
Towards the Least Inequalities for Describing a
Subset in Fn

2

Yao Sun

State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China.

School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China.
sunyao@iie.ac.cn

Abstract. Mixed Integer Linear Programming (MILP) solvers have be-
come one of the most powerful tools for searching cryptographic char-
acteristics, including differentials, impossible differentials, and division
trails. Generally, one MILP problem can be formulated by several differ-
ent MILP models, and the models with fewer constraints and variables
are usually easier to solve. How to model a problem with the least num-
ber of constraints is also an interesting mathematical problem. In this
paper, we discuss this problem in a general form. Specifically, given a
set C ⊂ Fn

2 , let L be a set of inequalities, and we say L describes C
if the inequalities in L only involve n variables and the solution set to
L is exactly C. Our goal is to find such a set L with the least number
of inequalities. We present a brand new approach, named as SuperBall
approach, for resolving this problem completely. Our approach is able to
generate all available inequalities. Once these inequalities are obtained,
Sasaki and Todo’s method is used to find out the smallest subset of in-
equalities that describes C. If Sasaki and Todo’s method succeeds, the
found subset will be proved as the smallest. As a result, we found the
smallest subsets of inequalities that describe the Sboxes of Keccak and
APN-6. The previous best results were 34 and 167, presented in FSE
2020, and we decreased these numbers to 26 and 145. Moreover, we can
prove these numbers are the smallest in case no dummy variables are
involved.

Keywords: MILP · inequalities · Sbox.

1 Introduction

In this paper, we consider the following mathematical problem.

Problem: Let C be a subset of Fn
2 where F2 is the field with two elements {0, 1}.

We say a set L of inequalities describes the set C, if the inequality in L involves
n variables and the solutions to L is exactly C. The problem is how to find a set
Lmin such that Lmin describes C and for any L that describs C we always have
|Lmin| ≤ |L|, where |L| means the cardinality of L.

This problem can be illustrated by Figure 1. Fn
2 is the set of all n-dim vec-

tors. Every n-dim vector can be seen as a point, and all the points in Fn
2 are



2 Yao Sun

represented as white and black points in Figure 1. Let C be the set of the 5
black points. A line stands for an inequality, and the solutions of this inequal-
ity lie in only one side of the line. In this figure, L contains 4 inequalities, and
the solutions are exactly the set C. The problem is to find the least number of
inequalities to describe C.

ℒ

𝑭𝟐𝒏
𝐶

Fig. 1. Illustration of the problem.

In many cryptographic problems, we need to construct inequalities to de-
scribe a set of points, e.g. formulating Difference Distribution Table (DDT) or
Division property by Mixed Integer Linear Programming (MILP) models. Gen-
erally, fewer constraints make the MILP models easier to solve. Thus, the above
problem makes senses in many cryptographic analysis.

Traditional methods trade the above problem as two sub-problems.

Problem 1 How to generate a (possibly large) set of inequalities in n variables
such that the solution set of every inequality contains C.

Problem 2 How to choose a (typically much smaller) subset of the obtained set
of inequalities such that this subset exactly describes the set C.

Many works have been done for resolving the above two sub-problems. For
Problem 1, two different approaches were proposed by Sun et al. [SHW+14a]
[SHW+14b]. These methods were first improved by Abdelkhalek et al. [AST+17]
and then further developed by Boura and Coggia in [BC20]. In [BC20], balls and
distorted balls were used to generate inequalities, and by combining different
inequalities via algebraic operations, they could also construct many more in-
equalities than previous works. For Problem 2, Sun et al. proposed a greedy
method in [SHW+14a] [SHW+14b]. This method was improved by Sasaki and
Todo in [ST17] by using an MILP-based method. In this paper, we only consider
Problem 1, and use Sasaki and Todo’s approach to solve the second sub-problem.
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Contribution We propose a brand new approach, called SuperBall approach,
to generate all available inequalities for a given set of points. In [BC20], a ball
is a set of points in Fn

2 and contains a point c ∈ Fn
2 as well as all the points

x ∈ Fn
2 such that the Hamming distance between c and x is smaller than a fixed

radius d. Distorted balls were obtained by merging balls that have some special
structures. The authors proposed several methods of constructing inequalities
for balls and distorted balls. The limitation of their methods is the points in
balls or distorted balls must have some special structures, and this means if a
set of points does not have such special structures, their methods cannot con-
struct inequalities. But our SuperBall method does not have such requirements.
We name our method as SuperBall, because the set of solutions to our generated
inequalities could form some peculiar-looking “balls”. That is, the set of solu-
tions to our inequalities could have very flexible form. This difference enables
us to obtain all available inequalities via the SuperBall approach. Besides, our
SuperBall approach constructs inequalities in a quite different way from those
in [BC20], and this will be introduced in Section 3.

Once all the available inequalities are obtained, we can apply Sasaki and
Todo’s method to obtain the minimal set of inequalities by Gurobi [GO21]. As
a result, we significantly improved some results in [BC20], as shown in Table 1.
More importantly, we can also prove the numbers of inequalities are the smallest,
if no dummy variables are introduced.

# Inequalities
n Sbox Citation Convex Hull Alg.2 Alg. 1 Alg. 3* our results

10 Keccak [BDPA11] 46 46 34 36 26

12 APN-6 [BDMW10][Dil09] 195 288 167 179 145

Table 1. Main results of our SuperBall approach. “Alg. 1”, “Alg. 2”, and “Alg. 3*”
are the algorithms from [BC20], where “Alg. 3*” is short for “Alg. 2 and 3 and Prop.
3”.

2 Preliminary

Let Fn
2 be the set of all n-dim vectors, and the entries of the vectors belong to the

field F2 = {0, 1}. For convenience, we also call the n-dim vectors in Fn
2 as points.

Let f be a linear polynomial in Z[x0, x1, . . . , xn−1], then an inequality in n
variables can be represented as f ≥ 0, where f = a0x0+a1x1+· · ·+an−1xn−1+an
and ai ∈ Z for i = 0, 1, . . . , n. For any given point c = (c0, c1, . . . , cn−1), f(c) =
a0c0 + · · ·+an−1cn−1 +an ∈ Z. If f(c) ≥ 0, then c is a solution to the inequality
f ≥ 0, or for convenience, we say the inequality f ≥ 0 contains c; otherwise,
we say f ≥ 0 excludes c if f(c) < 0.
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For example, let f = −3x0 − 2x1 + x2 + 4x3 + 3 ∈ Z[x0, x1, x2, x3] and
(0, 0, 1, 1), (1, 1, 0, 0) ∈ F4

2 are two points, then we have f ≥ 0 contains (0, 0, 1, 1)
and excludes (1, 1, 0, 0), because f(0, 0, 1, 1) = 7 and f(1, 1, 0, 0) = −2.

To study the inequalities in n variables in more details, we can transform the
above f to another form below:

f = 3(1− x0) + 2(1− x1) + x2 + 4x3 − 2.

Note that, since xi ∈ F2, we also have 1−xi ∈ F2. This form is called “logical con-
dition modeling” of f and was proposed by Sun et al. [SHW+14a] [SHW+14b].
Let x̄0 = (1− x0), x̄1 = (1− x1), x̄2 = x2, and x̄3 = x3. We have

f = 3x̄0 + 2x̄1 + x̄2 + 4x̄3 − 2. (1)

Since the coefficients of x̄i’s are all non-negative, then f gets its smallest value
at the point (1, 1, 0, 0). Moreover, the polynomial a0x̄0 + a1x̄1 + a2x̄2 + a3x̄3− d
always gets its smallest value at the point (1, 1, 0, 0) where ai ≥ 0 for i = 0, 1, 2, 3.
We call the point (1, 1, 0, 0) as the center of the above f . As any inequality can
be transformed to the form like Eq. (1), any inequality has a center. Be careful
that, an inequality may have multiple centers if the coefficient of some x̄i is 0.

Conversely, given a point c = (c0, c1, . . . , cn−1) ∈ Fn
2 , all the inequalities,

whose center is c, can be formulated as the following form

a0x̄0 + a1x̄1 + · · ·+ an−1x̄n−1 − d ≥ 0, (2)

where ai ≥ 0, i = 0, 1, . . . , n− 1, and

x̄i =

{
xi ci = 0,

1− xi ci = 1.

Inequalities in the form Eq. (2) are easier to be studied, because all the coeffi-
cients of x̄i are not negative. Particularly, we can also require d ≥ 0, because the
inequality (2) contains all points in Fn

2 and makes no senses.
In [SHW+14a] [SHW+14b], the authors consider the special case of Eq. (2)

by setting a0 = a1 = · · · = an−1 = d = 1. In this case, this inequality contains
all the points in Fn

2 except the point c. Boura and Coggia considered the case
a0 = a1 = · · · = an−1 = 1 and d > 1 in [BC20], and in this case, this inequality
could exclude the point c as well as all the points b where the Hamming distance
between c and b is not bigger than d. In our SuperBall approach, the values of
ai and d will have more flexible choices, such that we can construct more kinds
of inequalities.

3 The SuperBall approach

Definition 1. Let Fn
2 be the set of all points, and C ⊂ Fn

2 be the set of points
we need to describe. Denote E = Fn

2 \ C.
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We say an inequality f ≥ 0 is available for C if f ≥ 0 contains all points
in C and excludes some points in E.

For two available inequalities f ≥ 0 and g ≥ 0 for C, we say f ≥ 0 covers
g ≥ 0, if the points excluded by g ≥ 0 is a subset of the points that are excluded
by f ≥ 0.

Let F be a set of inequalities, we say F is complete for C if for any available
inequality g ≥ 0, there exists an inequality f ≥ 0 ∈ F such that f ≥ 0 covers
g ≥ 0.

The above notations will be used throughout this section.
It is not difficult to see that, if we have got a complete set F for C and we can

calculate the optimal solution by using Sasaki and Todo’s approach, then this
optimal solution leads to a provable smallest set of inequalities that describes
C. Please remark that, if the size of F is too large, say ≥ 1, 000, 000, Sasaki and
Todo’s approach may not calculate the optimal solution within endurable time
due to the high complexity.

The SuperBall approach is able to compute a complete inequality set. For
each point c ∈ Fn

2 \C, we generate all available inequalities whose center is c by
the following three steps.

1. We compute the region of c (see Definition 2), and denote it as Region(c) ⊂
Fn
2 . For any point that is not in Region(c), it cannot be excluded by any

available inequality whose center is c. More details about Region(c) can be
found in SubSection 3.1. Generally, the size of Region(c) is much smaller
than the size of E = Fn

2 \ C.
2. We calculate an available inequality whose center is c, such that this in-

equality can exclude as many points in Region(c) as possible. This can be
done by regarding the coefficients in Eq. (2) as unknowns and then solving
an MILP model. Details can be found in SubSection 3.2.

3. If we get an inequality by Step 2, we remove this inequality as well as the
inequalities it covers in the further computation, and then jump to Step 2;
otherwise, we have got all the available inequalities whose center is c and
the computation is done. Related details come in SubSection 3.3.

In this way, a complete inequality set can be obtained by repeating the above
three steps for every c ∈ Fn

2 \ C.

3.1 The region of a point c

Definition 2. Given a point c ∈ Fn
2 \ C, we say a set R is the region of c, if

for any point b ∈ Fn
2 \ (C ∪ R), b cannot be excluded by any inequality whose

center is c. We denote R as Region(c).

The concept of the region is new, and to make it easier understood, we use
the following example for an illustration.

Example 1. Let C = {1101, 1010, 1001, 0101, 0010} ⊂ F4
2, where 1101 is short for

the vector (1, 1, 0, 1) ∈ F4
2, and c = 1100 ∈ F4

2. We next compute the region of c.
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By definition, we have E = F4
2\C = {1100, 0100, 1000, 1110, 0000, 0110, 1111,

1011, 0111, 0011}. Note that all inequalities whose center is 1100 have the fol-
lowing form

a0(x0 − 1) + a1(x1 − 1) + a2x2 + a3x3 − d ≥ 0,

or equivalently,
a0x̄0 + a1x̄1 + a2x̄2 + a3x̄3 − d ≥ 0, (3)

where x̄0 = 1−x0, x̄1 = 1−x1, x̄2 = x2, and x̄3 = x3 and ai ≥ 0 for i = 0, 1, 2, 3.
In fact, x̄0x̄1x̄2x̄3 is just x0x1x2x3 ⊕ 1100. To use Eq (3), we would better

use the relative coordinates of each points with respect to c = 1100. That is,
we consider C̄ = C ⊕ c = {0001, 0110, 0101, 1001, 1110}, and similarly, Ē =
E ⊕ c = {0000, 1000, 0100, 0010, 1100, 1010, 0011, 0111, 1011, 1111}. In this case,
c̄ = c⊕c = 0000. In the rest of this subsection, we always use relative coordinates
of points for simplification. An inequality writing in relative coordinates can be
transformed back to the absolute coordinates easily.

Let f̄ = a0x̄0 + a1x̄1 + a2x̄2 + a3x̄3 − d ≥ 0 be an inequality whose center is
c where ai ≥ 0 for i = 0, 1, 2, 3. Let us see which conditions f̄ should meet, if
f̄ ≥ 0 is an available inequality for C̄. By definition, f̄ ≥ 0 must contain all the
points in C̄. That is, we must have

f̄(0001) = a3 − d ≥ 0,

f̄(1001) = a0 + a3 − d ≥ 0,

f̄(0110) = a1 + a2 − d ≥ 0,

f̄(0101) = a1 + a3 − d ≥ 0,

f̄(1110) = a0 + a1 + a2 − d ≥ 0.

With these hard conditions, can every point in Ē be excluded by f̄? The answer
is NO. Take the point 0011 ∈ Ē for an example, we have

f̄(0011) = a2 + a3 − d.

Because we have f̄(0001) = a3 − d ≥ 0 and a2 ≥ 0, this means f̄(0011) ≥ 0 and
hence, the point 0011 cannot be excluded by f̄ whatever the coefficients of f̄ are.
So do the points 1011, 1101, 0111, and 1111. Removing the points in similar cases,
we can obtain the region of 0000 which is {0000, 1000, 0100, 0010, 1100, 1010}.
Please note that the size of Region(0000) is 6 which is smaller than the size of
Ē.

To compute the region of a center point, we introduce the following definition.

Definition 3. For two points a = (a0, a1, . . . , an−1),b = (b0, b1, . . . , bn−1) ∈
Fn
2 , we say a � b if ai ≤ bi for i = 0, 1, . . . , n − 1. We denote the set {a � b |

a ∈ Fn
2} as Prec(b).

Next, we present the key theorem of the SuperBall approach.
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Theorem 1. Let f̄ = a0x̄0 + a1x̄1 + · · ·+ an−1x̄n−1 − d be a linear polynomial
where ai ≥ 0 for i = 0, 1, . . . , n − 1, and f̄ ≥ 0 is an inequality having a center
0 ∈ Fn

2 . For two points b1,b2 ∈ Fn
2 , if b1 � b2, then we must have f̄(b1) ≤

f̄(b2). Particularly, if f̄ ≥ 0 contains the point b1, then f̄ ≥ 0 also contains the
point b2; if f̄ ≥ 0 excludes the point b2, then f̄ ≥ 0 also excludes the point b1.

The proof of the above theorem is straightforward. Besides, we have the
following corollary.

Corollary 1. If b ∈ Region(0), then for any b0 � b, we have b0 ∈ Region(0).

Corollary 2. If b ∈ C̄, then for any b � b1, we have b1 /∈ Region(0).

Corollary 3. Region(0) = Prec(b1) ∪ Prec(b2) ∪ · · · ∪ Prec(bl), where bi is
some point in Fn

2 for i = 1, 2, . . . , l.

Using Corollary 1 and 2, we can compute the region of 0 efficiently. The
points bi’s in Corollary 3 give a shape of the region, so we usually call these
bi’s border points. In fact, the solution set to our constructed inequalities has
a similar shape as described in Corollary 3. There is a center inside this solution
set as well as a few border points. The points between the borders and the center
can all be excluded, so the shape of this solution set likes a peculiar-looking
“ball”. This is why we call our approach as SuperBall approach.

3.2 Compute the maximal available inequality inside a region

In this subsection, we present an algorithm for computing the maximal available
inequality inside a region. Again, relative coordinates are used, so the region in
consider is Region(0).

Let f̄ = a0x̄0 + a1x̄1 + · · · + an−1x̄n−1 − d be a linear polynomial where
ai ≥ 0 for i = 0, 1, . . . , n− 1, and f̄ ≥ 0 is an inequality having a center 0 ∈ Fn

2 .
To determine the polynomial f̄ , it suffices to determine the values of ai and d
for i = 0, 1, . . . , n − 1. Beside, we also hope the inequality f̄ ≥ 0 could exclude
as many points in Region(0) as possible. For this goal, we can build an MILP
model and solve it by Gurobi.

Specifically, this MILP model contains two types of constraints. Firstly, f̄ ≥ 0
should be an available inequality for C, so for any point b ∈ C, we add the
following constraint to the model

f̄(b) ≥ 0.

Secondly, for each point b ∈ Region(0), we assign a binary variable zb associated
to b, and add the following constraint to the model

f̄(b)−A(1− zb) < 0,
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where A is a large integer such that A > a0 + a1 + · · ·+ an−1. With this setting,
if zb = 1, then the point b is excluded by f̄ ≥ 0; otherwise, the above constraint
makes no sense. The object function of the model is

Maximize
∑

b∈Region(0)

zb.

If the size of Region(0) is only a few hundreds, the above model can be solved
by Gurobi in seconds.

3.3 Remove the inequality as well as the inequalities it covers

In order to avoid duplicated computations, if we have got an inequality by the
algorithm in SubSection 3.2, we should remove this inequality as well as the
inequalities it covers in the further computation. This procedure also ensures
the termination of our SuperBall approach. Since each available inequality de-
termines a subset of Region(0) and the size of Region(0) is finite, then there are
only a finite number of available inequalities that cannot cover each other.

Assume we have got an inequality f̄ ≥ 0 in SubSection 3.2, and f̄ ≥ 0 can
exclude a subset B of points in Region(0). To remove the inequality f̄ ≥ 0 as
well as the inequalities it covers, it suffices to add the following constraint to the
model ∑

b∈Region(0)\B

zb ≥ 1.

3.4 On the efficiency of the SuperBall approach

The basic SuperBall approach can efficiently find out all available inequalities
if the size of the region is smaller than 100. However, many techniques are
necessary for speeding up the algorithm if the size of region is larger than 150.
Our implementation is able to finish the computation in a few hours if the size
of the region does not exceed 280. We also noted that the number of borders
affects the complexity significantly.

4 Detailed results

The Sbox of Keccak [BDPA11] admits five input bits and five output bits, so
the inequalities involve 10 variables. The size of C is 317 and there are 707 points
to be excluded. The largest region is centered at the point 0x1f , which contains
231 points and 5 border points. We finally obtain 112316 available inequalities.
There may have many duplicated inequalities, because they may be computed
from different regions. Using Sasaki and Todo’s method, we find the smallest set
of inequalities in few seconds. There are 26 inequalities in the smallest set.
12x0 + 15x1 + 5x2 + 19x3 + 19x4 + 3x5 − 6x6 + 14x7 − 9x8 − 4x9 ≥ 0

−3x0 − 10x1 − 10x2 + x3 − 3x4 + 7x5 − 10x6 − 10x7 + 2x8 − 8x9 + 44 ≥ 0
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7x0 − x1 + x2 − x3 + 7x4 − 7x5 − x6 − x7 + 6x8 − x9 + 5 ≥ 0

4x0 + 3x1 − 12x2 − 12x3 + 2x4 − 12x5 + 9x6 − 12x7 − 8x8 + 2x9 + 44 ≥ 0

x0 − x1 + 7x2 + 7x3 − x4 − x5 + 6x6 − x7 − 7x8 − x9 + 5 ≥ 0

−x0 − 2x1 + 19x2 − 34x3 − 8x4 + 3x5 + 32x6 + 19x7 + 39x8 + 7x9 + 4 ≥ 0

3x0 − 12x1 − 12x2 + 2x3 + 4x4 + 9x5 − 12x6 − 8x7 + 2x8 − 12x9 + 44 ≥ 0

27x0 − 20x1 − 3x2 + 3x3 − x4 − 10x5 + 20x6 − 2x7 + 10x8 + 28x9 + 6 ≥ 0

x0 − 4x1 + 2x2 − 11x3 + 11x4 + 3x5 − 7x6 + 11x7 − 11x8 + 9x9 + 22 ≥ 0

−12x0 + 2x1 + 4x2 + 3x3 − 12x4 − 8x5 + 2x6 − 12x7 + 9x8 − 12x9 + 44 ≥ 0

11x0 + x1 − 4x2 + 2x3 − 11x4 + 9x5 + 3x6 − 7x7 + 11x8 − 11x9 + 22 ≥ 0

−10x0 − 10x1 + x2 − 3x3 − 3x4 − 10x5 − 10x6 + 2x7 − 8x8 + 7x9 + 44 ≥ 0

−4x0 − 9x1 + 20x2 − x3 + 2x4 + 32x5 + 29x6 − 19x7 + 5x8 + 11x9 ≥ 0

2x0 + 31x1 − 24x2 + x3 − 4x4 + 29x5 − 13x6 + 22x7 + 3x8 + 11x9 + 6 ≥ 0

−11x0 − 11x1 + 3x2 + 4x3 + 2x4 − 11x5 − 7x6 + x7 − 11x8 + 9x9 + 40 ≥ 0

x0 − 3x1 − 3x2 − 10x3 − 10x4 + 2x5 − 8x6 + 7x7 − 10x8 − 10x9 + 44 ≥ 0

−x0 + x1 − x2 + 7x3 + 7x4 − x5 − x6 + 6x7 − x8 − 7x9 + 5 ≥ 0

8x0 − 13x1 − 3x2 + 32x3 − x4 + 8x5 + 47x6 + 35x7 − 31x8 + 14x9 ≥ 0

−x0 − 4x1 + 4x2 + 18x3 − 19x4 + 4x5 − 4x6 + 19x7 + 2x8 + 16x9 + 8 ≥ 0

2x0 + 4x1 + 3x2 − 12x3 − 12x4 + 2x5 − 12x6 + 9x7 − 12x8 − 8x9 + 44 ≥ 0

−3x0 − 3x1 − 10x2 − 10x3 + x4 − 8x5 + 7x6 − 10x7 − 10x8 + 2x9 + 44 ≥ 0

−x0 + 7x1 + 7x2 − x3 + x4 + 6x5 − x6 − 7x7 − x8 − x9 + 5 ≥ 0

−10x0 + x1 − 3x2 − 3x3 − 10x4 − 10x5 + 2x6 − 8x7 + 7x8 − 10x9 + 44 ≥ 0

−24x0 + x1 − 4x2 + 2x3 + 31x4 + 22x5 + 3x6 + 11x7 + 29x8 − 13x9 + 6 ≥ 0

−7x0 + 7x1 − 2x2 + 2x3 − x4 − 7x5 + 7x6 − x7 − 5x8 + 7x9 + 16 ≥ 0

7x0 + 7x1 − x2 + x3 − x4 − x5 − 7x6 − x7 − x8 + 6x9 + 5 ≥ 0

The are 12 variables in the inequalities of APN [BDMW10]. The size of C
is 2017 and we need to exclude 2079 points. The largest region is centered at
the point 0x2a, which contains only 183 points, but it has 18 border points. We
totally obtain 55478 available inequalities. The smallest subset that describes C
contains 145 inequalities and is given below.

−12x0 +4x1−11x2−12x3 +10x4−x5 +12x6−12x7−8x8 +2x9 +12x10−4x11 +48 ≥ 0

−8x0 + 6x1 + 8x2 + 4x3 − 8x4 + 8x5 + 5x6 + 2x7 − 7x8 + 8x9 + x10 + 4x11 + 15 ≥ 0

−8x0 + 17x1 − 6x2 + 17x3 − 4x4 − x5 + 11x6 + 19x7 + 18x8 + 2x9 + 15x10 + 19x11 ≥ 0

6x0 + 4x1 + 8x2 − 2x3 + 7x4 + 8x5 + 8x6 − 4x7 − 8x8 − 8x9 + 8x10 + x11 + 14 ≥ 0

−x0 + 6x1 − 6x2 − 4x3 − 5x4 − 6x5 + 6x6 − 6x7 + 2x8 + 6x9 + 6x10 − 2x11 + 24 ≥ 0

x0 + 10x1 + 11x2−12x3−6x4 + 2x5−11x6−12x7−12x8 + 2x9 + 6x10−12x11 + 53 ≥ 0

−6x0 − 6x1 − 7x2 − x3 − 6x4 − 6x5 − 4x6 + 7x7 − 5x8 + 6x9 + 3x10 − 2x11 + 36 ≥ 0

2x0−12x1−10x2 + 12x3−12x4−2x5 + 10x6−6x7−11x8 + 12x9 +x10−6x11 + 47 ≥ 0

−4x0 − 4x1 − 3x2 + 4x3 + 3x4 + x5 + 2x6 − 2x7 + 4x8 + 2x9 − 4x10 − 4x11 + 17 ≥ 0

4x0 − 3x1 + 3x2 + 4x3 + 4x4 − 4x5 + 2x6 − 3x7 + x8 + 3x9 + 3x10 − 2x11 + 8 ≥ 0

2x0 − 4x1 − 4x2 + 4x3 + 4x4 − x5 + 3x6 + 2x7 + 3x8 − 4x9 − 4x10 + 4x11 + 13 ≥ 0

12x0 + 8x1−16x2−4x3 + 16x4−x5−8x6−15x7−14x8 + 2x9−16x10−16x11 + 74 ≥ 0

6x0 − 6x1 − 5x2 + 6x3 − 4x4 + 6x5 − 4x6 − 5x7 + 6x8 + 2x9 − 2x10 + x11 + 20 ≥ 0

−8x0+24x1−23x2+16x3−20x4−8x5−24x6−24x7−22x8+2x9+4x10−x11+106 ≥ 0

6x0 + 10x1−6x2−10x3 + 12x4 + 12x5 + 12x6 + 11x7−11x8 + 2x9−x10−2x11 + 18 ≥ 0

2x0 − 8x1 + 10x2 + 10x3 + 10x4 + 3x5 − 7x6 − x7 − 9x8 − 3x9 + 10x10 − 10x11 + 28 ≥ 0
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x0 − 2x1 + 18x2 − 6x3 − 14x4 − 8x5 + 20x6 + 30x7 + 29x8 + 28x9 + 30x10 + 12x11 ≥ 0

−9x0 + 6x1 − 9x2 + 6x3 + 8x4 − 3x5 − 8x6 + 9x7 + 8x8 + 3x9 − x10 − x11 + 22 ≥ 0

−2x0 − 4x1 + 4x2 − x3 − 3x4 − 4x5 − 2x6 − 3x7 − 4x8 + 4x9 + 4x10 + 4x11 + 19 ≥ 0

−6x0 + 6x1 + x2 − 7x3 − 7x4 − 6x5 − 5x6 − 4x7 − 7x8 + 2x9 − 3x10 − 7x11 + 45 ≥ 0

−x0 + 2x1 − 3x2 + 4x3 − 2x4 + 4x5 + 4x6 + 4x7 − 4x8 + 4x9 − 4x10 − 2x11 + 12 ≥ 0

−24x0−12x1−22x2−12x3+23x4−2x5+8x6−23x7−20x8−x9+16x10+4x11+92 ≥ 0

−5x0 − 4x1 − 5x2 − 4x3 − 5x4 − 2x5 − 6x6 + 6x7 − x8 + 2x9 − 5x10 + 5x11 + 31 ≥ 0

−3x0 + 3x1 + 3x2 − 3x3 + x4 − 3x5 − 3x6 − x7 + x8 + 3x9 + 2x10 − 3x11 + 13 ≥ 0

4x0 + 6x1 − 8x2 + 8x3 + 8x4 − 2x5 + 7x6 + 4x7 − 7x8 + 8x9 − x10 − 8x11 + 18 ≥ 0

−12x0 +12x1 +12x2−10x3 +12x4 +2x5−8x6 +11x7 +4x8 +4x9 +12x10 +x11 +18 ≥ 0

17x0 + 17x1 + 11x2 + 17x3 + 17x4 + 3x5 − 14x6 − 5x7 − 14x8 −x9 − 6x10 −x11 + 24 ≥ 0

−13x0 + 8x1 −4x2 + 8x3 + 12x4 + 9x5 −12x6 + 11x7 + 12x8 −5x9 +x10 + 2x11 + 21 ≥ 0

−6x1 − 6x2 + 6x3 − 4x4 + x5 + 6x6 + 5x7 + 2x8 − 6x9 + 2x10 − 6x11 + 22 ≥ 0

−7x0 − x1 + 8x2 + 4x3 + 6x4 − 8x5 + 8x6 − 4x7 − 8x8 − 8x9 − 8x10 − 2x11 + 38 ≥ 0

4x0−12x1−14x2−12x3−16x4−4x5−15x6 + 16x7−16x8−4x9−x10 + 2x11 + 78 ≥ 0

6x0 + 2x1 + 5x2 + 2x3 − 6x4 − 6x5 + 4x6 + 6x7 − 5x8 + 6x9 + x10 + 4x11 + 11 ≥ 0

13x0 − 16x1 + 12x2 − 16x3 + 19x4 − 19x5 − 7x6 + 19x7 + 6x8 +x9 − 3x10 +x11 + 42 ≥ 0

x0−16x1−8x2 + 14x3 + 15x4 + 16x5−16x6 + 12x7−15x8 + 2x9 + 8x10 + 4x11 + 39 ≥ 0

−12x0 +10x1 +12x2 +12x3−12x4 +2x5 +11x6−10x7−6x8 +2x9−x10−6x11 +35 ≥ 0

−2x0 +10x1−9x2−4x3 +10x4−x5−10x6−10x7 +4x8−10x9 +10x10 +6x11 +36 ≥ 0

−11x0−11x1 +9x2−11x3 +7x4 +11x5 +11x6 +11x7−3x8 +4x9 +x10−2x11 +27 ≥ 0

−6x0 − 4x1 − 6x2 − 2x3 − 6x4 − x5 − 6x6 + 3x7 + 3x8 + 4x9 + 6x10 − 6x11 + 31 ≥ 0

17x0 + 26x1 + 26x2 + 20x3 + 16x4 + 26x5 − 8x6 − 5x7 + 9x8 + 6x9 − 5x10 − 8x11 ≥ 0

10x0 − 4x1 − 10x2 − 6x3 − 3x4 − 3x5 − 10x6 + 5x7 + 5x8 − 6x9 − 10x10 − 10x11 + 52 ≥ 0

−4x0 − 8x1 − 8x2 − 7x3 + 8x4 − x5 + 7x6 + 4x7 − 6x8 − 8x9 + 2x10 + 8x11 + 34 ≥ 0

−2x0 + x1 + 4x2 − 4x3 − 4x4 + 3x5 − 2x6 − 3x7 − 4x8 − 3x9 − 3x10 − 4x11 + 25 ≥ 0

−7x0 + 7x1 + 3x2 − 4x3 + x4 + 7x5 + 2x6 − 7x7 + 3x8 − 5x9 + 4x10 − 5x11 + 21 ≥ 0

−18x0 +10x1 +17x2 +10x3 +18x4−18x5 +18x6 +6x7−4x8 +4x9 +2x10−x11 +23 ≥ 0

2x0 − 6x1 + 6x2 + 6x3 − 4x4 + 2x5 + 5x6 + 4x7 − 6x8 + 6x9 − x10 + 6x11 + 11 ≥ 0

−x0 − 6x1 − 6x2 + 4x3 − 5x4 − 6x5 + 5x6 − 4x7 + 2x8 + 6x9 + 6x10 + 2x11 + 22 ≥ 0

−x0 +10x1 +11x2−12x3−6x4−2x5−12x6−12x7−11x8−2x9 +6x10−12x11 +58 ≥ 0

8x0 + 8x1 + 7x2 − 2x3 + 8x4 − 8x5 + 6x6 − 8x7 + 7x8 − 2x9 − x10 − 2x11 + 15 ≥ 0

9x0 − 6x1 − 9x2 − 6x3 + 8x4 + 3x5 − 8x6 + 9x7 + 8x8 + 3x9 + x10 + x11 + 20 ≥ 0

8x0 − 7x1 + 7x2 − 7x3 + 6x4 + 2x5 − 8x6 + 8x7 − 8x8 + 2x9 + x10 + 2x11 + 22 ≥ 0

5x0 + 2x1 − 5x2 + 3x3 − 5x4 + x5 − 5x6 + 2x7 + 5x8 + 3x9 + 5x10 − 5x11 + 15 ≥ 0

−14x0−9x1+12x2+14x3+3x4+14x5+12x6−11x7+10x8+4x9−4x10−2x11+26 ≥ 0

13x0 +16x1 +12x2 +19x3 +6x4 +19x5−13x6−11x7 +11x8 +3x9 +2x10 +7x11 +5 ≥ 0

4x0 + 6x1 + 7x2 + 5x3 + 2x4 + 7x5 − 5x6 + x7 + 3x8 − 5x9 − 5x10 + 5x11 + 8 ≥ 0

2x0 + 6x1 + 6x2 − 6x3 − 6x4 − 2x5 + 5x6 + 4x7 − 5x8 − 6x9 − x10 − 6x11 + 26 ≥ 0

12x0 + 12x1 + 11x2 − 2x3 + 12x4 − 12x5 + 11x6 − 6x7 + 10x8 + 6x9 + 2x10 +x11 + 8 ≥ 0

6x0 − 2x1 + 5x2 − 2x3 − 6x4 + 6x5 + 4x6 + 6x7 − 5x8 − 6x9 + x10 − 4x11 + 19 ≥ 0

−6x0 +20x1−16x2 +14x3 +19x4−x5 +4x6−20x7 +20x8 +2x9−6x10 +20x11 +29 ≥ 0

10x0 − 7x1 + 10x2 − 10x3 − 2x4 + 8x5 − 10x6 − 10x7 + 9x8 − x9 + 3x10 + 3x11 + 30 ≥ 0

−8x0 +20x1−23x2 +24x3−16x4 +4x5−22x6−24x7−24x8−2x9 +8x10−x11 +96 ≥ 0

−10x0 + 10x1 + 9x2 − 8x3 + 2x4 + 10x5 + 9x6 − 8x7 + 7x8 + 3x9 − 3x10 + x11 + 19 ≥ 0
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x0 − 6x1 − 6x2 − 4x3 − 3x4 + 6x5 + x6 + 6x7 − 6x8 + 6x9 − 6x10 − 3x11 + 28 ≥ 0

−5x0 + 5x1 + 2x2 − 5x3 − 4x4 + 3x5 − 2x6 − 5x7 + 5x8 + x9 − 5x10 + 5x11 + 21 ≥ 0

x0 + 10x1 − 2x2 − 7x3 + 9x4 − 10x5 − 10x6 + 10x7 − 9x8 − 3x9 + 8x10 − 3x11 + 34 ≥ 0

−x0 +16x1−15x2 +16x3−16x4 +4x5 +4x6−12x7−14x8−16x9 +4x10−2x11 +60 ≥ 0

−x0 − 7x1 − 8x2 − 8x3 − 4x4 + 2x5 − 6x6 − 8x7 + 8x8 − 8x9 − 8x10 − 4x11 + 54 ≥ 0

11x0 − 3x1 − 7x2 + 11x3 − 9x4 − 11x5 − 11x6 − 10x7 − 11x8 −x9 + 2x10 + 4x11 + 52 ≥ 0

3x0 − x1 + 3x2 − x3 + 3x4 + 3x5 + 3x6 − 3x7 − 3x8 + 2x9 − 2x10 + 7 ≥ 0

6x0 + 5x1 − 4x2 − 5x3 − 6x4 − 6x5 − 5x6 − 6x7 + 6x8 + x9 + 2x10 + 2x11 + 26 ≥ 0

−x0 +16x1−8x2−14x3 +15x4−16x5−16x6 +12x7−15x8 +2x9 +8x10 +4x11 +54 ≥ 0

x0 + 9x1 + 9x2 − 9x3 − 9x4 + 9x5 + 9x6 − 6x7 + 8x8 − 3x9 − 3x10 + x11 + 21 ≥ 0

x0−18x1−6x2−18x3−6x4 + 2x5 + 17x6 + 16x7 + 16x8−2x9 + 12x10 + 18x11 + 32 ≥ 0

−2x0 + 2x1 + 2x2 + 2x3 − 2x4 − 2x5 + x7 − 2x8 − 2x9 + x10 + 2x11 + 8 ≥ 0

−x0 − 10x1 + 9x2 + 7x3 − 2x4 + 3x5 − 10x6 − 8x7 − 10x8 + 3x9 − 8x10 + 10x11 + 39 ≥ 0

4x0 − 4x1 − 4x2 − 4x3 + 4x4 + x5 − 4x6 − 3x7 − 4x8 − x9 − 4x10 + x11 + 24 ≥ 0

4x0 − 3x1 + 3x2 + 4x3 + 4x4 − 4x5 + x6 − 4x7 + 2x8 − 3x9 − 2x10 + 3x11 + 12 ≥ 0

−16x0−14x1 +12x2−16x3−8x4−8x5 +15x6−12x7−16x8−4x9−x10 +2x11 +79 ≥ 0

−12x0 −12x1 + 9x2 −12x3 + 11x4 + 6x5 −12x6 −12x7 −6x8 −x9 + 3x10 +x11 + 55 ≥ 0

−3x0 − 2x1 + x2 − 2x3 − 3x4 + 3x5 − x6 + 3x7 − 2x8 + 3x9 − x10 − 3x11 + 14 ≥ 0

10x0 + 14x1 + 20x2 + 15x3 + 20x4 + 20x5 − 8x6 + 5x7 + 10x8 − x9 − 8x10 − 3x11 ≥ 0

x0 − 6x1 − 8x2 + 8x3 + 7x4 + 8x5 − 8x6 + 8x7 − 7x8 + 2x9 − 2x10 + 2x11 + 23 ≥ 0

−x0−10x1 +12x2 +12x3−6x4−2x5−11x6−6x7−12x8 +2x9−6x10 +12x11 +42 ≥ 0

5x0 − 5x1 − 4x2 + 5x3 + 5x4 − x5 + 2x6 − 2x7 + 5x8 − 3x9 + 5x10 − 5x11 + 15 ≥ 0

−6x0 + 4x1 − 5x2 − 4x3 − 6x4 + 6x5 − 6x6 − 5x7 + 6x8 + 2x9 + 2x10 − x11 + 27 ≥ 0

x0 + 2x1 − 4x2 − 4x3 − 4x4 − 4x5 + 3x6 − 4x7 + 4x8 − 4x9 − 4x10 + 2x11 + 24 ≥ 0

x0 − 7x1 − 2x2 + 10x3 + 9x4 + 10x5 − 10x6 + 10x7 − 9x8 + 3x9 + 8x10 − 3x11 + 21 ≥ 0

−2x0 − 5x1 − 5x2 + 6x3 + 4x4 − 2x5 − 6x6 − 4x7 + 6x8 + 6x9 − 6x10 + x11 + 24 ≥ 0

−x0−15x1−16x2−15x3−14x4 +4x5−12x6 +16x7−15x8−4x9 +4x10−2x11 +78 ≥ 0

22x0 +2x1 +19x2 +5x3 +20x4 +6x5−16x6 +15x7−20x8 +3x9 +20x10−5x11 +19 ≥ 0

x0−22x1 + 16x2−22x3 + 24x4−4x5 + 20x6 + 24x7 + 23x8 + 2x9−8x10−8x11 + 40 ≥ 0

3x0 − 7x1 + 2x2 + 7x3 − 8x4 + 3x5 + 10x6 + 8x7 − 10x8 − 10x9 + x10 − 10x11 + 35 ≥ 0

8x0 + 4x1 − 10x2 + 4x3 − 10x4 − x5 + 2x6 + 9x7 + 10x8 + 6x9 − 8x10 + 10x11 + 19 ≥ 0

−x0 + 4x1 − 7x2 + 8x3 + 6x4 − 4x5 + 6x6 + 8x7 − 8x8 − 8x9 − 2x10 + 8x11 + 22 ≥ 0

−2x0 + 8x1 + 6x2 − 7x3 − 8x4 + 2x5 − 7x6 + 7x7 − 8x8 − 2x9 − 8x10 − x11 + 35 ≥ 0

16x0 + 4x1−14x2 + 12x3 + 15x4 + 2x5 + 12x6−15x7−8x8−x9−12x10 + 8x11 + 34 ≥ 0

−5x0 − 3x1 − x2 − 3x3 − 5x4 + 5x5 − 6x6 + 6x7 − 4x8 − 5x9 − 2x10 + 5x11 + 28 ≥ 0

10x0 − 5x1 − 10x2 − 5x3 − 3x4 − 3x5 − 6x6 + 10x7 + 4x8 − 5x9 + 10x10 + 10x11 + 27 ≥ 0

−x0−16x1−15x2−16x3−14x4−4x5−12x6 +16x7−16x8−4x9−4x10−2x11 +88 ≥ 0

x0 − 8x1 + 6x2 − 8x3 − 8x4 − 2x5 + 7x6 − 8x7 + 8x8 + 2x9 − 2x10 − 8x11 + 36 ≥ 0

3x0 − x1 + 11x2 + 3x3 + 21x4 + 2x5 + 18x6 + 21x7 + 19x8 + 21x9 − 10x10 − 10x11 ≥ 0

2x0 − 10x1 − 9x2 + 4x3 + 10x4 −x5 − 10x6 − 10x7 + 4x8 + 10x9 − 10x10 − 6x11 + 46 ≥ 0

7x0 − 2x1 + 7x2 − 7x3 − 7x4 − x5 − 5x6 − 4x7 + 6x8 + 3x9 − 5x10 − 5x11 + 29 ≥ 0

−2x0 +15x1−5x2 +17x3 +13x4−4x5 +12x6−3x7 +17x8−4x9 +14x10 +17x11 +1 ≥ 0

x0 + 7x1 − 3x2 − 5x3 − 6x4 + 7x5 + 7x6 − 7x7 + 3x8 + 7x9 − 7x10 − 2x11 + 23 ≥ 0

−x0 + 6x1 + 6x2 + 6x3 − 3x4 + 3x5 − x6 + 6x7 + 5x8 − 6x9 + 6x10 − 6x11 + 11 ≥ 0

x0 + 3x1 − 3x2 − 3x3 + 3x4 − x5 + 2x6 + 3x7 + 3x8 − 3x9 − 3x10 + 3x11 + 10 ≥ 0
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−x0 + 2x1 + 5x2 + 2x3 − 6x4 − 4x5 − 6x6 + 6x7 + 5x8 + 6x9 − 6x10 − 6x11 + 23 ≥ 0

−2x0−12x1 +12x2 +12x3−10x4 +12x5 +12x6−8x7 +11x8−4x9−4x10 +x11 +28 ≥ 0

16x0−15x1 + 15x2−15x3 + 12x4−14x5−2x6 + 16x7−4x8 + 4x9 +x10−4x11 + 38 ≥ 0

−7x0 + 5x1 − 7x2 + 5x3 − x4 + x5 − 2x6 + 7x7 + 7x8 − 2x9 + 7x10 + 7x11 + 12 ≥ 0

16x0 + 16x1−15x2−4x3 + 14x4 +x5 + 8x6−15x7−12x8 + 2x9−16x10−8x11 + 54 ≥ 0

−x0 − 4x1 − 4x2 + 2x3 − 4x4 − 4x5 + 3x6 − 4x7 + 4x8 − 4x9 − 4x10 + 2x11 + 25 ≥ 0

−3x0 − 7x1 − 7x2 + 7x3 + 4x4 + 5x5 − 7x6 − 2x7 − 7x8 − x9 − 7x10 − 7x11 + 41 ≥ 0

−3x0 + 24x1 + 17x2 + 24x3 + 24x4 − 3x5 + 24x6 + 7x7 + 21x8 − 2x9 − 8x10 − 8x11 ≥ 0

2x0 − 7x1 + 6x2 + 8x3 − 8x4 + 2x5 − 8x6 + 8x7 − 8x8 + 2x9 − 8x10 − x11 + 32 ≥ 0

+4x1 − 4x2 − 4x3 − 2x4 + x5 + 4x6 + 3x7 + 4x8 − 4x9 + 2x10 − 4x11 + 14 ≥ 0

4x0 + 3x1 + 4x2 + 3x3 − x4 − 4x5 − 4x6 + 2x7 − 4x8 − 4x9 − 2x10 − 4x11 + 19 ≥ 0

16x0 + 12x1 + 16x2 + 16x3−15x4 +x5−8x6−14x7 + 15x8−2x9 + 4x10−8x11 + 31 ≥ 0

−x0 − 8x1 − 7x2 − 8x3 − 7x4 − 2x5 + 8x6 − 8x7 − 6x8 − 8x9 + 2x10 − 2x11 + 49 ≥ 0

−x0 − 7x1 − 8x2 − 8x3 − 4x4 + 2x5 − 6x6 − 7x7 + 8x8 + 8x9 + 8x10 − 4x11 + 37 ≥ 0

−6x0 + 4x1 − 5x2 + 4x3 + x4 + 2x5 − 5x6 + 6x7 + 5x8 − 2x9 − 5x10 − 5x11 + 22 ≥ 0

2x0 + 13x1 − 6x2 − 13x3 − 14x4 − 2x5 + 14x6 + 6x7 − 7x8 + 8x9 + x10 + 14x11 + 28 ≥ 0

−6x0 − 6x1 + 4x2 + 6x3 − 5x4 − 2x5 − 6x6 − 4x7 + 2x8 + x9 + 6x10 + 6x11 + 23 ≥ 0

−10x0 − 9x1 + 8x2 + 10x3 + x4 + 10x5 + 7x6 − 10x7 + 8x8 − 3x9 + 2x10 + 3x11 + 22 ≥ 0

9x0 + 9x1 − 9x2 − 3x3 − 8x4 + 9x5 − 6x6 − 6x7 − 9x8 + 3x9 + x10 + x11 + 32 ≥ 0

3x0 − 4x1 + 3x2 + 3x3 − 2x4 − 3x5 − x6 − 3x7 − 3x8 − 3x9 − 2x10 + 4x11 + 17 ≥ 0

8x0 + 20x1−20x2 + 20x3−12x4−2x5 + 4x6−18x7−19x8−20x9−4x10−x11 + 76 ≥ 0

−x0−8x1−13x2 +8x3 +4x4−14x5 +14x6 +13x7−14x8 +6x9 +2x10−10x11 +46 ≥ 0

12x0−12x1 + 10x2−8x3−11x4 +x5−12x6−10x7 + 12x8−2x9−4x10 + 4x11 + 47 ≥ 0

3x0 − 9x1 − 12x2 − 12x3 + 11x4 − x5 + 12x6 − 6x7 + 12x8 + x9 + 6x10 + 12x11 + 28 ≥ 0

−4x0−2x1−20x2−3x3−20x4+5x5+16x6+15x7+17x8+18x9−5x10+20x11+34 ≥ 0

14x0 + 8x1 + 6x2 + 7x3 + 9x4 + 14x5 + 4x6 + 5x7 − 7x8 − 8x9 + 4x10 + 8x11 + 1 ≥ 0

−5x0 − 5x1 + 2x2 + 5x3 − 4x4 − 3x5 − 5x6 − 2x7 + 5x8 − x9 − 5x10 − 5x11 + 30 ≥ 0

x0 + 16x1 + 14x2−16x3−15x4−16x5−12x6 + 15x7 + 8x8−4x9−8x10−2x11 + 57 ≥ 0

−x0 + 5x1 + 6x2 − 6x3 + 6x4 − 2x5 − 4x6 − 6x7 − 5x8 − 2x9 − 6x10 + 6x11 + 26 ≥ 0

−x0 − 6x1 − 5x2 + 3x3 + 5x4 − x5 − 6x6 − 6x7 + 6x8 − 6x9 + 6x10 − 3x11 + 28 ≥ 0

−2x0 + 5x1 + 2x2 + x3 − 5x4 − 5x5 − 3x6 − 4x7 − 5x8 + 5x9 + 5x10 − 5x11 + 24 ≥ 0

−2x0−7x1−10x2−6x3−3x4 +10x5 +10x6−4x7 +5x8−10x9 +10x10 +10x11 +32 ≥ 0

2x0 + 6x1 − 5x2 − 5x3 + 4x4 − 2x5 − 6x6 − 6x7 + 6x8 + 6x9 − 6x10 + x11 + 24 ≥ 0

−x0 +19x1−18x2 +20x3−20x4 +2x5−6x6−20x7−12x8−14x9−8x10 +2x11 +79 ≥ 0

−15x0+12x1+3x2+15x3−12x4−4x5+13x6−11x7−10x8−12x9−2x10−5x11+56 ≥ 0

x0−14x1 + 16x2 + 14x3−15x4−16x5−12x6 + 15x7 + 8x8−4x9−8x10 + 2x11 + 53 ≥ 0

−9x0−13x1 +11x2 +13x3 +13x4 +2x5−13x6 +8x7−4x8 +x9 +13x10−5x11 +31 ≥ 0

−2x0 − 5x1 + 4x2 − 5x3 − 5x4 − x5 − 2x6 + 6x7 + 5x8 − 6x9 + 6x10 − 6x11 + 26 ≥ 0

−x0 + 10x1 − 15x2 + 11x3 + 8x4 + 3x5 + 15x6 + 5x7 + 16x8 + 6x9 + 16x10 + 16x11 ≥ 0
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