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Abstract

The paper is devoted to the Hadamard square of concatenated linear codes. Such
codes consist of codewords that are obtained by concatenation part of the codewords
from other codes. It is proved that if the sum of Hadamard squares’ dimensions of
the codes used in the concatenation is slightly less than the dimension of the entire
space, then the Hadamard square of the concatenated code is equal to the Cartesian
product of the Hadamard square of code-components.

It means that the cryptanalysis for many code-based post-quantum cryptographic
mechanisms built on concatenated codes is equivalent to the cryptanalysis of these
mechanisms built on code-components. So using the concatenation of codes from
different classes instead of one class of codes, generally speaking, does not increase
the cryptographic strength of the mechanisms.

Keywords: concatenated linear codes, Hadamard square, Hadamard product, Schur product,
component-wise product, McEliece public-key cryptosystem, post-quantum cryptography

1 Introduction

The Hadamard (Schur) product or the coordinate-wise product of linear
codes has been studied for a long time. In the beginning, it was used to
construct algebraic decoders correcting errors for some linear codes [18]. Re-
cently, it is increasingly used in cryptography. Many constructions of secret
sharing schemes and cryptographic protocols for secure multi-party computa-
tion [4] use the Hadamard product of linear codes. Attacks on post-quantum
code-based cryptographic mechanisms are one of the main applications of this
operation over linear codes. So, worth noting the attack [2] on the McEliece
cryptosystem based on Reed-Muller binary codes, or the attack [22] on the
same cryptosystem, but based on Reed-Solomon subcodes. Numerous exam-
ples of the Hadamard product application for constructing attacks on code-
based cryptosystem given in works [7, 8, 9, 10, 17]. For the first time, the
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efficient algorithm was constructed in [13] that distinguishes Goppa codes
from random binary codes using this operation.

For practical applications be essential to describe the Hadamard square
of the linear code and establish its properties as a linear code. For example,
in [3] it was proved that the Hadamard square of the linear code fills the
entire space with a probability close to one. This property is often used to
construct attacks on post-quantum public-key cryptosystems; for example,
see works [1, 7, 10, 17]. Some cryptographic mechanisms are based on linear
codes, the Hadamard square of which is not equal to the entire space. Then
the algebraic or combinatorial structure of the Hadamard square of the linear
code becomes important.

Recently, several attacks [5, 6, 11, 17] have been constructed on post-
quantum cryptographic mechanisms based on the concatenation of linear
codes from different classes. Such linear codes consist of codewords which are
obtained by combining part of the codewords from other codes. Moreover, for
these attacks to work correctly, it is required that the Hadamard square of
the combined code is equal to the Cartesian product of Hadamard squares of
the codes used in the combination. The researchers noted that this property
is fulfilled almost always in the experiments, but there is no theoretical for
this fact proved was provided.

In this paper, the theoretical gap is eliminated. And it is proved that
if the sum of the Hadamard squares’ dimensions of the codes used in the
concatenation is slightly less than the dimension of the entire space, then the
Hadamard square of the concatenated code is equal to the Cartesian product
of Hadamard squares of code-components.

2 The main result

Let V n
q be the linear space of all vectors of length n over GF (q). Block

linear [n, k]q-code over GF (q) or just code is a k-dimensional linear subspace
C of V n

q . In this case, n is called the length of the code, and k is called the
dimension of code. When the dimension of the code C ⊆ V n

q is not essential
to us, it will be called the [n]q-code C. Vectors c ∈ C are called codewords of
the code C.

We say that the [n]q-code C is generated by the (k × n)-matrix G with
elements from GF (q) if the linear combination of the rows of the matrix G
over GF (q) coincides with C. This fact we write as C = 〈G〉. Moreover, if
matrix G has the minimum rank among all matrices generating code C, then
it is called the generator matrix of the code C.
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The vector h = (h1, . . . , hn) ∈ V n
q is called parity check of the code C, if

for any vector c = (c1, . . . , cn) ∈ C holds equality

h1 · c1 + . . .+ hn · cn = 0,

here all operations are performed in the field GF (q). It is clear that the set
of all parity checks of code C is a linear subspace of V n

q , i.e. the linear code.
This code is called the dual code to code C. We denote the code dual to C as
C⊥.

The generator matrix H of code C⊥ is called the parity-check matrix of
code C. Note that from the definition of the parity-check matrix H of code
C, it follows that for any c ∈ C holds the equalities

HcT = 0, cHT = 0.

The minimum distance(see [16]) of the linear code C is called the number

dC = min
c∈C, c6=0

wt(c),

here wt(c) is the Hamming weight (the number of nonzero coordinates) of
the vector c. The minimum distance of code C⊥, which is dual to code C, is
denoted as d⊥C .

The Cartesian product of vectors c = (c1, . . . , cn) ∈ V n
q and b =

(b1, . . . , bm) ∈ V m
q is called vector

c× b = (c1, . . . , cn, b1, . . . , bm) ∈ V m+n
q .

Accordingly, the Cartesian product [n]q-code C and [m]q-code B is called
[n+m]q-code C × B consisting of vectors

C × B = {c× b|c ∈ C, b ∈ B}.
The concatenation cat(C1, . . . , Cu) of codes C1, . . . , Cu is called the set of

codes C, which are generated by a matrix of the form

(G1‖ . . . ‖Gu),

here ‖ is the concatenation of matrix columns, and the (k × ni)-matrix Gi

generates the code Ci, i = 1, 2, . . . , u. It is clear that C ∈ cat(C1, . . . , Cu) is
[n1 + . . .+ nu]q-code.

Also, for any code C ∈ cat(C1, . . . , Cu), the following inclusion is true

C ⊆ C1 × . . .× Cu.
Hadamard product of two vectors c, b ∈ V n

q is called the vector c ◦ b
obtained as a result of the component-wise product of coordinates of these
vectors:

c ◦ b = (c1, . . . , cn) ◦ (b1, . . . , bn) = (c1b1, . . . , cnbn).
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Definition 1. Let C and B are [n]q-codes. Then Hadamard product (Schur
product, component-wise product) C ◦ B of codes C and B will be called the
[n]q-code, consisting of the linear span of the following vectors {c ◦ b|c ∈
C, b ∈ B}. If C = B, then code C ◦ C = C2 is called Hadamard square of
code C.

For the Hadamard square of codes that are the concatenation of other
codes, the following proposition is true.

Proposition 1. Let C ∈ cat(C0, C1, . . . , Cu) for some codes C0, C1, . . . , Cu.
Then the following inclusion is true

C2 ⊆ C20 × C21 × . . .× C2u. (1)

We will be interested in the following problem. Under what condition the
inclusion (1) turns into equality. The paper’s main result is the following 1.

Theorem 1. Let u be a positive integer, and for each i = 0, 1, . . . , u the
code Ci be a [ni]q-code. Let also [N, k]q-code C ∈ cat(C0, C1, . . . , Cu).

If d⊥C 6= 2, k ≥ 4, N ≤ k(k+1)
2 , N · logq(2− q−1) ≤

k(k−3)
2 and

N − logq
3k + 4

4
≥ dim C20 + dim C21 + . . .+ dim C2u,

then we have
C2 = C20 × C21 × . . .× C2u. (2)

3 Hadamard square and quadratic forms

It turns out to be a convenient interpretation of the Hadamard square of
the linear code with a point of view of quadratic forms over GF (q). Such an
approach allowed the authors of [3] to establish the behavior of the dimension
of Hadamard square of a random linear code.

Definition 2. A quadratic form over GF (q) is called homogeneous quadratic
polynomial over this field

q(x1, . . . , xk) =
∑

1≤i<j≤k

ai,jxixj +
k∑
i=1

bix
2
i ,

here ai,j ∈ GF (q), 1 ≤ i < j ≤ k, и bi ∈ GF (q), 1 ≤ i ≤ k.
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Let denotes by Qk(q) the set of all quadratic forms over GF (q) in k
variables. Consider a (k × n)-matrix G, let gi ∈ V k

q be the column of the
matrix G with index i. Define a mapping `G : Qk(q) → V n

q in the following
way:

`G(f) =
(
f(g1), . . . , f(gn)

)
.

In this case, the Hadamard square of the linear [n, k]q-code C generated by
the matrix G is the image of the linear operator `G (see, for example, [3, 19]):

C2 = Im `G. (3)

The following proposition attends directly from proposition 1.

Proposition 2. Let C ∈ cat(C0, C1, . . . , Cu) for some codes C0, C1, . . . , Cu.
Then we have

dim C2 = dim Im `(G0‖G1‖...‖Gu) ≤
u∑
i=0

dim Im `Gi
, (4)

where (G0‖G1‖ . . . ‖Gu) is generator matrix of code C.
Moreover, equality in (4) is achieved if and only if

C2 = C20 × C21 × . . .× C2u.

Let ker `G be a kernel of linear operator `G. Since dimQk(q) = k(k+1)
2 ,

then the equality

dim Im `G =
k(k + 1)

2
− dim ker `G

holds.
So the following proposition is true.

Proposition 3. Let C ∈ cat(C0, C1, . . . , Cu) for some codes C0, C1, . . . , Cu.
Then we have

dim ker `(G0‖G1‖...‖Gu) ≥
k(k + 1)

2
−

u∑
i=0

dim C2i , (5)

where (G0‖G1‖ . . . ‖Gu) is generator matrix of code C.
Moreover, equality in (5) is achieved if and only if

C2 = C20 × C21 × . . .× C2u.

Proof. The proof follows from the equality

dim ker `(G0‖G1‖...‖Gu) =
k(k + 1)

2
− dim Im `(G0‖G1‖...‖Gu),

and from proposition 2 given (3).
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4 The proof of main theorem

This section is devoted to the proof of the main results of the paper. Let
us first establish the truth of the most general theorem.

Theorem 2. Let Xi, i = 0, . . . , u, be (k × ni)-matrices over GF (q). Ma-
trix Xi, i = 0, . . . , u, generates linear code Ci. Denote by N = n0 +
n1 + . . . + nu. Let C be [N, k]q-code over GF (q) generated by the matrix
X = (X0‖X1‖ . . . ‖Xu). Let us require that the matrix X does not contain
identical columns.

If k ≥ 4, N ≤ k(k+1)
2 , N · logq(2− q−1) ≤

k(k−3)
2 and

N − logq
3k + 4

4
≥ dim C20 + C21 + . . .+ dim C2u,

then we have
C2 = C20 × C21 × . . .× C2u.

Proof. At first, we prove the useful technical lemma.

Lemma 1. Consider a discrete random variable ξ with a finite number of
values {a1, . . . , as}. Let pi be the probability of occurrence of the value ai.
We will assume that a1 is the minimum possible value of ξ. Let us denote
byMξ the mathematical expectation of the random variable ξ. IfMξ ≤ a1,
then for any i we have either pi = 0, or ai = a1.

Proof. Indeed, by definition

a1 ≥Mξ =
s∑
i=1

aipi ⇔ a1

s∑
i=1

pi ≥
s∑
i=1

aipi ⇔ 0 ≥
s∑
i=1

(ai − a1)pi.

Now pi ≥ 0 and ai − a1 ≥ 0 for i = 2, . . . , s, since a1 is minimum value of
random variable ξ. Therefore

∑s
i=1(ai − a1)pi = 0. But it is only possible if

for each i = 2, . . . , s, either pi = 0 or ai = a1.

Consider ker `X .
Let be given a uniform distribution on the set of (k ×N)-matrices X =

(X0‖ . . . ‖Xu), such that the matrix X has no zero columns and repeated
columns. Then ker `X will be a random variable defined on the set of random
matrices X. According to proposition 3 holds the following inequality

dim ker `X ≥
k(k + 1)

2
−

u∑
i=0

dim C2i .
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This means that if we prove that

M dim ker `X ≤
k(k + 1)

2
−

u∑
i=0

dim C2i ,

then from Lemma 1, it will follow that the random variable dim ker `X with
nonzero probability can take only the value

dim ker `X =
k(k + 1)

2
−

u∑
i=0

dim C2i .

Therefore, according to proposition 3, the truth of the theorem will follow
from this.

Thus, it is necessary to estimate the mathematical expectation of a ran-
dom variable dim ker `X . Now | ker `X | = qdimker `X , therefore, we will esti-
mate the mathematical expectation of the cardinality of ker `X . By definition
f ∈ ker `X , if and only if f(X0) = f(X1) = . . . = f(Xu) = 0.

Let If be a random variable that takes the value one if f(X0) = f(X1) =
. . . = f(Xu) = 0, and 0 in other cases. Then

| ker `X | =
∑

f∈Qk(q)

If .

Since the mathematical expectation is linear, the following equality is
true

M| ker `X | =
∑

f∈Qk(q)

MIf .

Notice that
MIf = 0 · Pr{If = 0}+ 1 · Pr{If = 1}.

Therefore
M| ker `X | =

∑
f∈Qk(q)

Pr{If = 1}.

Let for all f ∈ Qk(q) holds the inequality

Pr{If = 1} ≤ q−
∑u

i=0 dim C2i , (6)

then
M| ker `X | ≤ |Qk(q)| · q−

∑u
i=0 dim C2i .

However, then, taking into account | ker `X | = qdimker `X , for dim ker `X , we
get

M dim ker `X ≤ dimQk(q)−
u∑
i=0

dim C2i .
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Since dimQk(q) = k(k+1)
2 , we get

M dim ker `X ≤
k(k + 1)

2
−

u∑
i=0

dim C2i .

So, to prove the theorem, it is necessary to establish that the inequality (6)
holds for any quadratic form f .

Consider the quadratic form f which takes the value 0 on the set of values
X, |X| = N . Let its weight be w. Then there are

(
qk−w
N

)
options for choosing

from set of arguments of subset Y = X0 ∪ X1 ∪ . . . ∪ Xu of cardinality
N = n0 + n1 + . . . + nu, on which form f takes 0. Then the fraction of
such subsets Y among all possible subsets of cardinality N will be equal to(
qk−w
N

)
/
(
qk

N

)
. This means that

Pr{If = 1|wt(f) = w} =

(
qk−w
N

)(
qk

N

) .

Then by the law of total probability

P = Pr{If = 1} =

qk∑
w=0

Pr{wt(f) = w}Pr{If = 1|wt(f) = w}.

Suppose that f is chosen randomly and with equal probability from
Qk(q), then the probability Pr{wt(f) = w} can be calculated by the for-
mula

Pr{wt(f) = w} =
Qw

qdimQk(q)
=

Qw

qk(k+1)/2
,

where Qw is number of quadratic forms of weight w.
Then we get

P =

qk∑
w=0

Qw

qk(k+1)/2

(
qk−w
N

)(
qk

N

) =
1

qk(k+1)/2
·
qk∑
w=0

Qw

(
qk−w
N

)(
qk

N

) . (7)

Let

Q =

qk∑
w=0

Qw

(
qk−w
N

)(
qk

N

) .

Further, Qw 6= 0 only for w = 0, qk − qk−1, qk − qk−1 − τqk−1−h(q − 1)
where h = 1, . . . , bk/2c and τ = 1,−1 (see [14, 15, 21]).

So, the following fractions need to be estimated(
qk−1

N

)(
qk

N

) , (qk−1+qk−1−h(q−1)
N

)(
qk

N

) ,

(
qk−1−qk−1−h(q−1)

N

)(
qk

N

) .
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Lemma 2. If 0 < a < q, n > 0 and N > 0, then we have(
a·qk−1

N

)(
qk

N

) ≤ aNq−N .

Proof. Consider equalities(
a·qk−1

N

)(
qk

N

) =
(a · qk−1)!(qk −N)!

(a · qk−1 −N)!qk!
=

N∏
i=1

a · qk−1 −N + i

qk −N + i
.

Further,

a · qk−1 −N + i

qk −N + i
=
a · qk−1 − qk + qk −N + i

qk −N + i
= 1− qk−1(q − a)

qk −N + i
. (8)

Since a < q, the fraction qk−1(q− a)/(qk −N + i) is not negative, so the
smaller it is, the (8) is more. Thus, the maximum of expression (8) is reached
at i = N .

For 1 ≤ i ≤ N we have

1− qk−1(q − a)

qk −N − n+ i
≤ 1− qk−1(q − a)

qk
=
a

q
.

Therefore (
a·qk−1

N

)(
qk

N

) ≤ aNq−N .

Let a takes one of the values 1, 1 ± q−h(q − 1), where 1 ≤ h ≤ bk/2c.
Since q ≥ 1, then 1 + q−h(q − 1) > 0. Further, for h ≥ 1, the inequality
1− q−h(q − 1) ≥ 1− q−1(q − 1) = q−1 > 0 holds.

Hence, according to Lemma 2, we have(
qk−1

N

)(
qk

N

) ≤ q−N ,

(
qk−1±qk−1−h(q−1)

N

)(
qk

N

) ≤ q−N(1± q−h(q − 1))N .

Thus,

Q ≤ 1 + q−NQ0 + q−N
bk/2c∑
h=1

[
Q−h (1 + q−h(q − 1))N +Q+

h (1− q−h(q − 1))N
]
,

where Q0 = Qqk−qk−1, Q−h = Qqk−qk−1−qk−1−h(q−1) and Q+
h =

Qqk−qk−1+qk−1−h(q−1). Since 1 + q−h(q − 1) ≥ 1− q−h(q − 1) for h ≥ 1, then

Q ≤ 1 + q−NQ0 + q−N
bk/2c∑
h=1

[
Q−h +Q+

h

]
(1 + q−h(q − 1))N . (9)
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Let us estimate Q0 and Q−h +Q+
h for 1 ≤ h ≤ bk/2c.

According to works [14, 15, 21], holds

Q±h =
1

2
qh

2

(qh ∓ 1)

∏k
i=k−2h+1(q

i − 1)∏h
i=1(q

2i − 1)
.

First, note that Q+
h ≤ Q−h , so we only estimate Q−h .

Choose any ε, k−1 ≤ ε ≤ 1
4 . Then 1 ≤ εk ≤ k/4. Let h ≤ ε · k. In this

case 2h < k − 2h+ 1. Then we get

Q−h ≤
1

2
qh

2

∏k
i=k−2h+1 q

i

(qh − 1)
∏h−1

i=1 (q2i − 1)
=

1

2

qh
2+2hk−h(2h−1)

(qh − 1)
∏h−1

i=1 (q2i − 1)
.

Now we use the inequality qx − 1 ≥ qx−1, which is valid for any x ≥ 1
and q ≥ 2.

(qh − 1) ·
h−1∏
i=1

(q2i − 1) ≥ qh−1 ·
h−1∏
i=1

q2i−1 = qh−1+2
∑h−1

i=1 i−
∑h−1

i=1 1 = qh(h−1).

Then for 2 ≤ h ≤ ε · k we get

Q−h ≤
1

2
· qh2+2hk−h(2h−1)−h(h−1) =

1

2
· q2h(k+1−h).

Let us find the extremum of φ(h) = 2h(k + 1 − h). For k + 1 ≥ 2h
derivative φ′(h) = 2(k + 1 − h) − 2h = 2(k + 1 − 2h) is not negative,
therefore φ(h) does not decrease on the interval [1, (k + 1)/2].

Hence, for 2 ≤ h ≤ ε · k ≤ k/4 < (k + 1)/2 we get 2h(k + 1 − h) ≤
2εk(k + 1− εk) = 2ε(1− ε)k2 + 2εk.

If h = 1, then

Q−1 =
1

2
q(q + 1)

∏k
i=k−1(q

i − 1)∏1
i=1(q

2i − 1)
=

1

2
q(q + 1)

(qk − 1)(qk−1 − 1)

q2 − 1
≤ 1

2
· q2k.

Since 1 ≤ εk and ε < 1, then 2k ≤ 2ε(1− ε)k2 + 2εk.
Then for k−1 ≤ ε ≤ 1

4 and 1 ≤ h ≤ εk we get

Q±h ≤
1

2
· q2ε(1−ε)k2+2εk.

Thus for 1 ≤ h ≤ εk we get

Q−h +Q+
h ≤ q2ε(1−ε)k

2+2εk.
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And for the remainingQ−h , h > εk, andQ0, we have the trivial inequalities

Q−h +Q+
h ≤ qk(k+1)/2, Q0 ≤ qk(k+1)/2.

Then from (9) for every k−1 ≤ ε ≤ 4−1 implies

Q ≤ 1+(1+(1/2−ε)k)q−Nqk(k+1)/2+q−Nq2ε(1−ε)k
2+2εk

∑
h≤εk

(1+q−h(q−1))N .

Notice that 1 + q−h(q − 1) ≤ 2− q−1 = αq. Then

Q ≤ 1 + (1 + (1/2− ε)k)q−Nqk(k+1)/2 + ε · k · q−Nq2ε(1−ε)k2+2εkαNq .

Further, if k ≥ 4, then

1 +

(
1

2
− ε
)
k = 1− εk +

k

2
≤ k

2
.

. Thus,

Q ≤ 1 +
k

2
q−Nqk(k+1)/2 +

k

4
q−N(1−logq αq)q2ε(1−ε)k

2+2εk. (10)

Let us choose ε so that
k(k + 1)

2
−N ≥ −N(1− logq αq) + 2ε(1− ε)k2 + 2εk. (11)

This is equivalent to the following inequality

N logq αq + (2ε(1− ε)− 1/2) k2 + (2ε− 1/2)k ≤ 0. (12)

The left side of the inequality is the square polynomial of ε. Not so hard to
prove that (12) holds on the union of intervals

(
−∞, 1

2
−
√
k + 1 + 2b− 1

2k

]⋃[
1

2
+

√
k + 1 + 2b+ 1

2k
,+∞

)
,

where b = N logq αq. The second half-interval cannot contain points of the
segment [k−1, 4−1] since 4−1 < 2−1. Therefore, let us require that the second
contains it. For this, it is enough that

k−1 ≤ 1

2
−
√
k + 1 + 2N logq αq − 1

2k
.

The last is equivalent to

N logq αq ≤
k(k − 3)

2
. (13)
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Thus, if (13) holds, then we have (11). From (11) and (10), the inequality
follows

Q ≤ 1 +
3k

2
q−Nqk(k+1)/2.

But then from (7) we get an estimate for the probability

P ≤ 3k

4
q−N + q−k(k+1)/2.

If N ≤ k(k + 1)/2 then q−N ≥ q−k(k+1)/2, therefore we finally get

P ≤ 3k + 4

4
q−N .

Then, to satisfy (6), it is necessary to require that

−N + logq
3k + 4

4
≤ −

u∑
i=0

dim C2i ⇔ N − logq
3k + 4

4
≥

u∑
i=0

dim C2i .

The theorem is completely proved.

Now, to prove the main theorem 1, let us apply the statement of The-
orem 2 to the generator matrix G = (G0‖G1‖ . . . ‖Gu) of the code C ∈
cat(C0, C1, . . . , Cu). The inequality d⊥C > 2 guarantees that G does not con-
tain identical columns. It is also by definition of set cat(C0, C1, . . . , Cu), for
i = 0, 1, . . . , u matrix Gi generates code Ci.

5 Application to cryptanalysis of some post-quantum
cryptographic mechanisms

Concatenated codes are sometimes used to construct post-quantum cryp-
tographic mechanisms based on error-correcting codes.

So in work [20], it is proposed to construct the McEliece cryptosystem,
use codes from the set cat(C0, C1, . . . , Cu), where Ci, i = 0, 1, . . . , u, is Reed–
Muller code RM(r,m).

An effective attack on this variant of the McEliece cryptosystem is pro-
posed in [5]. In this case, for the attack to succeed, equality (2) must hold for
code C. The authors of the attack could only verify the equality (2) experi-
mentally. Theorem 1 strictly allows proving this fact. So, for example, for the
original parameters proposed in [20], dim C2i = dimRM(6, 10) = 848, k =
176, N = 4 · 1024 = 4096, we get

4096− log2

3 · 176 + 4

4
> 4096− 8 = 4088 > 4 · 848 = 3392,
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which guarantees the success of the attack [5].
In [12], authors propose to build the cryptosystem based on codes from

the family cat(RM(r,m),Γ), where Γ is a binary Goppa code. Moreover, the
codes RM(r,m) and Γ are chosen so that their dimensions coincide. In [6], an
attack on this cryptosystem is constructed in some adversary models. Among
other things, the attack uses the fact of equality (2). Let 2m is the length of
RM(r,m), n1 is the length of Γ, and k is the dimension of these codes. Since
it is not enough what is known about the Hadamard square of Γ, then we
restrict its dimension to n1. We get

2m + n1 − log2

3k + 4

4
≥ n1 + dimRM(2r,m).

So, if

dimRM(2r,m) ≤ 2m − log2

3k + 4

4
, (14)

then, in this case, it is possible to prove the efficiency of the attack from [6]
rigorously. For example, for the code RM(6, 10), the inequality (14) holds
since

848 ≤ 1024− log2 133 ≈ 1016.

Note also the attack from [11], where the McEliece cryptosystem is con-
structed on the class of codes cat(C0, C1, . . . , Cu) for a more general case of
choosing codes Ci. The center point of attack is equality (2). The authors
note that they have experimentally verified its implementation, including for
non-binary codes. It turned out that it is almost always fulfilled. Theorem 1
substantiates the experimental data from work [11].

Finally, consider the attack from [17]. It is devoted to the McEliece cryp-
tosystem built on the Reed–Muller code RM(r,m), in which random coor-
dinates are added to each codeword so that the code’s linearity is preserved.
In Section 5.2 in Remark 1, the authors note that they experimentally es-
tablished the following fact. If we add t random coordinates to the code
RM(r,m), then the Hadamard square of the new code B will have the di-
mension

dimB2 = dimRM(2r,m) + t.

Theorem 1 allows us to prove this fact. So code B can be considered a code
from the family cat(RM(r,m), C), where C is generated by a submatrix con-
taining only added random columns of generator matrix of B. However then
the length of C is equal to t, therefore dim C2 ≤ t. It means that if the
inequality (14) holds, then Theorem 1 implies the equality

dimB2 = dimRM(2r,m) + dim C2.

13



It remains only to note that based on Theorem 2.2 of the article [3] for random
linear codes with high probability dim C2 = t. Moreover, for instance, when
the set of added columns has the maximum rank t, then dim C2 = t with
probability 1.

6 Conclusion remarks

The main theorem allows us to conclude that for some types of crypto-
graphic mechanisms, the use of concatenation of codes from different classes
instead of one class of codes, generally speaking, does not increase the cryp-
tographic strength of the mechanism.

The authors hope that using the proven fact that the Hadamard square
of the concatenated code is equal to the Cartesian product of Hadamard
squares of the code-components, it will be possible to clarify several known
attacks and build new attacks on post-quantum code-based cryptographic
mechanisms.

This work was partially supported by the Russian Foundation for Basic
Research under grant no. 18-29-03124.
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