really done on an on-demand basis.
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SGM Security Game: PKI Oracles

// ID generates new sig. key

gen-new-SigK (ID)
(s[ID], spk)← Gen-SK(s[ID])

skid← idCtr++
SK-ID[skid]← ID
SK-PK[skid]← spk
SK-St[ID] +← skid

return (skid, spk)

// ID removes sig. key

rem-SigK (ID, skid)
req SK-ID[skid] = ID
req skid ∈ SK-St[ID]
req skid /∈ HG.SKsUsed(ID)

spk← SK-PK[skid]

s[ID]← Rem-SK(s[ID], spk)

if ¬Del[ID]
SK-Tr[ID] +← skid

SK-St[ID] −← skid

// ID stores sig. key of ID′

get-SK (ID, ID′, skid)
req SK-ID[skid] = ID′

spk← SK-PK[skid]

s[ID]← Get-SK(s[ID], ID′, spk)

SK-St[ID] +← skid

// ID generates new key bundle

gen-new-KB (ID, skid)
req SK-ID[skid] = ID
req skid ∈ SK-St[ID]

spk← SK-PK[skid]

(s[ID], kb)← Gen-KB(s[ID], spk)

(wpk, ., .)← kb
wkid← idCtr++
WK-ID[wkid]← ID
WK-PK[wkid]← wpk
WK-St[ID] +← wkid

WK-SK[wkid] +← skid

return (wkid, kb)

// ID stores kb of ID′

get-KB (ID, ID′, kb)
(wpk, spk, sig)← kb

let wkid : WK-PK[wkid] = wpk
let skid : SK-PK[skid] = spk

req SK-ID[skid] = ID′

∧ skid ∈ SK-St[ID]

(s[ID], ok)← Get-KB(s[ID], ID′, kb)
if ok = true

if skid 6∈ SK-Lk
∧ WK-SK[wkid] 6= skid

win // Forgery

if wkid = ⊥
wkid← idCtr++
WK-PK[wkid]← wpk
WK-Lk +← wkid

CL-KB[ID, ID′].enq((wkid, skid))
WK-St[ID] +← wkid
SK-St[ID] +← skid

Figure 2: PKI-related oracles of the security game for secure group-messaging schemes. The
compatibility functions are described in the accompanying text; a formal description is provided in
Figure 6.

straight-forward and are not mentioned in the descriptions. To improve readability, lines (c) are
highlighted.

3.3.4 PKI Oracles.

The PKI oracles offer the following functionality to attacker A:

• New signature keys: Have a party ID create a new signature key pair. This essentially boils down
to ID running algorithm Gen-SK, which outputs a signature public key spk. The SGM game
then generates an skid for spk and updates arrays SK-ID, SK-PK, and SK-St correspondingly.

• Remove signature keys: Have a party ID delete a signature public key spk, identified by the
corresponding skid. In order for a call to this oracle to be legal, skid must correspond to an spk
(a) currently stored by ID and (b) not used by ID in either the current epoch or any pending
proposals or epochs.10 The oracle simply runs Rem-SK on spk and subsequently updates arrays
SK-ID, SK-PK, and SK-St to reflect the removal of spk. Additionally, if ID does not delete old
values, i.e., if Del[ID] = false, skid is added to SK-Tr[ID].

• Store new signature key: This oracle lets the attacker instruct a party ID to store signature
public key, identified by its skid, of a party ID′. The oracle ensures that SK-ID[skid] = ID′, i.e.,
that skid was really created by ID′. This models the fact that the bindings between signature
keys and identities are incorruptible.

• Generate new key bundle: The attacker can make a party ID create a new key bundle and store
it on the PKI server. To that end, A specifies the skid of the signature public key spk that is
supposed to be used inside the key bundle. The call is only valid if the key pair corresponding
to skid is currently stored by ID.

10Pending epochs are child epochs of V-Pt[ID]; they are explained in more detail later on.
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The oracle runs Gen-KB on spk. The first component of the newly generated key bundle is a
new welcome key wpk. Thus, the security game generates a new wkid associated with wpk and
updates arrays WK-ID, WK-PK, and WK-St accordingly. The oracle also binds wkid to skid.

• Store new key bundle: This oracle lets the attacker instruct a party ID to store a key bundle
kb = (wpk, spk, sig) belonging to another party ID′. Two conditions must be satisfied for the
oracle call to be valid:

1. The signature public key spk must belong to ID′, i.e., spk = SK-PK[skid] for some skid
with SK-ID[skid] = ID′. This models the fact that the long-term secrets binding signature
public keys to identities are incorruptible.

2. The public key spk must be stored by ID.

If the oracle call is valid, algorithm Get-KB is run on ID′ and kb. If the secret key corresponding
to spk has not been leaked, i.e., skid /∈ SK-Lk, then Get-KB must only accept the key bundle if
wpk exists and is bound to spk, i.e., WK-SK[wkid] = skid. If Get-KB outputs ok, skid /∈ SK-Lk,
but WK-SK[wkid] 6= skid, then the adversary has attempted to create a forgery against the
signing key with ID skid, and if it is successful, it wins the game. If wpk is adversarially
generated (i.e., wkid = ⊥), the game generates a new wkid for wpk, updates WK-PK accordingly,
and immediately marks wkid as leaked. Finally, ID’s (symbolic) contact list is updated, by
adding the pair (wkid, skid) to the end of queue CL-KB[ID, ID′].

3.3.5 Main oracles.

The main oracles of the SGM game are split into four figures: oracles related to (i) group creation
and proposals (Figure 3), (ii) commits (Figure 4), (iii) sending, receiving and corruptions (Figure 5).
The validity of all oracle calls is checked by the corresponding compatibility functions (Figure 6).

Group creation. The attacker can instruct a party ID to create a new group by calling the
group-creation oracle (Figure 3); such a call must also specify the skid of the signature key under
which ID initially signs their messages, as well as the wkid of the welcome key material. A call to
the group creation oracle is valid if (i) ID is not in a group yet, (ii) skid, wkid, are currently stored
by ID, and (iii) wkid is signed under skid.

The bookkeeping is updated as follows: A call is made to the HG.create(ID, skid) method. This
causes HG to create a node v = (.vid← idCtr++, .orig← ID, .data← skid, .pid← ⊥) as a child of
vroot and return vid = v.vid. Then, the bad-randomness array is filled (depending on whether A
specified coins r or not), ID’s pointer is set to vid, and V-St[ID] is set to a queue containing only
(vid, true), where the second component records that from the information ID currently stores about
vid, one can compute information about (future) child states of vid.

Creating proposals. The oracles prop-{add, rem,up}-user (Figure 3) allow the attacker to
instruct a party ID to issue add/remove/update proposals. Calls to these proposal oracles are valid
if ID is a group member and:

• (add proposals) the target ID′ is not a group member already and ID has initial key material
for ID′ stored;

• (remove proposals) the target ID′ is a group member;

• (update proposals) the skid with which ID is supposed to sign is currently stored by ID.
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SGM Security Game: Group-Creation and Proposal Oracles

// ID creates group; signs with skid

create-group (ID, skid,wkid, r)
req *compat-create(ID, skid,wkid)

s[ID]← Create(s[ID], SK-PK[skid],WK-PK[wkid]; r)

vid← HG.create(ID, skid)
BR[vid]← r 6= ⊥
V-Pt[ID]← vid
V-St[ID]← [(vid, true)]

return vid

// ID proposes to add ID′

prop-add-user (ID, ID′)
req *compat-prop(add, ID, ID′,⊥)

(s[ID], P )← Add(s[ID], ID′)

(wkid′, skid′)← CL-KB[ID, ID′].deq

pid← Props.new(add, ID, (ID′,wkid′, skid′))
PM[pid]← P

return (pid, P )

// ID proposes to remove ID′

prop-rem-user (ID, ID′)
req *compat-prop(rem, ID, ID′,⊥)

(s[ID], P )← Remove(s[ID], ID′)

pid← Props.new(rem, ID, ID′)
PM[pid]← P

return (pid, P )

// ID proposes update

prop-up-user (ID, skid, r)
req *compat-prop(upd, ID,⊥, skid)

(s[ID], P )← Update(s[ID], SK-PK[skid]; r)

pid← Props.new(upd, ID, skid)
PM[pid]← P

return (pid, P )

// Proposal pid delivered to ID

dlv-PM (ID, pid)
req *compat-dlv-PM(ID, pid)

(s[ID], PI)← Proc-PM(s[ID], PM[pid])

if ¬Props.checkPI(pid, PI)
win

P-St[ID] +← pid

// Proposal P ′ injected to ID

inj-PM (ID, P ′)
req *compat-inj-PM(ID, P ′)

(s[ID], PI)← Proc-PM(s[ID], P ′)
vid← V-Pt[ID]
IDO ← PI.orig
req ¬(*auth-compr(vid)
∧ *SK-compr(vid, IDO))

if PI 6= ⊥
win

Figure 3: Group-creation and proposal-related oracles of the security game for secure group-messaging
schemes. The compatibility functions are described in the accompanying text; a formal description
is provided in Figure 6.

Note that the last bullet means that if a party wishes to change its active signature key, they must
have generated one and registered it with the PKI before issuing the corresponding proposal.

Bookkeeping is updated by calling Props.new(op, ID, data), which records proposal data p =
(.pid← idCtr++, .vid← V-Pt[ID], .op← op, .orig← ID, .data← data), where op ∈ {add, rem, upd} is
the proposal type and where data stores (add proposals) data = (ID′,wkid′, skid′), where (wkid′, skid′)
is the head of the contact list CL-KB[ID, ID′]; (remove proposals) data = ID′; (update proposals)
data = skid. Furthermore, the proposal message P output by corresponding proposal algorithm
(Add, Remove, or Update) is stored in the communication array PM for proposal messages.

Delivering and injecting proposals. There are two oracles for getting a proposal to a party
ID (Figure 3): The first one, dlv-PM, is for honest proposal delivery. The attacker specifies a
pid—which must belong to the epoch ID is currently in—and the corresponding proposal is fed
to the SGM algorithm Proc-PM. Proc-PM is required to output proposal information PI, which is
checked by function Props.checkPI. Function checkPI ensures that PI correctly identifies the type,
the originator, as well as the data of the proposal.11 The last action performed by the oracle is to
update P-St[ID] to include pid, indicating that ID now stores the new proposal.

The second oracle, inj-PM, is used by A to inject proposals to a party ID. More precisely, A is
allowed to submit proposals P ′ that (a) either belong to an epoch different from vid := V-Pt[ID] or
(b) are completely made up (i.e., there exists no pid with PM[pid] = P ′). A call to this second oracle
is only allowed if the adversary is not currently able to forge messages for epoch vid. This is the case
if either the key material used to authenticate in vid is compromised (*auth-compr(vid)) or if the
signing key used by the supposed originator IDO of the proposal (as determined by the output of

11Of course, checkPI checks that PI contains the actual welcome and signature keys (and not wkid and skid).
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Proc-PM) is compromised (*SK-compr(vid, IDO)). The functions *auth-compr and *SK-compr
are two of the safety predicates mentioned above.

Creating commits. The commit-related oracles (Figure 4) deal with commits and delivery of
commit and welcome messages.

In order to have a party ID create a commit based on a set of proposals (with IDs) pid, the
attacker calls the commit oracle. The specified pid must be a subset of all proposals currently
stored by ID, and all proposals must belong to ID’s current epoch. In addition, a (rather permissive)
sensibility check is run on the vector of proposal specified by pid: the proposals are processed in the
given order (changing the group roster accordingly), and for each proposal it is checked whether the
originator would be in the group and, additionally, whether (add proposal) the target would be in
the group; (remove proposal) the target would not be in the group.

Subsequently, the SGM algorithm Commit is run on the given set of proposals, which results
in an epoch ID E, a vector of welcome messages W, and a commit message T being output.
Bookkeeping calls HG.commit(ID,pid), which creates a new HG node v = (.vid← idCtr++, .orig←
ID, .data← ⊥, .pid← pid), as a child of ID’s current epoch V-Pt[ID] and returns vid = v.vid. Then,
the bad-randomness array is filled (depending on whether A specified coins r or not), and E is
stored in array Ep-ID. Finally, the commit messages (for current group members) are stored in array
CM, and the welcome messages (for new group members) in WM.

Delivering and injecting commit messages. As with proposals, there are two oracles that
allow attacker A to get a commit message (CM) to a current group member—for honestly generated
CMs and for adversarially generated CMs (Figure 4). The former oracle, dlv-CM, can be used by
A to deliver to a party ID any CM T that corresponds to a child epoch vid of ID’s current epoch
V-Pt[ID], provided all proposals that lead to vid have been delivered to ID. Oracle dlv-CM runs
SGM algorithm Proc-CM on T , which results in group information GI being output. This information
is checked by function HG.checkGI. Function checkGI checks that GI correctly reports the new group
roster, the originator, as well as the parties added and removed. Next, if ID has been removed as part
of the commit (checked by function HG.isRemoved), its pointer V-Pt[ID] is set to vidroot; otherwise,
V-Pt[ID] is set to the new epoch vid. Furthermore, the index counter i[ID] is reset to 0, and P-St[ID],
the set of proposals stored, is set to the empty set. If ID deletes old values, i.e., if Del[ID] = true,
the game changes the flag in (·, flag) = V-St[ID].last to false since it is no longer the newest state. If
ID does not delete old values, this change is not made, and the first element of V-St[ID] is put into
V-Tr[ID] (because it is about to be removed from the queue). Finally, the new epoch vid is added to
the end of queue V-St[ID]. Recall that this queue has a capacity of r, which means that the first
element of the queue is removed. This captures that information about the oldest epoch in ID’s
state is now deleted by ID.

The second oracle, inj-CM, is used by A to inject CMs to a party ID. More precisely, A is
allowed to submit any CM T ′ that (a) either belongs to an epoch different from any child epoch
of vid := V-Pt[ID] or (b) is completely made up. A call to this second oracle is only allowed if the
adversary is not currently able to forge messages for epoch vid. Similarly to proposals, whether this
is the case is determined via the (generic) safety predicates *auth-compr and *SK-compr.

Delivering and injecting welcome messages. The oracles dlv-WM and inj-WM can be
used by A to deliver and inject welcome messages, respectively. The work analogously to oracles
dlv-CM and inj-CM above.
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SGM Security Game: Commit-Related Oracles

// ID commits proposals pid

commit (ID, pid, r)
req *compat-commit(ID, pid)

(s[ID], E,W, T )← Commit(s[ID], PM[pid]; r)

vid← HG.commit(ID, pid)
BR[vid]← r 6= ⊥
Ep-ID[vid]← E

for ID′ ∈ HG.roster(V-Pt[ID])
CM[ID′, vid]← T

for ID′ ∈ Props.addedIDs(pid)
WM[ID′, vid]←W[ID′]

return vid

// Control msg. of vid delivered to ID

dlv-CM (ID, vid)
req *compat-dlv-CM(ID, vid)

T ← CM[ID, vid]

(s[ID], GI)← Proc-CM(s[ID], T )

if ¬HG.checkGI(vid, GI)
win

if HG.isRemoved(ID, vid)
V-Pt[ID]← vidroot

else
V-Pt[ID]← vid

i[ID]← 0

P-St[ID]← ∅
if Del[ID]

V-St[ID].last.flag ← false
else

V-Tr[ID] +← V-St[ID].first

V-St[ID].enq((V-Pt[ID], true))

// Control msg. T ′ gets injected to ID

inj-CM (ID, T ′)
req *compat-inj-CM(ID, T ′)

(s[ID], GI)← Proc-CM(s[ID], T ′)
vid← V-Pt[ID]
IDO ← GI.orig
req ¬(*auth-compr(vid)
∧ *SK-compr(vid, IDO))

if GI 6= ⊥
win

// Welcome msg. of vid delivered to ID

dlv-WM (ID, vid)
req *compat-dlv-WM(ID, vid)

W ← WM[ID, vid]

(s[ID], GI)← Proc-WM(s[ID],W )

if ¬HG.checkGI(vid, GI)
win

V-Pt[ID]← vid
V-St[ID]← [vid]

wkid← HG.addedWK(ID, vid)
if ¬Del[ID]

WK-Tr[ID] +← wkid
WK-St[ID] −← wkid

// Welcome msg. W ′ injected to ID

inj-WM (ID,W ′)
req *compat-inj-WM(ID,W ′)

(s[ID], GI)← Proc-WM(s[ID],W ′)
E ← GI.epID
req ∃ vid : Ep-ID[vid] = E
IDO ← GI.orig
req ¬(*auth-compr(vid)
∧ *SK-compr(vid, IDO))

if GI 6= ⊥
win

Figure 4: Commit-related oracles of the security game for secure group-messaging schemes. The
compatibility functions are described in the accompanying text; a formal description is provided in
Figure 6.

Sending messages and challenges. Oracle send allows A to instruct any current group member
S to send a message m and associated data (AD) a. The oracle runs algorithm Send on m and
a, which creates a ciphertext e. The oracle increments S’s message counter, and stores the triple
(a,m, e) in AM.

The challenge oracle chall works quite similarly, except that A specifies two equal-length messages
m0 and m1, and mb is passed to Send (where b is the bit chosen during initialization). Furthermore,
the pair (S, i[S]) is recorded in array Chall.

Delivering and injecting application messages. The attacker can get application messages
to group members in two ways, by using either dlv-AM or inj-AM—for honestly and adversarially
generated AMs, respectively. Oracle dlv-AM takes as input a tuple (vid,S, i,R) identifying the
epoch, the sender, the index, and the recipient of the AM to be delivered. Then, the corresponding
AD and ciphertext are input to Rcv, which subsequently outputs (E′,S′, i′,m′). These values are
checked, and if R misidentifies any of them, the attacker immediately wins the security game.
Subsequently, AM[vid, S, i,R] is set to received, indicating that R should no longer keep around any
key material that can be used to decipher e. If R does not delete old values, then a corresponding
entry is place in array AM-Tr[R]. Note that the oracle does not return any values since the attacker
knows which values are output by Rcv.
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SGM Security Game: Send/Receive, Corrupt/No-Del & Safety Oracles

// S sends message m with AD a

send (S, a,m)
req *compat-send(S)

(s[S], e)← Send(s[S], a,m)

i[S]++
for R ∈ HG.roster(V-Pt[S]) \ {S}

AM[V-Pt[S], S, i[S], R]← (a,m, e)

return e

// Deliver ith msg of S in vid to R

dlv-AM (vid, S, i, R)
req *compat-dlv-AM(vid, S, i, R)

(a,m, e)← AM[S, vid, i, R]

(s[R], E′, S′, i′,m′)← Rcv(s[R], a, e)

if (E′, S′, i′,m′) 6= (Ep-ID[vid], S, i,m)
win

if ¬Del[R]
AM-Tr[R]← (vid, S, i)

AM[vid, S, i, R]← received

// Attacker leaks state of ID

corr (ID)
for (vid, flag) ∈ V-St[ID] ∪ V-Tr[ID]

if flag
V-Lk +← (vid, ID)

AM-Rcvd← {(S, i) | AM[vid, S, i, ID] = received}
AM-Lk +← (vid, AM-Rcvd, AM-Tr[ID])

W ← WK-St[ID] ∪WK-Tr[ID]
WK-Lk +← {wkid ∈ W | WK-ID[wkid] = ID}
S ← SK-St[ID] ∪ SK-Tr[ID]
SK-Lk +← {skid ∈ S | SK-ID[skid] = ID}
HG.corrHanging(ID)

return s[ID]

// ID is instructed to disable deletions

no-del (ID)
disable deletions for ID
Del[ID]← false

// Safety for privacy

*priv-safe
return ∀vid, S, i : ((S, i) ∈ Chall[vid] =⇒ *AM-sec(vid, S, i))

// S sends challenge with AD a

chall (S, a,m0,m1)
req *compat-chall(S)

(s[S], e)← Send(s[S], a,mb)

i[S]++
for R ∈ HG.roster(V-Pt[S]) \ {S}

AM[V-Pt[S], S, i[S], R]← (a,m, e)

Chall[V-Pt[S]] +← (S, i[S])

return e

// a′, e′ get injected to R

inj-AM (a′, e′, R)
req *compat-inj-AM(a′, e′, R)

(s[R], E′, S′, i′,m′)← Rcv(s[R], a′, e′)

if m′ 6= ⊥
let vid′ : Ep-ID[vid′] = E′

if ¬
(
¬*AM-sec(vid′, S′, i′)

∧ *SK-compr(vid′, S′)
)

∨ AM[vid′, S′, i′, R] = received

win

if ¬Del[vid]
AM-Tr[R]← (vid′, S′, i′)

AM[vid′, S′, i′, R]← received

return (E′, S′, i′,m′)

Figure 5: Send/receive, corruption, no-deletion, and privacy-safety oracles of the security game for
secure group-messaging schemes. The compatibility functions are described in the accompanying
text; a formal description is provided in Figure 6.

Oracle inj-AM allows A to inject any AD/ciphertext pair (a′, e′) to a group member R as long
as they do not correspond to an honestly generated AM. The game requires that if Rcv accepts e′

and outputs (E′, S′, i′,m′), it must be the case that (1) the key material for the i′th message sent by
S′ in epoch E′ has not been compromised, and (2) no message has been output for these identifiers
before (i.e., a successful replay attack is considered a break of authenticity). Whether (1) is the case
is determined by the (generic) safety predicates *AM-sec and *SK-compr.

Corruption oracle. The corruption oracle corr allows the attacker to leak the state of any party
ID. It does bookkeeping for the following:

• Epochs: All epochs ID currently stores information for are kept track of by V-St[ID]; recall that
for (vid, flag) ∈ V-St[ID] the variable flag records whether or not the information stored about
vid allows to infer key material of child epochs. The security game copies the pairs in V-St[ID]
with flag = true into the set V-Lk. Additionally, for all (vid, ·) ∈ V-St[ID], records the current
set of messages already received by ID in epoch vid. This helps keep track of which application
messages are affected by this instance of state leakage. Finally, the values in V-Tr[ID] are also
recorded.

• Welcome keys: By leaking ID’s state, A learns all welcome secret keys currently stored by ID:
either because ID is supposed to be storing them (recorded by WK-St[ID]) or because they are
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SGM Security Game: Compatibility Helpers

*compat-create (ID, skid,wkid)
chk V-Pt[ID] = vidroot
chk SK-ID[skid] = ID
chk WK-SK[wkid] = skid
chk skid ∈ SK-St[ID]
chk wkid ∈ WK-St[ID]

return true

*compat-prop (op, ID, ID′, skid)
vid← V-Pt[ID]

chk vid 6= vidroot

G← HG.roster(vid)

select op
case add do

chk
CL-KB[ID, ID′] 6= ∅

chk ID′ /∈ G
case rem do

chk ID′ ∈ G
case upd do

chk skid ∈ SK-St[ID]

return true

*compat-dlv-PM (ID, pid)
chk Props[pid].vid = V-Pt[ID]

return true

*compat-inj-PM (ID, P ′)
vid← V-Pt[ID]

chk vid 6= vidroot
chk 6∃ pid :

Props[pid].vid = vid
∧ P ′ = PM[pid]

return true

*compat-commit (ID, pid)
vid← V-Pt[ID]

chk vid 6= vidroot
chk pid ⊆ P-St[ID]

G← HG.roster(vid)

for pid ∈ pid
G← *app-prop(G, pid)
chk G 6= ⊥

return true

*app-prop (G, pid)
p← Props[pid]

req p.orig ∈ G

select op
case add do

(ID′, ·, ·)← p.data

req ID′ /∈ G

G +← ID′

case rem do
ID′ ← p.data

req ID′ ∈ G
G −← ID′

return G

*compat-dlv-CM (ID, vid)
chk HG.isChild(V-Pt[ID], vid)
chk HG[vid].pid ⊆ P-St[ID]

return true

*compat-inj-CM (ID, T ′)
vid← V-Pt[ID]
chk vid 6= vidroot

chk ∀vid′ ∈ HG.children(vid) :
T ′ 6= CM[vid′, ID]

return true

*compat-dlv-WM (ID, vid)
chk V-Pt[ID] = vidroot

wkid← HG.addedWK(ID, vid)
chk wkid 6= ⊥
∧ wkid ∈ WK-St[ID]

return true

*compat-inj-WM (ID,W ′)
vid← V-Pt[ID]
chk vid = vidroot

chk ∀vid′ :
W ′ 6= CM[vid′, ID]

return true

*compat-send (S)
chk V-Pt[ID] 6= vidroot

return true

*compat-chall (S,m0,m1)
chk V-Pt[ID] 6= vidroot
chk |m0|= |m1|
return true

*compat-dlv-AM (vid, S, i, R)
chk vid ∈ V-St[R]
chk

AM[vid, S, i, R] /∈ {ε, received}
return true

*compat-inj-AM (a, e, R)
chk ∀S, vid, i,m :

AM[vid, S, i, R] 6= (a,m, e)

return true

Figure 6: Compatibility oracles of the security game for secure group-messaging schemes.

in ID’s trash (i.e., in WK-Tr[ID]). The corresponding wkids are added to the set WK-Lk.

• Signature keys: Handled analogously to welcome keys.

• Application-message trash: The attacker also learns all values in the array AM-Tr[ID].

• Pending proposals and commits. If at the time ID is corrupted, there are outstanding (i.e.,
uncommitted) update proposals (with ID) pid by ID or hanging (i.e, created but not processed
yet) commits (with ID) vid by ID, the attacker learns the corresponding secrets. To that end
HG.corrHanging(ID) sets BR[pid]← true resp. BR[vid]← true for all of them. This will reflect
the fact that these update proposals / commits cannot be used for PCS.

Disabling deletions. When the attacker calls oracle no-del for a party ID, that party stops
deleting old values and stores them on a special trash tape instead (which is leaked along with the
rest of ID’s state to the attacker upon state compromise).

3.3.6 Privacy-related safety.

At the end of the execution of the SGM security game, the procedure *priv-safe ensures that the
attacker has only challenged messages that are considered secure by the (generic) safety predicate
*AM-sec. If the condition is not satisfied, the attacker loses the game.
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3.3.7 Advantage.

Let Π = {*AM-sec,*auth-compr,*SK-compr} be the set of generic safety predicates used in
the SGM definition. The attacker A is parameterized by it’s running time, t, and the number of
challenge queries, q, and referred to as (t, q)-attacker. The advantage of A against an SGM scheme
Γ w.r.t. to predicates Π is denoted by AdvΓSGM,Π(A).

Definition 1. An SGM scheme Γ is (t, q, ε)-secure w.r.t. predicates Π, if for all (t, q)-attackers,

AdvΓSGM,Π(A) ≤ ε .

4 Ingredients

This section introduces and explains the three main primitives used by the SGM construction in
Section 5: continuous group key-agrement (CGKA), forward-secure group AEAD (FS-GEAEAD),
and PRF-PRNGs. On a very high level, the PRF-PRNG is an entropy pool from which key material
for FS-GAEAD is extracted and whose state is continually refreshed by values from CGKA.

4.1 Continuous Group Key Agreement

CGKA schemes are run by parties wishing to continuously agree on shared secret keys. As with SGM
schemes (cf. Section 3.1), (a) CGKA schemes are run over an asynchronous network in which parties
may be online/offline at arbitrary times; (b) the communication between parties is assumed to be
handled by an untrusted delivery service; (c) there is a PKI used to exchange initial key material;
(d) CGKA schemes follow the P&C paradigm; and (e) parties only know a subset of the global state.

4.1.1 Syntax.

The components of a CGKA scheme are (in the following, γ and γ′ denote the internal state of the
CGKA scheme before and after an operation, respectively):

• Interaction with the PKI: A CGKA scheme provides an algorithm (ipk, isk)← Gen-IK to create
so-called initial key pairs, where ipk can be registered with the PKI.

• Group creation: A party ID may create a new group with only itself in it, using the group-
creation algorithm γ′ ← Create(ID, isk), where isk is the initial secret key used by ID.

• Issue proposals: A group member may issue three types of proposals P : add a new group
member ID′ with initial public key ipk′ by calling (γ′, P )← Add(γ, ID′, ipk′), remove a current
group member ID′ by calling (γ′, P )← Remove(γ, ID′), and update personal secrets by calling
(γ′, P )← Update(γ).

• Commit creation: Occasionally, a party may pick an arbitrary (ordered) subset of proposals
P and execute a commit: (γ′, I,Wpub,Wpriv, T ) ← Commit(γ,P), which produces a commit
secret I, a commit message (for existing group members), as well as public and private welcome
messages (for joining group members) Wpub and Wpriv.

• Processing commits: In order to process a commit message T corresponding to proposals P, a
party calls (γ′,GI, I)← Proc-Com(γ, T,P), which will output the corresponding commit secret
I as well as group information GI (where GI = ⊥ if T is considered invalid).
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• Joining: In order to join a group, a party processes welcome messages Wpub and Wpriv by
running (γ,GI, I)← Join(γ, orig,Wpub,Wpriv, isk), where isk is the init secret key and orig is the
ID of the party who created the commit that produced the welcome messages. The outputs
are again the commit secret I and group information GI (where GI = ⊥ if Wpub or Wpriv are
considered invalid).

Observe that unlike SGM schemes, CGKA protocols do not have algorithms to process proposal
messages P , and, consequently, these messages must be supplied as inputs to Commit and Proc-Com.
It is left to the higher-level protocol (SGM) to handle this. Similar considerations apply to the initial
keys.

4.1.2 Security.

CGKA schemes are expected to guarantee the secrecy of the generated group keys. Furthermore,
just like SGM schemes, they must provide post-compromise forward secrecy (PCFS). Once more,
update proposals and commits must both contribute to post-compromise security (PCS). CGKA
schemes must also be able to deal with bad randomness (in that it only affects PCS) as well as
parties who do not delete old values.

An important difference between CGKA and SGM schemes is that the former are designed in a
fully authenticated setting. That is, the attacker in the CGKA security game is not permitted to
inject control messages. This turns out to be sufficient as the “authentication layer” can be added
by the protocol using the CGKA scheme.

Similarly to SGM, the CGKA security game allows adversary A to control the execution of and
attack a single group. In particular, A controls who creates the group, who is added and removed,
who updates, who commits, etc. The attacker is also allowed to leak the state of any party (whether
currently part of the group or not) at any time. The privacy of keys is captured by considering
a challenge that outputs either the actual key output by the CGKA scheme or a truly random
one—which one is determined by an internal random bit b, which must be guessed by A at the end
of the game.

The CGKA security game follows the history-graph paradigm to keep track of all the relevant
execution data. The recorded data informs a safety predicate *CGKA-priv used at the end of the
game to exclude trivial wins by A. More details can be found in Appendix B.1.

4.1.3 (R)TreeKEM.

The (R)TreeKEM CGKA protocols are based on so-called (binary) ratchet trees (RTs). In an RT,
group members are arranged at the leaves, and all nodes have an associated public-key encryption
(PKE) key pair, except for the root. The tree invariant is that each user knows all secret keys on their
direct path, i.e., on the path from their leaf node to the root. In order to perform an update—the
most crucial operation of a CGKA—and produce a new update secret I, a party first generates fresh
key pairs on every node of their direct path. Then, for every node v′ on its co-path—the sequence of
siblings of nodes on the direct path—it encrypts specific information under the public key of v′ that
allows each party in the subtree of v′ to learn all new secret keys from v’s parent up to the root. In
TreeKEM, standard (CPA-secure) PKE is used. As shown in previous work [3], this leads to subpar
PCFS. RTreeKEM improves on this by using so-called updatable PKE (UPKE), in which public and
secret keys are “rolled forward” every time a message is encrypted and decrypted, respectively.

In order to establish adaptive security of the RTreeKEM protocol, this work applies the so-called
Generalized-Selective-Decryption (GSD) paradigm to UPKE. Specifically, we prove GSD security
of IND-CPA-secure UPKE in the random oracle model, by first defining a GSD game that models
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UPKE based executions, in the presence of bad randomness and group splitting attacks, and then
appropriately adapting the framework of [1]. The security of RTreeKEM itself is established by
reduction to the GSD security of the underlying UPKE scheme. The safety predicate *CGKA-priv
considers the commit secret of an epoch vid secure if (informally) the following conditions are
satisfied:

• There is no “corrupted” ancestor epoch in the history graph, where an epoch can be corrupted
if either a party gets added with leaked initial keys or if the state of a party in the epoch is
leaked.

• No information about vid is known to the attacker as the result of a splitting attack. An
example of a splitting attack is when the attacker creates a sibling epoch vid′ and corrupts a
party that is a group member in both vid and vid′.

• Good randomness was used by the commiter creating vid.

More details can be found in Appendix D.1 (GSD security of UPKE) and Appendix D.2 (predicate
*CGKA-priv and CGKA security of RTreeKEM).

Theorem 1. Let UPKE be an (t, ε)-GSD secure UPKE scheme. Furthermore, let *CGKA-priv be
the safety predicate above. Then, RTreeKEM is an (t′, ε)-secure SGM scheme w.r.t. *CGKA-priv,
where t′ ≈ t.

TreeKEM’s security. TreeKEM is secure w.r.t. a weaker security predicate than RTreeKEM.
Namely, it is required that, either there is no post-challenge compromise (the notion of PCS in [3]),
or if there is, compromise happens after the party has already updated it’s state (the FSU notion
of [3]). Then, security proof for TreeKEM is similar to that of RTreeKEM and proceeds in two
steps. First we consider a reduction from GSD with respect to standard public-key encryption, to
the IND-CPA security of the underlying scheme, and then we reduce security of TreeKEM to GSD,
deriving a theorem similar to the above.

4.2 Forward-Secure Group AEAD

FS-GAEAD schemes provide the convenient abstraction of an “epoch of group messaging.” That is,
they capture the sending and receiving of application messages within a single epoch of a full SGM
scheme. In an execution of FS-GAEAD, all participating group members are initialized with the
same random group key (i.e., that key is assumed to be generated and distributed among the group
members by the higher-level protocol).

An FS-GAEAD scheme protects the authenticity and privacy of messages sent. Furthermore,
it provides forward secrecy, i.e., the security of messages received will not be affected by state
compromise. Note that FS-GAEAD is not required to provide any form of post-compromise security.
This also allows to design completely deterministic schemes (apart from the initial key).

4.2.1 Syntax.

An FS-GAEAD scheme FS consists of three algorithms (in the following v and v′ denote the state of
an FS-GAEAD scheme before and after the execution of an operation, respectively):

• Initialization: To initialize an instance of FS-GAEAD, a party with ID ID runs v ←
Init(ke, n, ID), which takes as input a shared key ke as well as the group size n and gen-
erates the initial state.
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• Send messages: When a party wants to send a message m with associated data (AD) a (to the
entire group) inside a FS-GAEAD instance, it runs (v′, e)← Send(v, a,m), which generates a
ciphertext e encrypting and authenticating m and authenticating associated data a;

• Receiving messages: When a party receives a ciphertext e and AD a, it calls (v′,S, i,m) ←
Rcv(v, a, e), which decrypts and verifies e to plaintext m and verifies a and also outputs a pair
(S, i) consisting of sender ID S and message index i.

4.2.2 Security.

The security of FS-GAEAD is captured via a corresponding game, in which n parties share the same
initial key. The attacker can have parties send and receive messages arbitrarily, ask for challenges,
and leak the state of any party at any time. The game keeps track of the entire execution, but
crucially of which messages have been received by which parties. When the state of some party ID is
leaked, the set of messages received by ID is stored: these are the messages that must remain secure
even given ID’s leaked state. This information is used by a safety predicate *FS-sec to avoid trivial
wins by A, be it w.r.t. privacy or authenticity. More details can be found in Appendix E.1.

4.2.3 Construction.

We show how to build FS-GAEAD from a forward-secure key-derivation function (FS-KDF). An
FS-KDF keeps state s—initially set to a uniformly random string—and, upon request, derives keys
corresponding to labels lab. After each such request, the FS-KDF also updates its own state. For
each initial state, there a unique key corresponding to each label, irrespective of the order in which
the labels were queried. The FS-KDF is forward-secret because even if its state is leaked, all keys
output up to that point remain secure. An FS-KDF itself can be obtained via a tree construction
based on a normal PRG.

Given an FS-KDF, the construction of FS-GAEAD is fairly straightforward: Messages and AD
are encrypted/authenticated with a normal AEAD scheme, where the key for the ith message sent
be some party ID is derived using the label (ID, i). More information about the constructions can be
found in Appendix F.

The safety predicate *FS-sec achieved by our construction consideres a message secure if no
party’s state is leaked before it receives the message.

Theorem 2. Assuming (t′, εae)-secure authenticated encryption with associated data and (t′, εkdf)-
forward secure KDF, the scheme of Figure 27, is (t, q, ε′)-FS-GAEAD secure w.r.t. *FS-sec, where
q is the number of challenge queries, ε′ = (q + 1)t2(εkdf + εae), and t ≈ t′.

4.3 PRF-PRNGs

A PRF-PRNG resembles both a pseudo-random function (PRF) and a pseudorandom number
generator with input (PRNG)—hence the name. On the one hand, as a PRNG would, a PRF-PRNG
(1) repeatedly accepts inputs I and context information C and uses them to refresh its state σ and
(2) occasionally uses the state, provided it has sufficient entropy, to derive a pseudo-random pair of
output R and new state; for the purposes of secure messaging, it suffices to combine properties (1)
and (2) into a single procedure. On the other hand, a PRF-PRNG can be used as a PRF in the
sense that if the state has high entropy, the answers to various pair (I, C) on the same state are
indistinguishable from random and independent values.
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4.3.1 Syntax.

A PRF-PNRG PP is an algorithm (σ′, R)← PP(σ, I, C): it takes the current state σ, absorbs input
I along with context information C, and produces a new state σ′ as well as an output string R.

4.3.2 Security.

The intuitive security properties for PRF-PRNGs mentioned at the beginning of this section must
also hold in the presence of state compromise. In particular, a PRF-PRNG must satisfy PCFS (cf.
Section 3.3) and be resilient to splitting-attacks. Therefore, the security game for PRF-PRNGs
follows the same history-graph approach as the definitions of SGM and CKGA. However, since
the game only consists of the state of the PRF-PRNG and there are no parties, it suffices to keep
track of a much smaller amount information. Formal definitions for PRF-PRNGs are provided in
Appendix G.1.

4.3.3 Construction.

A straight-forward construction of PRF-PRNGs is to model the algorithm PP as a random oracle.
Such a construction achieves security w.r.t. safety predicate *PP-secure, which captures that in
order for a value R in an epoch vid to be considered secure, vid

• must have an ancestor state vid′ (possibly itself) that was reached via a random input I not
known to A, and

• there must have been no corruptions on the path from vid′ to vid’s ancestor.

More details about the construction can be found in Appendix G.2.

Theorem 3. Let *PP-secure be the safety predicate above. Then, PP as a random oracle with
outputs in {0, 1}λ, is an (t, ε)-secure PRF-PRNG w.r.t. *PP-secure, where ε = negl(λ) and
t = poly(λ).

5 SGM Construction

Our construction is based on the following primitives: A CGKA scheme K = (K-Gen-IK,K-Create,K-Add,
K-Remove,K-Update, K-Commit,K-Proc-Com,K-Join), an FS-GAEAD scheme F = (F-Init,F-Send,F-Rcv),
a CPA-secure public key encryption scheme PKE = (E-KeyGen,E-Enc,E-Dec) an existentially
unforgeable signature scheme S = (S-KeyGen, S-Sign, S-Ver), a message authentication scheme
M = (M-Tag,M-Ver), a PRF-PRNG PP, a collision resistant hash function H. The initialization,
PKI algorithms and helper functions of our construction are depicted on Figures 7,9, The comments
on the figures explain the use of each variable and functionality. Below we describe the main SGM
algorithms depicted on Figure 8, in which we use different colors to highlight the use of the underlying
primitives: CGKA, FS-GAEAD, PKE, Signatures, MAC, PRF-PRNG, Hash.

Group creation. The group creation operation, Create, receives (possibly bad) randomness r, a
signature verification key, spk, which is the key that will be used by the group members to verify
messages sent by the group creator, as well as the welcome key material wpk. It adds the group
creator’s id to the roster (s.G← [ME]), executes the CGKA group creation operation, absorbs the
output I into the PRF-PRNG PP. PP outputs the new PRF-RPNG state s.σ, the FS-GAEAD key
ke, a MAC key s.km (used to authenticate control messages), and the current epoch id, s.C-epid.



SGM Construction: Initialization and PKI Algorithms

// Initialization

Init (ID)
// -- Global State --

// Set Caller’s ID

ME← ID

// Stored Sig. Keys

SK-sk[.]← ε

// Stored Wel. Keys

WK-wk[.]← ε

// Contact List

CL-KB[.]← ε

// -- Group Specific State --

// Buffered Props

s.Props[.]← ε

// Roster

s.G← [.]

// CGKA State

s.γ ← ε

// PRF-PRG State

s.σ ← ε

// FS-GAEAD States

s.v[.]← ε

// Current Epoch ID

s.C-epid← ε

// My Sig. Key

s.C-ssk← ε

// Verif. Keys

s.Ep-SPK[., .]← ε

// MAC Key

s.km ← ε

// Generate Signature Keys

Gen-SK
(spk, ssk)← S-KeyGen
SK-sk[spk]← ssk
return spk

// Delete Signing Key

Rem-SK (spk)
SK-sk[spk]← ε

// Store Signing Key for Contact

Get-SK (ID, spk)
CL-S[ID] +← spk

// Generate Key Bundle

Gen-KB (spk)
(ipk, isk)← K-Gen-IK
(epk, esk)← E-KeyGen
(wpk,wsk)← ((epk, ipk), (esk, isk))
WK-wk[wpk]← wsk
ssk← SK-sk[spk]
sig ← S-Sign(ssk,wpk)
return (wpk, spk, sig)

// Store Key Bundle of a Contact

Get-KB (ID′, kb)
(wpk, spk, sig)← kb

req spk ∈ CL-S[ID′]
req S-Ver(spk,wpk, sig)

CL-KB[ID′].enq((wpk, spk))

Figure 7: The SGM Construction : Initialization and PKI Algorithms.

Next, the FS-GEAD init operation F-Init, is executed with inputs ke, the group size, which is 1, and
the id ME of the group creator.

Proposals. To add a party IDa, Add recovers the key bundle kb′ for that ID from the contact list,
and runs the CGKA add-proposal algorithm with keys from kb′, getting a CGKA proposal P̄, which
it then uses to construct and authenticate (with MAC and signature) the SGM proposal message P′.
Remove and Update are similar (where Update takes the new signing key of the updater as input).
When processing any proposal, algorithm Proc-PM simply attempts to authenticate the proposal
and stores it locally. Proc-PM returns proposal information: the operation op, the origin of the
proposal, orig, and the data data, as computed by *get-propInfo(P′) (cf. Figure 9).

Committing. To commit to a set P of proposals, Commit calls the CGKA commit operation to
obtain CGKA welcome messages Wpub and WPrv as well as CGKA control message T̄ and update
secret I. T̄ is used to construct and authenticate (with MAC and signature) the SGM control
message T′ (which includes a hash of the proposals). Then, Commit creates and authenticates (with
MAC and signature) the SGM welcome messages for joining parties by adding an encryption of the
PRF-PRNG state s.σ to the CGKA welcome messages. The MAC key used for authenticating control
and welcome messages is derived by absorbing I into the PRF-PRNG (with context information
that depends on T′). Note that s.σ is not updated yet, however.

Process commit/welcome messages. Algorithm Proc-CM first verifies the authentication in-
formation (MAC and signatures) of a commit message T′ = ("com", epid, ID,h, T̄). However, in order
to obtain the MAC key, (1) the CGKA control message T̄ has to be processed by Proc-Com, which
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(2) recovers the update secret I, which in turn (3) must be absorbed into the PRF-PRNG (this time
updating its state). The last step also produces the shared key for the new FS-GAEAD session.

Algorithm Proc-WM, used by joining parties to processes welcome messages W′ proceeds similarly,
except that the state of the PRF-PRNG must first be obtained by decrypting the corresponding
ciphertext in W′.

Send message. To send associated data a and plaintext m, Send passes a and m to the current
epoch’s FS-GAEAD send operation, and, additionally, also signs the resulting ciphertext, a, and the
identifier s.C-epid of the current epoch.

Receive message. The operation receives associated data a and ciphertext e, parses the ciphertext
(e′, sig) ← e, (epid, a, ē) ← e′, executes the receive FS-GAEAD operation, (s.v[epid], IDs, i,m) ←
F-Rcv(s.v[epid], (epid, a), ē), checks whether IDs 6= ⊥ and S-Ver(spk, e′, sig), and outputs (epid, IDs, i,m).

Helpers. *added receives a vector of proposals P and returns the ids and welcome public keys of
newly added members. *new-spks receives an epoch id and vector of proposals, (epid,P), and returns
the public verification keys for the ids affected by the proposals in P. *roster-pos returns the
position of ID in G, and *get-propInfo receives a proposal P′ and returns the proposal information,
namely the operation, op, the proposal origin, orig, and the data, data, where if op = add, data holds
the id, IDa, welcome key material, wpk, and the signature verification key spk, of the newly added
member. If op = rem, data holds the id of the removed party IDr, and if op = upd, data holds the
updated verification key spk.

5.0.1 Security.

Main idea: The authenticity property of our construction relies on the EU-CMA security of signatures,
the unforgeability of MACs, and the authenticity of the FS-GAEAD scheme. In particular, if the
sender’s signing key is secure, then an injection w.r.t. that key fails with overwhelming probability. If
this is not the case, an honest commit operation provides post-compromise authenticity, by producing
a secure CGKA update secret, I, which feeds the PRF-PRNG with good randomness, which in turn
outputs secure MAC and FS-GAEAD keys, used for the authentication of future control (via MAC
security) and application (via FS-GAEAD security) messages (this requires the adversary to remain
passive for one epoch). PCFS with respect to privacy is similar and relies on the PCFS security
CGKA and the FS of FS-GAEAD.

Simplified properties. Proving SGM security is facilitated by considering three simplified prop-
erties, namely correctness, authenticity, and privacy. We prove that these properties together imply
full SGM security, as stated in Section H.1 and proved formally in Theorem 25. Besides modularity,
simplified properties facilitate the transition from selective to fully adaptive security, as the individual
“simplified” games, defined in Section H.1, consider selective adversaries that commit to the challenge
(e.g., the challenge or the last healing, epoch, the message sender and index used for the challenge)
at the beginning of the game. In the reduction from the simplified properties to full SGM security,
the adversarial strategy is being guessed and the success probability is bounded by values that relate
to the running time of the adversary. After proving the simplified properties theorem, one can prove
authenticity and privacy, individually, against selective adversaries that commit to their strategy
before the security game begins.
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Safety predicates. Using safety predicates, we provide a generic theorem (cf. Theorem 4), that
considers any CGKA, FS-GAEAD, and PRF-PRNG scheme. Those schemes come along with their
security predicates, ΠCGKA, ΠFS and ΠPP, respectively, and we prove that as long as the attacker’s
actions are not violating those predicates, then the resulting SGM construction is secure w.r.t.
the SGM predicate ΠSGM = ΠSGM(ΠCGKA,ΠFS,ΠPP). Our SGM safety predicate ΠSGM (explained
below) is depicted in Figure 10 and operates over history graph information, generated by the SGM
security game. Here, we consider ΠCGKA = *CGKA-priv, ΠFS = *FS-sec, ΠPP = *PP-secure
(cf. Figure 10).

Proof idea. The adversary breaks authenticity if it manages to make a non-trivial injection,
which implies that either of the following holds: (1) injects a (proposal, welcome, commit or key
bundle) message in epoch vid that is signed with a non-compromised signing key of the party ID
(determined by *SK-compr(vid, ID)), (2) injects a (proposal, welcome, commit) message when
*auth-compr(vid) holds, which implies that *PP-secure(vid,*Proj-PP(SGM-Data)), i.e., PP is
secure, and (3) injects an application message when the FS-GAEAD state is not trivially compromised
(determined by *FS-sec). Clearly, security against (1) reduces to the EU-CMA security of S. For
(2) the output of the PRF-PRNG, PP, in epoch vid is secure, therefore that MAC key (output by
PP) is secure and we can rely on the security of PP and the unforgeability of M. This requires the
following hybrids: (A) In the first hybrid, if the attacker finds a collision against H, the execution
aborts (reduces to the collision resistance property of H). This hybrid is required for the protection
of the PP state in the presence of group splitting attacks in which the adversary can split the group,
corrupt in one branch to recover the PP state, and challenge on another branch in which the PP
state is related to the corrupted one. Here, collision resistance ensures that different control messages
have different hash values, therefore lead to independent PP states. (B) In the next hybrid, in the
last healing epoch before the challenge, substitute the CGKA update secret (which feeds PP) with
a uniformly random value (required for the reduction to the PRF-PRNG security). Note that, by
the definitions of *PP-secure, *Proj-PP, a good healing epoch before the challenge epoch, exists,
and this epoch satisfies *CGKA-priv. (C) In the next hybrid we use the CPA security of PKE. In
particular, in the commit operation that creates the target epoch, encrypt the zero message instead
of encrypting the PP state, as part of the welcome message (requires a reduction to the CPA security
of PKE). (D) Next, substitute the output of the PRF-PRNG PP in a commit message for the target
epoch, with a uniformly random value (reduces to PRF-PRNG security). Finally, since the output
of PP is substituted by a uniformly random value, so does that MAC key, thus we have a reduction
to the unfogeability of the MAC scheme M for case (2). Case (3) is similar, however in the last step
we have a reduction to the FS-GAEAD authenticity property of F. For privacy we consider the same
sequence of hybrids, however the final reduction is against the FS-GAEAD privacy property of F.
For that reduction we use the fact that *FS-sec is satisfied. We show (cf. Section H):
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SGM Construction: Main Algorithms

// Create a group

Create (spk,wpk; r)
s.G← [ME]
wsk← WK-wk[wpk]
(·, isk)← wsk
(s.γ, I)← K-Create(ME, isk; r)
(s.σ, ke, s.km, s.C-epid)← PP(0, I, 0)
s.Ep-SPK[s.C-epid,ME]← spk
s.v[s.C-epid]← F-Init(ke, 1,ME)

// Add proposal

Add (IDa)
kb′ ← CL-KB[IDa]

((epk, ipk), spk)← kb′

(s.γ, P̄)← K-Add(s.γ, IDa, ipk)

P′ ← ("add", s.C-epid,ME, (IDa, kb′), P̄)

t← M-Tag(s.km,P
′)

sig ← S-Sign(s.C-ssk, (P′, t))
return (P′, t, sig)

// Remove proposal

Remove (IDr)
(s.γ, P̄)← K-Remove(s.γ, IDr)

P′ ← ("rem", s.C-epid,ME, IDr, P̄)

t← M-Tag(s.km,P
′)

sig ← S-Sign(s.C-ssk, (P′, t))
return (P′, t, sig)

// Update proposal

Update (spk; r)
req SK-sk[spk] 6= ε

(s.γ, P̄)← K-Update(s.γ; r)

P′ ← ("upd", s.C-epid,ME, spk, P̄)

t← M-Tag(s.km,P
′)

sig ← S-Sign(s.C-ssk, (P′, t))
return (P′, t, sig)

// Commit

Commit (P; r)
req P ⊆ s.Props
// Get CGKA Proposals

P̄← P.P̄
// -- Prepare Commit Message --

(s.γ,Wpub,WPrv, T̄, I)← K-Commit(s.γ, P̄; r)

T′ ← ("com", s.C-epid,ME, H(P), T̄)

v ← H(T′)
// New MAC Key & Epoch ID

(., ., km, epid)← PP(s.σ, I, v)

t← M-Tag(km,T
′)

sig ← S-Sign(s.C-ssk, (T′, t))
// Commit Message

T← (T′, t, sig)
// -- Prepare Welcome Messages --
(ID,wpk)← *added(P)
spk← *new-spks(s.Ep-SPK[s.C-epid, ·],P)
for i ∈ ID

e← E-Enc(wpk[i].epk, s.σ)

W′ ← ("wel",ME, ID[i], v,Wpub, . . .

. . . ,WPrv[i], e,wpk[i], spk)

t← M-Tag(km, (W
′, epid))

sig ← S-Sign(spk[ME], (W′, t))
// Welcome Message

W[i]← (W′, t, sig)
return (epid,W,T)

// Process a proposal

Proc-PM (P)
(P′, t, sig)← P

(., epid, ID, ., .)← P′

req epid = s.C-epid
spk← s.Ep-SPK[epid, ID]

req M-Ver(s.km,P
′, t)

req S-Ver(spk, (P′, t), sig)

s.Props +← P′

return *get-propInfo(P′)

// Process Commit Message

Proc-CM (T)
(T′, t, sig)← T

(., epid, ID, h, T̄)← T′

// Matching Epochs?

req epid = s.C-epid
spk← s.Ep-SPK[epid, ID]

req S-Ver(spk, (T′, t), sig)
P← s.Props[h]
// Call CGKA

(s.γ, GI, I)← K-Proc-Com(s.γ, T̄)

(s.σ, ke, s.km, s.C-epid)← PP(s.σ, I,H(T′))
req M-Ver(s.km,T

′, t)
s.G← GI.G
pos← *roster-pos(ME, s.G)
// Start FS-GAEAD

s.v[s.C-epid]← F-Init(ke, |s.G| , pos)
s.Ep-SPK[s.C-epid, .]← *new-spks(s.Ep-SPK[epid, ·],P)
spk← s.Ep-SPK[s.C-epid,ME]
s.C-ssk← SK-sk[spk]
return GI

// Join a Group

Proc-WM (W)
(W′, t, sig)←W

(., IDs, ., v,Wpub,Wpriv, e,wpk, spk)←W′

spk← spk[IDs]

req spk ∈ CL-S[IDs] ∧ S-Ver(spk,W′, sig)
(esk, isk)← WK-wk[wpk]
s.σ ← E-Dec(esk, e)
(s.γ, GI, I)← K-Join(ME, IDs,Wpub,Wpriv, isk)

(s.σ, ke, s.km, s.C-epid)← PP(s.σ, I, v)

req M-Ver(s.km, (W
′, s.C-epid), t)

s.G← GI.G
pos← *roster-pos(ME, s.G)
s.v[s.C-epid]← F-Init(ke, |s.G| , pos)
s.Ep-SPK[s.C-epid, .]← spk
spk← s.Ep-SPK[s.C-epid,ME]
s.C-ssk← SK-sk[spk]
s.Props← ε

// Send A Message

Send (a,m)
E ← s.C-epid
(s.v[E], ē)← F-Send(s.v[E], (E, a),m)

e′ ← (E, a, ē)

sig ← S-Sign(s.C-ssk, e′)
return (e′, sig)

// Receive A Message

Rcv (a, e)
(e′, sig)← e

(epid, a, ē)← e′

(s.v[epid], IDs, i,m)← F-Rcv(s.v[epid], (epid, a), ē)
req IDs 6= ⊥
spk← s.Ep-SPK[epid, IDs]

req S-Ver(spk, e′, sig)
return (epid, IDs, i,m)

Figure 8: The SGM Construction: main algorithms.
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SGM Construction: Helper Functions

// Returns ids, wpks, of new parties

*added (P)
ID[·]← ε
wpk[·]← ε
i← 1 for P ∈ P

if P = ("add", ·, ·, (IDa, kb′), ·)
(wpk, ·)← kb′

ID[i]← IDa
wpk[i]← wpk
i++

return (ID,wpk)

// Returns spks after applying props

*new-spks (epid,P)
spk← s.Ep-SPK[epid]
for P ∈ P

if P = ("add", ·, ·, (IDa, kb′), ·)
(·, spk)← kb′

spk[IDa]← spk
if P = ("rem", ·, ·, IDr, ·)

spk[IDr ]← ε
if P = ("upd", ·, IDu, spk, ·)

spk[IDu]← spk
return spk

// Returns position of ID in roster

*roster-pos (ID, G)
[ID1, . . . , IDn]← G
for i ∈ [1, n]

if IDi = ID
return i

// Returns Proposal Info

*get-propInfo (P′)
if P′ = ("add", ·, IDs, (IDa, kb′), P̄)

op = add

orig = IDs
(wpk, spk)← kb′; data = (IDa,wpk, spk)

if P′ = ("rem", ·, IDs, IDr, P̄)
op = rem

orig = IDs
data = IDr

if P′ = ("upd", ·, IDs, spk, P̄)
op = upd

orig = IDs
data = spk

return (op, orig, data)

Figure 9: The SGM Construction : Helper Algorithm.

Safety Helpers for SGM Construction

// Determines if authenticity

// of epoch vid compromised

*auth-compr (vid)
return ¬*PP-secure(vid, *Proj-PP(SGM-Data))

// Determines if ID’s signature

// key is compromised in epoch vid

*SK-compr (vid, ID)
chk HG.getSKIDs(vid, ID) ∩ SK-Lk = ∅

// Privacy Predicate

*AM-sec (vid, S, i)
if *PP-secure(vid, *Proj-PP(SGM-Data))

return *FS-sec((S, i), *Proj-FS(SGM-Data, vid))
return false

// Project History Graph to PRF-PRNG Game

*Proj-PP (SGM-Data = (V,P, V-Lk, AM-Lk, BR,WK-Lk))
for (vid, orig, data, pid) ∈ V

V′ +← vid

for vid ∈ V′
BI[vid]← ¬*CGKA-priv(vid′, *Proj-CGKA(SGM-Data))

return (V′, V-Lk, BI)

// Project History Graph to CGKA Game

*Proj-CGKA (SGM-Data = (V,P, V-Lk, AM-Lk, BR,WK-Lk))
for (vid, orig, data, pid) ∈ V

V′ +← (vid, orig, pid)

for p = (pid, vid, orig, op, data) ∈ V
if op = add

let data = (ID′,wkid′, skid′)
data′ ← (ID′,wkid′)
p′ ← (pid, vid, op, orig, data′)

if op = rem

p′ ← p
if op = upd

p′ ← ⊥
P′ +← p′

return (V′,P′, V-Lk, BR,WK-Lk)

// Project History Graph to FS-GAEAD Game

*Proj-FS (SGM-Data = (V,P, V-Lk, AM-Lk, BR,WK-Lk), vid)
for (vid, ID, AM-Rcvd[ID], AM-Tr[ID]) ∈ AM-Lk

AM-Lk′ +← (ID, AM-Rcvd[ID], AM-Tr[ID])

return AM-Lk′

Figure 10: Safety oracles and safety predicate of the security game for SGM schemes.
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Theorem 4. Let SGM = SGM(K,F,PKE,S,M,PP,H) be the SGM scheme presented above and let
ΠSGM = ΠSGM(ΠCGKA,ΠFS,ΠPP) be predicates such that: (1) K is an (t, q, εCGKA)-secure CGKA
scheme with respect to predicate ΠCGKA, (2) F is an (t, εFS)-secure FS-GAEAD scheme with respect to
predicate ΠFS, (3) PKE is an (t, εPKE)-CPA secure public-key encryption scheme, (4) S is an (t, εsig)-
existentially unforgeable signature scheme, (5) M is an (t, εmac)-secure message authentication code,
(6) PP be an (t, εPP)-secure PRF-PRNG with respect to predicate ΠPP, (7) H is an (t, εcrh)-collision
resistant hash. Then, SGM is a (t′, εSGM)-secure SGM scheme with respect to predicate ΠSGM, where
t′ ≈ t and εSGM = 2qt4 · (εsig + εCR + εCGKA + εPKE + εPP + εmac + εFS).
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A Preliminaries

A.1 Updatable Public Key Encryption

In this section we revisit the definition of Updatable Public Key Encryption (UPKE), as defined
by [3].

Definition 2. An updatable public-key encryption (UPKE) scheme is a triple of algorithms
UPKE = (UKGen,UEnc,UDec) with the following syntax:

• Key generation: UKGen receives a uniformly random key sk0 and outputs a fresh initial public
key pk0 ← UKGen(sk0).

• Encryption: UEnc receives a public key pk and a message m and produces a ciphertext e and a
new public key pk′.

• Decryption: UDec receives a secret key sk and a ciphertext e and outputs a message m and a
new secret key sk′.

Correctness. A UPKE scheme must satisfy the following correctness property. For any sequence
of randomnesss and message pairs {ri,mi}qi=1,

P

[
sk0 ← SK; pk0 ← UKGen(sk0); For i ∈ [q], (ei, pki)← UEnc(pki−1,mi; ri);

(m′i, ski)← UDec(ski−1, ei) : mi = m′i

]
= 1.

IND-CPA security for UPKE. For any adversary A with running time t, we consider the
following IND-CPA security game:

• Sample sk0 ← SK, pk0 ← UKGen(sk0)

• A on input pk0 outputs (m∗0,m
∗
1), {ri,mi}qi=1

• For i = 1, . . . , q, compute (ei, pki)← UEnc(pki−1,mi; ri); (mi, ski)← UDec(ski−1, ei)

• Compute b← {0, 1}, (e∗, pk∗)← UEnc(pkq,m
∗
b), (·, sk∗)← UDec(skq, e

∗)

• b′ ← A(pk∗, sk∗, e∗)

A wins the game if b = b′. The advantage of A in winning the above game is denoted by AdvUPKE
CPA (A).

Definition 3. An updatable public-key encryption scheme UPKE is (t, ε)-CPA-secure, if for all
t-attackers A,

AdvUPKE
CPA (A) ≤ ε .

B Continuous Group Key Agreement

B.1 Security

CGKA schemes must satisfy correctness, i.e., all group members output the same keys in every
epoch. Furthermore, the keys must be private, and the CGKA scheme must satisfy post-compromise
forward secrecy (PCFS).

Similarly to the SGM game, the CGKA game allows adversary A to control the execution of and
attack a single group. In particular, A controls who creates the group, who is added and removed,
who updates, who commits, etc. The attacker is also allowed to leak the state of any party (whether
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currently part of the group or not) at any time. The privacy of keys is captured by considering
a challenge that outputs either the actual key output by the CGKA scheme or a truly random
one—which one is determined by an internal random bit b, which must be guessed by A at the end
of the game.

B.1.1 Bookkeeping.

Similarly to SGM schemes, the CGKA security game keeps track of all the relevant execution data
with the help of a so-called history graph, and the recorded data informs a safety predicate (pertaining
to privacy) evaluated at the end of the game. The following paragraphs outline the differences in
bookkeeping between the CGKA game and the SGM game.

History graphs. A history graph is again a directed tree whose nodes correspond to the group
state in the various epochs of an execution. As with the SGM game, there are three types of nodes:
vroot, vcreate nodes, and commit nodes v. A node consists of the following values:

v = (vid, orig,pid) ,

where

• vid is the node’s (unique) ID,

• orig is the party that caused the node’s creation, i.e., orig is either the group creator or the
committer,

• pid is the vector of (IDs of) proposals (see below) that were included in the commit.

The history graph is accessed by the security-game oracles via the “HG object” HG, which provides
information via several methods (explained later as they are needed). The (ID of the) node
corresponding to a party’s current state is stored by the array V-Pt[ID].

Proposals. Similarly to HG and the history graph, the object Props keeps track of proposals. The
information recorded about each proposal is a vector

p = (pid, vid, op, orig, data) ,

where

• pid is the proposal’s (unique) ID,

• vid is the (ID of) the HG node corresponding to the epoch in which the proposal was created,

• op ∈ {add, rem, upd} is the type of proposal,

• orig is the party that issued the proposal, and

• data is additional data.

Similarly to the HG object, Props will also export several useful methods (also explained later) to
the oracles of the security game.

PKI bookkeeping. The PKI is significantly simpler in the CGKA game: it only handles so-called
init keys (IKs), each of which has an ID ikid. Arrays are maintained to map ikids to the corresponding
public init key (IK-PK) and secret init key (IK-SK). Moreover, IK-St records the IKs stored by each
party, and IK-Tr and IK-Lk keep track of “trash” IKs (old secret init keys not deleted) and leaked
IKs.
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CGKA Security Game: Initialization

// General

b← {0, 1}
idCtr++
∀ID : γ[ID]← Init(ID)

// Communication

CM[·, ·]← ε
PM[·, ·]← ε
WMpub[·, ·]← ε

WMpriv[·, ·]← ε

WM-Lk← ∅

// History Graph

vidroot ← HG.init
V-Pt[·]← vidroot
V-Tr[·]← ∅
V-Lk← ∅
P-St[·]← ∅

// Miscellaneous

Key[·]← ∅
Reveal[·]← ∅
Chall[·]← ∅
Del[·]← true
BR[·]← false

// PKI

IK-PK[·]← ε
IK-SK[·]← ε
IK-St[·]← ∅
IK-Tr ← ∅
IK-Lk← ∅

Figure 11: Initialization of the security game for CGKA schemes.

Keys and Challenges. The array Key[vid] stores, for each vid the corresponding key, and (the
Boolean arrays) Reveal[vid] and Chall[vid] store whether the key was revealed and challenged, respec-
tively.

B.1.2 Initialization.

The initialization of the CGKA game proceeds along very similar lines to that of the SGM game. It
is depicted in Figure 11.

B.1.3 Oracles.

All adversary oracles described below proceed according to the same pattern: (a) verifying the
validity of the oracle call, (b) retrieving values needed for (c), (c) running the corresponding SGM
algorithm, and (d) updating the bookkeeping. Validity checks (a) are described informally in the
text below; a formal description is provided in Figure 15. Note that, most of the time, (b) and (c)
are straight-forward and are not mentioned in the descriptions. To improve readability, lines (c) are
highlighted.

B.1.4 PKI.

The spirit of the PKI (Figure 12) in the CGKA game differs somewhat from the SGM case. Init
keys (IKs) are either honestly generated by a party, via oracle gen-new-ik, or registered by the
attacker A, via oracle reg-ik. Note that the CGKA game will allow the attacker to pick which IK a
new group member is added with; hence, there is no association between IKs and identities.

Oracle gen-new-ik(ID) runs the IK-generation algorithm Gen-IK and stores the resulting key
pair with a new ikid. The oracle also records in IK-St that ID now stores the IK with ID ikid. Oracle
reg-ik(ipk) allows A to register an IK public key ipk with the game (and get an ikid for it).

B.1.5 Main oracles.

The main oracles of the CGKA game are split into two figures: oracles related to (i) group
creation, proposals, and commits (Figure 13), and (ii) message processing, corruption, and challenges
(Figure 14). The validity of all oracle calls is checked by the corresponding compatibility functions
(Figure 6).

37



CGKA Security Game: PKI Oracles

// Instruct ID to generate a new initial key

gen-new-ik (ID)
(γ[ID], (ipk, isk))← Gen-IK(γ[ID])

ikid← idCtr++
IK-PK[ikid]← ipk
IK-SK[ikid]← isk
IK-St[ID] +← ikid

return (ikid, ipk)

// Allows attacker to register IKs with game

reg-ik (ipk)
req 6∃ ikid : IK-PK[ikid] = ipk

ikid← idCtr++
IK-Lk +← ikid
IK-PK[ikid]← ipk

return ikid

Figure 12: PKI-related oracles of the security game for continuous group key agreement schemes.

Group creation. The attacker can instruct a party ID to create a new group by calling the
group-creation oracle (Figure 3), which works analogously to the corresponding oracle in the SGM
game. The bookkeeping is updated as follows: A call is made to the HG.create(ID, skid) method.
This causes HG to create a node

v =

 .vid ← idCtr++
.orig ← ID
.pid ← ⊥


as a child of vroot and return vid = v.vid. Note that the CGKA group-creation oracle also stores the
key I output by Create in the array Key.

Proposal oracles. The oracles prop-{add, rem,up}-user (Figure 13) allow the attacker to
instruct a party ID to issue add/remove/update proposals. These oracles work much like their
counterparts in the SGM game. Bookkeeping is updated by calling Props.new(op, ID, data), which
records proposal data

p =


.pid ← idCtr++
.vid ← V-Pt[ID]
.op ← op

.orig ← ID
.data ← data

 ,

where op ∈ {add, rem, upd} is the proposal type and where data stores

• (add proposals) data = (ID′, ikid′), where ikid′ is the (ID of the) init key ID′ is to be added with;

• (remove proposals) data = ID′;

• (update proposals) data = ⊥.

Observe that one crucial difference between the CGKA and SGM games is that the CGKA game
does not explicitly model the delivery of proposals. This is due to the fact that a CGKA is assumed
to be run over authenticated channels, and hence there is no way for A to inject malicious proposals,
and, consequently, the proper delivery of proposals can be outsourced to the higher-level protocol.

Creating commits. The commit oracle (Figure 13) allows A to instruct a party ID to execute
a commit operations. It works analogously to its SGM-game counterpart. Bookkeeping calls
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CGKA Security Game: Create group, Proposal and Commit Oracles

// ID creates new group

create-group (ID, ikid, r)
req *compat-create(ID, ikid)

isk← IK-SK[ikid]

(γ[ID], I)← Create(γ[ID], isk; r)

vid← HG.create(ID, r)
Key[vid]← I
BR[vid]← (r 6= ⊥)
V-Pt[ID]← vid

return vid

// ID proposes to add ID′

prop-add-user (ID, ID′, ikid′)
req *compat-prop(add, ID, ID′, ikid′)

ipk′ ← IK-PK[ikid′]

(γ[ID], P )← Add(γ[ID], ID′, ipk′)

pid← Props.new(add, ID, (ID′, ikid′))
PM[pid]← P

return (pid, P )

// ID proposes to remove ID′

prop-rem-user (ID, ID′)
req *compat-prop(rem, ID, ID′,⊥)

(γ[ID], P )← Remove(γ[ID], ID′)

pid← Props.new(rem, ID, ID′)
PM[pid]← P

return (pid, P )

// ID proposes to update

prop-up-user (ID, r)
req *compat-prop(upd, ID,⊥,⊥)

(γ[ID], P )← Update(γ[ID]; r)

pid← Props.new(upd, ID,⊥)
BR[vid]← (r 6= ⊥)
PM[pid]← P

return (pid, P )

// ID commits proposals pid

commit (ID, pid, r)
req *compat-commit(ID, pid)
vid← HG.commit(ID, pid)

(γ[ID], I,Wpub,Wpriv, T )← Commit(γ[ID], PM[pid]; r)

Key[vid]← I
BR[vid]← (r 6= ⊥)

for ID′ ∈ HG.roster(V-Pt[ID])
CM[vid, ID′]← T

(ID1, . . . , IDm)← Props.addedIDs(pid)

for i = 1, . . . ,m
WMpub[vid, IDi]← Wpub

WMpriv[vid, IDi]←Wpriv[IDi]

return (vid, T,Wpub,Wpriv)

Figure 13: Oracles for group creation, add, remove, update proposals and commits of the security
game for continuous group key agreement schemes. The compatibility functions are described in the
accompanying text; a formal description is provided in Figure 15.

HG.commit(ID,pid), which creates a new HG node

v =

 .vid ← idCtr++
.orig ← ID
.pid ← pid


as a child of ID’s current epoch V-Pt[ID] and returns vid = v.vid. Note that the key output by
Commit is stored in array Key. Furthermore, observe that the algorithm outputs (one) public and
several private welcome messages (one for each newly added party). The private welcome messages
are not returned to A and are delivered securely to their intended recipient—the idea being that
these messages are encrypted by the higher-level application.

Process control messages. The oracles process and dlv-WM (Figure 14) allow the attacker
to deliver commit messages (to existing group members) resp. welcome messages (to new group
members). The oracles works much like their SGM counterparts, except that all the information
required by Proc-Com resp. Join is supplied by the game. The oracles also check that the key I
output by Proc-Com resp. Join and matches the one stored in array Key during the corresponding
call to commit.

Key-reveal and challenge oracles. For each epoch, the attacker A gets to either see the actual
key output by the protocol or a challenge by calling reveal or chall (Figure 14), respectively. Oracle
chall outputs either the real key or a completely random one, depending on the secret internal bit b
chosen at the onset of the game.

39



CGKA Security Game: Message processing and corruption/leakage attacks oracles

// Process commit msg for ID and epoch vid

process (vid, ID)
req *compat-process(vid, ID)

T ← CM[vid, ID]
P← PM[HG[vid].pid]

(γ[ID], GI, I)← Proc-Com(γ[ID], T,P)

if ¬HG.checkGI(vid, GI) ∨ Key[vid] 6= I
win

if ¬Del[ID]
V-Tr[ID]← V-Pt[ID]

if HG.isRemoved(vid, ID)
V-Pt[ID]← vidroot

else
V-Pt[ID]← vid

i[ID]← 0
P-St[ID]← ∅
return GI

// Reveal the update secret of epoch vid

reveal (vid)
req Key[vid] 6= ε
req ¬(Reveal[vid] ∨ Chall[vid])
Reveal[vid]← true
return Key[vid]

// Challenge the update secret of epoch vid

chall (vid)
req Key[vid] 6= ε
req ¬(Reveal[vid] ∨ Chall[vid])
I0 ← Key[vid]
I1 ← I
Chall[vid]← true
return Ib

// Welcome msg. of epoch vid delivered to ID

dlv-WM (vid, ID)
req *compat-dlv-WM(vid, ID)

Wpub ← WM-pub[vid, ID]

Wpriv ← WM-priv[vid, ID]

ikid← HG.addedIK(vid, ID)
isk← IK-SK[ikid]
let v s.t. v.vid = vid
orig ← v.orig = vid

(γ[ID], GI, I)← Join(ID, orig,Wpub,Wpriv, isk)

if ¬HG.checkGI(vid, GI) ∨ Key[vid] 6= I
win

if ¬Del[ID]
IK-Tr[ID] +← ikid

IK-St[ID] −← ikid
V-Pt[ID]← vid
return GI

// Corrupt ID

corr (ID)
V-Lk +← {(vid, ID) | vid ∈ {V-Pt[ID]} ∪ V-Tr[ID]}
IK-Lk +← IK-St[ID] ∪ IK-Tr[ID]
HG.corrHanging(ID)

return γ[ID]

// Enable no-delete for ID

no-del (ID)
disable deletions for ID
Del[ID]← false

// Safety for privacy

*priv-safe
return ∀vid : Chall[vid] =⇒ *CGKA-priv(vid)

Figure 14: Oracles for message processing, corruption, and challenges of the security game for contin-
uous group key agreement schemes. The compatibility functions are described in the accompanying
text; a formal description is provided in Figure 15.

Corruption oracles. The oracles related to corruption in the CGKA game (Figure 14) are:

• corr(ID): leaks the state of ID to A;

• no-del(ID): instructs ID to stop deleting old values.

B.1.6 Safety.

At the end of the execution of the CGKA security game, the procedure *priv-safe ensures that the
attacker has only challenged in epochs that are considered secure by the (generic) safety predicate
*CGKA-priv. If the condition is not satisfied, the attacker loses the game.

B.1.7 Advantage.

Let Π = *CGKA-priv be the generic safety predicate used in the CGKA definition. The attacker
A is parameterized by it’s running time, t, and the number of challenge queries, q, and referred to
as (t, q)-attacker. The advantage of A against a CGKA scheme K w.r.t. to predicate Π is denoted by
AdvK

CGKA,Π(A).

Definition 4. A CGKA scheme K is (t, q, ε)-secure w.r.t. predicate Π, if for all (t, q)-attackers,

AdvK
CGKA,Π(A) ≤ ε .

40



CGKA Security Game: Compatibility Helpers

*compat-create (ID, ikid)
chk ikid ∈ IK-St[ID]
return V-Pt[ID] = vidroot

*compat-prop (op, ID, ID′, ikid)
vid← V-Pt[ID]

chk vid 6= vidroot

G← HG.roster(vid)

select op
case add do

chk ∃ipk′ : IK-PK[ikid′] = ipk′

chk ID′ /∈ G
case rem do

chk ID′ ∈ G
return true

*compat-commit (ID, pid)
vid← V-Pt[ID]

chk vid 6= vidroot

G← HG.roster(vid)

for pid ∈ pid
p← Props[pid]
chk p.vid = vid
G← *app-prop(G, p)
chk G 6= ⊥

chk ID /∈ G

return true

*compat-process (vid, ID)
chk HG.isChild(V-Pt[ID], vid)

return true

*app-prop (G, p)
req p.orig ∈ G

select p.op
case add do

(ID′, ·)← p.data

req ID′ /∈ G

G +← ID′

case rem do
ID′ ← p.data

req ID′ ∈ G
G −← ID′

return G

*compat-dlv-WM (vid, ID)
chk V-Pt[ID] = vidroot

ikid← HG.addedIK(vid, ID)
chk ikid 6= ⊥
∧ ikid ∈ IK-St[ID]

return true

Figure 15: Compatibility oracles of the security game for continuous group key agreement schemes.

C (R)TreeKEM

C.1 Overview

The (R)TreeKEM CGKA protocol is based on so-called (binary) ratchet trees (RTs). In a
(R)TreeKEM RT, group members are arranged at the leaves, and all nodes have an associated
public-key encryption (PKE) key-pair, except for the root. The tree invariant is that each user
knows all secret keys on their direct path, i.e., on the path from their leaf node to the root. In order
to perform an update—the most crucial operation of a CGKA—and produce a new update secret I,
a party first generates fresh key pairs on every node of their direct path. Then, for every node v′ on
its co-path—the sequence of siblings of nodes on the direct path—it encrypts specific information
under the public key of v′ that allows each party in the subtree of v′ to learn all new secret keys
from v’s parent up to the root.

Before presenting the formal description of (R)TreeKEM in Sections C.3,C.4, basic concepts
around ratchet trees are explored in Section C.2.

C.2 Ratchet Trees

C.2.1 Basics

The following are some basic concepts around TreeKEMs ratchet trees.

LBBTs. An RT in TreeKEM is a so-called left-balanced binary tree (LBBT). In a nutshell, an
LBBT on n nodes (is defined recursively and) has a maximal full binary tree as its left child and an
LBBT on the remaining nodes as its right child.

Definition 5 (Left-Balanced Binary Tree). For n ∈ N, the left-balanced binary tree (LBBT) on
n nodes LBBTn is the binary tree constructed as follows: The tree LBBT1 is a single node. Let
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x = mp2(n).12 Then, the root of LBBTn has the full subtree FTx as the left subtree and LBBTn−x as
the right subtree.

Observe that LBBTn has exactly n leaves and that every internal node has two children. In an RT,
nodes are labeled as follows: Root: The root is labeled by an update secret I. Internal nodes:
Internal nodes are labeled by a key pair, (pk, sk), for the PKE scheme, PKE. Leaf nodes: Leaf nodes
are labeled like internal nodes, except that they additionally have an owner ID.

Labels are referred to using dot-notation (e.g., v.pk is v’s public key). As a shorthand, τ.ID is
the leaf node with label ID. Any subset of a node’s labels may be undefined, which is indicated by
the special symbol ⊥. Furthermore, a node v may be blank. A blank node has all of its labels set
to ⊥. As explained below, all internal nodes in a freshly initialized RT are blank, and, moreover,
blanks can result from adding and removing users to and from a group, respectively.

Paths and blanking. As hinted at the beginning of this section, it will be useful to consider the
following types of paths: the direct path dPath(τ, ID), which is the path from the leaf node labeled
by ID to the root; the co-path coPath(τ, ID), which is the sequence of siblings of nodes on the direct
path dPath(τ, ID). Furthermore, given an ID, ID, and an RT, τ , the function τ ′ ← Blank(τ, ID)
blanks all nodes on dPath(τ, ID).

Resolutions and representatives. A crucial notion in TreeKEM is that of a resolution. Intu-
itively, the resolution of a node v is the smallest set of non-blank nodes that covers all leaves in v’s
subtree.

Definition 6 (Resolution). Let τ be a tree with node set V . The resolution Res(v) ⊆ V of a node
v ∈ V is defined recursively as follows: If v is not blank, then Res(v) = {v}, else if v is a blank leaf,
then Res(v) = ∅, otherwise, Res(v) := ∪v′∈C(v)Res(v′), where C(v) are the children of v.

Each leaf `′ in the subtree τ ′ of some node v′ has a representative in τ ′:

Definition 7 (Representative). Consider a tree τ and two leaf nodes ` and `′.

1. Assume `′ is non-blank and in the subtree rooted at v′. The representative Rep(v′, `′) of `′ in
the subtree of v′ is the first filled node on the path from v′ (down) to `.

2. Consider the least common ancestor w = LCA(`, `′) of ` and `′. Let v be the child of w on the
direct path of `, and v′ that on the direct path of `′. The representative Rep(`, `′) of `′ w.r.t. `
is defined to be the representative Rep(v′, `′) of `′ in the subtree of v′.

It is easily seen that Rep(v′, `′) ∈ Res(v′).

C.2.2 Simple RT operations

The following paragraphs describe how RTs are initialized as well as how they grow and shrink. The
proofs of Lemmas 5 and 6 below can be found in the full version [3].

RT Initialization. Given an ID ID and secret key sk, the initialization operation creates a tree
with a single node, as depicted in Figure 16.

12Recall that mp2(n) is the maximum power of two dividing n.
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Adding IDs to the RT. Given an RT τ , the procedure τ ′ ← AddID(τ, ID, pk), sets the labels of
the first blank leaf of τ to (ID, pk,⊥), and outputs the resulting tree, τ ′. If there is no blank leaf in
the tree τ = LBBTn, method AddLeaf(τ) is called, which adds a leaf z to it, resulting in a new tree
τ ′ = AddLeaf(τ): If n is a power of 2, create a new node r′ for τ ′. Attach the root of τ as its left
child and z as its right child. Otherwise, let r be the root of τ , and let τL and τR be r’s left and
right subtrees, respectively. Recursively insert z into τR to obtain a new tree τ ′R, and let τ ′ be the
tree with r as a root, τL as its left subtree and τ ′R as its right subtree.

Lemma 5. If τ = LBBTn, then τ ′ = LBBTn+1.

Removing an ID. The procedure τ ′ ← RemID(τ, ID) blanks the leaf labeled with ID and truncates
the tree such that the rightmost non-blank leaf is the last node of the tree. Specifically, the
following recursive procedure Trunc(v) is called on the rightmost leaf v of τ , resulting in a new tree
τ ′ ← Trunc(τ):13 If v is blank and not the root, remove v as well as its parent and place its sibling
v′ where the parent was. Then, execute Trunc(v′). If v is non-blank and the root, execute Trunc(v′′)
on the rightmost leaf node in the tree. Otherwise, do nothing.

Lemma 6. If τ = LBBTn, then τ ′ = LBBTy for some 0 < y ≤ n. Furthermore, unless y = 1, the
rightmost leaf of τ ′ is non-blank.

Public copy of an RT. Given an RT τ , τ ′ ← Pub(τ) creates a public copy, τ ′, of the RT by
setting all secret-key labels to ⊥.

C.3 The (R)TreeKEM protocol

This section presents the RTreeKEM protocol in detail by describing all the algorithms involved in
the scheme, which is depicted in Figure 17. Then, in Section C.4 we discuss how TreeKEM diverges
from RTreeKEM.

RTreeKEM makes (black-box) use of the following cryptographic primitives:

• a hash function H mapping elements from {0, 1}∗ to {0, 1}λ.

• a UPKE scheme UPKE = (UKGen,UEnc,UDec).

Before presenting the protocols, we define additional methods and algorithms over ratchet trees.

Ratchet tree methods.

• τ [v]: the node v in τ (for brevity we sometimes use v and the tree is implict).

• τ [ID]: the leaf node with id ID.

• τ [v].pk: the public key at node v.

• τ [v].sk: the secret key at node v.

• τ.I: the root key of the ratchet tree.

• LCA(τ, v, v′): the least common ancestor of v, v′ in τ .

• LCA(τ, ID, ID′): the least common ancestor of the nodes with ids ID, ID′, in τ .

13Overloading function Trunc for convenience here.

43



• τ.GI: the group information. τ.GI = (roster, orig,added, removed), where

– roster: vector of current group-member IDs (computed on-the-fly).

– orig: originator of τ (via either Create or Commit).

– added: contains a dictionary s.t. added[IDa] = IDs for adder IDs, addee IDa.

– removed: contains a dictionary s.t. removed[IDr] = IDs for remover IDs, removee IDr.

• DEPTH(τ, ID): the depth of the leaf node with id ID in τ .

• FBL(τ): returns the first blank leaf of τ .

We now describe the ratchet tree algorithms depicted in Figure 16

Ratchet Tree Algorithms

// Ratchet tree initialization

Init (ID, isk)
ipk← UKGen(isk)
τ ← LBBT1
let v be the only node in τ
τ [v].ID← ID
τ [v].pk← ipk
τ [v].sk← isk
τ.GI.orig ← ID
τ.GI.{added, removed} ← ∅
return τ

// Id removal

RemID (τ, ID)
τ [ID].label← ⊥
τ ← TRUNC(τ)

return τ

// Node blanking

Blank (τ, ID)
for v ∈ dPath(τ, ID)

τ [v].label← ⊥
return τ

// Leaf node update

UPID (τ, ID, ipk)
τ [ID].pk← ipk

return τ

// Addition of new leaf id

AddID (τ, ID, ipk)
v ← FBL(τ)
if v = ⊥

(τ, v)← AddLeaf(τ)
τ [v].label← (ID, ipk,⊥)
for u ∈ dPath(τ, v)

if τ [u].label 6= ⊥
τ [u].unmerged +← v

return τ

Figure 16: Basic ratchet tree algorithms. Other operations are defined in Section C.2.

Ratchet tree algorithms.

• Init(ID, isk): creates a ratchet tree with labels

– τ.GI.orig = ID,

– τ.{added, removed} = ∅.

and single node v with labels τ [v].label, consisting of

– τ [v].ID = ID (only for leaves),

– τ [v].pk = UKGen(isk),

– τ [v].sk = isk.

• RemID(τ, ID): erases the label for the leaf node with id ID and truncates the ratchet tree (if
needed).

• Blank(τ, ID): blanks all nodes in the direct path of the leaf with id ID.

• UPID(τ, ID, ipk): updates the public key of the leaf node with id ID to ipk.

• AddID(τ, ID, ipk): adds a new id ID with public key ipk to τ , blanks all nodes in the direct path
of the new node v and adds v to their set of unmerged leaves.

We now describe the core of the RTreeKEM protocol, depicted in Figure 17.
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RTreeKEM

// State initialization

RTK-init (ID)
ME← ID
τ ← ⊥
ctr ← 0

τ ′[·], conf[·],UPK[·]← ⊥

// Init key generation

RTK-Gen-IK
isk← UKS
ipk← UKGen(isk)

return (ipk, isk)

// Group creation

RTK-Create (ID, isk; r)
RTK-init(ID)
if r = ⊥

I ← {0, 1}λ
else

I ← r

τ ← Init(ME, isk)

return (τ.GI, I)

// Add proposal

RTK-Add (ID′, ipk′)
P ← (add,ME, ID′, ipk′)
return P

// Remove proposal

RTK-Rem (ID′)
P ← (rem,ME, ID′)
return P

// Update proposal

RTK-Update (r)
if r = ⊥

sk← UKS
else

sk← r
pk← UKGen(sk)
UPK[pk]← sk
P ← (upd,ME, pk)

return P

// Group join

RTK-Join (ID, orig,Wpub,Wpriv, isk)
RTK-init(ID)
τ ← Wpub

(τ [ME].sk, s)← UDec(isk,Wpriv)
(τ, ·, ·)←
*refresh-path(τ, s, LCA(ME, orig))

return (τ.GI, τ.I)

// Commit operation

RTK-Commit (P; r)
τ ′ ← τ

τ ′ ← *apply-props(τ ′,P)

(τ ′, T,Wpriv)← *refresh-gen(τ ′, r)

τ ′.GI.orig ← ME

Wpub ← Pub(τ ′)
ctr++

τ ′[ctr]← τ ′

conf[ctr]← T

I ← τ ′.I
τ ′.I ← ⊥
return (I,Wpub,Wpriv, T )

// Process commit message

RTK-Proc-Com (T,P)
if ∃j : conf[j] = T

τ ← τ ′[T ]
else

τ ← *apply-props(τ,P)
τ ← *refresh-proc(τ, T )

(ID, ·, ·)← T
τ.GI.orig ← ID
I ← τ.I
τ.I ← ⊥
ctr ← 0

τ ′[·], conf[·],UPK[·]← ε

return (τ.GI, I)

// Apply proposals

*apply-props (τ,P)
added[·], removed[·]← ε

for P ∈ P
if P = (add, IDs, IDa, ipk)

τ ← AddID(τ, IDa, ipk)
added[IDa]← IDs
removed[IDa]← ε

if P = (rem, IDs, IDr)
τ ← Blank(τ, IDr)
τ ← RemID(τ, IDr)
removed[IDr]← IDs
added[IDr]← ε

if P = (upd, ·, ID, pk,⊥)
τ ← UPID(τ, ID, pk)
τ ← Blank(τ, ID)
if ID = ME

τ [ID].sk← UPK[pk]

τ.GI.added← added
τ.GI.removed← removed

return τ

// Refresh message generation

*refresh-gen (τ, r)
if r = ⊥

s← {0, 1}λ
else

s← r

v ← τ [ID]
Wpriv[·], c[·]← ε

(τ, s, PK)← *refresh-path(τ, s, v)

(v′0, . . . , v
′
d−1)← coPath(τ, v)

for i = 1, . . . , d
for w ∈ Res(v′i−1)

if τ [w].ID ∈ τ.GI.added
(τ [w].pk,Wpriv[τ [w].ID])←

UEnc(τ [w].pk, s[i])

else
(τ [w].pk, c[w])← UEnc(τ [w].pk, s[i])

T ← (ID, PK, c)
return (τ, T,Wpriv)

// Refresh path secrets

*refresh-path (τ, s0, v)
d← DEPTH(τ, v)
s[·], PK[·]← ε
s[0]← s0
for i = 1, . . . , d− 1

sk← H(s[i], kgen)
s[i + 1]← H(s[i], path)
PK[i]← UKGen(sk)
τ [v].label← (PK[i], sk)
τ [v].unmerged← ∅
v ← τ [v].parent
τ [v].I ← s[d]

return (τ, s, PK)

// Process control message

*refresh-proc (τ, T )
(ID, PK, c)← T
v ← τ [ME]

v′ ← τ [ID]

w ← Rep(τ, v, v′)
(τ [w].sk, s0)← UDec(τ [w].sk, c[v])

(z0, . . . , zd)← dPath(τ, v′)
for i = 0, . . . , d− 1

τ [zi].pk← PK[i]

(τ, ·, ·)← *refresh-path(τ, s0, LCA(v, v′))
return τ

Figure 17: The RTreeKEM protocol operations.

C.3.1 Initialization.

The initialization procedure RTK-init expects as input an ID ID and initializes several state variables:
Variable ME remembers the ID of the party running the scheme and τ will keep track of the current
ratchet tree. The other variables are used to keep track of all the operations (creates, adds, removes,
updates and commits) initiated by ME but not confirmed yet by the server. Specifically, each time
a party performs a new operation, it increases ctr and stores the potential next state in τ ′[ctr].
Moreover, conf[ctr] will store the control message the party expects from the server as confirmation
that the operation was accepted. These variables are reset each time the party processes a control
message (which can either be one of the messages in conf or a message sent by another party).
Finally UPK stores UPKE keys generated via updates.
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C.3.2 Generation of init keys.

RTK-Gen-IK simply generates a new UPKE key pair.

C.3.3 Group creation.

The group creation operation RTK-Create receives an id ID, a secret init key isk and randomness
r, initializes the RTreeKEM state for ID by executing RTK-init(ID), creates a ratchet tree with id
ID and secret key isk by executing Init(ME, isk) and sets the CGKA update secret to r, if r 6= ⊥,
otherwise, to a uniformly random value. It returns the group information and the update secret.

C.3.4 Proposals.

• RTK-Add(ID′, ipk′): creates an add proposal for adding to the CGKA group the id ID′ with
init public key ipk′.

• RTK-Rem(ID′): creates a remove proposal for removing from the CGKA group the id ID′.

• RTK-Update(r): creates an update proposal by generating a new UPKE key pair. If r = ⊥ the
key generation process uses fresh randomness, otherwise it sets sk = r. The newly generated
UPKE pair is stored to UPK and will only be used if there is a commit operation that includes
the specific proposal.

Observe that proposals store the id ME of the issuer.

C.3.5 Group join.

The group join operation receives the id ID of the new member, the sender of the commit message
that included the proposal for adding ID to the group, orig, the public version of the ratchet tree
Wpub, the private welcome information Wpriv and the joiner’s secret init key isk and

• Initializes the RTreeKEM state by executing RTK-init(ID).

• Sets the ratchet tree to Wpub.

• Decrypts Wpriv with isk, stores the new UPKE secret key sk to the leaf τ [ME] and using the
recovered path secret s, executes *refresh-path which generates path secrets and UPKE keys
along the direct path of LCA(ME, orig) (see below).

C.3.6 Commits.

The RTK-Commit operation receives a vector of proposals P and randomness r, applies P to the
current ratchet tree by executing *apply-props and generates path secretes along the direct path of
the issuer by executing *refresh-gen (see below). The issuer switches to the new ratchet tree τ ′ only
after receiving a confirmation for the control message T . The operation outputs the new update
secret I, T , the public copy of the new ratchet tree τ ′ and the welcome private information Wpriv.
A detailed description of those variables is provided below.

C.3.7 Processing commits.

The RTK-Proc-Com operation is processing commit messages. In particular, it receives a control
message T and a vector of proposals P and
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• If T awaits for confirmation (checked by ∃j : conf[j] = T ) then the party is the issuer of the
commit message thus it has already computed the new ratchet tree τ ′.

• Otherwise, it applies the vector of proposals to it’s current ratchet tree by executing *apply-props
and then processes the control message T by executing *refresh-proc (see below).

Subsequently, the operation sets the originator of the commit message and the new CGKA update
secret and outputs that secret as well as the group information.

We now describe the helper functions of Figure 17.

C.3.8 Applying proposals.

The operation *apply-props receives a ratchet tree τ and a vector of proposals, applies the proposals
to τ and outputs the new ratchet tree. In particular,

• For an add proposal (add, IDs, IDa, ipk) the new id IDa with init public key ipk is added to the
ratchet tree by executing AddID(τ, IDa, ipk). Note that AddID includes the node of IDa to the
set of the unmerged nodes along the direct path of IDa. Future protocol messages will be
also encrypted under the public key of IDa, until the node of IDa is removed from the set of
unmerged leaves.

• For a remove proposal (rem, IDs, IDr), the leaf node of IDr is removed from the ratchet tree by
executing RemID(τ, IDr) and all nodes in the direct path of IDr are blanked. This ensures that
future protocol messages won’t be encrypted under secret keys known by IDr.

• For an update proposal (upd, ·, ID, pk,⊥), the UPKE public key of ID is updated by executing
UPID(τ, ID, pk) and all nodes in the direct path of ID are blanked. If the operation is executed
by the proposal issuer, it also updates the UPKE secret key by setting τ [ID].sk← UPK[pk].

The operation also updates the group information, GI, by computing the sets of newly added members
and removed ones, as well as the ids that issued the proposals.

C.3.9 Refresh path secrets.

The operation *refresh-path receives a ratchet tree τ , a seed s0 and node v and generates secrets
and UPKE keys along the direct path of v. In particular, for i ∈ [d− 1], where d is the depth of
v in τ , the operation computes the UPKE key sk ← H(s[i], kgen), where s[0] ← s0, and the path
secret of the father s[i+ 1]← H(s[i], path). In addition, for all nodes in the direct path of v the set
of unmerged leaves is set to ∅. The operation returns the new ratchet tree, the path secrets s and
the newly generated public UPKE keys PK.

C.3.10 Generation of protocol messages for refreshed secrets.

The operation *refresh-gen receives a ratchet tree τ and randomness r (if r 6= ⊥ then the operation
uses adversarially controlled randomness). It generates path secrets and UPKE keys by executing
*refresh-path(τ, s, v) and then encrypts the path secrets s under the public keys of the co-path nodes.
In particular, let v′0, . . . , v

′
d−1 be the nodes on the co-path of v (i.e., v′i is the sibling of vi). For every

value s[i], and every node w ∈ Res(v′i−1), if w corresponds to a node of a newly added user, then
construct welcome ciphertext for that user, Wpriv[τ [w].ID], by encrypting the path secret s[i] directly
under the user’s UPKE public key. The operation also outputs an new public key for that user’s
node τ [w]. If w does not correspond to a newly added user, then a single ciphertext is generated
and stored in c[w] (this ciphertext will be possibly decrypted by multiple nodes). Ciphertexts for
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existing users are stored in c, newly generated public keys are stored in PK, and T stores (ID, T, c),
where ID is the id of the party that issue the commit operation. *refresh-gen outputs the new ratchet
tree, the control message T and the private welcome message Wpriv that will be processed by newly
added members (each member processes the part of Wpriv that is encrypted under it’s own key).

C.3.11 Processing control messages.

The operation *refresh-proc receives a ratchet tree τ and control message T , parses T as (ID,PK, c),
and recovers the ratchet tree nodes of the current user, v ← τ [ME], and the one that generated
the control message, v′ ← τ [ID]. Then computes the representative w ← Rep(τ, v, v′), and uses it’s
private key to decrypt the corresponding ciphertext, (τ [w].sk, s0)← UDec(τ [w].sk, c[v]). Finally, the
operation updates the ratchet tree of the caller by overriding the public UPKE keys on the direct path
of v and then producing a new ratchet tree by executing (τ, ·, ·) ← *refresh-path(τ, s0, LCA(v, v′)).
The last operation generates the path secrets and UPKE keys along the direct path of LCA(v, v′).

C.4 TreeKEM

The TreeKEM protocol is similar to RTreeKEM, with the following difference: the protocol uses a
regular public-key encryption scheme (E-KeyGen,E-Enc,E-Dec) (not an updatable one). Therefore,
the only differences appear in the protocol operations that involve encryption/decryption. For
completeness, we define those operations in Figure 18

TreeKEM

// Init key generation

TK-Gen-IK
isk← KS
ipk← E-KeyGen(isk)

return (ipk, isk)

// Update proposal

TK-Update (r)
if r = ⊥

sk← KS
else

sk← r
pk← E-KeyGen(sk)
UPK[pk]← sk
P ← (upd,ME, pk)

return P

// Group join

TK-Join (ID, orig,Wpub,Wpriv, esk)
// Same as RTK-init

TK-init(ID)
τ ← Wpub

s← E-Dec(esk,Wpriv)

(τ, ·, ·)← *refresh-path(τ, s, LCA(ME, orig))
return (τ.GI, τ.I)

// Refresh path secrets

*refresh-path (τ, s0, v)
d← DEPTH(τ, v)
s[·], PK[·]← ε
s[0]← s0
for i = 1, . . . , d− 1

sk← H(s[i], kgen)
s[i + 1]← H(s[i], path)
PK[i]← E-KeyGen(sk)
τ [v].label← (PK[i], sk)
τ [v].unmerged← ∅
v ← τ [v].parent
τ [v].I ← s[d]

return (τ, s, PK)

// Refresh message generation

*refresh-gen (τ, r)
if r = ⊥

s← {0, 1}λ
else

s← r

v ← τ [ID]
Wpriv[·], c[·]← ε

(τ, s, PK)← *refresh-path(τ, s, v)

(v′0, . . . , v
′
d−1)← coPath(τ, v)

for i = 1, . . . , d
for w ∈ Res(v′i−1)

if τ [w].ID ∈ τ.GI.added
Wpriv[τ [w].ID]←

E-Enc(τ [w].epk, s[i])

else
c[w]← E-Enc(τ [w].pk, s[i])

T ← (ID, PK, c)
return (τ, T,Wpriv)

// Process control message

*refresh-proc (τ, T )
(ID, PK, c)← T
v ← τ [ME]

v′ ← τ [ID]

w ← Rep(τ, v, v′)
s0 ← E-Dec(τ [w].sk, c[v])

(z0, . . . , zd)← dPath(τ, v′)
for i = 0, . . . , d− 1

τ [zi].pk← PK[i]

(τ, ·, ·)← *refresh-path(τ, s0, LCA(v, v′))
return τ

Figure 18: The TreeKEM protocol operations that differ from RTreeKEM.

D Security of (R)TreeKEM

In this section we prove security or (R)TreeKEM against adaptive adversaries, with respect to
specific safety predicates that instantiate the generic predicate of the CGKA security definition.
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D.1 GSD for UPKE

In the current section we present the Generalized Selective Decryption (GSD) security notion for
public-key encryption, modified to capture executions of the RTreeKEM protocol, in the presence
of bad randomness and group splitting attacks. In particular, we allow the adversary to compute
hashes of node secrets, capturing the path secret generation process of RTreeKEM (and TreeKEM),
via hashing, while the underlying encryption scheme is updatable, thus, after encrypting under any
public-key, it’s value is updated as dictated by the UPKE scheme. We prove GSD security assuming
IND-CPA UPKE and the random oracle model, by appropriately adapting the proof of [1].

GSD security is formally presented by the game defined in Figure 19, which is parameterized
by the security parameter λ, the number of nodes N , a hash function H, the UPKE scheme
(UKGen,UEnc,UDec) and the adversary A. We now describe the game.

Main execution. The main execution of the GSD game, main, initializes the following variables

• A graph (V,E) with N nodes and an empty set of edges.

• The set C of corrupted nodes stores node and GSD key id pairs, (u, gid), where gid is unique
id for every UPKE key pair. gid is initialized to 0.

• BR-E[·]: dictionary s.t. gid ∈ BR-E[u], if the UPKE key pair with id gid has been generated
via encryption that uses bad (adversarially chosen) randomness.

• BR-G[·]: dictionary s.t. BR-G[u] = true if the keys of u have been generated with bad
randomness.

• ctx[·, ·]: dictionary s.t. ctx[u, gid′] = (e, gid), if e is generated under the public key of node u
with id gid′ and results in a UPKE pair with id gid.

• pk[·, ·]: dictionary that stores UPKE public-keys.

• sk[·, ·]: dictionary that stores UPKE secret-keys.

• s[·]: dictionary that stores node secrets.

• NS[·]: dictionary that stores whether a node in the GSD graph is (not) a sink.

• T [·]: for a node u, T [u] is a tree in which each node is labeled by a key id, gid. An edge (gid, gid′),
represents the fact that the key pair with id gid′ has been generated by encrypting under the
public-key with id gid. The root of T [u] is the id gid output by key-gen over u. Finally,
T [u].isChild(gid, gid′) = true, if gid′ is a child of gid in T [u], and T [u].isAnc(gid, gid′) = true, if
gid is an ancestor of gid′ in T [u].

After initializing the above variables, the main execution samples a uniformly random bit b and
seed s′, and executes the adversary with access to the remaining oracles (explained below). If
the adversary produces a graph that complies with the restrictions of the GSD game, i.e., the
challenge node is a sink and there is no trivial win (checked by *gsd-comp), the game returns
b = b′, otherwise, returns false. Below we present the oracles of the GSD game.

The encryption oracle. The encryption oracle receives a pair of nodes, u, v, randomness r and
key id gid′, encrypts the node secret of v under the public-key of u with id gid′. This operation
introduces the new edge (u, v, (e, gid′)) as well as a new child gid of gid′ in T [u]. If r 6= ⊥, then r
is used as the randomness for the encryption. Note that, u is not required to be part of the input
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to the encryption oracle, as the key id gid′ uniquely defines the public key that will be used in the
encryption operation, but we include it for clarity.

The decryption oracle. On input (u, gid′), the oracle decrypts the next ciphertext for the secret
key of u with id gid′. Note that the oracle is not outputting any plaintexts; it only makes the secret
key to evolve so that it remains synchronized with the corresponding public key. The reason for
not outputting any plaintexts is that, in the proof, access to plaintexts will be required only w.r.t.
compromised keys.

The hash computation oracle. On input (u, v) the hash oracle produces the node secret of v
by hashing the secret of node u. In addition, a “hash edge”, (u, v, h), is added to the set of edges. If
the node secret of u is generated with bad randomness, then the node secret of v is marked as bad
too.

The key-generation oracle. The oracle receives (u, (r, pk′), p). If r 6= ⊥ then the node secret
and keys of u are generated with bad randomness. If pk′ 6= ⊥, the adversary sets the public key
of node u to be equal to pk′ (this is required whenever the adversary sets it’s own public-key for a
specific GSD node which relates to the reg-ik oracle of the CGKA game). If p = true, then key-gen
outputs the key-pair, in which case u is not a sink.

Node compromise predicate. This predicate checks whether the adversary has trivially com-
promised security of a node u, which happens in the following cases: (1) the secrets of u have
been generated with bad randomness, (2) (v, gid′′) ∈ C, and there is a path from the compromised
node v with the first edge being (v, ·, (e, gid′) and gid′′ is not an ancestor of gid′ in T [v], which
implies that the adversary can compute the secret key with id gid′, and (3), the key with id gid′′

has been generated via an update over the key with id gid′, with bad randomness, and then gid′′ is
compromised, which implies that the adversary can compute the secret key with id gid′.

The oracles reveal, chall, corr, are straightforward.



GSD Security Game

// Main execution

main (·)
// Initialization

(V,E)← ([N ], ∅)
C ← ∅
BR-E[·], BR-G[·], ctx[·, ·]← ε
pk[·, ·, ·]← ε
sk[·, ·, ·]← ε
s[·],NS[·]← ε
T [·]← ε

gid← 0
b← {0, 1}
s′ ← {0, 1}λ
chl← false

O ← (enc,dec,hash, . . .
. . . , chall, corr,key-gen)

// Execution w.r.t. A

b′ ← AO

// Game output

if

1. (V,E) acyclic

2. ¬NS[u∗] and

3. ¬*gsd-comp(u∗)

return b = b′

else
return false

// Corruption oracle

corr (u, gid′)
req sk[u, gid′] 6= ε,

C +← (u, gid′)
(sku, ·)← sk[u, gid′]
return sku

// Encryption oracle

enc (u, v, r, gid′)
req pk[u, gid′], s[v] 6= ε

pku ← pk[u, gid′]

E +← (u, v, (e, gid′))
gid++

T [u].addChild(gid′, gid)

if r = ⊥
r ← {0, 1}λ

else
BR-E[u] +← gid

(pku, e)← UEnc(pku, s[v]; r)

ctx[u, gid′]← (e, gid)
pk[u, gid]← pku
NS[u]← true

return (pku, e, gid)

// Decryption oracle

dec (u, gid′)
req ctx[u, gid′]
sk[u, gid′] 6= ε

(e, gid′′)← ctx[u, gid′]
sku ← sk[u, gid′]
(sku, ·)← UDec(sku, e)

sk[u, gid′′]← sku

// Hashing oracle

hash (u, v)
req s[u] 6= ε ∧ s[v] = ε ∧ (u, ∗, h) /∈ E
s[v]← H(s[u], path)
E +← (u, v, h)
BR-G[v]← (BR-G[u] = true)
NS[u]← true

// Challenge oracle

chall (u)
req ¬chl ∧ s[u] 6= ε
u∗ ← u
chl← true

if b = 0
return s[u]

else
return s′

// Key/node secret gen

key-gen (u, (r, pk′), p)

if s[u] = ε
if r 6= ⊥

s[u]← r
BR-G[u]← true

else

s[u]← {0, 1}λ

if pk[u, ·] = ε
if pk′ 6= ⊥

pku ← pk′

sku ← ε
C +← (u, gid)

else
sku ← H(s[u], kgen)
pku ← UKGen(sk)

sk[u, gid]← sku
pk[u, gid]← pku
T [u].root← gid
gid++

if p
NS[u]← true
return (pk, gid)

// Node secret reveal oracle

reveal (u)
req u 6= u∗ ∧ s[u] 6= ε
BR-G[u]← true

return s[u]

// Node compromise safety check

*gsd-comp (u)
if BR-G[u] = true

return true
for (v, gid′), s.t. a v-u path exists,

with first edge (v, ·, (e, gid′))
if ∃gid′′ s.t.

1. (v, gid′′) ∈ C

2. ¬T [v].isAnc(gid′, gid′′)

or

1. gid′′ ∈ BR-E[v]

2. (v, gid′′) ∈ C

3. T [v].isChild(gid′, gid′′)

return true
return false

Figure 19: The GSD game with respect to UPKE schemes, parameterized by the number of nodes
N , a hash function H and security parameter λ.

Let GSDA,UPKE be the output of the GSD game with respect to A and scheme UPKE (here N
and λ are implicit). The advantage of A in this game is defined as

AdvUPKE
gsd (A) := 2 |Pr [GSDA,UPKE(λ) = true]− 1| .
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Definition 8 (GSD security). A scheme UPKE is (t, ε)-GSD secure if for all t-attackers A,

AdvUPKE
gsd (A) ≤ ε.

We now prove the following theorem.

Theorem 7. Assuming UPKE is an ε-IND-CPA secure updatable public-key encryption scheme
and H is modeled as a random oracle with domain {0, 1}λ, then UPKE is ε′-GSD secure, where
ε′ = 2N2 · ε+ mN

2λ
, N is the number of nodes in the GSD game and m is the number of queries to

the random oracle.

Proof. Similar to [1] we prove GSD security using a sequence of hybrids between the real game
GSD0, where a challenge query for the node v is answered with the real node secret sv and the game
GSD1, where it is answered with an independent uniformly random seed. We define the sequence of
hybrids as follows:

• H0 := GSD0, i.e., the real GSD game.

• Let v be the challenge node and s′ be a uniformly random and independent seed. For
1 ≤ i ≤ indeg(v), the hybrid Hi is similar to Hi−1, except that the ith query to the encryption
oracle that encrypts the node secret of v returns the encryption of s′.

Observe that the game GSDindeg(v) matches GSD1. Therefore, for any GSD adversary A with
advantage ε, the advantage of A in distinguishing hybrids Hi−1 and Hi is upper bounded by ε. Since
two subsequent hybrid games differ in exactly one encryption edge, we will use this distinguishing
advantage to solve an IND-CPA challenge for UPKE. To simulate game Hi, the reduction guesses the
challenge node v as well as the source node u of the ith encryption incident on v. We denote those
guesses by v∗ and u∗, respectively. Assuming ¬*gsd-comp(v), the simulation, is only possible if A
does not query its oracle on any of the node secrets that belongs to a parent node of of the challenge
node v = v∗, otherwise it can trivially distinguish. This is captured by the event E , adapted from [1]:

Event E : A queries the random oracle on a value that contains a node secret su for a
non-challenge vertex u for which *gsd-comp is false (at the time of the RO query).

We follow the proof strategy of [1] and we prove our result, initially for adversaries that trigger E
with small (negligible) probability (cf. Lemma 8), and then for adversaries that trigger E with large
probability (cf. Lemma 9).

Lemma 8. Let GSD′ be a game which is defined similar to GSD, but the challenger aborts once event
E (defined above) is triggered. Let A be an adversary against GSD′ over N nodes, with advantage ε.
Then, in ROM, there exists an adversary A′ against the IND-CPA security of the underlying UPKE
scheme with advantage greater than ε

N2 .

Proof. Given an adversary A against GSD′ we define an adversary A′ against the IND-CPA security
of UPKE, which, after receiving the challenge public key pk∗, executes the following steps:

• (Initialization):

1. Execute the initialization steps of GSD′ (cf. Figure 19).

2. Sample s, s′ ← {0, 1}λ, v∗ ← [N ] and set s[v∗]← s.

3. Sample u∗ ← [N ].

4. Set V,U, ptx[·]← ε.
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• (Query simulation): Run A and reply to it’s queries as follows:

– enc(u, v, r, gid′):

∗ If u = u∗, v 6= v∗:

1. Execute the code defined by the oracle.

2. Set ptx
[
gid′
]
← (r, s[v]).

∗ Else, if (u, v) = (u∗, v∗):

1. For gid′′ ∈ dPath(T [u∗], gid′)\{gid′}, send the encryption query ptx[gid′′] to GSD′.

2. Send the challenge (s, s′) to the GSD′ challenger and receive (pk∗, sk∗, e∗).

3. Compute gid∗ ← gid++ and set pk[u∗, gid∗]← pk∗, sk[u∗, gid∗]← sk∗.

4. Execute the remaining code (after the encryption operation) of the encryption
oracle of GSD′ and then set s[v∗] ← s′, U ← true and send the output of the
simulated oracle query, (pk∗, e∗, gid∗), to A.

∗ Else, execute the query normally and return the reply to A.

– dec(u, gid′):

∗ If u 6= u∗ ∨ (u = u∗ ∧ T [u].isChild(gid∗, gid′)), execute the query as in GSD′.

∗ Otherwise, do nothing.

– hash(u, v):

∗ If v = v∗, then if BR-G[u], abort and output 1, else, execute as in GSD′ but omit the
hashing and edge creation operations.

∗ Else, execute the query as in GSD′ and return the output to A.

– chall(u): Execute the code of chall, and if u = v∗, set V← true. Send s[v∗] to A.

– corr(u, gid′):

∗ If u = u∗ ∧ ¬T [u∗].isChild(gid∗, gid′), abort and output 1.

∗ Otherwise, execute the query as in GSD′.

– key-gen(u, (r, pk′), p):

∗ If u = u∗, then if r 6= ⊥ or pk′ 6= ⊥, abort and output 1, otherwise, execute the query
as in GSD′ but set pk[u∗, gid]← pk∗.

∗ Otherwise, execute the query as in GSD′ (respecting all values set during initialization).

– reveal(u):

∗ If u = u∗, abort and output 1.

∗ Otherwise, execute the code of the oracle and return the output to A.

– H(s): query its own random oracle with s and return the output to A.

Let b′ the bit output by A after finishing it’s queries to the GSD′ oracles.

• (Output):

– If E ∨ ¬chl ∨ *gsd-comp(v∗) ∨ ¬V ∨ ¬U ∨ ¬NS[v∗], output 1.

– Else, output b′.
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Description of A′. During initialization A′ samples challenge messages (node secrets), s, s′,
without sending them to the challenger yet as in the UPKE setting the challenge needs to be sent
when the execution reaches the right version of the UPKE key-pair. Then, A′ makes a guess on the
challenge node by sampling v∗ and sets it’s seed value to be equal to s. Observe that this value will
be used for pre-challenge queries; for post challenge queries the node secret of v∗ is set to s′. Then, it
guesses under which node’s public key the node secret of v∗ will be encrypted; this node is denoted
by u∗ and it’s public key is later set to the challenge public key pk∗ received by the challenger of
the IND-CPA game against UPKE. The events/variables V, U, check whether the aforementioned
guesses with respect to u∗ and v∗ are correct, and ptx stores pre-challenge messages that will be
sent to the IND-CPA challenger.

In the “query simulation” phase A′ simulates the responses to the queries that A makes against
the GSD′ oracles. For enc(u∗, v, r, gid′), v 6= v∗, A′ executes the code of the encryption oracle,
while also storing (r, s[v]); A′ stores that pair so that it sends it to the IND-CPA game as a pre-
challenge message only when A challenges v∗. In this way, pk[u∗] will be fully synchronized with the
corresponding public key of the IND-CPA game, while after the challenge query, the key sk∗ output
by the IND-CPA game will be synchronized with the corresponding secret key. For enc(u∗, v∗, r, gid′),
A′ first recovers the key ids gid′′ in the direct path of gid′ and the randomness/message pairs that
were used in those encryptions, and sends those pairs, stored in ptx[·], to the challenger. It then
executes the challenge phase of the IND-CPA game, i.e., it sends s, s′ to the UPKE challenger and
receives (pk∗, sk∗, e∗), and sets s[v∗] to s′. Also sets U to true which means that an (u∗, v∗) encryption
edge has been created and u∗ was guessed correctly. Other encryption queries are executed as enc
dictates. Note that, pre-challenge encryptions of the node secret of v∗ are answered with s while
post-challenge ones with s′.

For dec(u, gid′), if u 6= u∗ or u = u∗ and decryption is for a key id gid′, which is a child of the
key id gid∗ of (pk∗, sk∗), then decryption is executed normally. In the former case, A′ has sampled
on it’s own u’s node secret and keys, while in the latter, A′ learned the corresponding keys from the
IND-CPA challenger, since this is a post-challenge decryption query related to a key-pair derived
from sk∗, pk∗. For all other queries, A′ performs no action, as they are related to keys in T [u∗],
what will be never accessed by A (this is enforced by *gsd-comp).

For hash(u, v∗), A′ simply omits the hashing and edge creation operations, in case u has been
produced with good randomness, otherwise it aborts. For v 6= v∗ the query is executed normally.
Note that, for u∗, A′’s computation is with respect to s[u∗] and doesn’t ever modify the initial key
of u∗ which is set to the challenge initial UPKE key pk∗. chall(u) is executed as in GSD′ but also
sets V to true if u = v∗, i.e., if A guesses correctly the challenged node. Corruption queries are
identical to GSD′, except when A corrupts a key-pair related to node u∗, which is not derived by the
challenge pair (pk∗, sk∗) (this is enforced by *gsd-comp), key-gen(u, (r, pk′), p) queries execute as
in GSD′, unless u = u∗ and r 6= ⊥ or pk′ 6= ⊥, in which case A′ aborts as the adversary fully defines
the seed and/or keys for u∗. Assuming u∗ correctly guesses the source node for the ith incoming
encryption edge to v∗, this is not a valid query. Finally, reveal(u) queries are executed normally,
unless u = u∗, in which case v∗ is not a valid challenge and A′ aborts, and RO queries are forwarded
to A’s own RO.

Regarding the output of A′, if the (bad) event E happens, or A does not challenge any node, or
the challenged node is compromised according to the *gsd-comp predicate, or v∗, u∗ are incorrect
guesses for the challenge and source node, or v∗ is not a sink node (as required by GSD′), A′ outputs
1, otherwise, it outputs the bit output by A.

Correctness of the simulation. Assuming that (u∗, v∗) is a correct guess of the “challenge
edge”, it’s not hard to see that responses to queries unrelated to u∗, v∗, are distributed identically
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to GSD′, since A′ simulates perfectly the node secrets for those nodes, as well as, the corresponding
keys. Since E is not triggered, we know that s[u∗] is not queried to the random oracle. Note that, in
the presence of such a query, A′ would have to come up with an RO query whose reply is consistent
with the injected key-pair (pk∗, sk∗), otherwise A would trivially distinguish the simulated execution
from the real one; conditioned on ¬E , and the fact that ¬*gsd-comp(v∗) holds, the aforementioned
attack cannot be mounted. Similarly, if v∗ is created via a hash query, A′ can simply ignore this
edge, and choose a uniformly random s[v∗], as the inconsistency of this edge can only be verified by
triggering E . Therefore, assuming that (u∗, v∗) is a correct guess of the “challenge edge” and E is
not triggered we have that all encryption queries with u = u∗ use the correctly updated version of
the initial UPKE pk∗ (i.e., A′ fully simulates the key evolvement process of the UPKE challenge
public key of the real GSD′) since the public key can be updated in the absence of the secret key.
Evolvement of the secret key is done via decryption, however, A′ doesn’t know how to perform
pre-challenge decryptions related to u∗ as it does not have access to the corresponding secret key (for
all other nodes it decrypts normally). However, *gsd-comp allows only post-challenge compromise
of u∗, and only with respect to keys that have been generated by updating (pk∗, sk∗). Since A′
learns (pk∗, sk∗) after the challenge query, key evolvement of subsequent keys, as well as, decryption
queries related to u∗ are simulated correctly. Pre-challenge queries, encrypt s, while post-challenge
ones encrypt s′, thus if enc(u∗, v∗, r, gid′) is the ith encryption request for an edge incident to v∗,
then if b∗ = 0, A′ simulates H ′i−1

14 (i.e., the first i encryption requests related to edges incident
to v∗ encrypt s, while the remaining encrypt s′), while if b∗ = 1, A′ simulates H ′i (i.e., the first i
encryption requests related to edges incident to v∗ encrypt s, while the remaining encrypt s′). The
two cases differ by only a single encryption edge, and distinguishing between H ′i−1 and H ′i reduces
to the IND-CPA security of UPKE, conditioned on ¬E and the fact that u∗, v∗ are correct guesses
for the “challenge edge”. Since the use of the UPKE scheme does require any additional guessing
by A′ the probabilistic analysis and bound is along the lines of [1] and only depends on whether
(u∗, v∗) are correct guesses of the challenge edge, which happens with probability 1/N2.

The above lemma proves the needed when E is not triggered (or is triggered with very small
probability). For adversaries that trigger E with larger probability, and following the proof strategy
of [1], we first prove that any GSD adversary triggering event E can be reduced to an adversary
against a partially selective version of GSD where the challenger aborts whenever E happens. In
particular, let GSD′′ be defined like GSD, with two differences: (1) the game aborts if E happens (in
which case the adversary outputs 1) and (2) the adversary has to commit to the challenge node at
the beginning of the game, i.e., GSD′′ is partially selective. We prove the following lemma.

Lemma 9. Assuming an adversary A that triggers E with probability ε in GSD with N nodes, there
exists an adversary A′′ against GSD′′ over N + 1 nodes, with advantage ε

N −
m
2λ

.

Proof. The main idea behind the proof is the following: A′′ plays against GSD′′ and simulates GSD
for A until the latter triggers E . Then A′′ uses A’s query that triggered E to break security in GSD′′.
A′′ executes the following steps.

• (Initialization):

– Sample v∗ ← [N ], set chl← false.

– Query GSD′′ with key-gen(N + 1, (⊥,⊥), true) and let (pkN+1, gidN+1) be the reply.

• (Query simulation): Run A and reply to it’s queries as follows:

14By H ′i we refer to a modified version of Hi (as defined above) in which the execution aborts if E happens.
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– enc(u, v, r, gid′):

∗ If u = v∗, query the encryption oracle of GSD′′ with (N + 1, v, r, gid′).

∗ Else, forward the query to the GSD′′ challenger.

Return the response to A.

– dec(u, gid′):

∗ If u = v∗, query the decryption oracle of GSD′′ with (N + 1, gid′).

∗ Else, forward the query to GSD′′.

– hash(u, v):

∗ If u = v∗, query the hash oracle of GSD′′ with (N + 1, v).

∗ Else, forward the query to the GSD′′ challenger.

∗ If ¬chl ∧ v = v∗, send a challenge query to the GSD′′ challenger for v∗, and let s∗ be
the reply.

– chall(u):

∗ if u 6= v∗, send a corr(u) query to GSD′′ and let su be the reply. Sample c← {0, 1},
set s0 ← su, s1 ← {0, 1}λ and return sc to A.

∗ Otherwise, abort and return 1.

– corr(u, gid′): forward the query to the GSD′′ challenger. If A issues a corruption or
encryption query such that *gsd-comp(v∗) is satisfied, abort and output 1.

– key-gen(u, (r, pk′), p):

∗ If u = v∗,

· if r 6= ⊥ or pk′ 6= ⊥, abort and output 1.

· if p, send (pkN+1, gidN+1) to A.

· if ¬chl, query GSD′′ with key-gen(v∗, (⊥,⊥), false), and query GSD′′ with chall(v∗).
Let s∗ be the reply.

∗ Otherwise, forward the query to GSD′′.

– H(s):

∗ If s 6= s∗, forward the query to the GSD′′ challenger and forward the reply to A.

∗ Else, abort and output 0.

• (Output): Output 1 (executed only if no output has been produced yet).

A′′ initially guesses the node v∗ that triggers E , i.e., the node for which A makes an RO query
with it’s secret. Furthermore, it executes key-gen for the extra node N + 1. A′′ challenges v∗ as
soon as its secret is defined (via a hash or a key-gen query). In order for v∗ to be a valid challenge
for GSD′′ it must be a sink, thus A′′ substitutes encryption and hash queries with source v∗ using
the special node N + 1. Assuming v∗ is a correct guess, if s∗ is the real node secret, then at some
point during the execution it is queried by A and A′′ aborts and outputs 0. Otherwise, s∗ is an
independent value that with overwhelming probability is not queried by A, and A′′ outputs 1. The
way hash edges are treated is similar to encryption edges, i.e, for hash edges with source node v∗,
node N + 1 is used instead. However, since ¬*gsd-comp(v∗) is satisfied, (1) sv∗ is generated with
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good randomness, and (2) there is no corrupted UPKE key for which there is a path from it to the
challenge node in the key graph, thus the only way for A to detect the inconsistency is by querying
the RO on the seed of either v∗ or N + 1. Also, *gsd-comp should be equal to false for N + 1,
since it is a source node in GSD′′ and does not appear in GSD. Therefore, inconsistencies can be
detected only by triggering E . Clearly, the use of UPKE does not require additional guesses by A′′,
thus the probabilistic argument is along the lines of [1]: if the challenge bit is 0, then A′′ outputs 0
with probability at least ε/N , otherwise, s∗ is a uniformly random value and the probability that A
queries RO with s∗ (in which case A outputs 0) is upper bounded by m/2λ.

In order to finalize the proof and prove the needed for any A that triggers E , first apply Lemma 9,
to construct an adversary against GSD′′, and then having a similar proof as in Lemma 9, to get a
reduction to IND-CPA security of UPKE. The only difference in the proof is that the GSD game is
less adaptive, i.e., the adversary commits to the challenge node at the beginning of the game, which
implies that the reduction does not have to guess the challenge node, therefore, we only lose an
additional factor 1/N due to guessing u∗. Therefore, the overall advantage is at least ε

N2 − m
N2λ

.

D.2 RTreeKEM security proof

In this section we prove security of RTreeKEM via a reduction to the GSD security of the underlying
UPKE scheme. First we have to instantiate the safety predicate *CGKA-priv that is satisfied by
RTreeKEM; the predicate is formally presented on Figure 20. In a high level, the key of epoch vid is
considered insecure, if

• the state of some party ID′ of a strict predecessor epoch vid′ is leaked and there was no
update or commit operation with good randomness by ID′ on the path from vid′ to vid (which is
determined by HG.path) or

• the state of some party ID′ of an epoch vid′ that lies in another branch, is leaked and there was
no update or commit operation with good randomness by ID′ before vid′ (which is determined
by HG.path), or

• some party ID′ was added to a predecessor vid′ (potentially vid itself) with leaked initial keys,
or

• the key of epoch vid has been generated with bad randomness.

Concretely, we prove the following theorem.

Theorem 1. Let UPKE be an (t, ε)-GSD secure UPKE scheme. Furthermore, let *CGKA-priv be
the safety predicate above. Then, RTreeKEM is an (t′, ε)-secure SGM scheme w.r.t. *CGKA-priv,
where t′ ≈ t.

Proof. Initially, we prove privacy of RTreeKEM assuming correctness, i.e., that the win condition
inside the process and dlv-WM oracles of the CGKA game (cf. Figure 14), is not triggered, and
then we prove that RTreeKEM satisfies correctness.

For the first part, given an adversary A that breaks the CGKA security of RTreeKEM with
advantage ε we construct an adversary A′ that breaks GSD security of UPKE with the same advantage.
A′ plays against the GSD game and simulates for A the CGKA game. A′ is defined as follows.15

• (Initialization):

15GSD (resp. ratchet tree) nodes will be denoted using capital (resp. minuscule) letters.
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CGKA Safety Predicate for RTreeKEM

*CGKA-priv (vid)

if ∃ID′, vid′ 6= vidroot s.t.

1. vid′ 6= vid ∧ (vid′, ID′) ∈ V-Lk

∨ HG.addedIK(vid′, ID′) ∈ IK-Lk

2. HG.path(vid′, vid, ID′)

or

1. vid′′ := LCA(vid, vid′) /∈ {vid, vid′}

2. (vid′, ID′) ∈ V-Lk

3. HG.path(vid′′, vid, ID′)

4. HG.path(vid′′, vid′, ID′)

return false

if BR[vid] : return false

return true

HG.path (vid′, vid, ID)

if ∃ direct path vid′ to vid
and
6∃ vid′′ ∈ (vid′, vid] s.t.

1. ID′ removed in vid′′ or

2. ID′ updates in vid′′ with good randomness or

3. ID′ commits in vid′′ with good randomness

return true

return false

Figure 20: RTreeKEM’s safety predicate.

– Execute the initialization phase of the CGKA security game (cf. Figure 11).

– Set N , C ← ∅ and SK[·, ·]← ε.

• (Query simulation): Run A and reply to it’s CGKA queries as follows:

– gen-new-ik(ID):

1. Compute U ← gsd-node.

2. Send the query key-gen(U, (⊥,⊥), true) to the GSD challenger and let (ipkU , gid) be
the reply.

3. Simulate gen-new-ik(ID) using ipkU as the public key of ID, omitting Gen-IK and
any instruction that is related to isk. Furthermore, set IK-PK[ikid]← (ipkU , U, gid).
Return the output to A.

– reg-ik(ipk):

1. Compute U ← gsd-node.

2. Send the query key-gen(U, (⊥, ipk), true) to the GSD challenger and let (ipkU , gid)
be the reply.

3. Execute reg-ik(ipk) and set IK-PK[ikid]← (ipkU , U, gid). Return the output to A.

– create-group(ID, ikid, r):

1. Compute U ← gsd-node.

2. Send the query key-gen(U, (r,⊥), false) to the GSD challenger.

3. Execute the oracle instructions omitting isk ← IK-SK[ikid], Key[vid] ← I. Set
PC[vid]← U .

4. Compute (ipk, U, gid)← IK-PK[ikid] and in RTK-Create(ID, ·, r), execute a modified
τ ← Init(ID, ·), such that τ [ID].pk = ipk and τ [ID].sk = ε.

5. Set τ [ID].gsd-inf ← (U, gid).

– prop-add-user(ID, ID′, ikid′): execute the code of the CGKA oracle with respect to
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RTK-Add.

– prop-rem-user(ID, ID′): execute the code of the CGKA oracle with respect to RTK-Rem.

– prop-up-user(ID, r):

1. Set U ← gsd-node.

2. Query the GSD challenger with key-gen(U, (r,⊥), true) and let (pkU , gid) be the
reply.

3. Set τ [ID].gsd-inf ← (pkU , gid).

4. Execute all the instructions of the prop-up-user oracle with respect to RTK-Update,
omitting all operations related to sk.

5. Return (upd, ID, pkU ) to A.

– commit(ID,pid, r): execute the instructions of the commit oracle w.r.t. a modified
RTK-Commit(P, r), that

1. In *apply-props(τ,P), omit the operation τ [ID].sk← UPK[pk], in case ID = ME.

2. Execute *refresh-gen′(τ, r) and *refresh-path′(τ, τ [ID], r) as they are depicted in Fig-
ure 21.

3. Return the output of the oracle to A, after striping Wpub from gsd-inf.

– process(vid, ID): execute the code of the process oracle (besides the ”If” statement that
leads to win) w.r.t. a modified RTK-Proc-Com(T,P), that

1. In *apply-props(τ,P), omit the operation τ [ID].sk← UPK[pk], in case ID = ME.

2. Execute *refresh-proc(τ, T ) as it is depicted in Figure 21.

– reveal(vid): if PC[vid] 6= ε ∧ ¬Chall[vid],

1. Set Reveal[vid]← true, V ← PC[vid].

2. Send a reveal(V ) query to the GSD challenger and forward the reply, s, to A.

– chall(vid): if PC[vid] 6= ε ∧ ¬Reveal[vid],

1. Set Chall[vid]← true, V ← PC[vid].

2. Send a challenge query for V to the GSD challenger and forward the reply, s, to A.

– dlv-WM(vid, ID): execute the code of the dlv-WM oracle (besides the ”If” statement
that leads to win) w.r.t. a modified Join(ID, orig,Wpub,Wpriv, ikid), that

1. Executes RTK-init(ID), τ ←Wpub, (ipk, V, gid)← IK-PK[ikid], dec(V, gid).

2. If ikid ∈ IK-Lk,

(a) τ [ID].sk← SK[V, gid].

(b) τ [ID].gsd-inf ← (V, gid).

(c) (τ [ID].sk, s)← UDec(τ [ID].sk,Wpriv).

(d) (τ, ·, ·)← *refresh-path(τ, s, LCA(ME, orig).

– corr(ID): Set G ← ∅.

1. For vid s.t. (vid, ID) ∈ V-Lk,

(a) Set τ ′ ←WMpub[vid, ·].
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(b) For v ∈ dPath(τ ′, τ ′[ID]), if τ ′[v].pk 6= ε, G +← τ ′[v].gsd-inf.

2. For ikid ∈ IK-Lk, (·, V, gid)← IK-PK[ikid], G +← (V, gid).

3. For (V, gid) ∈ G,

(a) If (V, gid) /∈ C, set C +← (V, gid), query the GSD challenger with corr(V, gid),
and let skv be the reply. Set SK[V, gid]← skv.

(b) For τ ∈ γ[ID] and for v ∈ dPath(τ, τ [ID]), if τ [v].gsd-inf = (V, gid), set τ [v].sk←
SK[V, gid].

4. Send γ[ID] to A (striped from gsd-inf).

– no-del(ID): set Del[ID]← false.

RTreeKEM to GSD reduction part

// Sample an unused GSD node

gsd-node
U ← minx{x ∈ [N ] | x /∈ N}
N +← U

return U

// Modified *refresh-gen

*refresh-gen′ (τ, r)
v ← τ [ID]
d← DEPTH(τ, v)
Wpriv[·], c[·]← ε

(τ, s, PK)← *refresh-path(τ, r, v)

(v′0, . . . , v
′
d−1)← coPath(τ, v)

for i = 1, . . . , d
v ← v.parent
(V, ·)← τ [v].gsd-inf

for w ∈ Res(v′i−1)

(W, gid)← τ [w].gsd-inf

if τ [w].ID ∈ τ.GI.added

// GSD oracle call

(τ [w].pk,Wpriv[τ [w].ID], gid′)← enc(W,V, r, gid)

else

// GSD oracle call

(τ [w].pk, c[w], gid′)← enc(W,V, r, gid)

τ [w].gsd-inf ← (W, gid′)
T ← (ID, PK, c)
return (τ, T,Wpriv)

// Modified *refresh-path

*refresh-path′ (τ, r, v)
ID← τ [v].ID
d← DEPTH(τ, v)
s[·], PK[·], SK[·]← ε
V ← gsd-node
for i = 0, . . . , d− 1

// GSD oracle call

(PK[i], gid)← key-gen(V, r, true)

τ [v].gsd-inf ← (V, gid)

if r 6= ⊥
s[i]← r
SK[i]← UKGen(H(r, kgen))
r ← H(r, path)

V ′ ← gsd-node

// GSD oracle call

hash(V, V ′)
τ [v].label← (PK[i], SK[i])
if i > 0 : τ [v].unmerged← ∅
v ← τ [v].parent

V ← V ′

if r 6= ⊥ : s[d]← r; τ [v].I ← s[d]
PC[vid]← V

return (τ, s, PK)

// Modified *refresh-proc

*refresh-proc′ (τ, T )
(ID, PK, c)← T
v ← τ [ME]

v′ ← τ [ID]

w ← Rep(τ, v, v′)
(V, gid)← τ [w].gsd-inf

// GSD oracle call

dec(W, gid)

if τ [w].sk 6= ε
(τ [w].sk, s0)← UDec(τ [w].sk, c[v])

(τ, ·, ·)← *refresh-path(τ, s0, LCA(v, v′))
(z0, . . . , zd)← dPath(τ, v′)
for i = 0, . . . , d− 1

τ [zi].pk← PK[i]

return τ

Figure 21: Part of the reduction for the proof of Theorem 1.

Correctness of A′’s simulation. During initialization, A′ executes the initialization phase of
the CGKA security game and in addition initializes N , C, which denote the already assigned and
corrupted, respectively, GSD nodes, and SK which will store the compromised UPKE secrete keys.

For key generation queries, gen-new-ik(ID), A′ first allocates a new GSD node U ← gsd-node
and then sends a key generation query key-gen(U, (⊥,⊥), true), that uses honest randomness (since
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r = ⊥) and publishes the generated public key (since p = true). Using the public key returned by
the key-gen oracle, ipkU , A′ executes the code of gen-new-ik(ID) and (1) omits the any operation
that uses isk, (2) sets IK-PK[ikid]← (ipkU , U, gid), i.e., IK-PK[ikid] stores the GSD node and gid of
the newly generated init key-pair (this information will be used later to annotate the ratchet tree
with the init key of ID). After executing the above steps, a new key pair for ID has been generated
via the corresponding GSD node. A′ does not get access to the iskU but this does not affect the
simulation as A is currently not having access to it. Correctness for reg-ik is trivial.

For create-group(ID, ikid, r), A′ first allocates a new GSD node U ← gsd-node, that relates to
the update secret I generated by the KwCreate operation. Then, it sends a key generation query to
the GSD challenger with key-gen(U, (r,⊥), false), i.e., it uses the randomness r provided by A and
also sets p = false, since U relates to the update secret of the newly created group and no keys are
published for it (it is a sink). Then, A execute the oracle instructions omitting isk← IK-SK[ikid] and
Key[vid]← I, and marks U to be a potential challenge node (update secret) for epoch vid. It then
creates a ratchet tree with a single node, and sets only the public key of that node to be the public
key of the group creator ID. In particular, it executes, (ipk, U, gid) ← IK-PK[ikid] and executes a
modified τ ← Init(ID, ·), such that τ [ID].pk = ipk and τ [ID].sk = ε. Finally, it annotates the ratchet
tree with the corresponding GSD node U , and GSD key id gid, by setting τ [ID].gsd-inf ← (U, gid).
Clearly, the above steps create a single node ratchet tree with the public-key of ID, and relates the
update secret to the GSD node U ; if r = ⊥ (resp. r 6= ⊥), the update secret I is unknown (resp.
known) to A.

For prop-add-user(ID, ID′, ikid′), prop-rem-user(ID, ID′), A′ simply executes the code of the
CGKA oracles with respect to RTK-Add and RTK-Rem, respectively, as all operations depend on
public keys or history graph information, or just perform compatibility checks.

For prop-up-user(ID, r), A′ first allocates a new GSD node U ← gsd-node that relates
to the key-pair generated for ID’s update operation. Then, it sends a key generation query,
key-gen(U, (r,⊥), true) to the GSD challenger, it receives the reply (pkU , gid) and annotates the
ratchet tree node of ID with GSD information by executing τ [ID].gsd-inf ← (pkU , gid). Finally, it
executes all the instructions of the prop-up-user oracle with respect to RTK-Update, omitting all
operations related to sk. After executing the above steps, a new GSD node has been created which
keys correspond the ID’s new key-pair. Observe that, if r = ⊥, then secret key remains private, while
if r 6= ⊥, the newly generated secret key is known to A. However, at this point of the execution
there is no need for A′ to simulate skU as A can only get access to ID’s state via corruption.

For commit(ID,pid, r), A′ executes the instructions of the commit oracle w.r.t. a modified
RTK-Commit(P, r), that (1) in *apply-props(τ,P), omits the operation τ [ID].sk← UPK[pk], in case
ID = ME, i.e., does not set the secret key of UPKE (this will only be set if ID is corrupted, see
below) and (2) executes *refresh-gen′(τ, r) and *refresh-path′(τ, τ [ID], r), as they are depicted in
Figure 21. In particular, the modified “refresh path” operation, *refresh-path′, refreshes the path
secrets along the direct path of ID, by making calls the GSD oracles. Namely, for each node v in
the direct path of ID, *refresh-path′ allocates a new GSD node V , generates keys for V by calling
GSD key-gen(V, (r,⊥), true) (possibly using adversarially chosen randomness r), and computes the
path secret of the parent node of v, by allocating a new GSD node V ′, and sampling it’s path secret
by making a call to the hash oracle, namely by calling hash(V, V ′). Observe that if r 6= ⊥, the
ratchet tree output by *refresh-path′ contains the newly generated secret keys in the direct path of
ID. Furthermore, each node in the direct path is annotated with the gsd-inf variable that relates the
node to the appropriate GSD node V and key id gid (this is needed for executing future operations).
Finally, it sets the potential challenge for epoch vid to be the last node generated by the refresh
path operation. Therefore, *refresh-path′ simulates the original *refresh-path, and manages, via
calls to the GSD oracles, to generate path secrets and keys without touching the node’s secrets
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and private keys (unless r 6= ⊥). The information output by *refresh-path′, is used by *refresh-gen′,
that simulates the encryption instruction made by *refresh-path, by making calls to the enc GSD
oracles using the GSD information gsd-inf set by *refresh-path′. Therefore, A′ correctly simulates
the output of the commit oracle; it perfectly simulates Wpub and all ciphertexts in T and Wpriv.
Finally we note that, if r 6= ⊥, A′ does not compute the correct I, however, this does not affect the
simulation, as A gets access to it only via reveal and challenge queries (see below).

For process(vid, ID), A′ executes the code of the process oracle, besides the ”If” state-
ment that leads to win (since we have assumed correctness of RTreeKEM) w.r.t. a modified
RTK-Proc-Com(T,P), that (1) in *apply-props(τ,P), omits the operation τ [ID].sk ← UPK[pk], in
case ID = ME (as we discussed above this does not affect the simulation since A only gets access
to sk via a corruption query), and (2) executes a *refresh-proc′(τ, T ) as it is depicted in Figure 21.
Concretely, for a node v such that v = τ [ID], *refresh-proc′ decrypts the ciphertext c[v], only if the
secret key of the representative, w, has been already set in the ratchet tree of ID (which only happens
after corrupting ID). If this is the case, *refresh-proc′ decrypts c[v], recovers the path secret and
executes *refresh-path. Furthermore, it always sends a decryption query, dec(w, gid), to the GSD
challenger so that the secret key of node w (denoted as W in the GSD game) is updated accordingly.

For reveal(vid), A′ checks whether there is an update secret to epoch vid by checking whether
PC[vid] 6= ε, and if this is the case, and ¬Chall[vid] is satisfied (as required by the CGKA definition),
it computes V ← PC[vid], sends a reveal query to GSD for V , and forwards the reply to A. Therefore,
simulation is perfect. The idea behind chall is similar, having a challenge query in place of the
reveal query.

For dlv-WM (vid, ID), A′ executes the code of the dlv-WM oracle (besides the ”If” state-
ment that leads to win since we have assumed correctness of RTreeKEM) w.r.t. a modified
Join(ID, orig,Wpub,Wpriv, ikid), that first relates the ipk of ID with the corresponding GSD node (by
executing (ipk, V, gid)← IK-PK[ikid]) and also sending a decryption query dec(V, gid) to the GSD
challenger (so that isk is updated accordingly). In addition, if ipk is a leaked key, A′ recovers the
corresponding leaked isk by computing, τ [ID].sk ← SK[V, gid], τ [ID].gsd-inf ← (V, gid), and finally
performs the normal decryption and refresh path operations, as defined in the code of Join. Again,
the simulation is perfect.

For corr (ID), A′ computes the epochs vid for which the state of ID is in V-Lk, and for those
epochs, checks the published ratchet trees and recovers the GSD information gsd-inf along the direct
path of ID in all such trees and includes them in G(this is in step 1). A′ acts similarly in step 2
for leaked init keys, i.e., ikids in IK-Lk. Then, in step 3, (V, gid) ∈ G, if A′ sens a corruption query
corr(V, gid) to the GSD challenger (if (V, gid) /∈ C) and stores the reply. Then, for all ratchet trees
τ in the state of ID γ[ID], and all nodes v in the direct path of ID in τ , if the GSD information
gsd-inf is related to a corrupted node, A′ sets it’s secret key (this is step 3). Thus, all secret keys
in the state of ID are being set and finally, the state γ[ID] (striped from gsd-inf) is sent to A. The
secret keys that were set above will be used by all subsequent decryption operations for ID and the
simulation is perfect. The case of no-del(ID) is trivial.

Clearly, if the bit b sampled by the GSD game challenger is equal to 0 (resp. 1), A′ simulates the
CGKA game with b = 0 (resp. b = 1). Therefore, if A breaks CGKA security with advantage ε, A′
breaks GSD security with the same advantage. It only remains to prove that, if A is an admissible
adversary against CGKA then A′ is an admissible adversary against GSD security.

Claim 10. If the CGKA’s safety predicate *priv-safe (cf. Figure 14) w.r.t. *CGKA-priv (cf.
Figure 20) is satisfied, then the GSD safety predicate (cf. Figure 19) is also satisfied.

By definition, CGKA’s safety predicate *priv-safe w.r.t. *CGKA-priv is satisfied if ∀vid :
Chall[vid] =⇒ *CGKA-priv(vid). If there is no challenge in CGKA, the claim holds trivially as
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there is no challenge in the GSD game. Therefore, we assume a single challenge vid for which
*CGKA-priv(vid) is satisfied; we refer to the node that keeps the update secret of vid in the GSD
game by U∗. *CGKA-priv(vid) implies ¬BR[vid], which in turn implies ¬BR-G[U∗], i.e., if the
update secret of epoch vid is generated with good randomness, then the node secret of the challenge
node of the GSD game is generated with good randomness. Furthermore, ¬BR[vid] implies that all
ciphertexts generated by the commit message for vid, are generated with good randomness. More
formally, for all nodes v in the resolution of the co-path nodes of ID when it generates the commit
for vid, let (V, gid′)← τ [v].gsd-inf. Due to the commit operation for all such nodes V there exists a
path from V to U∗ in the GSD graph, however, since the commit for vid uses good randomness there
should be no gid′′ such that gid′′ ∈ BR-E[V ] and T [V ].isChild(gid′, gid′′), therefore, the “or” clause
of the *gsd-comp(U∗) is false.

Now by the CGKA safety predicate we have that there is no ID′, vid′ 6= vidroot, such that
vid′ 6= vid ∧ (vid′, ID′) ∈ V-Lk or HG.addedIK(vid′, ID′) ∈ IK-Lk, and HG.path(vid′, vid, ID′), i.e., all
corrupted users in epochs before vid, or users added with leaked init keys, have either been removed,
or they have performed an update or commit operation. Furthermore, the same should condition
should hold in all other branches of the history graph in case A performs splitting attacks (this is
being enforced by the “or” clause of the CGKA safety predicate). We thus conclude that for all
(V, gid′), s.t. a V -U∗ path exists in the GSD graph, with first edge (V, ·, (e, gid′)), either (V, gid′′) /∈ C
or T [V ].isAnc(gid′, gid′′).

RTreeKEM correctness. Correctness of RTreeKEM is proven in [3], thus we we informally
argue about it using the history graph terminology. Correctness is violated if for some vid,
¬HG.checkGI(vid,GI) or Key[vid] 6= I, during the execution of process or dlv-WM. However,
this is impossible. For any vid, the commit message for vid includes the proposals for newly added
and removed users, as well as user updates. The same proposals that are added by the committer in
the commit message are processed by the receivers of that message. Given the correctness of the
compatibility check functions (cf. Figure 15) that are executed prior to each proposal operation
and enforce consistency with respect to the current group state, and correctness of the *apply-props
operation (cf. Figure 17) that updates the group information GI with newly added, removed parties,
and updates, we conclude that group members that process commit messages for the same vid’s
compute the correct group state, thus ¬HG.checkGI(vid,GI) is never triggered. Similarly, Key[vid] 6= I
is never triggered assuming the correctness of the underlying UPKE encryption scheme, as (part of)
the computation that is being executed by the committer, is identical to the computation performed
by the receiver of a commit message (cf. Figure 17). The argument for dlv-WM is identical.

D.3 TreeKEM security

As we have already mentioned, TreeKEM is secure w.r.t. a weaker security predicate than RTreeKEM.
Namely, we require, that either there is no post-challenge compromise (the notion of PCS in [3]),
or if there is, compromise happens after the party has already updated it’s state (the FSU notion
of [3]).

The security proof for TreeKEM is similar to that of RTreeKEM and proceeds in two steps. First
we consider a reduction from GSD with respect to standard public-key encryption, to the IND-CPA
security of the underlying scheme. The GSD game is similar to the one for UPKE, but it’s safety
predicate *gsd-comp on node u is independent of gid, and in addition to bad randomness, it checks
whether there exists an v-u path in the GSD graph for which v belongs to the set of compromised
nodes. The result is formalized in the following theorem.
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CGKA Safety Predicate for TreeKEM

// determines whether an epoch is compromised

*CGKA-priv (vid)

if ∃ID′, vid′ 6= vidroot s.t.

1. vid′ 6= vid ∧ (vid′, ID′) ∈ V-Lk

∨ HG.addedIK(vid′, ID′) ∈ IK-Lk

2. HG.path(vid′, vid, ID′)

or

1. vid′′ := LCA(vid, vid′) /∈ {vid, vid′}

2. (vid′, ID′) ∈ V-Lk

3. HG.path(vid′′, vid, ID′)

4. HG.path(vid′′, vid′, ID′)

or
// Check for post-challenge corruptions

1. vid′ 6= vid ∧ (vid′, ID′) ∈ V-Lk

2. HG.path(vid, vid′, ID′)

return false

if BR[vid] : return false

return true

// Safety predicate

safe
if ∀vid ¬Chall[vid] ∨ *CGKA-priv(vid)

return true
return false

Figure 22: TreeKEM’s safety predicate.

Theorem 11. Assuming PKE is an ε-IND-CPA secure public-key encryption scheme and H is
modeled as a random oracle with domain {0, 1}λ, then PKE is ε′-GSD secure, where ε′ = 2N2 ·ε+mN

2λ
,

N is the number of nodes in the GSD game and m is the number of queries to the random oracle.

The proof of the above theorem is similar to the one of Theorem 7.
Security of TreeKEM is reduced to the GSD security of the underlying PKE scheme. The safety

predicate needs to also perform the FSU type of checks mentioned above (cf. Figure 22). The result
is formalized in the following theorem.

Theorem 12. Assuming PKE is an (t, ε)-GSD secure public-key encryption scheme, then TreeKEM
is an (t′, ε)-secure CGKA protocol, where t′ ≈ t.

The proof of the theorem is similar to that of Theorem 1.

E Forward-Secure Group AEAD

E.1 Security

E.1.1 Main oracles.

The oracles of the FS-GAEAD game are depicted in Figure 23.

Initialization. At the onset of the FS-GAEAD security game, a random bit b and a uniformly
random key ke are chosen, and the initialization algorithm is run for all group members in G (which
is specified by an argument to the initialization procedure). The security game also initializes a
message counter i[ID] for each party. Additionally, the game maintains the following variables, which
work analogously to their counterparts in the SGM game.

• a set Chall of pairs (S, i) recording that the ith message sent by S was a challenge,
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FS-GAEAD Security Game: Main Oracles

// Initialize group

init (G)
b← {0, 1}
ke ← K
for ID ∈ G

v[ID]← Init(ke, |G|, ID)
i[ID]← 0

Chall← ∅
AM-Tr[·]← ∅
AM-Lk← ∅
AM[·, ·, ·]← ε
Del[·]← ε

// S sends m with AD a

send (S, a,m)
(v[S], e)← Send(v[S], a,m)
i[S]++

for R ∈ G \ {S}
AM[S, i[S], R]← (a,m, e)

return e

// Corruption of ID

corr (ID)
AM-Rcvd← {(S, i) | AM[S, i, ID] =
received}

AM-Lk +← (ID, AM-Rcvd, AM-Tr[ID])

return v[ID]

// Message delivery

dlv-AM (S, i, R)
req AM[S, i, R] 6= {ε, received}
(a,m, e)← AM[S, i, R]

(v[R], S′, i′,m′)← Rcv(v[R], a, e)

if (S′, i′,m′) 6= (S, i,m)
win

if ¬Del[R]
AM-Tr[R] +← (S, i)

AM[S, i, R]← received

// stop deletions for ID

no-del (ID)
Del[ID]← false

// Message injection

inj-AM (a′, e′, R)
req ∀S, i, i : AM[S, i, R] 6= (a′, i, e′)
(v[S], S′, i′,m′)← Rcv(v[R], a, e)

if m′ 6= ⊥
if (*AM-sec(S′, i′)) ∨

AM[S′, i′, R] = received
win

AM[S′, i′, R]← received

return (S′, i′,m′)

// S challs m0, m1

chall (S, a,m0,m1)
req |m0|= |m1|
(v[S], e)← Send(v[S], a,mb)
i[S]++

for R ∈ G \ {S}
AM[S, i[S], R]← (a,m, e)

Chall +← (S, i)

return e

// Safety predicate

*priv-safe
if ∀(S, i) : (S, i) ∈ Chall =⇒
*FS-sec(S, i)

return true
return false

Figure 23: The main oracles of the FS-GAEAD security game.

• a trash array AM-Tr[ID] of pairs (S, i) keeping track of non-deleted key material by ID,

• a set AM-Lk of elements (ID,AM-Rcvd,AM-Tr[ID]), where AM-Tr[ID] keeps track of the messages
whose key material is leaked via corruption of ID, and AM-Rcvd are the messages that have
been already received at the time of corruption.

• a Boolean array Del[ID] keeping track of which parties are deleting old values, and

• an array AM[S, i,R] of triples (a,m, e) consisting of associated data (AD), plaintext, and
ciphertext.

The recorded data informs a safety predicate *priv-safe evaluated at the end of the game to
determine whether a given execution was legal.

Sending messages and challenges. The oracle send(S, a,m) allows the attacker to have party
S send AD a and message m (to all other group members). The oracle runs algorithm Send, which
produces a ciphertext e. The triple (a,m, e) is recorded in array AM. Oracle chall works similarly,
except that it takes two (equal-length) messages as input and passes one of them to Send; which one
is chosen is determined by the secret random bit b chosen initially. Furthermore, the pair (S, i[S]) is
recorded as being a challenge.

Delivering and injecting ciphertexts. Oracle dlv-AM(S, i,R) allows A to have the ciphertext
corresponding to the ith message sent by S delivered to R. The ciphertext and the corresponding
AD are fed to algorithm Rcv, which must correctly decrypt the ciphertext and identify sender S and
message number i. The pair (S, i) is set as “received” by R by setting AM[S, i,R]← received which
indicates that the corresponding key material should now have been deleted by R; in case R does not
delete old values (i.e., Del[R] = false), the pair is added to AM-Tr.
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Oracle inj-AM can be used by A to inject any non-honestly generated AD/ciphertext pair.
Algorithm Rcv must reject all such pairs unless they are compromised, which is the case if A has
learned the corresponding key material via state compromise. Whether or not this is the case is
determined by the safety helper function *FS-sec, which is discussed below. Irrespective of whether
a compromise has occurred, Rcv is required to detect and prevent replays.

Corruption. By calling oracle corr(ID) the attacker can learn the current state of party ID. The
game adds the triple (ID,AM-Rcvd,AM-Tr[ID]) to the set AM-Lk to indicate that ID’s state is now
compromised, but the messages recorded in AM-Rcvd are supposed to remain secure (because the
corresponding key material must have been deleted); the game also adds potential trash, AM-Tr[ID],
stored by ID to the same set.

E.1.2 Privacy-related safety.

At the end of the execution of the FS-GAEAD security game, the procedure *priv-safe ensures
that the attacker has only challenged messages that are considered secure by the (generic) safety
predicate *FS-sec. If the condition is not satisfied, the attacker loses the game.

E.1.3 Advantage.

Let Π = *FS-sec be the generic safety predicate used in the FS-GAEAD definition. The attacker
A is parameterized by it’s running time t and the number of challenge queries q, referred to as
(t, q)-attacker. The advantage of A against an FS-GAEAD scheme F w.r.t. to predicate Π is denoted
by AdvFS

fs,Π(A).

Definition 9. An FS-GAEAD scheme F is (t, q, ε)-secure w.r.t. predicate Π, if for all (t, q)-attackers,

AdvF
FS-GAEAD,Π(A) ≤ ε .

E.2 Simplified Properties

Proving FS-GAEAD security is facilitated by considering three simplified properties, namely correct-
ness, authenticity, and privacy. These properties together imply full FS-GAEAD security, as stated
at the end of this section. All three of them are obtained by modifying the original game (cf. 23).

Correctness. For the correctness game FSAE-Corr, there is no challenge oracle chall and we
introduce a reduced injection oracle reduced-inject, which is presented in Figure 24.

The advantage of A in the correctness game with respect to a scheme F and predicate Π, is
denoted by AdvF

FSAE-Corr,Π(A).

Definition 10. An encryption scheme F is (t, ε)-correct w.r.t predicates Π, if for all t-attackers A,

AdvF
FSAE-Corr,Π(A) ≤ ε .

Authenticity. In the authenticity variant of the FS-GAEAD game, there are is no challenge oracle
chall, and no win instruction inside the delivery oracle dlv-AM. Moreover, the adversary needs to
call init with two additional arguments, namely, the id of the sender S and the message index i that
he will use for the injection attack. If during the execution, the adversary uses different sender and
message index, the adversary loses the game immediately.
The advantage of A in the authenticity game w.r.t. scheme F and predicate Π, is denoted by
AdvF

FSAE-Auth,Π(A).
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FS-GAEAD Correctness Game: The Reduced Inject Oracle

// Reduced message injection

reduced-inject (a, S, i[S], e, R)
req (a, e) 6= AM[S, i[S], R]

if *FS-sec(S, i[S])
(v[S], S′, i′,m′)← Rcv(v[R], a, e)

AM[S′, i′, R]← received

if ¬Del[R]
AM-Tr[R] +← (S′, i′)

return (S, i[S],m)

Figure 24: The oracle for injecting application messages for the correctness and privacy properties.

Definition 11. A encryption scheme F is (t, ε)-authentic w.r.t. predicates Π, if for all t-attackers
A,

AdvF
FSAE-Auth,Π(A) ≤ ε .

Privacy. The privacy variant of the FS-GAEAD game only provides the reduced inject oracle
of Figure 24, and there is no win instruction inside the delivery oracle dlv-AM. Moreover, the
adversary needs to call init with two additional arguments, namely, the id of the sender S and the
message index i of ID in the challenge query. If during the execution, the adversary challenges a
different sender and message index, it loses the game immediately.
The advantage ofA in the privacy game w.r.t. scheme F and predicate Π, is denoted by AdvF

FSAE-Priv,Π(A).

Definition 12. An encryption scheme F is (t, ε)-private w.r.t. predicates Π, if for all t-attackers A,

AdvF
FSAE-Priv,Π(A) ≤ ε .

Combining the properties. The following theorem relates the simplified properties to the full
SGM security definition.

Theorem 13. Assume an encryption scheme F is

• (t′, εcorr)-correct,

• (t′, εauth)-authentic, and

• (t′, εpriv)-private,

w.r.t. predicate Π. Then, it is also (t, q, ε)-secure w.r.t. Π, where ε ≤ εcorr + t2 · (εauth + q · εpriv)
and t ≈ t′.

Proof. The proof is via a series of hybrid experiments, where in the last experiment the adversarial
advantage is 0. The distances between successive hybrids are bounded via reductions to correctness,
authenticity, and privacy.

Let A be any (t, q)-fs-gaead adversary. We define the hybrids as follows.

Hybrid H0. Hybrid H0 is the original FS-GAEAD game with respect to F. We denote the
advantage of A in H0 by AdvF

H0,Π(A).
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E.3 Dealing with Correctness

Hybrid H1. Hybrid H1 works as H0, except that the win condition inside the oracle dlv-AM is
removed. We prove the following lemma.

Lemma 14. There exists a t′-attacker B1 with t′ ≈ t such that,

AdvF
H0,Π(A) ≤ AdvF

H1,Π(A) + AdvF
FSAE-Corr,Π(B1) .

Proof. For H0 we consider the event E that the win condition inside dlv-AM is provoked; observe
that, since the game ends upon win, if E occurs, it occurs before condition win is triggered inside
the inject oracle. It suffices to upper bound the probability of E occurring in H0. This is achieved
via a reduction: Consider an attacker B1 that plays against the correctness game with respect to F,
executes A and attempts to simulate H0 to A. I.e., B1 has access to all FS-GAEAD oracles but
chall and also receives access to the reduced injection oracle reduced-inject (instead of inj-AM).
On the other hand, H0 provides access to all FS-GAEAD oracles.

The simulation proceeds as follows (the oracles B1 interacts with are referred to as B1’s own
oracles):

• Initially, choose a bit b ∈ {0, 1} randomly, set Chall← ∅ and for all ID ∈ G set i[ID]← 0. Run
A.

• Simulate the FS-GAEAD game oracles for A as follows:

– For calls to init, send, corr, no-del, simply forward to own and return the outputs to
A. For every call to send with sender S set i[S]++.

– chall (S, a,m0,m1): If |m0|= |m1| send (S, a,mb) to send, return the output to A, set
i[ID]++ and Chall +← (S, i[S]). Otherwise, do nothing.

– dlv-AM (S, i,R): execute own oracle on the same input, and if (S, i) ∈ Chall, return ⊥ to
A and set Chall −← (S, i), otherwise pass the response to A.

– inj-AM: forward to reduced-inject.

We now show that B1 correctly simulates H0. For challenge queries, if |m0|= |m1|, then the output
of the send oracle is identical to that of chall and by setting Chall +← (S, i[S]), B1 fully simulates
the computation of chall (here note that B1 correctly simulates the index i). For dlv-AM, an extra
check is required, namely B1 checks if (S, i) ∈ Chall, in which case it returns ⊥ to A, as it would
happen in H0.

For injection queries, recall that whenever E occurs, a win condition inside dlv-AM is provoked,
thus no win is triggered inside the injection oracle. Therefore, the reduced inject oracle reduced-
inject of the correctness game game is identical to inj-AM, as the message returned by both oracles
is generated using keys from compromised epochs. All the remaining queries are handled by B1 as
in H0. Hence, the probability that B1 wins against the correctness game is equal to the probability
that A provokes E in H0, and the proof is concluded.

E.4 Getting Rid of Injections

Hybrid H2. Hyrbid H2 works as H1, but with the reduced inject oracle reduced-inject, as
defined in Figure 24. In the following, denote the advantage of A in H2 by AdvF

H2,Π(A).

Lemma 15. There exists a t′-attacker B2, with t′ ≈ t, such that

AdvF
H1,Π(A) ≤ AdvF

H2,Π(A) + t2 ·AdvF
FSAE-Auth,Π(B2) .
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Proof. In order to distinguish H1 and H2, A must provoke the win condition inside the inject oracle
since H1 and H2 behave identically otherwise. Note that, if win is not triggered, the reduced
inject oracle, reduced-inject, is identical to inj-AM, i.e., either m′ = ⊥ or the adversary injects a
ciphertext that has been computed with compromised keys. Therefore, it suffices to upper bound
the probability of this event E in H1, which is achieved via a reduction: Consider an attacker B2

against authenticity that uses A and attempts to simulate H1 to A.

The simulation proceeds as follows (the oracles B2 interacts with are referred to as B2’s own
oracles):

• Initially, choose uniformly random S ∈ G, index i ∈ [t] and bit b ∈ {0, 1}, set Chall← ∅ and
for all ID ∈ G set i[ID]← 0. Run A.

• Simulate the FS-GAEAD game oracles for A as follows:

– For calls to send, corr, no-del, simply forward to own and return the output to A. For
every call to send with sender S set i[S]++.

– init: execute it’s own init with input (S, i).

– chall (S, a,m0,m1): If |m0|= |m1| send (S, a,mb) to send, return the output to A, set
i[ID]++ and Chall +← (S, i[S]). Otherwise, do nothing.

– dlv-AM (S, i,R): execute own oracle on the same input, and if (S, i) ∈ Chall, return ⊥ to
A and set Chall −← (S, i), otherwise pass the response to A.

– inj-AM: forward to own inj-AM oracle.

Observe that for both the authenticity game and H1, the win conditions has been removed from
the delivery oracle, while in the former there is no challenge oracle. The arguments for proving
that challenge queries are simulated correctly, is identical to that of Lemma 15. For queries to
the remaining oracles B2 simply forwards them to it’s own oracles. Hence, the probability that B2

triggers win in the authenticity game is at least 1
t2
· Pr [E ], i.e., the probability that A provokes E in

H1 times the probability of correctly guessing the id of the sender and the index of the message used
for the injection (the number of all id/index pairs is upper bounded by t2, where t is A’s running
time).

E.5 Privacy

Recall that, in H2 there is only a reduced inject oracle reduced-inject. Also, there is no win
condition inside the oracle dlv-AM. Thus, H2 constitutes an adaptive, multi-challenge version, of
the privacy game. We prove the following lemma.

Lemma 16. There exists a (t′, 1)-attacker B, with t′ ≈ t, such that

AdvF
H2,Π(A) ≤ q ·AdvF

H2,Π(B) .

Proof. We define the following sequence of hybrids.

Hybrids Hp
i . These hybrids, for i = 1, . . . , q, work as H2, but up to the i-th challenge query the

game encrypts m0 (i.e., we assume b = 0), while for the remaining challenge queries it encrypts m1.
Let E be the event that A wins the privacy game against F, and let let A(Hp

i ) be the output of A
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when playing against Hp
i . Using the hybrid definitions and the facts that (i) Hp

c matches H2 and
the privacy game, for b = 0, and (ii) Hp

0 matches H2 and the privacy game, for b = 1, we compute,

Pr [E ] =
1

2

(
Pr [A(Hp

c ) = 0] + Pr
[
A(Hp

0 ) = 1
])
.

Given A we define a singe challenge adversary B as follows:

• Choose uniformly random i← [q], set Chall← ∅, j ← 0, and for all ID ∈ G set i[ID]← 0. Run
A.

• Forward A’s messages to own oracles and return the outputs to A, except for the calls to send,
chall and dlv-AM, which are handled as follows:

– send(S, a,m): set i[S]++, forward to own and return the output of the oracle to A.

– chall(S, a,m0,m1): If |m0|= |m1|, set j++, i[S]++, Chall +← (S, i[S]), and

∗ If j = i, forward to own and return the reply to A.

∗ Otherwise,

1. If j < i, set m← m0.

2. If j > i, set m← m1.

3. Send (S, a,m) to own send and return the output to A.

– dlv-AM (S, i,R): forward to own oracle, and if (S, i) ∈ Chall, return ⊥ to A, otherwise
forward the response to A.

Finally, B outputs the same guess of bit b as A.
Note that in the above execution, the ith ciphertext given to A is the challenge ciphertext of B

in the single challenge game. Intuitively, B is guessing an index i ∈ [q] for which A distinguishes
between Hp

i and Hp
i−1, which implies it can distinguish between an encryption of m0 and m1 ( the

messages used in the ith call to the challenge oracle), which is the only difference between Hp
i and

Hp
i−1. The probabilistic analysis is similar to the one given in the proof of Lemma 28, and therefore

we omit it.

Finally, we prove the following lemma

Lemma 17. There exists a (t′, 1)-attacker B′, with t′ ≈ t, such that

AdvF
H2,Π(B) ≤ t2 ·AdvF

FSAE-Priv,Π(B′) .

Proof. Recall that in privacy game the adversary decides the challenge (S, i) during game initialization.
Thus, for any adaptive adversary B, there exists a non-adaptive adversary B′, which simply guesses
(S, i) (with probability 1

t2
) and then executes B. The advantage for this adversary is at least

1
t2
·AdvF

H2,Π(B), and the proof of the lemma is concluded.

From the above lemmas we derive that

AdvF
FS-GAEAD,Π(A) ≤ εcorr + t2 · (εauth + q · εpriv) .
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F Forward-Secure Group AEAD Construction

In what follows (cf. Section F.4) we present an FS-GAEAD construction based on key derivation
functions (cf. Section F.1) and authenticated encryption with associated data (cf. Section F.3)

F.1 Key Derivation Functions

F.1.1 Syntax

A key derivation function KDF with respect to set of labels L ⊆ {0, 1}∗, consists of two algorithms:

• s← KInit(s∗, n): a probabilistic algorithm that receives a uniformly random seed s∗ ∈ {0, 1}λ
and parameter n, and outputs the initial state s ∈ {0, 1}∗.

• (s′, k)← Derive(s, lab): a deterministic algorithm that receives a label lab ∈ L and state s and
outputs an new state s′ and key k ∈ {0, 1}λ ∪ {⊥}. If lab /∈ L or lab has been queried before,
k = ⊥.

F.1.2 Correctness & security

Before defining correctness we state what it means for a sequence of calls to the KDF to be valid.

Valid sequence of calls. For any s, a sequence of calls Q1, . . . , Qq to Derive, with Qi = (si, labi)
is called valid w.r.t. s if:

1. Calls are consecutive: s1 = s and for all i > 1, Derive(Qi−1) = (si, ki).

2. Labels are distinct : if i 6= j, then labi 6= labj .

Now we define correctness.

Definition 13 (KDF correctness). An KDF with label set L is correct, if for all s ∈ {0, 1}λ and all
valid w.r.t. s call sequences Q1 and Q2, it holds that for any Qi ∈ Q1, Qj ∈ Q2, having the same
label it holds that (s′, k)← Derive(Qi) and (s, k)← Derive(Qj), i.e., the KDF outputs the same k.

The security definition for KDFs follows.

Definition 14 (Forward secure KDF). A KDF KDF = (KInit,Derive) is a (t, ε)-forward secure KDF
(FS-KDF) with respect to a label set L if for any t-attacker A and n ≤ t, A can’t win the following
game with probability greater than 1/2 + ε:

1. Sample s∗ ← {0, 1}λ, s← KInit(s∗, n).

2. A chooses lab∗ ∈ L.

3. Compute (s, k)← Derive(s, lab∗).

4. b← {0, 1}.

5. If b = 1 then k ← {0, 1}λ.

6. A is provided with s and k, and outputs a bit b′ ∈ {0, 1}.
A wins if b′ = b.

Below we define an additional required property that is satisfied by our FS-KDF construction.
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Definition 15 (Independence w.r.t. the order of evaluations.). Let L = {lab1, . . . , labq} be any
sequence of labels and L′ be any permutation of L. For any initial state s1, set s′1 ← s1 and for
i ∈ [q], compute (si+1, ·) ← Derive(si, labi), (s′i+1, ·) ← Derive(s′i, lab′i). Then, it is required that
sq = s′q.

F.2 FS-KDF construction & security proof

In the current section we present our FS-KDF construction which is based on a length tripling PRG,

prg : {0, 1}λ →
(
{0, 1}λ

)3
.

We first present the main data structures and methods used by our construction.

Labeled trees. Let T be any labeled tree. We consider the following methods.

• T.L: the set of all labels in T.

• T.root: the root node

• Each node v in T has a secret, v.sec ∈
{
{0, 1}λ,⊥1,⊥2

}
, where

– ⊥1: the secret has already been deleted.

– ⊥2: the secret has not been defined yet.

All secrets are initialized to ⊥2.

• v.label: the unique label of a leaf node v, where v.label ∈ T.L.

• T.leaf(lab): the leaf node v of T such that v.label = lab.

• T.ldef(lab): returns a vector consisting of the nodes (v1, . . . , vz), such that (1) v1.sec ∈ {0, 1}λ,
(2) for i = 2, . . . , z, vi.sec = ⊥2, and (3) vz.label = lab.

We consider three types of trees, namely left-balanced binary trees, vine tress, and application
secret trees.

Left-balanced binary trees. An LBBT with n leafs is referenced by lbbtn and we have

• v.lc: the left child of v.

• v.rc: the right child of v.

Vine Trees. A Vine Tree vti is a labeled tree for the ith symmetric ratchet, i > 0.

• vti.vj : internal node for positive integer j > 0.

• node vj has 3 children: keyj , noncej , vj+1, where

– keyj : a leaf node with label (key, i, j).

– noncej : a leaf node with label (nonce, i, j).

– vj+1: the next internal node.
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FS-KDF construction

// FS-KDF initialization

KInit (s∗, n)
s← new ASn
s.root.sec← s∗

return s

// The key derivation function

Derive (s, (type, i, j))
k ← s.leaf(type, i, j).sec
if k = ⊥1 return ⊥1
if k 6= ⊥2

s.leaf(type, i, j).sec← ⊥1
return k

if s.vti.root.sec = ⊥2
(v1, ..., vz)← s.lbbt.ldef(i)
for l = 1, . . . , z

(vl.lc.sec, vl.rc.sec, ·)← prg(vl.sec)
vl.sec← ⊥1

(v1, ..., vz)← s.vti.ldef(j)

for l = 1, . . . , z
(vti.keyl.sec, vti.noncel.sec, vti.vl+1.sec)← prg(vl.sec)
vl.sec← ⊥1

k ← s.leaf(type, i, j).sec
s.leaf(type, i, j).sec← ⊥1

return k

Figure 25: Our FS-KDF construction based on PRGs.

Application secret trees. The application secret tree for n parties, ASn, is a labeled tree
consisting of

• A left balanced binary tree lbbtn rooted at ASn.root.

• Leaf i ∈ [n] of lbbtn is the root of vti.

• ASn.L = {(key, i, j), (nonce, i, j) : i ∈ [n], j > 0}.
Our construction is depicted in figure 25.
Before proving security of our construction we argue about it’s properties. First of all, or

construction works over the set of labels ASn.L and clearly if a label lab has been queried before,
the output of the KDF is ⊥1, i.e., the requested secret is deleted right after being queried (this
is required by the KDF syntax, cf. Section F.1.1). Also, the correctness (cf. Definition 13) and
independence w.r.t. to the order of evaluations (cf. Definition 15), properties, are straightforward.

Below we prove security of our construction.

Theorem 18. Assuming prg is an εprg-secure PRG, the construction of Figure 25 is an (t, 2(log t+
t)εprg)-secure FS-KDF.

Proof. Our proof is via a sequence of hybrids: H0 is the original FS-KDF security game (cf.
Definition 14) and for i > 0, Hi substitutes the output of the first i PRG calls with uniformly random
values and uses the real PRG output for the rest. A single call for the label (type, i, j) to Derive
requires (at most) log n+ j PRG calls; at most log n calls for computing the secret of the root of
vti, plus j for computing the secret of the node typej . Clearly, we have log n + j ≤ log t + t. Let
Hl be the last hybrid, l ≤ log t+ t, and let Wi be the probability that A wins in Hi. We prove the
following claim.

Claim 19. For all i ≥ 0, Wi −Wi+1 ≤ 2εprg.

Proof. We define an adversary A′ as follows: A′ plays against the PRG security game, which samples
a uniformly random bit b and seed s, and if b = 1 it returns prg(s) to A′, otherwise returns a
uniformly random string. A′ uses the PRG challenge to answer the ith PRG call in Hi−1 and outputs
1 if A wins, otherwise outputs 0. Clearly, if b = 1 then A′ simulates Hi, while if b = 1 it simulates
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Hi+1. Let W be the probability that A′ wins in the PRG security game. We compute,

1

2
+ εprg ≥W = Pr [W | b = 1] · Pr [b = 1] + Pr [W | b = 0] · Pr [b = 0]

=
1

2
· (Wi + (1−Wi+1))

=
1

2
+
Wi −Wi+1

2

and the proof of the claim is complete.

In the last hybrid, Hl, the view of A is independent of the challenge bit, therefore Wl = 1/2 and
from above claim we derive that W0 ≤ 2lεprg ≤ 2(log t+ t)εprg.

F.3 Authenticated Encryption with Associated Data

Syntax. An AEAD scheme AEAD consists of three algorithms:

• k ← KGen(1λ): receives security parameter and outputs a key k.

• e← AEnc(k, n,m, a): receives key k, nonce n, message m and associated data a, and outputs
a ciphertext e.

• m← ADec(k, n, e, a): receives key k, nonce n, ciphertext e and associated data a, and outputs
a message m or ⊥.

AEAD correctness. An AEAD scheme AEAD = (KGen,AEnc,ADec) is correct if for every nonce
n, message m and any associated data a,

Pr [ADec(k, n,AEnc(k, n,m, a), a) = m] = 1,

where k ← KGen(1λ).
Our setting requires one-time security, i.e., only one ciphertext per secret key is generated. The

security games defined below capture this notion.

AEAD Security. An AEAD scheme AEAD is (t, ε)-secure if:

• CPA security : For every t-attacker A,

Pr

[
b = b′

∣∣∣∣ k ← KGen(1λ); (n, a,m0,m1)← A(1λ);
b← {0, 1}; e← AEnc(k, n,mb, a); b′ ← A(e)

]
≤ ε.

The advantage of A in winning the above game is denoted by AdvAEAD
AE-Priv.

• Authenticity : For every t-attacker A,

Pr

[
(ñ, ẽ, ã) 6= (n, e, a) ∧ ADec(k, ñ, ẽ, ã) 6= ⊥

∣∣∣∣ k ← KGen(1λ); (n,m, a)← A(1λ);
e← AEnc(k, n,m, a); (ñ, ẽ, ã)← A(e)

]
≤ ε.

The advantage of A in winning the above game is denoted by AdvAEAD
AE-Auth.
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FS-GAEAD Security Game: Safety Helpers and Safety Predicate

// determines whether a message is not compromised

*FS-sec (S, i)
return ∀(R,Tr, Rv) : (R,Tr, Rv) /∈ AM-Lk ∨ ((S, i) ∈ Rv ∧ (S, i) /∈ Tr)

Figure 26: The safety predicate for our FS-GAEAD construction.

FS-GAEAD Construction

// Initialization

Init (k, n, ID)
s← KInit(k, n)
pos← 1

return (s, pos, ID)

// Send message

Send (v, a,m)
(s, pos, ID)← v
(s, n)← Derive(s, (nonce, ID, pos))
(s, k)← Derive(s, (key, ID, pos))
pos++

e′ ← AEnc(k, n,m, (ID, pos, a))

e← (ID, pos, e′)
return ((s, pos, ID), e)

// Receive message

Rcv (v, a, e)
(s, pos, ID)← v

(S, i, e′)← e
(s, n)← Derive(s, (nonce, S, i))
(s, k)← Derive(s, (key, S, i))
req n, k 6= ⊥
m← ADec(k, n, e′, (S, i, a))
req m 6= ⊥
return ((s, pos, ID), S, i,m)

Figure 27: The FS-GAEAD construction.

F.4 FS-GAEAD construction & security

Our FS-GAEAD construction is depicted in Figure 27.
For our construction, the safety predicate *FS-sec of the FS-GAEAD security game of Figure 27

is instantiated by *FS-sec of Figure 26. The safety predicate *FS-sec ensures that no compromised
message has been challenged. A message, identified by (S, i) is considered compromised if there exist
(R,Rv,Tr) ∈ AM-Lk, such that (S, i) is compromised

• (via state leakage) (S, i) /∈ Rv, i.e., at the time of compromise R didn’t receive (S, i), or

• (via trash) (S, i) ∈ Tr, i.e., at the time of compromise (S, i) was in the trash of R, which implies
that R didn’t delete the corresponding key material.

In what follows we prove security of our construction.

Theorem 20. Assuming (t′, εae)-secure AEAD and (t′, εkdf)-forward secure KDF, the scheme of
Figure 27, denoted as F, is

• (t, 0)-correct,

• (t, εkdf + εae)-authentic,

• (t, εkdf + εae)-private,

w.r.t. the predicate *FS-sec of Figure 26, with t ≈ t′.

Proof.

Correctness. First observe that the sequence of calls made to Derive is valid with respect to the
output s of KInit (cf. Section F.1):

1. Calls are consecutive: each call to Derive uses the previously generated KDF state s, where
the first state is output by KInit.
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2. Labels are distinct : each call to the Send oracle increases the counter pos by one thus no
consecutive calls to Send use the same label. A similar argument holds for Rcv since the value
of the index i used by the calls to Derive matches the counter value pos used by the sender.

By the above and the correctness property of the KDF (cf. Section F.1) we derive that all calls
to Derive that share the same label produce the same keys and nonces, which in our construction
implies that the keys, k, and nonces n, computed by the Send oracle are equal to those computed by
the Rcv oracle. I.e., senders and receivers are fully synchronized.

Let A be a t-attacker that triggers the win condition inside the dlv-AM oracle of the FS-GAEAD
game of Figure 23. This implies that for some S, R, on input (S, i,R), the dlv-AM oracle computes
(v[R],S′, i′,m′) ← Rcv(v[R], a, e) and (S′, i′,m′) 6= (S, i,m), where m is the ith message sent by S.
However, S′, i′ are part of the input ciphertext e to Rcv and defined by the sender (recall that there
are no injections, i.e., the game delivers only honestly generated ciphertexts stored in AM). Therefore
(S′, i′,m′) 6= (S, i,m) implies that m 6= m′. Thus, for the ith message of sent by S, S computes
e← (S, i,AEnc(k, n,m, (S, i, a))), while the recipient computes m′ ← ADec(k, n, e, (S, i, a)), where
m′ 6= m, violating the correctness property of the encryption scheme (in our reasoning we assume
the same k and n, for both AEnc and ADec since we have already argued above that the outputs of
Derive are synchronized). We have reached a contradiction, thus no adversary can trigger the win
condition inside the dlv-AM oracle and the scheme is correct.

Authenticity. The win condition inside the inj-AM oracle is triggered when the following condition
is satisfied

*FS-sec(S, i) ∨ AM[S, i[S],R] = received.

Let E1 (resp. E2) be the event in which the left part (resp. right part) of the above disjunction is
satisfied (for the first time) via a call to inj-AM for which m′ 6= ⊥.

First we bound the probability that E2 happens. Assuming it does, then the adversary triggers
the win condition inside inj-AM by injecting a, e, to R as the ith message of S which has already
been received (due to E2). Therefore, Derive will be called twice on the same label (key,S, i) which
by the KDF definition will output k = ⊥ (in this setting execution is aborted and all changes made
by the call to inj-AM are reverted). Thus conditioned on E2 the win condition is triggered with
zero probability.

For E1, *FS-sec(S, i) implies that

∀(R,Tr,Rv) : (R,Tr,Rv) /∈ AM-Lk ∨ ((S, i) ∈ Rv ∧ (S, i) /∈ Tr) ,

i.e., for all receivers R, at the injection time, either the state of the receiver has not been been
compromised, or if it does, at the time of compromise the ith message has been already delivered to
R and the corresponding key is not included in R’s trash. For the latter case the argumentation
is identical to the above: delivering the ith message of S to R twice results in calling Derive twice
with the same label, in which case Derive outputs ⊥. It only remains to bound the probability of
a successful injection against non-compromised parties, for messages that have not been delivered
yet (other parties may have been compromised still at the time of compromise the ith message of
S has been already delivered). This relies on KDF security and the authenticity property of the
encryption scheme.

Let S∗, i∗, be the ID of the sender and the message index, respectively, for which A will try to
inject. Let H0 be identical to the authenticity game with one difference: the i∗th message sent by S∗

is not encrypted using the key output by Derive but using a uniformly random key (the decryption
operation uses that key also). In the following, denote the advantage of A in H0 w.r.t. Π = *FS-sec,
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by AdvF
H0,Π(A). We define an adversary B0 that plays against the FS-KDF security game and

simulates for A the authenticity game w.r.t. F.

Lemma 21. There exists a t′-attacker B0, with t′ ≈ t such that

AdvF
FSAE-Auth,Π(A) ≤ AdvF

H0,Π(A) + AdvKDF
FS-KDF(B0) .

Proof. We define how B0 simulates the replies of the queries made by A to the FS-GAEAD
authenticity game, while playing against the FS-KDF security game. B0 is defined below.

• (Initialization):

1. Run A and receive (S∗, i∗).

2. Set the challenge lab∗ ← (key, S∗, i∗), send lab∗ to the FS-KDF challenger, and let s∗, k∗,
be the reply.

3. Compute (s∗, n∗)← Derive(s∗, (nonce,S∗, i∗)).

• (Query simulation):

– init(G): execute all steps of init(G), besides Init. Instead, for ID ∈ G, set v[ID] ←
(s∗, 1, ID).

– send(S, a,m):

∗ If (S, pos) 6= (S∗, i∗), execute the query normally w.r.t. to the defined FS-GAEAD
states.

∗ Otherwise, in Send, use k∗, n∗, as the key and nonce, respectively, for AEnc (i.e., omit
the computation of Derive).

– corr(ID): Compute AM-Rcvd and AM-Lk as in corr oracle.

∗ If (S∗, i∗) /∈ AM-Rcvd or (S∗, i∗) ∈ AM-Tr[ID], abort and output 1.

∗ Otherwise, send v[ID] to A.

– dlv-AM(S, i,R):

∗ If (S, i) 6= (S∗, i∗), execute the query normally w.r.t. to the defined FS-GAEAD
states.

∗ Otherwise, in Rcv, use k∗, n∗, as the key and nonce, respectively, for ADec (i.e., omit
the computation of Derive).

– no-del[ID]: set Del[ID]← false.

– inj-AM(a,S, i, e,R):

∗ If (S, i) 6= (S∗, i∗), execute the query normally w.r.t. to the defined FS-GAEAD
states.

∗ Otherwise, in Rcv, use k∗, n∗, as the key and nonce, respectively, for ADec (i.e., omit
the computation of Derive).

We show that the above simulation is correct. Observe that the init operation is indistinguishable
to the one computed in the authenticity game, however, the key, k∗, and nonce, n∗, for (S∗, i∗), have
been already computed via a challenge query to the FS-KDF challenger, and the KDF states of all
ids have been initialized with s∗ (the FS-KDF state after computing over (S∗, i∗)). The simulation
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is correct since our safety predicate guarantees that no party is compromised before receiving the
i∗th message by S∗, and for all parties compromised after receiving that message, no-del is disabled
before receiving that message. For send, B0 executes normally the code of the oracle based on the
aforementioned states, unless the oracle call is for the i∗th message of S∗, in which case B0 uses key
k∗, and nonce n∗, and again the simulation is correct. For corr, B0, simply executes the code of the
oracle, and aborts in case A violates the safety predicate. Also, the state leaked to the adversary is
consistent with the one computed in the authenticity game, and this is due to the independence
w.r.t. the order of evaluations (IOE) property of the KDF function (cf. Definition 15), which ensures
that the FS-KDF state is independent of the order of operations. Observe that, if a corruption
happens, the corrupted id should already have received (S∗, i∗), which means that the corresponding
labels should have been queried in both games. However, the order of queries might be different as
(S∗, i∗) is always B0’s first query to FS-KDF, still, IOE ensures that the leaked state is not affected
by that order. dlv-AM execution is identical to the original, unless the query is for (S∗, i∗) in which
case B0 uses k∗, n∗, which guarantee correctness of the simulation. inj-AM is similar, while no-del
is trivially correct.

Now observe that, if b = 0, B0 correctly simulates the FS-GAEAD authenticity game (since
k∗ is output by Derive), while if b = 1 it simulates H0 (since k∗ is uniformly random), thus the
distinguishing advantage cannot be more than εkdf and the proof is concluded.

Now we prove that the advantage of A in H0 is upper bounded by the advantage of breaking the
authenticity property of the underlying AEAD scheme.

Lemma 22. There exists a t′-attacker B1 with t′ ≈ t such that

AdvF
H0,Π(A) ≤ AdvAEAD

AE-Auth(B1) .

Proof. We define an attacker B1 that simulates the replies of the queries made by A in H0 while
playing against the AEAD authenticity game. B1 executes A, receives (S∗, i∗) and replies to A’s
queries as defined below.

• init(G, S∗, i∗): execute all steps defined in the authenticity game.

• send(S, a,m):

– If (S, pos) = (S∗, i∗): let n be the nonce computed by executing send. Send the challenge
(n,m, (S, pos, a)) to the AEAD authenticity game challenger, receive the ciphertext e′ and
set e← (S, pos, e′), m∗ ← m. Use e in the rest of the send execution and return e to A.

– Otherwise: execute send(S, a,m) normally.

• corr(ID): return v[ID] to A.

• dlv-AM(S, i,R):

– If (S, i) = (S∗, i∗): execute dlv-AM but in the Rcv execution omit the decryption
operation and set m← m∗.

– Otherwise: execute dlv-AM(S, i,R) normally.

• inj-AM(a,S, i, e,R):

– If (S, i) = (S∗, i∗): send (n, e, a) to the AEAD authenticity challenger and halt.

– Otherwise: execute inj-AM(a,S, i, e,R) normally.

78



Observe that B1 correctly simulates H0, i.e., for the i∗th message by S∗ it uses a uniformly random
key k, which is the key used by the challenger of the AEAD authenticity game, and sends that
message as the challenge plaintext for the authenticity game. All other messages are processed
normally. Queries corr(ID) are processed by returning the state of ID. Observe here, that, since
there is no corruption before receiving the i∗th message by S∗, or no-del before receiving the message
and corruption after that moment, the adversary will never request access to F key k. Furthermore,
injections are processed normally, however when injecting the i∗th message of S∗, B1 sends the nonce
n, the mauled ciphertext e and associated data a to the challenger of the AEAD authenticity game.
Assuming (n, e, a) is a valid injection, we clearly have that B0 breaks the authenticity property of
the underlying AEAD scheme, reaching a contradiction. Therefore, the winning probability of B1 in
H0 is bounded by the probability of breaking the authenticity property of the underlying AEAD
scheme.

Privacy. Let S∗, i∗, be the ID of the sender and the message index w.r.t. which the challenge query
happens. Our strategy is similar to the one used for proving authenticity, i.e., for the challenge
message we substitute the underlying encryption key with a uniformly random key.

Let H1 be identical to the privacy game with one difference: the i∗th message sent by S∗ via
the call to the chall oracle is not encrypted using the key output by Derive but using a uniformly
random key (the decryption operation uses that key also). In the following, denote the advantage of
A in H1 w.r.t. Π = *FS-sec, by AdvF

H1,Π(A). We define an adversary B2 that plays against the
FS-KDF security game and simulates for A the privacy game w.r.t. F.

Lemma 23. There exists a t′-attacker B2 with t′ ≈ t such that

AdvF
FSAE-Priv,Π(A) ≤ AdvF

H1,Π(A) + AdvKDF
FS-KDF(B2) .

Proof. We define how B2 simulates the replies of the queries made by A to the FS-GAEAD privacy
game, while playing against the FS-KDF security game. B2 replies to A’s queries as defined below.

• (Initialization):

1. Run A and receive (S∗, i∗).

2. Set the challenge lab∗ ← (key, S∗, i∗), send lab∗ to the FS-KDF challenger, and let s∗, k∗,
be the reply.

3. Compute (s∗, n∗)← Derive(s∗, (nonce,S∗, i∗)).

• (Query simulation):

– init(G): execute all steps of init(G), besides Init. Instead, for ID ∈ G, set v[ID] ←
(s∗, 1, ID).

– send(S, a,m):

∗ If (S, i[S] + 1) 6= (S∗, i∗), execute the query normally w.r.t. to the defined FS-GAEAD
states.

∗ Otherwise, abort and output 1.

– corr(ID): Compute AM-Rcvd and AM-Lk as in corr oracle.

∗ If (S∗, i∗) /∈ AM-Rcvd or (S∗, i∗) ∈ AM-Tr[ID], abort and output 1.

∗ Otherwise, send v[ID] to A.
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– dlv-AM(S, i,R):

∗ If (S, i) 6= (S∗, i∗), execute the query normally w.r.t. to the defined FS-GAEAD
states.

∗ Otherwise, in Rcv, use k∗, n∗, as the key and nonce, respectively, for ADec (i.e., omit
the computation of Derive).

– no-del[ID]: set Del[ID]← false.

– chall(S, a,m0,m1):

∗ If (S, i[S] + 1) 6= (S∗, i∗), abort and output 1.

∗ Otherwise, execute the query normally but in Rcv, use k∗, n∗, as the key and nonce,
respectively, for ADec (i.e., omit the computation of Derive).

– reduced-inject(a,S, i, e,R): similar to deliver.

The arguments behind the correctness of the above simulation are similar to those in the proof
of Lemma 21. Observe that, if b = 0, B2 correctly simulates the FS-GAEAD privacy game (since
k∗ is output by Derive), while if b = 1 it simulates H1 (since k∗ is uniformly random), thus the
distinguishing advantage cannot be more than εkdf and the proof is concluded.

Now we prove that the advantage of A in H1 is upper bounded by the advantage of breaking the
privacy property of the underlying AEAD scheme.

Lemma 24. There exists a t′-attacker B3 with t′ ≈ t such that

AdvF
H1,Π(A) ≤ AdvAEAD

AE-Priv(B3) .

Proof. We define an attacker B3 that simulates the replies of the queries made by A to H1 while
playing against the AEAD privacy game. B3 executes A, receives (S∗, i∗) and replies to A’s queries
as defined below.

• init(G, S∗, i∗): execute all steps defined in the privacy game.

• send(S, a,m):

– If (S, i[S] + 1) 6= (S∗, i∗), execute the query normally w.r.t. to the defined FS-GAEAD
states.

– Otherwise, abort and output 1.

• corr(ID): Compute AM-Rcvd and AM-Lk as in corr oracle.

– If (S∗, i∗) /∈ AM-Rcvd or (S∗, i∗) ∈ AM-Tr[ID], abort and output 1.

– Otherwise, send v[ID] to A.

• dlv-AM(S, i,R): execute the query normally while if (S, i) = (S∗, i∗), omit ADec.

• no-del[ID]: set Del[ID]← false.

• chall(S, a,m0,m1):

– If (S, i[S] + 1) 6= (S∗, i∗), abort and output 1.
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Security Game for PRF-PRNG

init
b←R {0, 1}
vidroot ← HG.init
σ[vidroot]← 0

V-Lk← ∅
R[·]← ∅
Reveal[·]← ∅
Chall[·]← ∅
BI[·]← ∅

corr (vid)
V-Lk +← vid
return σ[vid]

process (vid, I, C)
req 6∃ child of vid for (I, C)

vid′ ← HG.create(vid, I)

BI[vid′]← (I 6= ⊥)

(σ[vid′], R[vid′])← PP(σ[vid], I, C)

return vid′

reveal (vid)
req R[vid] 6= ε
req ¬(Reveal[vid] ∨ Chall[vid])
Reveal[vid]← true
return R[vid]

chall (vid)
req R[vid] 6= ε
req ¬(Reveal[vid] ∨ Chall[vid])
R0 ← R[vid]
R1 ← R
Chall[vid]← true
return Rb

safe
return ∀vid : Chall[vid] =⇒
*PP-secure(vid)

Figure 28: PRF-PRNG security game.

– Otherwise, execute the code of the oracle normally, but instead of computing AEnc, send
the challenge query (n, a,m0,m1) to the CPA challenger and forward the reply to A.

• reduced-inject(a,S, i, e,R): similar to deliver.

Observe that B3 correctly simulates H1, i.e., for the i∗th message sent by S∗ it uses a uniformly
random key k, which is the key used by the AEAD privacy game, and sends the challenge messages
as challenge plaintexts for the privacy game. Moreover, since there is no corruption before receiving
the i∗th message by S∗, and for any party for which no-del has been enabled before processing the
i∗th message by S∗, no corruption can happen even after processing that message, the adversary
will never request access to F’s key k. send is executed normally, unless A requests transmission of
the challenge sender/index pair, corr is executed normally, unless A violates the safety predicate,
dlv-AM is executed normally, unless A requests the deliver of the i∗th message by S∗, in which
case B3 executes all oracle operations besides decryption (since it does not have access to the secret
of AEAD), and reduced-inject is similar to dlv-AM. Thus, the simulation is correct. If in the
AEAD privacy game b = 0 then B3 simulates H1 with b = 0. On the other hand, if in the AEAD
privacy game b = 1, B3 simulates H1 with b = 1. Therefore, the advantage of A in guessing b in H1

is bounded by the advantage of guessing b in the AEAD privacy game, which is at most εae. The
proof is concluded.

Putting things together. By the above proof and Theorem 13, we derive that our FS-GAEAD
construction is (t, q, ε′)-FS-GAEAD secure, with ε′ = (q + 1)t2(εkdf + εae) and t ≈ t′.

G PRF-PRNGs

G.1 Security

A PRF-PRNG must satisfy PCFS (cf. Section 3.3) and be resilient to splitting-attacks. Therefore,
the security game for PRF-PRNGs (cf. Figure 28) follows the same history-graph approach as the
definitions of SGM and CKGA. However, since the game only consists of the state of the PRF-PRNG
and there are no parties, it suffices to keep track of a much smaller amount information:

• Nodes of the history graph only consist of the vid.
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• For every node vid,

– the value σ[vid] stores the corresponding state of the PRF-PRNG,

– the value R[vid] stores the corresponding output of the PRF-PRNG, and

– the value BI[vid] is a flag indicating whether the input I absorbed to reach the state σ[vid]
is known to the attacker.

• The set V-Lk records the vids for which the PRF-PRNG state is leaked to the attacker.

The root node vidroot of the history graph corresponds to the initial state of the PRF-PRNG, which
is assumed to be the all-zero string. The attacker A has the following capabilities:

• He may create a new child state of any node vid by calling oracle process and specifying an
input/context pair (I, C); of course, only one such call per triple (vid, I, C) is allowed. If the
call is made with I 6= ⊥, the game samples I it randomly. The value BI[vid] is set accordingly.

• He may reveal or challenge outputs R[vid] corresponding to arbitrary nodes vid 6= vidroot by
calling the corresponding oracles reveal and chall, respectively. The flags Reveal[vid] resp.
store Chall[vid] whether a reveal resp. a challenge has been requested for vid.

• Finally, A can also leak the state σ[vid] for any epoch vid 6= vidroot using oracle corr.

As per usual, at the end of the game, the oracle safe ensures that A does not win the game trivially;
safe uses a generic safety predicate *PP-secure.

G.1.1 Advantage.

Let Π = *PP-secure be the generic safety predicate used in the PRF-PRNG definition. The
attacker A is parameterized by it’s running time t, referred to as t-attacker. The advantage of A
against a PP scheme PRF-PRNG w.r.t. to predicate Π is denoted by AdvPP

PRF-PRNG,Π(A).

Definition 16. A PRF-PRNG scheme PP is (t, ε)-secure w.r.t. predicate Π, if for all t-attackers,

AdvPP
PRF-PRNG,Π(A) ≤ ε .

G.2 Construction

A straight-forward construction of PRF-PRNGs is to model the algorithm PP as a random oracle.
Such a construction achieves security w.r.t. safety predicate *PP-secure, depicted in Figure 29. It
captures that in order for a value R[vid] to be considered secure, vid

• must have an ancestor state vid′ (possibly itself) that was reached via a random input I not
known to A, and

• there must have been no corruptions on the path from vid′ to vid’s ancestor.

Theorem 3. Let *PP-secure be the safety predicate above. Then, PP as a random oracle with
outputs in {0, 1}λ, is an (t, ε)-secure PRF-PRNG w.r.t. *PP-secure, where ε = negl(λ) and
t = poly(λ).

sketch. Let A be an attacker against the PRF-PRNG game that challenges the node vid. By the
safety predicate of Figure 29, we require that ∃ vid′ � vid s.t. ¬BI[vid′] and 6∃ vid′′ ∈ [vid′, vid) :
(vid′′, ·) ∈ V-Lk, i.e., there should be an ancestor node vid′ of vid, such that the input I to PP is
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Safety Predicate for PRF-PRNG Construction

// Is PRF-PRNG state secret?

*PP-secure (vid)
if ∃ vid′ � vid s.t.

1. ¬BI[vid′]

2. 6∃ vid′′ ∈ [vid′, vid) : (vid′′, ·) ∈ V-Lk

return true
return false

Figure 29: The safety predicate determines whether a PRF-PRNG output R belonging to a particular
vid is considered secure.

uniformly random, and there is no state compromise in [vid′, vid). Then, assuming A is not querying
PP with I, σ[vid′], R[vid′], are uniformly random, thus the next evaluation on vid′, independently
of I and C, will also output uniformly random values, and the same will hold for all nodes in
[vid′, vid). Note that, if the adversary creates a fork for some vid′′ ∈ [vid′, vid), for instance by
querying the process oracle with (I, C) 6= (I ′, C ′), then since σ[vid′′] is uniformly random (by the
above arguments), the updated PRF-PRNG states are uniformly random and independent, thus any
PRF-PRNG state compromise on the fork branch will not affect security on [vid′, vid). The above
hold if the adversary does not query the random oracle with I, σ[vid′], and any σ along the path from
vid′ to vid, considered as a bad event E . Then, one could split the security proof w.r.t. adversaries
that don’t trigger, or trigger, E , which is along the lines of the proof of Theorem 7.

H SGM Security

H.1 Simplified Properties

Proving SGM security is facilitated by considering three simplified properties, namely correctness,
authenticity, and privacy. These properties together imply full SGM security, as stated at the end of
this section. All three of them are obtained by modifying the original SGM game.

In the following, a (t, q)-attacker is an attacker A that runs in time at most t and makes at most
q challenge queries.

Correctness. For the correctness game SGM-Corr, there is no challenge oracle chall, no inject
oracles for control messages inj-CM, welcome messages inj-WM and proposals inj-PM, while we
introduce a reduced injection oracle red-inj-AM, which is presented in Figure 30.

The advantage of A in the correctness game with respect to a scheme Γ, is denoted by
AdvΓSGM-Corr,Π(A).

Definition 17. A group messaging scheme Γ is (t, ε)-correct w.r.t. predicates Π, if for all t-attackers
A,

AdvΓSGM-Corr,Π(A) ≤ ε .

Authenticity. In the authenticity variant of the SGM game, there are is no challenge oracle
chall, and no win instruction inside the delivery oracles dlv-PM, dlv-CM, dlv-WM, dlv-AM.
Moreover, the adversary needs to initialize the game with the following arguments

• comp-sig ∈ {true, false}: commits to whether at the time of injection the target signature keys
will compromised.
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SGM Correctness Game: The Inject Oracle

red-inj-AM (a′, e′, R)
req *compat-inj-AM(a′, e′, R)

(E′, S′, i′)← *get-epoch-sender-index(e)

vid′ ← epID[E′]
m′ ← ⊥
if *FS-sec(vid′, S′, i′)

(s[R], E′, S′, i′,m′)← Rcv(s[R], a′, e′)
AM[vid′, S′, i′, R]← received

if Del[R]
AM-Rcvd[vid] +← (S′, i′, R)

return (E′, S′, i′,m′)

Figure 30: The oracle for injecting application messages for the correctness and privacy properties.

• inj-type ∈ {gkb, pm, cm,wm, am}: the injection type can be one of the following

– gkb: injection against get-KB; requires the adversary to set the id of the target signature
key, skid∗.

– pm: injection against inj-PM; requires the adversary to set the target epoch, ep∗, and
the epoch, ep∗h, of the last honest commit (healing), before ep∗.

– cm: injection against inj-CM; requires ep∗, ep∗h, as defined above.

– wm: injection against inj-WM; requires ep∗, ep∗h, as defined above.

– am: injection against inj-AM; requires ep∗, ep∗h, as defined above, as well as the target
sender ID∗ and message index i∗.

If during the execution, the adversary mounts an injection attack that is not consistent with the
above values, then loses the game immediately.
The advantage of A in the authenticity game is denoted by AdvΓSGM-Auth,Π(A).

Definition 18. A group messaging scheme Γ is (t, ε)-authentic w.r.t. predicates Π, if for all
t-attackers A,

AdvΓSGM-Auth,Π(A) ≤ ε .

Privacy. The privacy variant of the SGM game only provides the reduced inject oracle of Figure 30,
and there is no win instruction inside the delivery oracles dlv-PM, dlv-CM, dlv-AM and if
skid 6∈ SK-Lk ∧ WK-SK[wkid] 6= skid is satisfied inside get-KB, the adversary loses the game.
Moreover, the adversary needs to initialize the game with arguments ep∗, ep∗h, ID∗, i∗, such that, the
adversary issues a single challenge query in epoch ep∗, for the i∗th message sent by ID∗. As above,
ep∗h is the epoch before ep∗ of the last honest commit. If during the execution, the adversary issues
a challenge query that is not consistent with the above values, then loses the game immediately.
The advantage of A in the privacy game is denoted by AdvΓSGM-Priv,Π(A).

Definition 19. A group messaging scheme Γ is (t, 1, ε)-private w.r.t. predicates Π, if for all
(t, 1)-attackers A,

AdvΓSGM-Priv,Π(A) ≤ ε .

Combining the properties. The following theorem relates the simplified properties to the full
SGM security definition.
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Theorem 25. Assume a group messaging scheme Γ is

• (t′, εcorr)-correct,

• (t′, εauth)-authentic, and

• (t′, 1, εpriv)-private,

with respect to predicate Π, then, it is also (t, q, ε)-secure GM w.r.t. predicate Π, where,

ε ≤ εcorr + t4 · (10 · εauth + q · εpriv)

and t ≈ t′.

Proof. Let A be any (t, q) adversary. The proof is via a series of hybrid experiments and the distances
between successive hybrids are bounded via reductions to correctness, authenticity, and privacy.

Hybrid H0. Hybrid H0 is the original SGM game with respect to Γ. We denote the advantage of
A in H0 by AdvΓH0,Π(A).

H.2 Dealing with Correctness

Hybrid H1. Hybrid H1 works as H0, except that the win condition inside the oracles dlv-PM,
dlv-CM dlv-WM, dlv-AM, is removed.

Lemma 26. There exists a t′-attacker B1, with t′ ≈ t, such that,

AdvΓH0,Π(A) ≤ AdvΓH1,Π(A) + AdvΓSGM-Corr,Π(B1) .

Proof. For both H0 and H1, consider the event E that the win condition inside one of the dlv-PM,
dlv-CM, dlv-WM and dlv-AM oracles is provoked. Observe that, since the game ends upon win,
if E occurs, it occurs before condition win in one of the remaining oracles is triggered. It suffices to
upper bound the probability of E occurring in, say, H0. This is achieved via a reduction: consider an
attacker B1 that plays against the correctness game with respect to Γ, executes A and attempts to
simulate H0 to A. I.e., B1 has access to all SGM oracles but chall, inj-CM, inj-PM, inj-WM. It
also receives access to the reduced injection oracle red-inj-AM (instead of inj-AM). On the other
hand, in H0, A has access to all SGM oracles.

The simulation proceeds as follows (the oracles B1 interacts with are referred to as B1’s own
oracles):

• Initially, choose a bit b ∈ {0, 1} randomly and initialize empty Chall.

• Initialize a local copy of the history graph variables (cf. Figure 1) and run A.

• Calls to the PKI oracles made by A are simply forwarded to it’s own PKI oracles.

• Simulate the remaining SGM game oracles for A as follows:

– For calls to commit, send, create-group, prop-add-user, prop-rem-user, prop-up-
user, corr, no-del, dlv-PM, dlv-CM, dlv-WM, simply forward to own and return
the outputs to A.

– chall (S, a,m0,m1): If V-Pt[S] 6= vidroot and |m0|= |m1|, execute send (S, a,mb) to
retrieve e, set Chall[V-Pt[S]] +← (S, i[S]), and pass e to A.
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– dlv-AM (vid,S, i,R): execute own oracle on the same input, and if (S, i) ∈ Chall[vid],
return ⊥ to A and set Chall[vid] −← (S, i), otherwise pass the response m to A.

– inj-AM: forward to own red-inj-AM.

– inj-CM, inj-PM, inj-WM: no action.

After each operation, update the local copy of the history graph accordingly.

We now show that B1 correctly simulates H0. For challenge queries, if V-Pt[S] 6= vidroot, then the
output of the send oracle is identical to that of chall and by setting Chall[V-Pt[S]] +← (S, i[S]), B1

fully simulates the computation of chall. Clearly, B1 is consistently updating it’s local copy of the
history graph as it only depends on public information, thus the value of V-Pt[S] matches that of
the actual game. For dlv-AM, an extra check is required, namely B1 checks if (S, i) ∈ Chall[vid], in
which case it returns ⊥ to A, as it would happen in H0.

For injection queries, recall that whenever E occurs, a win condition inside one of the dlv-PM,
dlv-CM, dlv-WM and dlv-AM, is provoked, thus no win is triggered inside the injection oracles.
Therefore, the reduced inject oracle red-inj-AM of the correctness game game is identical to
inj-AM, as the message returned by both oracles is generated using keys from compromised epochs.
Similarly, the win condition inside inj-CM, inj-PM, inj-WM is not being triggered, thus users’
states remain unchanged and B1 correctly takes no action for such queries. All the remaining queries
are handled by B1 as in H0. Hence, the probability that B1 wins the correctness game is equal to
the probability that A provokes E in H0.

H.3 Getting Rid of Injections

Hybrid H2. Hyrbid H2 works as H1, but without the inj-CM, inj-PM, inj-WM, oracles and
with the reduced inject oracle red-inj-AM, as defined in Section H.1. In the following, denote the
advantage of A in H2 by AdvΓH1,Π(A).

Lemma 27. There exists a t-attacker B2, with t′ ≈ t, such that

AdvΓH1,Π(A) ≤ AdvΓH2,Π(A) + 10t4 ·AdvΓSGM-Auth,Π(B2) .

Proof. In order to distinguish H1 and H2, A must provoke the win condition in the inject oracles
since H1 and H2 behave identically otherwise. Note that if win is not triggered, the reduced inject
oracle red-inj-AM is identical to inj-AM, i.e., either m′ = ⊥ or the adversary injects a ciphertext
that has been computed with compromised keys. Therefore, it suffices to upper bound the probability
of this event E in, say, H1, which is achieved via a reduction: Consider an attacker B2 against
authenticity that uses A and attempts to simulate H1 to A.

The simulation proceeds as follows (the oracles B2 interacts with are referred to as B2’s own
oracles):

• Sample b← {0, 1} and initialize empty Chall.

• Initialize a local copy of the history graph variables (cf. Figure 1).

• Sample uniformly random inj-type← {gkb, pm,wm, cm, am}, comp-sig ∈ {true, false}.

• Sample uniformly random values ep∗, ep∗h, skid∗, ID∗, i∗,16 and initialize the SGM authenticity
game parameterized by those values and inj-type, comp-sig. Run A.

16The space size for those variables is bounded by the running time of the adversary.
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• Calls to the PKI oracles made by A, are simply forwarded to it’s own PKI oracles. Update
the local copy of the history graph accordingly.

• Simulate the remaining SGM game oracles for A as follows:

– For calls to commit, send, create-group, prop-add-user, prop-rem-user, prop-up-
user, corr, no-del, dlv-PM, dlv-CM, dlv-WM, simply forward to own and return
the outputs to A.

– chall (S, a,m0,m1): If V-Pt[S] 6= vidroot and |m0|= |m1|, execute send (S, a,mb) to
retrieve e, set Chall[V-Pt[S]] +← (S, i[S]), and pass e to A.

– dlv-AM (vid,S, i,R): execute own oracle on the same input, and if (S, i) ∈ Chall[vid],
return ⊥ to A and set Chall[vid] −← (S, i), otherwise pass the response m to A.

– inj-CM, inj-PM, inj-WM, inj-AM: forward to own.

After each operation, update the local copy of the history graph accordingly.

Observe that for both authenticity game and H1, the win conditions has been removed from the
delivery oracles, while in the former there is no challenge oracle. The arguments for proving that
challenge queries are simulated correctly, is identical to that of Lemma 27. For queries to the
remaining oracles B2 simply forwards them to it’s own oracles. Hence, the probability that B2 wins
the authenticity game is equal to the probability that A provokes E in H1, times the probability
that B2 makes correct guesses for the parameters of the authenticity game, which is at least 1/10t4:
observe that not all types of injections require correct guessing of all parameters. The biggest number
of parameters that one needs to correctly guess is at most four, as for instance in inj-AM when
comp-sig = true, which requires correct guessing of ID∗, i∗, ep∗, ep∗h, therefore the probability of
guessing correctly the type of injection inj-type and whether is an attack against signatures, comp-sig,
as well as the correct parameters for that type is at least 1

5·2·t4 .

H.4 Privacy

Recall that, in H2 there is are no inj-CM, inj-PM, inj-WM, oracles and there is a reduced inject
oracle red-inj-AM. Also, there is no win condition inside the oracles dlv-PM, dlv-CM dlv-WM,
dlv-AM. Thus, H2 constitutes an adaptive, multi-challenge version, of the privacy game. We prove
the following lemma.

Lemma 28. There exists a (t′, 1)-attacker B, with t′ ≈ t, such that

AdvΓSGM-Priv,Π(A) ≤ q ·AdvΓH2,Π(B) .

Proof. We define the following sequence of hybrids.

Hybrids Hp
i . These hybrids, for i = 1, . . . , q, work as H2, but up to the i-th challenge query the

game encrypts m0 (i.e., we assume b = 0), while for the remaining challenge queries it encrypts m1.
Let E be the event that A wins the privacy game against Γ, and let let A(Hp

i ) be the output of A
when playing against Hp

i . Using the hybrid definitions and the facts that (i) Hp
q matches H2 for

b = 0, and (ii) Hp
0 matches H2 for b = 1, we compute,

Pr [E ] =
1

2

(
Pr
[
A(Hp

q ) = 0
]

+ Pr
[
A(Hp

0 ) = 1
])
.

Given A we define a singe challenge adversary B as follows:
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• Initialize a local copy of the history graph variables (cf. Figure 1) and run A.

• Choose uniformly random i← [q], set Chall← ∅, j ← 0, and initialize i[·]← 0.

• Forwards all communication between A and the Hp
i oracles and update the history graph

information, except for the calls to send, chall and dlv-AM, which are handled as follows:

– send(S, a,m): set i[S]++, forward to own and return the output of the oracle to A.

– chall(S, a,m0,m1): If *compat-chall(S) and |m0|= |m1|, set i[S]++, j++, Chall +←
(S, i[S]), C +← (V-Pt[S],S, i[S], a) and

∗ If j = i, forward to own and return the reply to A.

∗ Otherwise,

1. If j < i, set m← m0.

2. If j > i, set m← m1.

3. Send (S, a,m) to own send and return the output to A.

– dlv-AM(vid, S, i, a): if (vid, S, i, a) ∈ C return ⊥. Otherwise, forward to own and return
the result to A.

After each query update the local copy of the history graph accordingly.

• Output the bit b that is output by A.

Note that in the above execution, the ith ciphertext given to A is the challenge ciphertext of B
in the single challenge game. Intuitively, B is guessing an index i ∈ [q] for which A distinguishes
between Hp

i and Hp
i−1, which implies it can distinguish between an encryption of m0 and m1 ( the

messages used in the ith call to the challenge oracle), which is the only difference between Hp
i and

Hp
i−1.

Let O0 (resp. O1) be the event in which B outputs 0 (resp. 1) in the above execution. We
compute

Pr [O0 | b = 0] =

q∑
k=1

Pr [O0 | b = 0 ∧ i = k] · Pr [i = k] =

q∑
k=1

1

q
· Pr

[
A(Hp

k ) = 0
]
.

Symmetrically,

Pr [O1 | b = 1] =

q∑
k=1

Pr [O1 | b = 1 ∧ i = k] · Pr [i = k]

=

q∑
k=1

1

q
· Pr

[
A(Hp

k−1) = 1
]

=

q−1∑
k=0

1

q
· Pr

[
A(Hp

k ) = 1
]
.
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Let E ′ be the event in which B wins in H2 using a single challenge. Then, we compute

1

2
+ AdvF

H2,Π(B) ≥ Pr
[
E ′
]

=
1

2
(Pr [O0 | b = 0] + Pr [O1 | b = 1])

=
1

2

(
q∑

k=1

1

q
· Pr

[
A(Hp

k ) = 0
]

+

q−1∑
k=0

1

q
· Pr

[
A(Hp

k ) = 1
])

=
1

2q
·
q−1∑
k=1

(
Pr
[
A(Hp

k ) = 0
]

+ Pr
[
A(Hp

k ) = 1
])

+
1

2q
·
(
Pr
[
A(Hp

q ) = 0
]

+ Pr
[
A(Hp

0 ) = 1
])

=
q − 1

2q
+

1

q
· Pr [E ]

From the above we derive that

Pr [E ] ≤ q ·AdvΓH2,Π(B) +
1

2
,

and the proof is concluded.

Finally, we prove the following lemma

Lemma 29. There exists a t′-attacker B′, with t′ ≈ t, such that

AdvΓH2,Π(B) ≤ t4 ·AdvΓSGM-Priv,Π(B′) .

Proof. Recall that in the privacy game the adversary commits to (S∗, i∗, ep∗, ep∗h) during game
initialization. Thus for any adaptive adversary B, there exists a non-adaptive adversary B′, which
simply guesses (S∗, i∗, ep∗, ep∗h) (with probability at least 1

t4
) and then executes B. The advantage of

B′ is at least 1
t4
·AdvF

H2,Π(B), and the proof of the lemma is concluded.

From the above lemmas we derive that

AdvΓSGM(A) ≤ εcorr + 5t4 · εauth + q · t4 · εpriv .

H.5 Security of SGM construction

Theorem 25 reduces SGM security to three simpler properties. As above, let Γ denote the SGM
construction depicted in Figures 7, 8 and 9. In what follows we show that Γ satisfies the three
properties.

H.6 Proof of Authenticity

In this section we prove the following Theorem.

Theorem 30. The scheme Γ is (t′, ε′)-authentic w.r.t. ΠSGM, for ε′ = (εsig + εCR + εCGKA + εPKE +
εPP + εmac + εFS), and t′ ≈ t.

Proof. Authenticity of our scheme is proven via reductions to the properties of the underlying
schemes, depending on the injection type committed by the adversary when the game begins. In
particular, we consider the following cases:
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1. comp-sig = false: requires a reduction to the security of the underlying EU-CMA signature
scheme independently of inj-type. A is required to set skid∗.

2. comp-sig = true:

(a) inj-type ∈ {pm, cm,wm}: requires reductions to the collision resistance of H, and CGKA,
PKE, PRF-PRNG, and MAC security. A is required to set ep∗, ep∗h.

(b) inj-type = am: requires reductions to the collision resistance of H , and CGKA, PKE,
PRF-PRNG, and FS-GAEAD security. A is required to set ep∗, ep∗h, ID∗, i∗.

(c) inj-type = gkb: the adversary loses the game.

One could consider a single reduction covering the above cases, however, for the ease of exposition,
we split our reduction into parts that handle similar cases. First we introduce some variables that
will be used by our reductions:

• epcur: refers to the current epoch of a party at the time, or right before, the party executes an
SGM protocol operation.

• epnew: refers to the new epoch that will be created after a party executes an SGM protocol
operation.

We now prove each case separately.

H.6.1 Case 1: comp-sig = false.

Let A be any t-adversary against authenticity of Γ. We prove the following lemma.

Lemma 31. There exists a t′-attacker B1, with t′ ≈ t, such that

AdvΓSGM-Auth,ΠSGM
(A) ≤ AdvS

EU-CMA(B1) .

Proof.
B1 simulates the SGM authenticity game for A while playing against the EU-CMA game w.r.t. S.
B1 receives the verification key, spk∗, of S and executes the following steps.

• Run A, receive inj-type, skid∗, and initialize the SGM authenticity game with those parameters.

• For calls to rem-SigK, get-SK, create-group, dlv-PM, dlv-CM, dlv-WM, dlv-AM,
no-del, execute the code of the oracles on the inputs and return the outputs to A. Other calls
are handled below.

• gen-new-SigK(ID): compute skid ← idCtr++ and simulate the rest of gen-new-SigK as
follows

– If skid 6= skid∗, execute the remaining code of gen-new-SigK normally,

– Otherwise, omit (s[ID], spk)← Gen-SK(s[ID]), include spk∗ in s[ID], set SK-PK[skid∗]←
spk∗, execute the remaining operations normally and return the output to A.

• gen-new-KB(ID, skid):

– If skid 6= skid∗, execute the code of the oracle normally.
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– Otherwise, execute a modified Gen-KB(s[ID], spk), that omits all operations related to ssk,
send wpk (generated inside Gen-KB) to the singing oracle of the EU-CMA game, receive
the signature sig and executes the remaining code w.r.t. sig.

• prop-add-user(ID, ID′): execute the code of the oracle normally, however, in Add(s[ID], ID′),
if s.Ep-SPK[s.C-epid,ME] = spk∗, send a signing query (P′, t) (as they are computed by
Add) to the EU-CMA challenger, receive sig, and use it in the rest of the computation. If
s.Ep-SPK[s.C-epid,ME] 6= spk∗, execute the query normally.

• prop-rem-user(ID, ID′): similar to prop-add-user w.r.t. Remove.

• prop-up-user(ID, skid, r): similar to prop-add-user w.r.t. Update.

• commit(ID,pid, r): similar to prop-add-user w.r.t. Commit (the message to the signing
oracle is (T′, t)).

• send(S, a,m): similar to prop-add-user w.r.t. Send (the message to the signing oracle is e′).

• get-KB(ID, ID′, kb): compute (wpk, spk, sig) ← kb and if spk 6= spk∗, execute the query
normally. Otherwise,

– If inj-type = gkb,

∗ If skid 6∈ SK-Lk ∧WK-SK[wkid] 6= skid is satisfied, send the forgery (wpk, sig) to the
challenger of the EU-CMA game and halt.

∗ Otherwise, abort (A loses the game).

– If inj-type 6= gkb and win is triggered, abort (A loses), otherwise execute the rest of
get-KB.

• inj-PM(ID, P ′):

– If inj-type 6= pm, abort (A loses).

– Otherwise, if SK-ID[skid∗] 6= ID, abort (A loses).

– Otherwise, if ¬*compat-inj-PM(ID, P ′), abort (A loses).

– Otherwise, parse (P′, t, sig)← P ′ and output ((P′, t), sig) as a forgery to EU-CMA game.

• inj-CM(ID, T ′):

– If inj-type 6= cm, abort (A loses).

– Otherwise, if SK-ID[skid∗] 6= ID, abort (A loses).

– Otherwise, if ¬*compat-inj-CM(ID, T ′), abort (A loses).

– Otherwise, parse (T′, t, sig)← T ′ and output ((T′, t), sig) as a forgery to EU-CMA game.

• inj-WM(ID,W ′):

– If inj-type 6= wm, abort (A loses).

– Otherwise, if SK-ID[skid∗] 6= ID, abort (A loses).

– Otherwise, if ¬*compat-inj-WM(ID,W ′), abort (A loses).
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– Otherwise, parse (W′, t, sig) ← W ′ and output ((W′, t), sig) as a forgery to EU-CMA
game.

• inj-AM(a′, e′,R):

– If inj-type 6= am, abort (A loses).

– Otherwise, if SK-ID[skid∗] 6= ID, abort (A loses).

– Otherwise, if ¬*compat-inj-AM(a′, e′,R), abort (A loses).

– Otherwise, parse (e, sig)← e′ and output (e, sig) as a forgery to EU-CMA game.

• corr(ID): execute the oracle code normally and if skid∗ ∈ SK-Lk, abort (A losses), otherwise
return the output to A.

We now argue about correctness of the above simulation. Clearly, calls to rem-SigK, get-SK,
create-group, dlv-PM, dlv-CM, dlv-WM, dlv-AM, no-del, are completely independent of
any private signature key and their execution depends only on public values, thus simulation is
straightforward. gen-new-SigK executes normally if the newly generated key has id different than
skid∗, but for skid∗ injects the public key spk∗ of the EC-CMA game, and omits any operation
that is related to ssk∗. gen-new-KB, if skid 6= skid∗, executes normally, otherwise, sends a signing
request to the EU-CMA game. prop-add-user, prop-rem-user, prop-up-user, are similar: if the
proposals is signed with a key different than ssk∗, they execute normally, otherwise a signing request
is sent to the EU-CMA game. commit, send, are similar. get-KB checks the verification key of
the input signature, and if it corresponds to spk∗, checks whether the adversary has committed to a
gkb type of injection, and if skid 6∈ SK-Lk∧WK-SK[wkid] 6= skid, outputs the forgery to the EU-CMA
game. If the verification key is not spk∗, it executes normally. inj-PM, inj-CM, inj-WM, inj-AM,
work similar. Finally, corr executes normally, and only aborts if the adversary compromises the
secret key of skid∗. However, such an adversary would violate the condition comp-sig = false and
*SK-compr(ep∗h, ID), and would lose the game immediately.

We conclude that for an A with comp-sig = false,

AdvΓSGM-Auth,ΠSGM
(A) ≤ εsig .

H.6.2 Case 2: comp-sig = true.

We consider a sequence of hybrids which are common for both Cases 2a,2b. For Case 2c, there is
nothing to prove.

H0 executes as the original game, but in addition, keeps a list of hash/pre-image pairs (v,T′),
computed by the commit operation, and if it finds T′, T′′, T′ 6= T′′, such that H(T′) = H(T′′),
execution aborts. Clearly, indistinguishability between the H0 and the original game, follows by the
collision resistance property of H. More formally, we have the following lemma.

Lemma 32. There exists a t′-attacker B0, with t′ ≈ t, such that

AdvΓSGM-Auth,ΠSGM
(A) ≤ AdvΓH0,ΠSGM

(A) + AdvH
CR(B0) .

The proof is by a straightforward reduction to the collision resistance property of H: the only
way to distinguish between the original authenticity game and H0 is by finding a collision against H.
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Therefore, B0 simulates the SGM authenticity game w.r.t. to Γ until A finds a collision, and outputs
that collision against H.

H1, in epoch ep∗h, substitutes the CGKA update secret, I, computed by a commit (or group
create) operation of the CGKA scheme, with a uniformly random value. We formally prove the
following.

Lemma 33. There exists a t′-attacker B1, with t′ ≈ t, such that

AdvΓH0,ΠSGM
(A) ≤ AdvΓH1,ΠSGM

(A) + AdvK
CGKA,ΠCGKA

(B1) .

Proof. B1 plays against the CGKA security game w.r.t. K and simulates for A, H0 or H1, depending
on the secret bit sampled by the CGKA game.

• Run A, receive inj-type, ep∗, ep∗h, initialize the SGM authenticity game with those parameters
and set WK-IK[·]← ε.

• For calls to gen-new-SigK, rem-SigK, get-SK, dlv-PM, send, dlv-AM, execute the code
of the oracle normally and return the output to A.

• get-KB(ID, ID′, kb): execute normally and if skid 6∈ SK-Lk ∧WK-SK[wkid] 6= skid, abort (A
loses).

• gen-new-KB(ID, skid): execute the code of the oracle with the following differences: in
Gen-KB instead of executing K-Gen-IK, make a query to the CGKA oracle gen-new-ik with
input ID, receive ikid, ipk, and execute the remaining code of Gen-KB without setting wsk, and
receive (wkid, kb). Set WK-IK[wkid]← ikid.

• create-group(ID, skid,wkid, r):

– If epnew 6= ep∗h, send the query create-group(ID,WK-IK[wkid], r) to the CGKA game
challenger, and if create-group returns vid, send a reveal query for vid (the epoch created
by the group creation operation) to the CGKA challenger and receive I. Then, execute
Create(s[ID],SK-PK[skid],WK-PK[wkid]; r), however, omit the execution of K-Create, and
use I as being the output of K-Create for the rest of the computation.

– If epnew = ep∗h, execute as above, however instead of a reveal query, send a challenge query
chall(vid), for vid that corresponds to epoch ep∗h, and use the reply I∗, to simulate the
rest of the computation.

• prop-add-user(ID, ID′): execute the code of prop-add-user, however instead of executing
Add(s[ID], ID′), send the query prop-add-user(ID, ID′, ikid′) to the CGKA game, where ikid′

is the id of ID′’s ipk used by the add operation. If the query is successful, prop-add-user
returns (pid, P ). Use P to simulate the rest of the execution of prop-add-user.

• prop-rem-user(ID, ID′): Similar to prop-add-user but substitute the call to Remove with a
CGKA oracle query to prop-rem-user.

• prop-up-user(ID, skid, r): Similar to prop-add-user but substitute the call to Update with
a CGKA oracle query to prop-up-user.

• commit(ID,pid, r):
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– If epnew 6= ep∗h, send the query commit(ID,pid, r) to CGKA game challenger, and let
Wpub, Wpriv, T , be the reply. Send a reveal query for vid (the epoch created by the
commit operation) to the CGKA challenger and receive I. Then, execute commit,
however omit the execution of K-Commit, and use Wpub, Wpriv, T , I, as being the output
of K-Commit for the rest of the computation.

– If epnew = ep∗h, execute as above, however instead of a reveal query, send a challenge
query, chall(vid), to the CGKA game challenger, for vid that corresponds to epoch ep∗h,
and use the reply I∗, together with Wpub, Wpriv, T (as computed above), to simulate the
rest of the commit operation.

• dlv-CM(ID, vid):

– Query the oracle process of the CGKA game with input (vid, ID), and let GI be the reply
(if the call fails, abort).

– Execute the code of dlv-CM, and when computing Proc-CM(s[ID], T ), omit the execution
of K-Proc-Com, and use GI and the corresponding CGKA key I used in the commit that
created vid (see above), to simulate the rest of the execution.

• dlv-WM(ID, vid): query the oracle dlv-WM of the CGKA game with input (vid, ID), and let
GI be the reply (if the call fails, abort). Execute the code of the SGM dlv-WM, and when
computing Proc-WM(s[ID],W ), omit the execution of K-Join, and use GI and the corresponding
CGKA key I used in the commit that created vid (see above), to simulate the rest of the
execution.

• inj-PM(ID, P ′):

– If inj-type 6= pm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, execute the code of the oracle normally and halt.

• inj-CM(ID, T ′):

– If inj-type 6= cm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, send a corr(ID) query to CGKA game, and using ID’s state execute the code
of inj-CM and halt.

• inj-WM(ID,W ′):

– If inj-type 6= wm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, send a corr(ID) query to CGKA game, and using ID’s state execute the code
of inj-WM and halt.

• inj-AM(a′, e′,R):

– If inj-type 6= am, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).
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– Otherwise, execute the code of inj-AM normally.

• corr(ID): query corr of the CGKA game with ID, incorporate the returned CGKA state in
the SGM state of ID, execute the code of corr(ID) in the SGM game and send the output to
A. If A violates the safety predicate w.r.t. ep∗h, abort (A loses).

• no-del(ID): execute SGM’s no-del and query the CGKA game with no-del(ID).

B1 outputs the bit that is output by A.
We argue that the above simulation is correct. Clearly, calls to gen-new-SigK, rem-SigK,

get-SK, dlv-PM, send, dlv-AM, are independent of any CGKA key material, thus execution
proceeds without modifications. In get-KB, simply check if the adversary tries to inject, in which
case immediately loses the game as the B1 only deals with insecure signature keys (comp-sig = true).
gen-new-KB substitute the K-Gen-IK operation with a call to the gen-new-ik oracle, and avoids
operations related to wsk. In this way, B1 manages to properly initialize the appropriate CGKA
key material without touching the CGKA state. create-group, if epnew 6= ep∗h, it executes a
create-group CGKA query query and reveals the newly created key (this is not affecting security
as the newly created epoch is not ep∗h). Then, uses the CGKA key to execute the rest of the
oracle code while omitting K-Create. If epnew = ep∗h, the reveal query is substituted by a chall
query. commit is similar. prop-add-user, substitutes the execution of Add, with the CGKA
query prop-add-user and manages to generate a proposal without touching the CGKA state.
prop-rem-user, prop-up-user, are similar. dlv-CM, dlv-WM, make the appropriate CGKA
queries so as to make CGKA state evolve, and in addition, in the SGM level, use the CGKA keys,
computed above, to fully simulate SGM operations. Simulation of inj-PM, inj-CM, inj-WM,
inj-AM, no-del, is straightforward. corr sends a corr query to the CGKA game, incorporates the
returned state to the SGM date of ID, and executes the code of corr(ID) in the SGM game. It is
essential that the corruption will not affect security of the update secret for epoch ep∗h. We have
that comp-sig = true, therefore for a successful injection it is required that ¬*auth-compr(ep∗).
By definition, this implies *PP-secure(ep∗,*Proj-PP(SGM-Data)), which, by definition, implies
that ∃ vid′ � ep∗ s.t.

1. ¬BI[vid′]

2. 6∃ vid′′ ∈ [vid′, vid) : (vid′′, ·) ∈ V-Lk

By assumption ep∗h is the last honestly generated commit, thus vid′ = ep∗h, and the key generated in
ep∗h is a secure CGKA key, therefore the execution w.r.t. B1 satisfies ΠCGKA. Clearly, if the secret
bit sampled by the CGKA game is 0, the CGKA key returned as a reply to the chall query is the
actual CGKA key, and B1 simulates H0, otherwise, it simulates H1. The distinguishing advantage is
bounded by the advantage of breaking CGKA security.

The next hybrid, H2, when computing welcome messages for epoch ep∗, instead of encrypting the
PRF-PRNG state (e← E-Enc(wpk[i].epk, s.σ)), encrypts the zero message e← E-Enc(wpk[i].epk,0).
Then, for all users that process that welcome message, omit decryption (s.σ ← E-Dec(esk, e)) and
PP computation ((s.σ, ke, s.km, s.C-epid)← PP(s.σ, I, v)), and directly use the output of PP that has
been computed by the commit operation when the welcome message was created. Then, we have
the following lemma.

Lemma 34. There exists a t′-attacker B2, with t′ ≈ t, such that

AdvΓH1,ΠSGM
(A) ≤ AdvΓH2,ΠSGM

(A) + AdvPKE
CPA(B2) .
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The proof of the above lemma is simply via a reduction to the CPA security of PKE, and therefore
omitted.

The next hybrid, H3, in epoch ep∗, substitutes the output of the PRF-PRNG, PP, with a
uniformly random value. We formally prove the following lemma.

Lemma 35. There exists a t′-attacker B3, with t′ ≈ t, such that

AdvΓH2,ΠSGM
(A) ≤ AdvΓH3,ΠSGM

(A) + AdvPP
PRF-PRNG,ΠPP

(B3) .

Proof. B3 plays against the PRF-PRNG security game and simulates for A H2, or H3, depending
on the secret bit of the PRF-PRNG game. B3 executes the following code.

• Run A, receive inj-type, ep∗, ep∗h and initialize H2 with those parameters.

• For calls gen-new-SigK, rem-SigK, get-SK, gen-new-KB, prop-add-user, prop-rem-
user, prop-up-user, no-del, execute the query normally. Other calls are simulated as
described below.

• get-KB(ID, ID′, kb): execute normally and if skid 6∈ SK-Lk ∧WK-SK[wkid] 6= skid, abort (A
loses).

• create-group(ID, skid,wkid, r): Execute the oracle code and compute I.

– If epcur = ep∗h and r 6= ⊥ abort (A loses).

– If epcur 6= ep∗ and epcur 6= ep∗h, query process of the PRF-PRNG game with (vidroot, I, 0).

– If epcur = ep∗h and epcur 6= ep∗, query process of the PRF-PRNG game with (vidroot,⊥, 0).

– If epcur = ep∗, abort (A loses).

Receive vid′, send a reveal(vid′) query to the PRF-PRNG game challenger, and use the
returned value as the output of PP to simulate the rest of the oracle execution for ID.

• commit(ID,pid, r): Execute the oracle code and compute I, v.

– If epcur = ep∗h and r 6= ⊥ abort (A loses).

– If epcur 6= ep∗ and epcur 6= ep∗h, query process of the PRF-PRNG game with (vid, I, v).

– If epcur = ep∗h, query process of the PRF-PRNG game with (vid,⊥, v).

– If epcur = ep∗ and epcur 6= ep∗h, query the PRF-PRNG game with chall(vid).

Receive vid′, send a reveal(vid′) query to the PRF-PRNG game challenger, and use the
returned value as the output of PP to simulate the rest of the oracle execution for ID.

• dlv-PM(ID, pid): execute the code of the oracle but use the appropriate MAC key that was
generated by the PRF-PRNG game to verify authenticity of the proposal.

• dlv-CM(ID, vid): execute the code of the oracle but instead of evaluating PP using the
corresponding output that has been produced by the PRF-PRNG game via commit.

• dlv-WM(ID, vid): similar to dlv-CM.

• inj-PM(ID, P ′):
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– If inj-type 6= pm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, execute the code of the oracle normally and use the appropriate MAC key
that was generated by the PRF-PRNG game as the output of PP to verify authenticity
of the proposal.

• inj-CM(ID, T ′): abort (A loses the game).

– If inj-type 6= cm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, execute the code of the oracle normally and use the output of the PRF-PRNG
game as the output of PP in the rest of the execution.

• inj-WM(ID,W ′): abort (A loses the game).

– If inj-type 6= wm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, execute the code of the oracle normally and use the output of the PRF-PRNG
game as the output of PP in the rest of the execution.

• inj-AM(a′, e′,R): abort (A loses the game).

– If inj-type 6= am, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, execute the code of the oracle normally and use the output of the PRF-PRNG
game as the output of PP in the rest of the execution.

• send(S, a,m): execute normally given the FS-GAEAD states that have been initialized via
calls to the PRF-PRNG game.

• dlv-AM(vid, S, i,R): same as send.

• corr(ID): simulate the oracle call and send a corr call to the PRF-PRNG game for vid.

We argue on the correctness of the above simulation. Clearly, gen-new-SigK, rem-SigK, get-SK,
gen-new-KB, prop-add-user, prop-rem-user, prop-up-user, no-del, are either independent
of the PP output, or they just use the output of PP that has been set by operations such as commit,
create-group (such output is directly used by prop-add-user, prop-rem-user, prop-up-user),
that use the uniformly random MAC key that has been computed after processing messages of
epoch ep∗. In get-KB, simply check if the adversary tries to inject, in which case immediately
loses the game as the B3 only deals with insecure signature keys (comp-sig = true). create-group,
commit are similar: if the current epoch is the “healing epoch” (epcur = ep∗h) and the operation uses
bad randomness, the adversary loses. If the current epoch is not the healing epoch, nor the target
epoch, simply make a query to process of the PRF-PRNG game with the computed CGKA key. If
epcur = ep∗h, query the PRF-PRNG game with process(vid,⊥, v), i.e., for this operation the state of
PP receives good randomness that will be used to protect the target epoch ep∗. In epoch ep∗ send a
challenge query and use the reply to simulate the rest of the execution. Other operations use the
output of PP as computed above. Finally, for corr(ID), simulate the oracle call and send a corr call
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to the PRF-PRNG game for vid. It is essential that the corruption will not affect the PRF-PRNG
state in epoch ep∗. We have that comp-sig = true, therefore for a successful injection it is required
that ¬*auth-compr(ep∗). By definition, this implies *PP-secure(ep∗,*Proj-PP(SGM-Data)),
which, by definition, implies that ∃ vid′ � ep∗ s.t.

1. ¬BI[vid′]

2. 6∃ vid′′ ∈ [vid′, vid) : (vid′′, ·) ∈ V-Lk

By assumption ep∗h is the last honestly generated commit, thus vid′ = ep∗h. In addition, *PP-secure
guarantees that there is no compromised node in [vid′, vid), and by the collision resistance property
of H, we have that in the presence of group splits (or forks in HG), the PRF-PRNG state on different
branches are independent. This ensures that corruptions on other branches do not compromise
security of the PRF-PRNG state in [vid′, vid), and the safety predicate of the PRF-PRNG game,
ΠPP, is satisfied, therefore, B3 queries the game with a valid challenge. If the secret bit sampled
by the PRF-PRNG game is 0, B3 receives the actual PP output and simulates H2 for A, otherwise
it receives a uniformly random value and simulates H3. Therefore, the distinguishing advantage is
bounded by the advantage of breaking the PRF-PRNG security.

Next our proof splits into two cases; below we consider reduction to the security of the MAC
scheme, while the latter reduction is to the security of authenticity property of the FS-GAEAD
scheme.

H.6.3 Case 2a: comp-sig = true, inj-type ∈ {pm, cm,wm}.

We prove the following lemma.

Lemma 36. There exists a t′-attacker B4, with t′ ≈ t, such that

AdvΓH3,ΠSGM
(A) ≤ AdvM

MAC(B4) .

Proof. B4 simulates H3 for A while playing against the MAC security game. B4 is defined as follows.

• Run A, receive inj-type, ep∗, ep∗h, and initialize H3 with those parameters.

• For calls to gen-new-SigK, rem-SigK, get-SK, gen-new-KB, create-group, send, dlv-
AM, no-del, execute the code of the oracles and return the output to A. Other calls are
simulated as described below.

• get-KB(ID, ID′, kb): execute normally and if skid 6∈ SK-Lk ∧WK-SK[wkid] 6= skid, abort (A
loses).

• prop-add-user(ID, ID′):

– If epcur 6= ep∗, execute the query normally.

– Otherwise, instead of computing t← M-Tag(s.km,P
′), query oracle of the MAC security

game with P′ and use the returned value to simulate the rest of the computation.

• prop-rem-user(ID, ID′): similar to prop-add-user.

• prop-up-user(ID, skid, r): similar to prop-add-user.

• dlv-PM(ID, pid):
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– If epcur 6= ep∗, execute the query normally.

– Otherwise, instead of computing M-Ver(s.km,P
′, t), send a verification query (P′, t) to the

MAC security game and simulate the rest of the computation w.r.t. that output.

• commit(ID,pid, r): similar to prop-add-user.

• dlv-CM(ID, vid): similar to dlv-PM.

• dlv-WM(ID, vid): similar to dlv-PM.

• inj-PM(ID, P ′):

– If inj-type 6= pm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, parse (P′, t, sig) ← P ′ and output (P′, t) as a forgery to the MAC security
game.

• inj-CM(ID, T ′):

– If inj-type 6= cm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, parse (T′, t, sig) ← T ′ and output (T′, t) as a forgery to the MAC security
game.

• inj-WM(ID,W ′):

– If inj-type 6= wm, abort (A loses).

– If epcur 6= ep∗ or the last honest commit is not in epoch ep∗h, abort (A loses).

– Otherwise, parse (W′, t, sig)←W ′ and output (W′, t) as a forgery to the MAC security
game.

• inj-AM(a′, e′,R): abort (A loses).

• corr(ID): if compromises the MAC key of epoch ep∗, abort (A loses). Otherwise execute the
query normally.

By inspection we see that the above simulation is correct and B4 manages to simulate H3 for A
by requesting MAC tag creation and verification queries from the MAC security game w.r.t. M.
Observe that B4 (as well as A) will never get to see the MAC key for epoch ep∗, as it would violate
the security predicate: since *PP-secure holds in ep∗h, the output of *PP-secure is securely
substituted by a uniformly value (including the MAC key), therefore no compromise that exposes
that key is allowed.

From the above we derive that for any adversary complying to Case 2a

AdvΓSGM-Auth,ΠSGM
(A) ≤ εCR + εCGKA + εPKE + εPP + εmac .

99



H.6.4 Case 2b: comp-sig = true, inj-type = am.

We conclude security against injections for the adversaries such that comp-sig = true, inj-type = am,
via a reduction to the FS-GAED authenticity property. More formally, we prove the following lemma.

Lemma 37. There exists a t′-attacker B5, with t′ ≈ t, such that

AdvΓH3,ΠSGM
(A) ≤ AdvF

FSAE-Auth,ΠFS
(B5) .

Proof. B5 simulates H3 for A while playing against the FS-GAEAD authenticity game.

• Run A, receive inj-type(= am), ep∗, ep∗h, ID∗, i∗ and initialize H3 game with those parameters.

• For calls to gen-new-SigK, rem-SigK, get-SK, gen-new-KB, prop-add-user, prop-
rem-user, prop-up-user, dlv-PM, execute the queries normally. Calls to other oracles are
described below.

• get-KB(ID, ID′, kb): execute normally and if skid 6∈ SK-Lk ∧WK-SK[wkid] 6= skid, abort (A
loses).

• create-group(ID, skid,wkid, r):

– If epnew 6= ep∗, execute the query normally.

– Otherwise, execute the query but substitute the output of PP with a uniformly random
value and omit the FS-GAEAD state initialization, i.e., omit F-Init, and initialize the
FS-GAEAD security game with G = {ID} (i.e., execute init(G)) .

• inj-PM(ID, P ′): abort (A loses).

• commit(ID,pid, r):

– If epnew 6= ep∗, execute the query normally.

– Otherwise, substitute the output of PP with a uniformly random value.

• dlv-CM(ID, vid):

– If epnew 6= ep∗, execute the query normally.

– Otherwise, execute the query but substitute the output of PP with the uniformly ran-
dom value used above by commit (or create-group) and omit the FS-GAEAD state
initialization, i.e., omit F-Init, and initialize the FS-GAEAD security game with s.G (i.e.,
execute init(s.G)) .

• inj-CM(ID, T ′): abort (A loses).

• dlv-WM(ID, vid): similar to dlv-CM.

• inj-WM(ID,W ′): abort (A loses).

• send(S, a,m):

– If epcur 6= ep∗, execute the query normally.
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– Otherwise, omit F-Send and query the FS-GAEAD game’s send oracle with (S, a,m) and
use the reply ē to simulate the rest of the send execution.

• dlv-AM(vid, S, i,R):

– If epcur 6= ep∗, execute the query normally.

– Otherwise, omit F-Rcv and query the FS-GAEAD game with a dlv-AM(S, i,R) call.

• inj-AM(a′, e′,R): parse (S, i, e)← e′ and

– If epcur 6= ep∗ or S 6= ID∗ or i 6= i∗ or ep∗h is not the epoch of the last good commit, abort
(A loses).

– Otherwise, send an inj-AM query to the FS-GAEAD security game with input (a′, S, i, e,R)
and halt.

• corr(ID):

– If ID’s state contains information that enables processing of the i∗th message sent by ID∗

in epoch ep∗, abort (A loses).

– Otherwise, send a corr(ID) query to the FS-GAEAD game, incorporate the FS-GAEAD
state to the SGM state of ID, execute corr of the SGM game and return the output to A.

• no-del(ID): execute normally. If epcur = ep∗, send a no-del(ID) query to the FS-GAEAD
game challenger.

By inspection we see that the above simulation is correct and B5 manages to simulate H3 for A
using the oracles of the FS-GAEAD security game. Whenever B5 needs to execute Init, if the current
epoch is not ep∗, it executes the code locally, otherwise it sends a init query to the FS-GAEAD
security game. In addition, whenever it needs to send, or deliver, a message, if the message is for the
target epoch ep∗ it users the oracles of the FS-GAEAD game, otherwise it executes the operation
based on local information. Security against this type of injection, requires either the FS-GAEAD
state in epoch ep∗ to be secure, of if it is compromised, the compromised party should have already
received the message for the target sender ID∗ and message index i∗. By the SGM security game we
have that *AM-sec(ep∗, ID∗, i∗) holds, which implies security of the PRF-PRNG output in ep∗, as
well as *FS-sec(ID∗, i∗), which is the safety predicate of the FS-GAEAD game. Therefore, a valid
injection against inj-AM implies a valid injection against the FS-GAEAD target session, and the
proof is concluded.

From the above lemmas we derive that for any adversary A,

AdvΓSGM-Auth,ΠSGM
(A) ≤ εsig + εCR + εCGKA + εPKE + εPP + εmac + εFS ,

and the authenticity proof is concluded.

H.7 SGM Privacy

In this section we prove the following theorem.

Theorem 38. The scheme Γ is (t′, ε′)-private w.r.t. ΠSGM, for ε′ = (εCGKA +εCR +εPKE +εPP +εFS),
and t′ ≈ t.

101



Our proof proceeds in hybrids, similar to the ones we used for proving authenticity of Γ.
H0 executes as the original game, but in addition, keeps a list of hash/pre-image pairs (v,T′),

computed by the commit operation, and if it finds T′, T′′, T′ 6= T′′, such that H(T′) = H(T′′),
execution aborts. Clearly, indistinguishability between the H0 and the original game, follows by the
collision resistance property of H. More formally, we have the following lemma.

Lemma 39. There exists a t′-attacker B0, with t′ ≈ t, such that

AdvΓSGM-Priv,ΠSGM
(A) ≤ AdvΓH0,ΠSGM

(A) + AdvH
CR(B0) .

H1 is identical to H0, except that in epoch ep∗h, the CGKA update secret, I, is substituted with
a uniformly random and independent value. We formally prove the following lemma.

Lemma 40. There exists a t′-attacker B1, with t′ ≈ t, such that

AdvΓH0,ΠSGM
(A) ≤ AdvΓH1,ΠSGM

(A) + AdvK
CGKA,ΠCGKA

(B1) .

Proof. B1 plays against the CGKA security game w.r.t. K, and simulates for A H0, or H1, depending
on the secret bit sampled by the CGKA game.

• Run A, receive ep∗, ep∗h, ID∗, i∗, initialize the SGM privacy game with those parameters, and
set WK-IK[·]← ε.

• For calls to gen-new-SigK, rem-SigK, get-SK, get-KB, dlv-PM, send, dlv-AM, red-
inj-AM, execute the code of the oracle normally and return the output to A.

• gen-new-KB(ID, skid): execute the code of the oracle with the following differences: in
Gen-KB instead of executing K-Gen-IK, make a query to the CGKA oracle gen-new-ik with
input ID, receive ikid, ipk, and execute the remaining code of Gen-KB without setting wsk, and
return (wkid, kb) to A. Set WK-IK[wkid]← ikid.

• create-group(ID, skid,wkid, r):

– If epnew 6= ep∗h, send the query create-group(ID,WK-IK[wkid], r) to the CGKA game
challenger, and if create-group returns vid, send a reveal query for vid (the epoch created
by the group creation operation) to the CGKA challenger and receive I. Then, execute
Create(s[ID],SK-PK[skid],WK-PK[wkid]; r), however, omit the execution of K-Create, and
use I as being the output of K-Create for the rest of the computation.

– If epnew = ep∗h, execute as above, however instead of a reveal query, send a challenge query
chall(vid), for vid that corresponds to epoch ep∗h, and use the reply I∗, to simulate the
rest of the computation.

• prop-add-user(ID, ID′): execute the code of prop-add-user, however instead of executing
Add(s[ID], ID′), send the query prop-add-user(ID, ID′, ikid′) to the CGKA game, where ikid′

is the id of ipk used by the add operation. If the query is successful, prop-add-user returns
(pid, P ). Use P to simulate the rest of the execution of prop-add-user.

• prop-rem-user(ID, ID′): Similar to prop-add-user but substitute the call to Remove with a
CGKA oracle query to prop-rem-user.
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• prop-up-user(ID, skid, r): Similar to prop-add-user but substitute the call to Update with
a CGKA oracle query to prop-up-user.

• commit(ID,pid, r):

– If epnew 6= ep∗h, send the query commit(ID,pid, r) to CGKA game challenger, and let
Wpub, Wpriv, T , be the reply. Send a reveal query for vid (the epoch created by the
commit operation) to the CGKA challenger and receive I. Then, execute commit,
however omit the execution of K-Commit, and use Wpub, Wpriv, T , I, as being the output
of K-Commit for the rest of the computation.

– If epnew = ep∗h, execute as above, however instead of a reveal query, send a challenge
query, chall(vid), to the CGKA game challenger, for vid that corresponds to epoch ep∗h,
and use the reply I∗, together with Wpub, Wpriv, T (as computed above), to simulate the
rest of the commit operation.

• dlv-CM(ID, vid):

– Query the oracle process of the CGKA game with input (vid, ID), and let GI be the reply
(if the call fails, abort).

– Execute the code of dlv-CM, and when computing Proc-CM(s[ID], T ), omit the execution
of K-Proc-Com, and use GI and the corresponding CGKA key I used in the commit that
created vid (see above), to simulate the rest of the execution.

• dlv-WM(ID, vid):

– Query the oracle dlv-WM of the CGKA game with input (vid, ID), and let GI be the
reply (if the call fails, abort).

– Execute the code of the SGM dlv-WM, and when computing Proc-WM(s[ID],W ), omit
the execution of K-Join, and use GI and the corresponding CGKA key I used in the
commit that created vid (see above), to simulate the rest of the execution.

• chall(S, a,m0,m1)

– If epcur 6= ep∗ or S 6= ID∗ or i[S] 6= i∗ or if the last good commit wasn’t in epoch ep∗h, abort
(A loses).

– Otherwise, execute the query normally.

• corr(ID): query corr of the CGKA game with ID, incorporate the returned CGKA state in
the SGM state of ID, execute the code of corr(ID) in the SGM game and send the output to
A. If A violates the saftey predicate w.r.t. ep∗h, abort (A loses).

• no-del(ID): execute SGM’s no-del and query the CGKA game with no-del(ID).

B1 outputs the bit that is output by A.
Simulation correctness follows by inspection and using similar arguments to the ones used in the

proof of Lemma 33.

The next hybrid, H2, when computing welcome messages for epoch ep∗, instead of encrypting the
PRF-PRNG state (e← E-Enc(wpk[i].epk, s.σ)), encrypts the zero message e← E-Enc(wpk[i].epk,0).
Then, for all users that process that welcome message, omit decryption (s.σ ← E-Dec(esk, e)) and
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PP computation ((s.σ, ke, s.km, s.C-epid)← PP(s.σ, I, v)), and directly use the output of PP that has
been computed by the commit operation when the welcome message was created. Then, we have
the following lemma.

Lemma 41. There exists a t′-attacker B2, with t′ ≈ t, such that

AdvΓH1,ΠSGM
(A) ≤ AdvΓH2,ΠSGM

(A) + AdvPKE
CPA(B2) .

The proof of the above lemma is simply via a reduction to the CPA security of PKE, and therefore
omitted.

H3 substitutes the output of the PRF-PRNG, PP, in epoch ep∗, with a uniformly random value.
Formally, we have the following lemma.

Lemma 42. There exists a t′-attacker B3, with t′ ≈ t, such that

AdvΓH2,ΠSGM
(A) ≤ AdvΓH3,ΠSGM

(A) + AdvPP
PRF-PRNG,ΠPP

(B3) .

The proof of the above lemma is similar to the one given for Lemma 35, modified appropriately
to capture the privacy game w.r.t. Γ.

Finally we prove the following lemma.

Lemma 43. There exists a t′-attacker B4, with t′ ≈ t, such that

AdvΓH3,ΠSGM
(A) ≤ AdvF

FSAE-Priv,ΠFS
(B4) .

Proof. B4 simulates H3 for A while playing the privacy game against F. B4 is defined as follows.

• Run A, receive ep∗, ep∗h, ID∗, i∗, and initialize H3 game with those parameters.

• For calls to gen-new-SigK, rem-SigK, get-SK, gen-new-KB, get-KB, prop-add-user,
prop-rem-user, prop-up-user, dlv-PM, execute the query normally. Other calls are simu-
lated as described below.

• create-group(ID, skid,wkid, r):

– If epnew 6= ep∗, execute the query normally.

– Otherwise, execute the query but substitute the output of PP with a uniformly random
value and omit the FS-GAEAD state initialization, i.e., omit F-Init, and initialize the
FS-GAEAD security game with G = {ID} (i.e., execute init(G)) .

• commit(ID,pid, r):

– If epnew 6= ep∗, execute the query normally.

– Otherwise, substitute the output of PP with a uniformly random value.

• dlv-CM(ID, vid):

– If epnew 6= ep∗, execute the query normally.
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– Otherwise, execute the query but substitute the output of PP with the uniformly ran-
dom value used above by commit (or create-group) and omit the FS-GAEAD state
initialization, i.e., omit F-Init, and initialize the FS-GAEAD security game with s.G (i.e.,
execute init(s.G)) .

• dlv-WM(ID, vid): similar to dlv-CM.

• send(S, a,m):

– If epcur 6= ep∗, execute the query normally.

– Otherwise, omit F-Send and query the FS-GAEAD game’s send oracle with (S, a,m) and
use the reply ē to simulate the rest of the send execution.

• dlv-AM(vid, S, i,R):

– If epcur 6= ep∗, execute the query normally.

– Otherwise, substitute the call to F-Rcv with a dlv-AM(S, i,R) call to the FS-GAEAD
game.

• chall(S, a,m0,m1)

– If epcur 6= ep∗ or S 6= ID∗ or i[S] 6= i∗ or the last honest commit is not in ep∗h, abort (A
loses).

– Otherwise, send a chall query to the FS-GAEAD security game with input (S, a,m0,m1)
and use the returned ciphertext to simulate the rest of chall in SGM.

• red-inj-AM(a′, e′,R): execute the query normally.

• corr(ID): If ID’s state contains information that enables processing of the i∗ message sent by
ID∗ in epoch ep∗, abort (A loses). Otherwise send a corr(ID) query to the FS-GAEAD game,
incorporate the FS-GAEAD state to the SGM state of ID, execute corr of the SGM game and
return the output to A.

• no-del(ID): execute normally. If epcur = ep∗, send a no-del(ID) query to the FS-GAEAD
game challenger.

B4 outputs the bit output by A.
By inspection we see that the above simulation is correct and B4 manages to simulate H3 for A

using the oracles of the FS-GAEAD security game. Whenever B4 needs to execute Init, if the current
epoch is not ep∗, it executes the code locally, otherwise it sends a init query to the FS-GAEAD
security game. In addition, whenever it needs to send, or deliver, a message, if the message is for the
target epoch ep∗ it users the oracles of the FS-GAEAD game, otherwise it executes the operation
based on local information. Privacy requires that either the FS-GAEAD state in epoch ep∗ is secure,
of if it is compromised, the compromised party should have already received the message for the
target sender ID∗ and message index i∗. As we argued when proving authenticity of our SGM scheme,
by a reduction to FS-GAEAD authenticity, our safety predicate enforces that behavior, therefore, a
valid challenge in H3 implies a valid challenge against the FS-GAEAD target session. If the secret
bit sampled by the FS-GAEAD security game is 0 (resp. 1), B4 simulates for A H3 with secret bit 0
(resp. 1). Therefore, the winning advantage of A in H3 is bounded by the winning advantage of B4

against the FS-GAEAD security game, and the proof is concluded.

105



From the above lemmas we derive that

AdvΓSGM-Priv,ΠSGM
(A) ≤ εCGKA + εCR + εPKE + εPP + εFS .

H.8 Proof of Correctness

In this subsection we prove the following Lemma.

Lemma 44. The scheme Γ is (t′, 2εCGKA + εFS)-correct w.r.t. ΠSGM.

Proof. Recall that, compared to the SGM game, the SGM-Corr correctness game has no chall oracle
nor inject oracle for welcome, proposal or commit messages. The only injections permitted are
application messages but using the red-inj-AM, defined in Figure 30. In particular, the view of A
is independent of bit b and the only way to win SGM-Corr is to trigger the win instruction in one of
the delivery oracles for a proposal, commit, welcome or application message. We address each of
these cases in turn.

Claim 45. Triggering win in dlv-PM is impossible.

Proof. Assuming that the signature scheme S and the MAC scheme M, are perfectly correctly, i.e.,
honestly generated signatures and tags, respectively, verify correctly, to trigger win in dlv-PM
it must be that Props.checkPI(pid,PI) = false. However, this never happens. The SGM-Corr game
ensures that the proposal messages passed to Proc-PM are the same ones created by Γ when proposal
pid was created. Moreover, the mapping from properties of a proposal to the attributes (op, orig, data)
implemented by Props.new is the same as the one computed by *get-propInfo. Thus for any pid
passed as an argument to dlv-PM the output PI of *get-propInfo will always cause checkPI(pid,PI)
to be true.

Claim 46. Pr [win in dlv-CM is triggered] ≤ εCGKA + εCR.

Proof. To Trigger the win in dlv-CM requires HG.checkGI(vid,GI) = false. Here too, SGM-Corr
ensures that the same commit message is delivered to K-Proc-Com as was generated when vid was
created and its attributes set, unless there is a collision against H, in which case the receiver maps
the received hash h to a different set of proposals from the one it has been already computed over.
In that case we have a reduction to the collision resistance property of H that simply simulates the
execution and outputs as a collision the pair of proposals. Assuming the probability of that event to
be negligible, for checkGI to return false would require breaking the correctness of the underlying
CGKA construction K. That is we can use A to trigger the win condition in the process oracle of
CGKA.

A bit more formally, we can build a reduction to CGKA(K) by simulating the rest of construction
Γ and the SGM-Corr security game to A. We use the CGKA(K) oracles to interact with the CGKA
component in Γ. For example, to simulate oracle gen-new-KB of SGM-Corr we need to simulate a
call to algorithm Gen-KB(s[ID], spk) of Γ. For this we run Γ as designed except we replace the call to
K-Gen-IK with a call to gen-new-ik(ID). The same idea works when simulating the oracle get-KB
using reg-ik as well as the oracles for sending and delivering proposals, commit messages and
welcome messages and a no-del corruption. The CGKA is not needed to send or deliver application
messages. Finally, to simulate a corr in SGM-Corr we corrupt the same party id CGKA to obtain
the CGKA component of their local state in SGM-Corr.
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It remains only to observe that if a call to dlv-CM in SGM-Corr would trigger win then the
condition in to trigger win in process are also met. (It is actually, if anything, even easier to trigger
the later.) In the above we assume perfect correctness of M and S.

An essentially identical argument mapping a trigger of win in dlv-WM to triggering win in
dlv-WM results in the follow claim.

Claim 47. Pr [win in dlv-WM is triggered] ≤ εCGKA.

Finally, an analogous reduction from triggering the win in dlv-AM in the SGM-Corr game to
triggering win in the dlv-AM in the FS-GAEAD game implies the following claim.

Claim 48. Pr [win in dlv-AM is triggered] ≤ εFS.

To conclude the proof of the lemma we consider 5 hybrid games. The first is simply SGM-Corr
and in each of the next we replace one more of the win instructions with an instruction that does
nothing letting the game continue. In particular, the final game has no win instruction and is
independent of the bit b so the an advarsary’s advantage is always 0. Thus the above 4 claims imply
that the advantage of any t-time adversary can be at most 2εCGKA + εFS + εCR, assuming perfect
correctness of M, S and PKE.

Putting things together. By Theorems 25,30,38, and Lemma 44, we derive the bounds of
Theorem 4.
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