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Abstract This paper discusses how to analyze the probing security
of masked symmetric primitives against the leakage effects from CHES
2018; glitches, transitions, and coupling effects. This is illustrated on sev-
eral architectures of ciphers like PRESENT, AES, and ASCON where
we transform glitch-extended probing secure maskings into transition
and/or coupling secure ones. The analysis uses linear cryptanalytic meth-
ods and the diffusion layers of the cipher to efficiently protect against
the advanced leakage effects.
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1 Introduction

From the moment a symmetric primitive is implemented on a physical device, it
becomes susceptible to side-channel attacks. The most well-known attack in this
line is differential power analysis where the power consumption of the device is
correlated to its processed secrets [29]. Masking methods form a popular coun-
termeasure against these attacks. Here each secret variable is split into multiple
random shares. A masking method allows for algorithmic protection aiming to
catch vulnerabilities before production. This algorithmic protection is based on
security models trying to capture realistic attacks. The most popular model is
the probing model originally proposed by Ishai et al. [27]. In the dth-order and
single-shot variant of this model, it is stated that any set of d intermediate values
in the computation of a symmetric key primitive need to be independent of any
secret value.

While the probing model is a good step towards finding reliable algorithmic
countermeasures against side-channel attacks, it does not capture all realistic
leakage effects in hardware. Faust et al. [22] formalizes some realistic effects which
are not captured in the probing model and effectively extends the security model.
The three effects discussed are glitches, transitions, and coupling effects. The
extension of the formal probing model allows designers to find effective maskings
to protect hardware implementations even against more advanced leakages.



A popular masking method is the one by Nikova, Rechberger, and Rij-
men [33]. The method, known as a “threshold implementation”, specifies prop-
erties the masked Boolean functions need to follow to secure a hardware imple-
mentation even in face of glitch effects. Originally, threshold implementations
only protect against first-order side-channel attacks. However, a recent work
provides a security analysis to analyze the higher-order security of threshold
implementations [5]. This analysis relies on linear cryptanalytic methods which
allow designers to analyze the masked primitive as a whole whereas previous
analysis methods only analyze separate nonlinear gates or small parts of the
primitive.

We currently succeed in protecting hardware maskings against glitches. How-
ever, it still remains an open problem how to efficiently protect against transition
or coupling leakage and, more importantly, against a combination of leakage
sources. While the work from Faust et al. provides a model how to capture these
effects, it remains an open problem how to analyze the security of a masking in
this new model.

Contributions This paper introduces an analysis technique to assess the trans-
ition and coupling-extended probing security defined by Faust et al. [22]. The
analysis is based on the work by Beyne et al. [5] and extends it for the advanced
leakage effects. In essence the method transforms a glitch-extended probing se-
cure masking to a transition and coupling secure one as follows:

– Take a glitch-extended probing secure implementation of a symmetric primit-
ive. For example, using threshold implementations [33] or a masking created
using glitch-extended SNI or PINI secure gates [9, 22].

– Use the work by Faust et al. [22] and analyze the architecture of the mask-
ing to determine what an adversary can view. For example, via memory
recombinations an adversary can view the output of two different masked
S-boxes.

– Use the work by Beyne et al. [5] and determine whether there are trails
between the observed values. In case zero-correlation approximations are
found between the probed values, the countermeasure is deemed secure.

In this work we go over the theoretical analysis of several symmetric prim-
itives and over various architectures a designer can use to implement the prim-
itive. The primitives PRESENT, AES, and ASCON are taken as case studies.
As similar primitives would have similar security arguments, these case studies
represent a large class of primitives. The analysis is made as general as possible
by considering black box masked S-boxes. Meaning that our analysis applies
to any masking of the considered primitives as long as that masking is glitch-
extended probing secure. For example, one can apply the analysis to the state
of the art first-order masked architecture of the AES to make it secure against
transition-extended probes using additional randomness.

We explicitly use the diffusion properties of the symmetric primitive to min-
imize the cost of protecting against transition or coupling leakage. We show that
one typically requires only a total few random bits to protect a masking against
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these effects. This should be compared to the current state of the art where
there is an area and randomness overhead per shared multiplication like the
work by Dhooghe and Nikova [19] and by Cassiers and Standaert [10, Table 2].
In particular, the work by Cassiers and Standaert [10, Table 2] requires several
additional thousands of bits of randomness to secure a first-order glitch-resistant
PRESENT against transition leakage. Instead, our analysis shows their glitch-
resistant masking (for any of their proposed architectures) can be made secure
against transition leakage using at most a single additional random bit.

2 Preliminaries

This work uses the tools of linear cryptanalysis to analyze the security of mask-
ing implementations following the threshold implementation model against prob-
ing adversaries which are extended to view advanced leakage such as glitches,
transitions, and couplings. In this section, we recall the basics of hardware, the
probing model, threshold implementations, and linear cryptanalysis over masked
variables.

2.1 The Physical World

This section recalls the basics of hardware and side-channel attacks.

Synchronous Circuits A synchronous circuit consists of combinatorial gates
(AND, XOR, etc.) and sequential logic (memory, registers). When the circuit
is powered on, all registers, gates, and wires are powered too at which point
they all carry a digital value. There is a clock synchronizing the operations of
different circuit elements. A clock cycle is the time between two clock ticks. Dur-
ing each clock cycle the combinatorial logic is re-evaluated and results are stored
in the registers.

Registers A register (or memory cell) has one input and one output and its
functionality is controlled by the clock. Registers release a signal by opening
its “out-line” while the “input-line” is closed (only one is open at a time). The
register out-line stays open until the signal in the logic becomes stable, after that
it stores the newly computed value - hence the register closes the output-line and
opens the input-line.

Logical Gates Logical gates perform simple Boolean operations. They have sev-
eral wires as input and a single wire as output. Each gate can have a different
time to propagate a signal from its inputs to its output and each gate can have a
different power consumption. A change of its inputs causes re-evaluation of the
gate and hence may change the output value.
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2.2 The Bounded-Query Probing Model

This section recalls the bounded-query probing model, its expansion considering
the effect of glitches, its security analysis, and a note on key schedules. Later
on, the probing model is further expanded to capture transition and coupling
effects.

Threshold Probing A dth-order probing adversary A, as first proposed by Ishai
et al. [27], can view up to d gates or wires in a circuit per query. This circuit
encodes an operation, such as a cipher call, and consists of gates, such as AND
or XOR gates, and wires. The adversary A is computationally unbounded, and
must specify the location of the probes before querying the circuit. However, the
adversary can change the location of the probes over multiple circuit queries.
The adversary’s interaction with the circuit is mediated through encoder and
decoder algorithms, neither of which can be probed.

In the bounded query model, the security of a circuit C with input k against
a dth-order probing adversary is quantified by means of the left-or-right security
game. The challenger picks a random bit b and provides an oracle Ob, to which
adversary A is given query access. The adversary queries the oracle by choosing
up to d wires to probe – we denote this set of probe positions by P – and
sends it to the oracle along with chosen inputs k0 and k1. The oracle responds
with the probed wire values of C(kb). After a total of q queries, the adversary
responds to the challenger with a guess for b. For b ∈ {0, 1}, denote the result of

the adversary after interacting with the oracle Ob using q queries by AOb . The
left-or-right advantage of the adversary A is then as defined as

Adv-thr(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | .

Modeling Glitches Let us consider “basic” combinatorial logic, namely the logic
which connects two layers of registers. When a cycle starts, the output signals of
the registers are inputs for the basic logic and these signals will start propagat-
ing through the wires and the gates until they reach the output registers. Gate
evaluation may happen several times until the signals (and hence the gate) be-
come stable. This can be due to many reasons, we list three of them: a) the wire
signals propagate with different speed; b) the wires have different length; and c)
each gate has different propagation time. We will refer to these value changes
on the wires and gates as glitches.

In a cycle there are two main phases. The first phase is one in which the
wires and gates do not have a stable value. This phase is followed by one in
which all values are stable. The power consumption at a time sample is the sum
of the power consumption of the wires, gates, and registers belonging to this
simple logic. For CMOS technologies, the power consumption during the first
phase is higher and more apt to change because of glitches compared to the
second phase. We stress that glitches occur in the logic between two memory
gates and are stopped by registers. In other words, glitches do not propagate
through memory gates.
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Glitches can result in significant leakage that is not accounted for by the
standard probing model, see for example the attacks of Mangard et al. on several
masked AES implementations [31]. Consequently, it is necessary to extend the
capabilities of threshold probing adversaries in order to capture the physical
effect of glitches on a hardware platform. Whereas one of the adversary’s probes
normally results in the value of a single wire, a glitch-extended probe allows
obtaining the values of all wires in a bundle. This extension of the probing
model has been discussed by several authors, here we give the definition from
Faust et al. [22] who describes it as follows:

“Specific model for glitches. For any ε-input circuit gadget G, combinat-
orial recombinations (aka glitches) can be modeled with specifically ε-extended
probes so that probing any output of the function allows the adversary to observe
all its ε inputs.”

Security Analysis The main theoretical result of [5] is that the bounded-query
probing security of a masked cipher can be related to its linear cryptanalysis.
The first step towards this result is provided by Theorem 1 below, which relates
the security of the masked cipher to the Fourier transform of the probability dis-
tribution of wire values obtained by probing. The link with linear cryptanalysis
will be developed in detail in Section 2.4.

The Fourier transform of a function V → C, where V is a subspace of Fn2 ,
can be defined as in Definition 1 below. For the purposes of this section, only
probability mass functions on Fn2 need be considered. Despite this, Definition 1
considers more general functions on an arbitrary subspace V ⊆ Fn2 . Since any
vector space over F2 is isomorphic to Fn2 for some n, this generalization is mostly
a matter of notation. Nevertheless, this extended notation will be convenient in
Section 2.4.

Definition 1 ( [5], §2.1). Let V ⊆ Fn2 be a vector space and f : V → C a
complex-valued function on V . The Fourier transformation of f is a function
f̂ : Fn2/V ⊥ → C defined by

f̂(u) =
∑
x∈V

(−1)u
>xf(x),

where we write u for u + V ⊥. Equivalently, f̂ is the representation of f in the

basis of functions x 7→ (−1)u
>x for u ∈ Fn2/V ⊥.

Recall that the orthogonal complement V ⊥ of a subspace V of Fn2 is the
vector space V ⊥ = {x ∈ Fn2 | ∀v ∈ V : v>x = 0}. The quotient space Fn2/V ⊥

is by definition the vector space of cosets of V ⊥. For convenience, an element
x + V ⊥ ∈ Fn2/V ⊥ will simply be denoted by x. For x ∈ Fn2/V ⊥ and v ∈ V , the
expression x>v is well-defined. Consequently, the above definition is proper.

The main theorem on the advantage of an adversary in the bounded-query
probing model can now be stated. It relies on the observation that, for a bounded-
query probing secure circuit, all probed wire values either closely resemble uni-
form randomness or reveal nothing about the secret input.
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Theorem 1 ( [5], §4). Let A be a t-threshold-probing adversary for a circuit
C. Assume that for every query made by A on the oracle Ob, there exists a
partitioning (depending only on the probe positions) of the resulting wire values
into two random variables x (‘good’) and y (‘bad’) such that

1. The conditional probability distribution py|x satisfies Ex‖p̂y|x−δ0‖22 ≤ ε with
δ0 the Kronecker delta function,

2. Any t-threshold-probing adversary for the same circuit C and making the
same oracle queries as A, but which only receives the ‘good’ wire values ( i.e.
corresponding to x) for each query, has advantage zero.

The advantage of A can be upper bounded as

Advt-thr(A) ≤
√

2 q ε ,

where q is the number of queries to the oracle Ob.

This work only considers a 1-threshold-probing adversary, but extends the
probing model such that one probe can provide multiple shares even over dif-
ferent rounds. Furthermore, we consider the effect of transitions and couplings
which typically provide shares over two consecutive rounds. As a result, we use
the above theorem only for the ‘bad’ values. Moreover, in this work we are only
interested to find out whether the 2-norm ‖p̂z − δ0‖2 is zero or not. As po-
tential trails have to be short, the correlation is bound to be high. Thus, we
are interested to see whether the diffusion layers of a masked cipher allow for
zero-correlation approximations.

Key Schedule This work focuses on the state function of a cipher and considers
the (masked) key to be constant. This focus is based on two reasons.

– To create security arguments independent of the used mode of operation.
Since in some modes the key input can be public, one cannot rely on entropy
coming from the key schedule.

– In practice, the masked key of a block cipher is not frequently re-masked
with fresh randomness. Over several queries, the masked key is thus without
fresh entropy.

The key is thus labeled a ‘good’ variable. Depending on the use case, the designer
can nevertheless opt to include the key schedule for a more in-depth analysis.

2.3 Boolean Masking and Threshold Implementations

In this section, we recall Boolean masking and threshold implementations as
countermeasures against side-channel analysis. We specifically recall threshold
implementations since we require the maskings of the S-box in our case studies
to be uniform and we need the property of non-completeness to protect against
glitches.
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Boolean masking, as originally proposed by Goubin and Patarin [23] and
Chari et al. [11], has become a popular countermeasure against side-channel
analysis. Intuitively, each sensitive variable is split in multiple pieces such that
the adversary is forced to recombine those, exponentially increasing the noise
on the data in the number of pieces. Formally, a secret sharing scheme is used.
For Boolean masking, each secret x is split in the variables x̄ = (x1, x2, . . . , xsx)
such that x =

∑sx
i=1 x

i where the sum is taken over a binary finite field K. We
call a random Boolean masking of a fixed secret uniform if all sharings of that
secret are equally likely.

A masking countermeasure shares each intermediate variable of a primitive
such that at no point in time a secret value is directly processed. There are several
methods how to achieve this given in the literature. In this work, we focus on
the method of threshold implementations as introduced by Nikova et al. [33]. A
threshold implementation consists of several layers of Boolean functions. Each
layer is calculated in one clock cycle and stores its output in registers.

Let F̄ be a layer in the threshold implementation corresponding to a part of
the circuit F : Fn2 → Fm2 . For example, F might be the linear layer of a block
cipher. The function F̄ : Fnsx2 → Fmsy2 , where we assume sx shares per input
bit and sy shares per output bit, will be called a sharing of F . A share of a
function is denoted by F i : Fnsx2 → Fm2 , for i ∈ {1, .., sy}. The main properties
of threshold implementations are summarized in Definition 2.

Definition 2 (Properties of a threshold implementation [33]). Let F :
Fn2 → Fm2 be a function and F̄ : Fnsx2 → Fmsy2 a sharing of F . The sharing F̄ is
said to be

1. correct if
∑sy
i=1 F

i(x1, . . . , xsx) = F (x) for all x ∈ Fn2 and for all shares
x1, . . . , xsx ∈ Fn2 such that

∑sx
i=1 x

i = x,
2. non-complete if any component function F i depends on at most sx−1 input

shares,
3. uniform if F̄ maps a uniform random sharing of any x ∈ Fn2 to a uniform

random sharing of F (x) ∈ Fm2 .

Recall glitch-extended probes as introduced in Section 2.2. Since each com-
ponent function in a threshold implementation works on a non-complete set of
shares and since each function is walled-off by registers, a threshold implement-
ation is secure even in face of glitch effects. The glitch-extended probing security
of a threshold implementation has been formally proven by Dhooghe et al. [20].
Also we recall from [20, Section 4] that every SNI secure gadget is also uniform.
Thus, the secure analysis requirement for a uniform masked S-box is achieved
by most maskings in the literature.

2.4 Linear Cryptanalysis of Threshold Implementations

As discussed in Section 2.2, Theorem 1 allows proving the security of higher-order
threshold implementations given an upper bound on the Fourier coefficients of
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probability distributions of wire values obtained by probing. This section shows
how such an upper bound can be obtained using linear cryptanalysis.

For any linear masking scheme, there exists a vector space V ⊂ F`2 of valid
sharings of zero. More specifically, an F2-linear secret sharing scheme is an al-
gorithm that maps a secret x ∈ Fn2 to a random element of a corresponding
coset of the vector space V. Let ρ : Fn2 → F`2 be a map that sends secrets to their
corresponding coset representative. For convenience, we denote Va = a+ V.

Let Ḡ be a correct sharing of a function G : Fn2 → Fn2 in the sense of Defin-
ition 2. Fix any x ∈ Fn2 and let a = ρ(x) and b = ρ(G(x)). The correctness
property implies that Ḡ(Va) ⊆ Vb. It follows that the restriction F : Va → Vb
of Ḡ defined by F (x) = Ḡ(x) is a well defined function.

Linear cryptanalysis is closely related to the propagation of the Fourier trans-
formation of a probability distribution under a function F : Va → Vb. This leads
to the notion of correlation matrices due to Daemen et al. [13]. The action of F
on probability distributions can be described by a linear operator. The coordin-
ate representation of this operator with respect to the standard basis {δx}x∈V
may be called the transition matrix of F . Following [4], the correlation matrix
of F is then the same operator expressed with respect to the Fourier basis. The
correlation matrix of a sharing can be defined as follows. Note that it only de-
pends on the spaces Va and Vb, not on the specific choice of the representatives
a and b.

Definition 3 (Correlation matrix). For a subspace V ⊆ F`2, let F : Va → Vb
be a function. The correlation matrix CF of F is a real |Vb| × |Va| matrix with
coordinates indexed by elements u, v ∈ Fn2/V⊥ and equal to

CFv,u =
1

|V|
∑
x∈Va

(−1)u
>x+v>F (x) .

The relation between Definition 3 and linear cryptanalysis is as follows: the
coordinate CFv,u is equal to the correlation of a linear approximation over F

with input mask u and output mask v. That is, CFv,u = 2 Pr[v>F (x) = u>x] −
1 for x uniform random on Va. An important difference with ordinary linear
cryptanalysis is that, for shared functions, the masks u and v correspond to
equivalence classes. This formalizes the intuitive observation that masks which
differ by a vector orthogonal to the space V lead to identical correlations.

From this point on, we restrict to second-order probing adversaries. The
description of the link with linear cryptanalysis presented in [5], is completed
by Theorem 2 below. It shows that the coordinates of p̂z are entries of the correl-
ation matrix of the state-transformation between the specified probe locations.
In Theorem 2, the restriction of x ∈ Va to an index set I = {i1, . . . , im} is

denoted by xI = (xi1 , . . . , xim) ∈ F|I|
2 . This definition depends on the specific

choice of the representative a, but the result of Theorem 2 does not.

Theorem 2 ( [5], §5.2). Let F : Va → Vb be a function with V ⊂ F`2 and
I, J ⊂ {1, . . . , `}. For x uniform random on Va and y = F (x), let z = (xI ,yJ).
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The Fourier transformation of the probability mass function of z then satisfies

|p̂z(u, v)| = |CFṽ, ũ|,

where ũ, ṽ ∈ F`2/V⊥ are such that ũI = u, ũ[`]\I = 0, ṽJ = v and ṽ[`]\J = 0.

Theorem 2 relates the linear approximations of F to p̂z(u) and hence provides
a method to upper bound ‖p̂z−δ0‖2 based on linear cryptanalysis. Upper bound-
ing the absolute correlations |CFṽ, ũ| is nontrivial in general. However, the piling-
up principle [32,35] can be used to obtain heuristic estimates.

Importantly, Theorem 2 relates to linear cryptanalysis with respect to V
rather than F`2. The differences are mostly minor, but there is a subtle difference
in relation to the important notion of ‘activity’. In standard linear cryptanalysis,
an S-box is said to be active if its output mask is nonzero. The same definition
applies for linear cryptanalysis with respect to V, but one must take into account
that the mask is now an element of the quotient space F`2/V⊥. In particular, if
the mask corresponding to the shares of a particular bit can be represented by
an all-one vector (1, 1, . . . , 1)>, it may be equivalently represented by the zero
vector. It is still true that a valid linear approximation for a permutation must
have either both input masks equivalent to zero or neither equivalent to zero.
More generally, this condition is ensured by any uniform sharing.

3 Analyzing Transition Leakage

This section studies the effect of transition leakage. Consider registers as recalled
in Section 2.1. When the register input is open to store the incoming value, the
new value has to overwrite the so far stored value. If these are different values
then the attacker can measure a peak in the power consumption compared to the
case when the values are the same – this is called transition leakage. Similar to
registers, if a new value different from the wire current value starts propagating
through a wire then the power consumption will differ compared to the case
when the new and the current value are the same.

As a result, if in a memory cell the element x is erased and instead y is
stored, transitions can leak both x and y. We integrate such leakage effects in
the probing model following the work by Faust et al. [22]. There the model is
described as follows.

“Specific model for transitions. For a memory cell m, memory recom-
binations (aka transitions) can be modeled with specifically 2-extended probes
so that probing m allows the adversary to observe any pair of values stored in 2
of its consecutive invocations.”

As mentioned above, transition leakage does not only occur in memory ele-
ments. Thus, we extend the description such that the extended leakage is viewed
in any gate or wire.

The work by Ishai et al. [27] and the publications that followed considered a
circuit model that represents a deterministic circuit as a directed acyclic graph
whose vertices are combinatorial gates and its edges are wires carrying elements
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from a finite field. However such a simplification of the circuit model does not
take into account the circuit topology. While the leakage of glitches does not
depend on the circuit architecture/topology, for the transitions and the wire
coupling models the leakage is mainly influenced by the circuit’s architecture.
As a result, we study circuits with loops and a notion of time and consider
particular architectures when discussing the side-channel security of symmetric
primitives.

Finally, we consider the combined effect of glitches and transition leakage.
According to Faust et al. [22] probing a memory gate is equivalent to probe the
sole input (i.e. the wire) to it which can be considered also as output of the
particular simple logic which ends up with the considered memory gate. In that
regard, leakage caused by glitches might seem stronger than the leakage caused
by transitions. However, in practice the two leakages can manifest differently in
the time interval representing a single cycle, namely the glitches and the logic
transitions will occur in the beginning while the memory transition will occur
only at the end. As illustrated by Faust et al., there could be a time window
between the computational and the storage phases.

We apply the extended probing model to arbitrary glitch-extended probing
secure masking of several architectures of PRESENT, AES, and ASCON to
investigate how to best protect the masked primitives. In our analysis we consider
a black box masking of the S-box to make the analysis more general. We just
assume the linear layers are masked share-wise and that the masked S-boxes do
not share inputs such as recycled randomness.

3.1 PRESENT

We recall the PRESENT cipher from the work of Bogdanov et al. [7]. The input
to PRESENT is a 64-bit plaintext m. Each round comprises an XOR with the
round key, a substitution layer, and a permutation layer. The substitution layer
consists of 16 applications of a four-bit cubic S-box. The permutation layer of
PRESENT is a bit permutation which is depicted in Figure 1. The following
arguments are also applicable to the GIFT cipher [1].

Round-Based Architectures Require Extra Protection We first consider a glitch-
extended probing secure masking (such as a threshold implementation) in a
round-based architecture. In such an architecture each masked S-box in the
round function is implemented separately on the platform. When an adversary
places a transition-extended probe in an S-box of a round-based architecture,
it can view the computation of the same implemented S-box in two consecutive
rounds. In this architecture, the diffusion layer of PRESENT allows for some
weak points concerning transition leakage. More specifically, bits 0, 21, 42 and 63
are mapped to the same position. As a result, transition leakage from the 0, 5, 10
or 15th masked S-box could reveal information. An example activity pattern is
indicated in dotted blue in Figure 1. The weakness can be resolved by re-masking
the bits which remain fixed through the diffusion layer. This randomness can be
re-used every round and can be the same over the bits 0, 21, 42 and 63. For
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the previously mentioned sharing of the S-box this countermeasure would cost
a total of two random bits for the entire masked cipher.

So far we assumed the shared S-box was implemented as a rolled-out cir-
cuit on the platform. However, the typical threshold implementation of the
PRESENT S-box consists of two degree two maps Ḡ, this sharing is given in
Appendix A. A designer could implement Ḡ and evaluate it twice to compute
an S-box. We denote the two parts of the shared S-box by S̄1 and S̄2. If an
adversary uses a transition-extended probe on the shared S-box it can view the
computation of both S̄1 and S̄2. This is depicted in blue in Figure 2.

We give an example that the above explained weakness can constitute a
probing attack for a particular sharing of the S-box. In particular, we consider
the blue activity pattern from Figure 2. Considering the sharing of the S-box from
Appendix A. Consider, for a secret x, the shares x1, x2, x3 such that

∑3
i=1 x

i =
x. An adversary placing a glitch and transition-extended probe P in the first
component of S̄1(x̄, ȳ, z̄w̄) is given back the shares x1, y1, y2, z1, z2, w1, and w2.
However, from the second part of the shared S-box S̄2 the adversary views the
input values (equivalently S̄1’s output values)

S̄1
1 = w1 + x1y1 + x1y2 + x2y1 ,

S̄2
1 = w2 + x2y2 + x2y3 + x3y2 .

Thus, P = {S̄1
1 , S̄

2
1 , x

1, y1, y2, z1, z2, w1, w2}. Consider random secrets x, y, z, w,
then we find that

I(x;P) = H(x)−H(x|P) 6= 0,

with I the mutual information and H the Shannon entropy. In other words, a
glitch- and transition-extended probing adversary can break the design.

As a conclusion, a straightforward round-based architecture of PRESENT
could be vulnerable to transition leakage and thus extra costs would be required
to secure the architecture.

S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄

K̄i ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕

S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄ S̄

Figure 1: An activity pattern caused by transition leakage in PRESENT. In
dotted blue lines, we find harmful transition leakage using a round-based archi-
tecture. In dashed red lines, we find perfect security using a serial architecture.
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S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1 S̄1

S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2 S̄2

Figure 2: Transition leakage in the calculation of the shared S-box divided in S̄1

and S̄2. The dotted blue lines denote leakage in a round-based architecture. The
dashed red lines denote leakage in a serial architecture.

Serial Architectures are Secure As a second example, we consider a glitch-
extended probing secure masking in an S-box serial architecture. In this archi-
tecture only one shared S-box is implemented on the platform and each S-box
in the cipher is computed in series. Following Figure 1, the architecture com-
putes the S-boxes from left to right. Transition leakage from such a design occurs
either between two S-boxes in the same round or between the last and first S-
box of two consecutive rounds. Assuming the shared S-boxes are uniform, the
former case never constitutes a weakness. The latter case is harmless thanks to
the linear layer of PRESENT as indicated in red in Figure 1. We see, no matter
which input or output mask is chosen, the resulting hull will always be a zero-
correlation linear approximation. Thus, no extra precautions need to be made
to ensure security against transition leakage.

In case the shared S-box is calculated over two cycles using the same re-
sources, the architecture can be secured against transition leakage if all S̄1 are
first calculated from left to right and before calculating the S̄2. A transition-
extended probe either only views two separate S̄1 (similarly S̄2 ) in the same
cycle or it views the parts as depicted in red in Figure 2. It is clear that in no
case the adversary can break the masking using transition leakage.

Considering architectures of a masked PRESENT in light of transition leak-
age, we find that glitch-extended secure serial architectures provide protection
against transition leakage without requiring additional costs.

3.2 AES

We quickly recall the standardized AES cipher by Daemen and Rijmen [14]. AES-
128 consists of a 128-bit state and 128-bit key divided into 16 bytes. The cipher
is composed of 10 rounds each applying an addition of a subkey, a bricklayer
of S-Boxes, a ShiftRows operation, and a MixColumns operation. There are
many primitives using a similar diffusion layer such as LED [26], PHOTON [25],
PRINCE [8], SKINNY [2], etc. The security analysis considered here applies to
all these primitives.

Every Architecture Requires Extra Protection For a glitch-extended probing se-
cure AES, we find that architectures are vulnerable against transition leakage
in the application of the MixColumns operation. First, notice that no matter the

12



architecture, transition leakage from the computation of an S-box is never usable
for an adversary due to the branch number of the MixColumns. An example of
such an activity pattern is depicted in Figure 3. However, during the computa-
tion of the MixColumns and due to the effect of glitches, the adversary can view
the input of the operation and place a mask such that only one output byte is
active. This active byte can only shift over the state, causing the adversary to
also observe the computation of the following MixColumns due to transition leak-
ages. An activity pattern for a round-based architecture is shown in Figure 4.
Even by changing the order of the MixColumns harmful activity patterns can
always be found.

One can prevent this leakage by re-masking some cells (for example, the top
row for the round-based architecture) of the AES state. This randomness cost
is low as the same randomness can be used for every round and for every cell.
More specifically, considering a two-shared threshold implementation, a total of
eight random bits are needed to prevent any transition leakage from occurring.

Another countermeasure is based on the verification of the Linear Approx-
imation Table (LAT) of the shared AES S-box using the definitions from Sec-
tion 2.4. More specifically, note that a masking of a linear operation works share-
wise. As a result, a transition-extended probe on the AES diffusion layer only
views one share each of two MixColumns operations and thus one input and one
output share of the shared S-box. Given an s-sharing of the AES S-box S̄ and
V =

⊕s
i=1 Vi such that each mask u ∈ F8s

2 /V⊥ can be decomposed in (u1, ..., us)
with ui ∈ F8

2/(Vi)⊥ then the linear approximation between the observed values
is only harmful if

∀α, β ∈ F8s
2 /V⊥ : CS̄α,β = 0 when wt(α) = 1,wt(β) = 1 .

In words, the sharing is secure if the masked S-box has nontrivial diffusion
between the shares. A sharing using randomness, for example the sharing of
the AES S-box by De Cnudde et al. [17], typically has this property. Currently
there exists no uniform sharing of the AES S-box and thus every AES S-box
sharing (except those using changing of the guards as explained later) uses ran-
domness. However, applying the above property to sharings of primitives such
as LED or PRINCE could be interesting future work.

SubBytes ShiftRows MixColumns AddRoundKey SubBytes

Figure 3: Activity patterns between the top left S-boxes of rounds i and i+ 1 of
a masked AES. The figure denotes in blue what the adversary can observe and
hatched cells denote active cells.
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MixColumns AddRoundKey SubBytes ShiftRows MixColumns

Figure 4: An activity pattern caused by transition leakage following the AES
diffusion layers. The figure denotes in blue what the adversary can observe and
hatched cells denote active cells.

b2 b3

a1 a2 a3

S1 S2 S3

S(a)1 S(a)2 S(a)3

a2 a3

+ +

+ +

Figure 5: The “Changing of the Guards” method to make a sharing uniform.

Using Changing of the Guards Currently, the AES S-box has no known uniform
sharing. As a result, designers typically use the changing of the guards technique
by Daemen [12] to ensure uniformity. The technique adds input shares of one
S-box to the output of another in order to embed the sharing in a permutation
similar to the Feistel construction. The method is depicted in Figure 5. Since
the technique chains S-boxes, extra diffusion is added to the round function.
A depiction of such an example is given in the left picture of Figure 6. The
figure shows which inputs (start of an arrow) are used to “re-mask” a shared
S-box (end of an arrow). When this technique is used with care, one might use
it to strengthen the masking against transition leakage. For example, while the
diffusion following the left picture still allows for harmful transition leakage in a
round-based architecture, the diffusion following the second picture prevents the
adversary from learning a secret variable. This is due to the pattern ensuring
that each active cell in the state activates at least one different column after
the application of the SubBytes and ShiftRows operations. The third picture
of Figure 6 depicts which column each cell activates after the SubBytes and
ShiftRows operations.

We note that the second pattern shown in Figure 6 is not unique. It is also
assumed the changing of the guards technique is only applied once per round.
If it is applied multiple times (such as in the work by Wegener et al. [36] or by
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Sugawara [34]), different patterns should be used to secure the cipher against
transition leakage.

SubBytes SubBytes 1 2 3 4

2 3 4 3

2143

2

3 4

1 4

4 2

1

Figure 6: Two example diffusion patterns using the changing of the guards tech-
nique. In gray we denote the added extra cells. The left pattern combined with
the AES diffusion layers is vulnerable to transition leakage, the right provides
resistance. The third figure shows the activation of columns of the second pattern
combined with ShiftRows.

3.3 ASCON

ASCON [21] consists of a mode of operation which uses a specific permutation.
In this work, we focus on the permutation. The substitution layer is the parallel
column-wise application of 64 5-bit S-boxes which are an affine transformation
of the χ mapping of Keccak [3]. These S-boxes have linear branch number three.
The linear layer consists of five row-wise applications of a linear function Σ.
Each Σ function has linear branch number four and uses different rotation values
depending on the row to optimize diffusion over several rounds.

Every Architecture is Secure Consider again an arbitrary glitch-extended prob-
ing secure masking of ASCON. We investigate whether we can transform this
masking to be transition-extended probing secure. First, while the S-box of AS-
CON has a nontrivial linear branch number, its sharing might not have a similar
property. Denoting the ASCON S-box by S. While S has a correlation zero trans-
ition between its first input bit x and first output bit z, the sharing of S can
allow for such a transition. Meaning that one can place a nontrivial mask on the
sharing of x and on the sharing of z and still find nonzero correlation. The shar-
ing of the S-box given in Appendix B has been verified to still have a nontrivial
linear branch number over the bits. More specifically, given that V =

⊕5
i=1 Vi

such that each mask u ∈ F20
2 /V⊥ can be decomposed in (u1, u2, u4, u4, u5) with

ui ∈ F4
2/(Vi)⊥ then

min
α,β∈F20

2 /V⊥,CS̄α,β 6=0
{wt(α) + wt(β)} = 3 .

By adding linear correction terms, we can cycle through other non-complete
sharings of the ASCON S-box. Via this search method we found sharings which
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were uniform but did not attain the above property. The software for this search
is added to the submission.

In case the sharing of the ASCON S-box has a nontrivial branch number, a
round-based implementation is automatically secure against any harmful trans-
ition leakage. A typical simplified activity pattern is shown in Figure 7. Moreover,
the same applies for other architectures like a bit-serial implementation. In other
words, except for some trivial share-serial approaches, the round function of AS-
CON requires no additional care to prevent any harmful transition leakage.

Diffusion Substitution Diffusion

Figure 7: A simplified activity pattern in ASCON caused by a transition-
extended probe.

4 Analyzing Coupling Leakage

We consider a leakage effect originating from coupling capacitors between circuit
wires, and between circuit wires and ground which are influenced by the switch-
ing activity on that wire causing recombinations of the wire values. Effectively
when observing leakage from one wire, one can observe leakage from nearby
coupled wires. De Cnudde et al. [15] has shown that the security of masked
hardware implementations can be affected due to coupling effects. These effects
are integrated into the probing model following the work by Faust et al. [22].

“Specific model for couplings. For any set of adjacent wires {w1, ..., wd},
routing recombinations (aka couplings) can be modeled with c-extended probes
so that probing one wire wi allows the adversary to observe c wires adjacent to
wi.”

Defending against the above model is not straightforward as two wires carry-
ing different shares of a secret can be coupled. The work by De Cnudde et al. [16]
discusses three potential solutions to “separate” logic.

– To perform sequential operations instead of parallelism where the imple-
mentation processes a non-complete set of shares at each clock cycle. While
this provides security this reduces the throughput and avoids making use of
the full parallelism feature of hardware.

– Via the use of embedded voltage regulators (VRM) inside the chip, which
are already used in commercial smart cards. However, it remains unclear
whether electromagnetic signals exhibit potential issues.
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– Via the chip having separate Vdd lines to supply functions associated to
each share independently. However, it is still an open problem how to supply
nonlinear functions which operate on sets of shares and prove the security
of the countermeasure.

In this work, we assume one of the above countermeasures has been applied
to the masking. To that end, we assume the masking is “domain non-complete”
meaning that each domain processes only a non-complete set of shares per cycle.
An example is shown in Figure 8. As a result, a coupling-extended probe (for
any c in the above definition) does not yield all the shares of a secret. This non-
completeness property alone is sufficient to protect an implementation against
coupling-extended probes. However, a more detailed security analysis is needed
when combining multiple leakage effects together.

x1

x2

x3

F 1

F 2

F 3

y1

y2

y3

Domain 1

Domain 2

Domain 3

Figure 8: Separation into domains of a layer of masked Boolean functions.

5 Analyzing Glitches, Transitions, and Couplings

For the final analysis, we study maskings which secure against all combined ef-
fects described by Faust et al. [22], i.e. glitches, transitions, and coupling leakage.
Considering coupling effects, we study the effect when c = 1 following the defin-
ition above. That means the adversary is capable of observing the probed wire
along with one coupled wire. Recall that we consider that a coupling-extended
probe can not view all shares of a secret in one cycle. Combining coupling effects
with glitches and transitions, using a single probe, the adversary observes all
inputs to the probed wire, the previous values which flowed through those re-
sources, and glitches and transition leakage from a coupled operation. We revisit
the case studies from Section 3.

5.1 PRESENT: Serial Architecture

We revisit the masking of PRESENT from Section 3.1. More specifically, we
consider a glitch-extended probing secure masking in an S-box serial architec-
ture which we showed was secure against the combined effect of glitches and
transitions. We adapt the architecture to work share-serial meaning that each
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cycle one share of one S-box (or quadratic function in the S-box) is calculated.
In particular, such an architecture is domain non-complete.

In this case, glitch effects already include the effect of couplings as only one
operation per cycle is calculated. When the architecture would calculate two
shares of the same S-box consecutively, transitions could leak the input secret
of the S-box. Instead, we interleave computation on shares of a secret with
the computation of other parts of the state. Thus, the architecture would first
calculate the ith share of each S-box before calculating a (i + 1)th share. This
secures from harmful transition leakage. The activity patterns are the same as
before, given in red in Figure 1.

5.2 AES: Serial Architecture

We consider a glitch-extended probing secure masking in a serial architecture
where only one S-box and MixColumns is implemented. This is a popular archi-
tecture for maskings, examples can be found in the works by De Meyer et al. [18,
Figure 6] and Gross et al. [24, Figure 5]. In this case, we consider that a domain
separation through different Vdd lines or via embedded voltage regulators has
been implemented such that the design is domain non-complete.

Even though there is only one masked S-box on the implementation, it typic-
ally consists of multiple register stages. Thus, the S-box can compute on several
bytes at once in a pipelined manner. Recall that we assume that c = 1, thus
a probe on an S-box views the computation of another coupled S-box. Due to
transition leakage, the adversary can view the two S-boxes over two consec-
utive cycles. Due to the MixColumns having branch number five, this leakage
can never reveal a secret. However, there is still leakage from the calculation
of the MixColumns as noted in Section 3.2. Finally, there can be coupling leak-
age between the MixColumns and an S-box (from a different column). However,
these cases do not add extra harmful activity patterns. Thus, as explained in
Section 3.2, we only require adding one cell of extra randomness to secure against
the combined effect of glitches, transitions, and couplings.

5.3 ASCON: Round-Based Architecture

Finally, we consider a glitch-extended probing secure masking with a round-
based architecture for ASCON. Again, we consider the case where c = 1 meaning
that a probe can observe an additional operation in that cycle and we consider
domain non-complete maskings where there is some countermeasure ensuring
coupling leakage alone does not reveal all shares of a secret.

Due to the combined effect of transitions and couplings, a probed S-box gives
information on two S-boxes over two consecutive rounds. Previously, we argued
ASCON was secure when probing an S-box due to the nontrivial branch number
of the linear layer. This argument no longer holds as the linear layer only has
branch number four. However, the case remains secure as the layer does not
allow for transitions of two active input bits to two active output bits. This can
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be verified on sight from the equations of the Σ function:

Σα,β(x) = x⊕ (x≫ α)⊕ (x≫ β) ,

with ≫ the right circular shift and α, β ∈ N constants specific for ASCON. We
also added software for this verification to the submission.

When the adversary probes the linear layer, it can potentially activate two
input and two output bits of a shared S-box. The diffusion of the S-box is not
sufficient to prevent harmful leakage. However, we observe that the probe returns
bits from the same share, e.g. both from the first share of the input and first share
of the output. Thus, one can protect the implementation when the shared S-box
S̄ has the following property. Given an s-sharing S̄ and V =

⊕s
i=1 Vi such that

each mask u ∈ F5s
2 /V⊥ can be decomposed in (u1, ..., us) with ui ∈ F5

2/(Vi)⊥
then for i ∈ {1, ..., s}

∀α, β ∈ F5s
2 /V⊥ : CS̄α,β = 0 when α = (0, ..., αi, ..., 0), β = (0, ..., βi, ..., 0) .

A similar property was explored in Section 3.2 on diffusion between shares.
Since the S-box is quadratic, one can easily find non-complete sharings of the
entire S-box. This non-completeness can be used to argue that the ith share
of the input and output of the S-box do not reveal any secret information. An
example sharing with the above property is given in Appendix B. For example,
the first bit of the second output share is

χ2
1 = x2

1 + x2
3 + (x2

2 + x3
2 + x4

2)(x2
3 + x3

3 + x4
3) .

Together with the second input shares x2
i for i ∈ {1, 2, 3, 4, 5}, one always misses

the first input shares x1
i to retrieve an input secret.

6 Conclusion

This work discussed the security of masked symmetric primitives against the
combined leakage effects of glitches, transitions, and couplings. This was done
using the standard tools from linear cryptanalysis and on case studies of symmet-
ric primitives. The case studies were made considering black box glitch-extended
probing secure maskings. Moreover, we covered case studies on PRESENT, AES,
and ASCON to show our analysis is applicable to a wide range of primitives.

Interesting future work would be transform our analysis method (which cur-
rently is only done by hand) into a tool which can verify netlists on potential
transition leakage using the linear cryptanalytic properties of basic gates such
as ANDs and XORs. We also did not investigate methods to analyze transition
leakage when re-using randomness between S-boxes or transition leakage inside
a single S-box. However, for such cases, brute-force verification is possible al-
lowing for extensions of existing tools such as SILVER [28]. Finally, we noted a
lack of theory concerning correlation matrices of masked functions together with
interesting examples which indicate that bounds on the maximum absolute cor-
relation or branch number of a masking might be difficult to find. More research
on this topic could improve the security and efficiency of masked designs.
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A Three Sharing of the PRESENT S-Box

This appendix provides a decomposition of the PRESENT S-box and a three
sharing of the S-box. We denote by (x, y, z, w) the input nibble from most sig-
nificant to least significant bit.

Following the work by Kutzner et al. [30], the PRESENT S-box S can be
decomposed as follows

S(x, y, z, w) = B′(G(G(C ′(x, y, z, w) + d)) + e) .

In the above, the nonlinear function G(x, y, z, w) is given as

G1 = x+ yz + yw G2 = w + xy G3 = y G4 = z + yw .

This permutation G is shared using a direct balanced sharing. More specific-
ally, for each share i ∈ {1, 2, 3}

Gi1 = xi + yizi + yizi+1 + yi+1zi + yiwi + yiwi+1 + yi+1wi ,

Gi2 = wi + xiyi + xiyi+1 + xi+1yi ,

Gi3 = yi ,

Gi4 = zi + yiwi + yiwi+1 + yi+1wi ,

where the convention is used that superscripts wrap around at three. The linear
layers are masked share-wise.

B Uniform Sharing of the ASCON S-Box

This appendix provides a uniform four-sharing of the ASCON S-box. Recall that
the ASCON S-box is affine equivalent to the Keccak S-box. More specifically,
for the Keccak S-box χ and the ASCON S-box S we have that

S(x) = B(χ(B(x))) + c ,

with A,B linear transformations and c a constant.
Denoting the five input bits by {x1, x2, x3, x4, x5} going from least significant

to most significant bit. A uniform sharing of the Keccak S-box χ using four shares
was given by Bilgin et al. [6]. For i = 1, 2, 3, 5 we have

χ1
i = x1

i + x1
i+2 ,

χ2
i = x2

i + x2
i+2 + (x2

i+1 + x3
i+1 + x4

i+1)(x2
i+2 + x3

i+2 + x4
i+2) ,

χ3
i = x3

i + x3
i+2 + x1

i+1(x3
i+2 + x4

i+2) + x1
i+2(x3

i+1 + x4
i+1) + x1

i+1x
1
i+2 ,

χ4
i = x4

i + x4
i+2 + x1

i+1x
2
i+2 + x1

i+2x
2
i+1 ,
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where the convention is used that subscripts wrap around at five. For the re-
maining fourth coordinate function we have

χ1
4 = x1

4 .

χ2
4 = x2

4 + x2
1 + x3

1 + x4
1 + (x2

5 + x3
5 + x4

5)(x2
1 + x3

1 + x4
1) ,

χ3
4 = x3

4 + x1
1 + x1

5(x3
1 + x4

1) + x1
1(x3

5 + x4
5) + x1

1x
1
5 ,

χ4
4 = x4

4 + x1
5x

2
1 + x1

1x
2
5 ,
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