
MILP modeling of Boolean functions by
minimum number of inequalities

Aleksei Udovenko

CryptoExperts, Paris, France
aleksei@affine.group

August 25, 2021

Abstract. This work presents techniques for modeling Boolean functions by mixed-
integer linear inequalities (MILP) on binary variables in-place (without auxiliary
variables), reaching minimum possible number of inequalities for small functions and
providing meaningful lower bounds on the number of inequalities when reaching the
minimum is infeasible. While the minimum number of inequalities does not directly
translate to best performance in MILP applications, it nonetheless provides a useful
benchmark. We remark that our framework is heuristic and relies on SAT solvers
and MILP optimization and so its feasibility is limited.
Keywords: MILP · Modeling · Boolean functions · S-boxes · DDT

1 Introduction 2

2 Preliminaries 5
2.1 Partial order and monotone Boolean functions 5
2.2 CNF/DNF models . 6
2.3 MILP models . 6

3 Related work on CNF and MILP modeling 7
3.1 Problem 1 - generating constraints . 7
3.2 Problem 2 - choosing a small subset of constraints 7
3.3 On the optimality and lower bounds . 8

4 General technique for optimal modeling 9
4.1 (In)consistency oracle . 9
4.2 Monotonicity of the inconsistency . 10
4.3 Learning monotone Boolean functions . 11
4.4 Sampling unknown vectors . 13
4.5 CNF model of sampling unknown vectors 14

5 Modeling monotone sets 14
5.1 Exploiting monotonicity . 15
5.2 Adapting the inconsistency oracle . 16

6 Improved technique for optimal modeling 17
6.1 Classification of inequalities by their sign vectors 17
6.2 Complete monotone learning . 17
6.3 Eliminating redundant sets . 18
6.4 Full algorithm . 19

A Inequalities 24

mailto:aleksei@affine.group

2 MILP modeling of Boolean functions by minimum number of inequalities

1 Introduction
Mixed integer linear programming (MILP/MIP/IP) is a powerful form of expressing
optimization and search problems. MILP systems consist of linear inequalities and a linear
objective function, subject to minimization or maximization. In contrast to the classic
linear programming (LP), MILP allows restricting a subset of variables to integers. This
greatly expands the set of constraints that can be encoded. In particular, any relation
on a given set of binary (0/1) variables can be expressed by a set of linear inequalities.
Although a general such encoding would have an exponential number of inequalities (in
the number of variables), more complex constraints can be constructed by using encodings
of smaller parts as building blocks. For example, any Boolean circuit can be implemented
by introducing binary variables for each intermediate gate and encoding the relation of its
inputs and outputs. In this work, we focus on in-place MILP encoding of relations over
a relatively small number of binary variables. Since any such relation defines a Boolean
function, this process is often referred to as MILP modeling of a Boolean function. We
remark that the linear programming aspect of MILP (i.e., maximization or minimization
of an objective function) is irrelevant for the purposes of this work.

Due to its expressiveness, MILP has numerous applications in many fields. In cryptog-
raphy, MILP is actively used for symmetric cryptanalysis. Typical applications include
search of differential/linear/division trails through a given primitive [SHW+14,XZBL16,
AST+17,BC20]. The original idea of utilizing such modeling for cryptanalysis is attributed
to Mouha, Wang, Gu and Preneel [MWGP12]. A variety of optimization software can
be used to solve hard MILP problems: commercial, such as Gurobi, CPLEX, and open
source, such as SCIP, GLPK.

In this work, we consider the problem of constructing in-place MILP models with the
minimum possible number of inequalities.

Problem 0. Given a set G ⊆ {0, 1}n, find a system S of linear inequalities with rational
coefficients involving only variables x1, . . . , xn ∈ {0, 1}, such that the solution set of S is
exactly G.

Related work On the theoretical side, this problem was considered already in 1975
by Jeroslow [Jer75], who gave a tight upper bound of 2n−1 inequalities to separate a
subset of the hypercube {0, 1}n from the rest of the hypercube (with examples of sets
for which 2n−1 is the minimum possible number of inequalities). Jeroslow called this
number the index of the set G ⊆ {0, 1}n, denoted ind(G). Later, Megiddo [Meg88]
proved that deciding a possibility of strict separation of two given sets G,B ⊂ Zn by k
inequalities1 is NP-complete even when either k or n is fixed (and is solvable in polynomial
time if both are fixed). This more general case (with variables over Z) was considered
recently by Kaibel and Weltge [KW14,KW15,Wel15]. They call the minimum number
of inequalities to model a set G ⊂ Zn its relaxation complexity, denoted rc(G). Clearly,
ind(G) ≤ rc(G) ≤ ind(G) + 2n, where 2n stands for the inequalities 0 ≤ xi ≤ 1. However,
Weltge also showed that the hypercube {0, 1}n has a relaxation in the form of a simplex,
reducing the extra 2n inequalities to n+ 1. Very recently, Averkov and Schymura [AS21]
studied computability of rc(G) and its relation to the rational relaxation complexity rcQ(G)
(i.e., relaxation complexity using rational inequalities). They proposed a direct MILP
formulation for the problem of separating two given sets G,B ⊂ Zn by minimum number
of inequalities (denoted rc(G,B)). Averkov, Hojny and Schymura [AHS21] focused on
computational complexity aspects of the relaxational complexity. Besides theoretical
results on computability of rc and rcQ, and a weakly polynomial-time algorithm for the
two-dimensional case, they provided improved MILP formulations for the separation

1The roles of the sets G, B are not symmetric: G must fully satisfy each of the inequalities, whereas for
each point of B there must exist an inequality that it does not satisfy.

Aleksei Udovenko 3

problem and performed experiments for up to 4-dimensional simplexes and 5-dimensional
crosspolytopes.

On the more practical side, recently, Boura and Coggia [BC20] developed powerful
heuristic techniques to construct compact MILP models of arbitrary Boolean functions,
targeting applications in cryptanalysis. Their methods produce models with significantly
smaller numbers of inequalities than by previous methods [SHW+14,AST+17]. A natural
question is how far can these numbers be further decreased. In a work concurrent to ours,
Yao [Sun21] independently proposed techniques for optimal MILP modeling, based on the
so-called “SuperBalls”.

An important remark is that the number of inequalities is not a precise criteria relevant
for performance of MILP models in applications. For examples, Sasaki and Todo [ST17]
described experiments when adding more inequalities improved the performance. Nonethe-
less, Boura and Coggia [BC20] suggest that the number of inequalities is still a useful
benchmark as the smaller number allows more freedom for experiments on improving
performance by adding more inequalities. Furthermore, development of new methods
to generate inequalities (as we do in this work) further enriches the toolkit for such
experiments. Kaibel and Weltge [KW14,KW15] also suggest practical relevance in terms
of modeling simplicity. Finally, the problem of finding smallest MILP models can be of
independent theoretical interest.

We mention another modeling paradigm which is relevant for our work and which can
be seen as a special case of MILP: modeling by CNF (conjunctive normal form) formulas,
often referred to simply as the satisfiability problem (SAT). A large number of SAT-solvers
is available (Kissat, CaDiCaL, CryptoMiniSat, MiniSat, Glucose, Lingeling, etc.). CNF
models are also used naturally for cryptanalysis [AST+17, SWW21]. For CNF models,
the well known Quine-McCluskey algorithm [Qui52,Qui55,McC56] allows to construct
CNF (or DNF) models with the minimum possible number of clauses for arbitrary Boolean
functions. It is a standard algorithm for logic minimization of small Boolean functions,
whereas heuristic alternatives such as Espresso [BSMH84] are used when the application
of the Quine-McCluskey algorithm is not feasible.

Our contribution In this work, we fill the gap for MILP modeling and provide practical
techniques for finding optimal (in the number of inequalities) models on binary variables.
In other words, we provide an analogue of the Quine-McCluskey algorithm - which finds
smallest CNF models - for finding smallest MILP models on binary variables. Our approach
is well feasible for up to 10-bit non-sparse Boolean functions (e.g. the set of valid differential
transitions of 5-bit S-boxes) and further provides suboptimal results for larger functions
together with meaningful lower bounds. We benchmark the approach on the DDT2

support of S-boxes from symmetric ciphers to compare with results reported by Boura
and Coggia [BC20]. The summary of the results is given in Table 1.

Our algorithms are implemented as a set of Python packages, including automated
tools. The implementation will be made publicly available.

Overview of techniques A standard heuristic approach for solving Problem 0 consists of
two steps: (1) generating a (large) set of constraints (inequalities) that jointly model the
target set and (2) selecting a small subset of the generated set that is sufficient for the
model.

For example, the Quine-McCluskey algorithms performs the first step optimally and
generates an exhaustive set of CNF/DNF clauses. However, for MILP modeling, only
heuristic practical methods were proposed: in [BC20] the inequalities are generated in the

2Difference distribution table (DDT) - table characterizing differential transitions through an S-box (a
vectorial Boolean function).

4 MILP modeling of Boolean functions by minimum number of inequalities

form of (distorted) balls; in [AHS21] all subsets of bad points are enumerated which leads
to impractical complexity.

The second step is an instance of the NP-complete SetCover problem, and can be solved
either heuristically by a greedy method or by using a MILP formulation of the problem,
which can yield a guaranteed optimal solution if feasible.

Our main improvements cover the first step. We aim to compute all maximal (by
inclusion) sets of points that can be removed by a single inequality (similar to the Quine-
McCluskey algorithm for CNF/DNF clauses). These sets form an exhaustive set of
inequalities sufficient to yield an optimal solution if solving the second step is feasible. To
achieve the goal, we utilize techniques for learning monotone Boolean functions. While
there exists a quasi-polynomial time incremental algorithm for enumerating such maximal
sets, its practical efficiency is questionable; we resort to use a SAT-solver instead, which
yields a very good performance.

Besides the aforementioned hardness of enumerating the maximal sets, another difficulty
is that the number of these maximal sets can, in theory, be very large. To counter this, we
split the problem into 2n monotone subproblems characterized by the direction in the n-
dimensional space, or alternatively by fixed signs of variables in the considered inequalities.
This reduction significantly eases the difficulty of the maximal set enumeration. Another
advantage is the natural parallelism of this method. Finally, we include a technique that
allows to identify maximal such sets without pairwise comparisons.

Table 1: Summary of our new models and comparison to previous results. Bold numbers
denote the best known results. Single number in our bounds means optimal result. The
results were obtained using the CaDiCaL SAT-solver and the Gurobi optimizer.

function # zeroes our bounds prev. UB [BC20]
4-bit S-boxes / 8-bit functions

Present-DDT 159 (62%) 16 17
Klein-DDT 150 (59%) 18 19
Twine-DDT 150 (59%) 19 19
Prince-DDT 150 (59%) 18 19
Piccolo-DDT 159 (62%) 14 16
MIBS-DDT 150 (59%) 20 20
Midori-S0-DDT 159 (62%) 16 16
Midori-S1-DDT 150 (59%) 20 20
Rectangle-DDT 159 (62%) 15 17
Skinny64-DDT 159 (62%) 14 16
GIFT-DDT 156 (61%) 16 17
Pride-DDT 159 (62%) 16 16

5-bit S-boxes / 10-bit functions
Ascon-DDT 707 (69%) 27 32
FIDES-5-DDT 527 (51%) 57 64
SC2000-5-DDT 527 (51%) 60 66

6-bit S-boxes / 12-bit functions
APN-6-DDT 2079 (51%) 145 167
FIDES-6-DDT 2079 (51%) 162-166 180
SC2000-6-DDT 2142 (52%) 188-205 218

8-bit S-boxes / 16-bit functions
AES-DDT 33150 (51%) 2008−2699 2882
Skinny-DDT 54067 (82%) not feasible 302

Aleksei Udovenko 5

Relation to the method of Yao [Sun21] Concurrently and independently of our work,
Yao proposed techniques for optimal MILP modeling of Boolean functions, based on the
so-called “SuperBalls”. The high-level approach of Yao is similar to ours: maximal sets of
points that can be removed by a single inequality are enumerated per each sign vector
(which in Yao’s work is defined by the “center of a region”). However, the enumeration
procedure is different: we utilize the techniques of monotone set learning, while Yao
formulates and solves the problem using MILP optimization.

2 Preliminaries
Boolean operations AND,OR,XOR,NOT denoted respectively by ∧,∨,⊕,¬ can be applied
to bits or bitwise to bit-vectors. We use 1 ∈ Fn

2 (resp. 0) to denote the all-one (resp.
all-zero) vector of dimension depending on the context. The unit vectors ej ∈ Fn

2 , 0 ≤
j < n, are vectors with j-th coordinate equal to 1 and all other coordinates equal to
0. We write ¬x := x ⊕ 1 and ¬X := {¬x | x ∈ X}, X ⊆ Fn

2 , to disambiguate from the
set complement X := {y ∈ Fn

2 | y /∈ X}. The support of a vector x ∈ Kn is the set
Supp (x) = {i ∈ {0, . . . , n− 1} | xi 6= 0} (K may be one of Fn

2 , Z or R).

2.1 Partial order and monotone Boolean functions
We use the product partial order on vectors over F2 (or, generally, over {−d, . . . , d} for
some positive integer d) which is, for x, y ∈ Fn

2 , x � y if and only if xi ≤ yi for all
i ∈ {0, . . . , n− 1}. We write x ≺ y if x � y and x 6= y.

Definition 1 (Lower/upper sets/closures). The lower closure of a set X ⊆ Fn
2 , denoted

by ↓ X, is the set of all u ∈ Fn
2 with u � x for some x ∈ X:

↓ X := {u ∈ Fn
2 | ∃x ∈ X : u � x} =

⋃
x∈X

↓ x :=
⋃

x∈X

{u ∈ Fn
2 | u � x} .

The upper closure of a set X ⊆ Fn
2 , denoted by ↑ X, is the set of all u ∈ Fn

2 with x � u for
some x ∈ X:

↑ X := {u ∈ Fn
2 | ∃x ∈ X : u � x} =

⋃
x∈X

↑ x :=
⋃

x∈X

{u ∈ Fn
2 | u � x} .

A set X is an upper set (resp. lower set)) if it is the upper (resp. lower) closure of itself.
A lower (resp. upper) set is called principal if it is the closure of a single vector.

Remark 1. A useful interpretation is as follows. For each vector in X, upper closure
converts positions with value 0 into a wildcard, whereas lower closure converts positions
with value 1 to a wildcard.

Example 1.

↓ {(1, 1, 0), (0, 0, 1)} = {(∗, ∗, 0), (0, 0, ∗)} = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (0, 0, 1)} ,
↑ {(1, 1, 0), (0, 0, 1)} = {(1, 1, ∗), (∗, ∗, 1)} = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .

Upper/lower sets correspond to supports of monotone Boolean functions.

Definition 2. A Boolean function is monotone increasing (resp. monotone decreasing) if
its support is an upper set (resp. lower set).

By default, we will assume increasing monotone Boolean functions.

Proposition 1. The complement of a lower set is an upper set and vice versa.

6 MILP modeling of Boolean functions by minimum number of inequalities

Upper/lower sets (and thus, supports of monotone Boolean functions) are characterized
by their extreme (also called prime) elements.

Definition 3 (Min-/max-set). The max-set of a set X ⊆ Fn
2 , denoted by MaxSet (X), is

the set of all maximal elements in X:

MaxSet (X) := {u ∈ X | @x ∈ X : x � u} .

The min-set of a set X ⊆ Fn
2 , denoted by MinSet (X), is the set of all minimal elements in

X:
MinSet (X) := {u ∈ X | @x ∈ X : x ≺ u} .

Often, min-/max-set is compact compared to the size of the full lower/upper set
(often called the volume). However, there exist lower/upper sets with exponentially large
max-/min-sets. For example, all 2n-bit vectors with weight n form a max-/min-set of size(2n

n

)
= O(2n/

√
n). Sperner [Spe28] proved that this is in fact an upper bound on the size

of an antichain and so on the size of a max-/min-set.
Finally, we remark that a lower set having a small max-set does not guarantee small

complementary upper set. Indeed, a standard example [Ang88] is the lower set spanned
by the n-element set

L := {e0 ∨ e1, e2 ∨ e3, . . . , e2n−2 ∨ e2n−1} ⊆ F2n
2 ,

which has the complementary upper set spanned by the 2n-element set (note the exponential
increase)

U :=
{
u ∈ F2n

2 | u0 ⊕ u1 = 1, . . . , u2n−2 ⊕ u2n−1 = 1
}
.

2.2 CNF/DNF models
A CNF (conjunctive normal form) formula over variables x0, . . . , xn−1 ∈ F2 has form∧

i∈{0,...,k−1}

∨
j∈Ii

(xj ⊕ ci,j),

where the size k of the formula is a non-negative integer, Ii ⊆ {0, . . . , n− 1} for all i,
ci,j ∈ F2 for all i, j.

A DNF (disjunctive normal form) formula has form∨
i∈{0,...,k−1}

∧
j∈Ii

(xj ⊕ ci,j),

where the size k of the formula is a non-negative integer, Ii ⊆ {0, . . . , n− 1} for all i,
ci,j ∈ F2 for all i, j.

An expression of the form (xj ⊕ ci,j) is called a positive literal if ci,j = 0 (the literal
xj) and a negative literal otherwise (the literal ¬xj).

Monotone Boolean functions can be described by CNF (resp. DNF) formulas with only
positive literals, where each clause corresponds to a maximal zero (resp. a minimal one) of
the function. Such formulas have minimum possible size.

2.3 MILP models
MILP models are systems of linear inequalities

∑n−1
i=0 aixi ≥ c with real coefficients ai, c

over real and/or integer variables xi. Similarly to clauses in a CNF formula, inequalities
in a MILP system can be also seen as connected by a conjunction (AND). Inequalities
are more expressive due to the use of arbitrary integer/real coefficients. In particular, any
CNF clause

∨
i∈I xi ∨

∨
j∈J ¬xj is equivalent to the inequality

∑
i∈I xi +

∑
j∈J (1−xj) ≥ 1

on the binary variables xi. Therefore, CNF models form a subset of MILP models.

Aleksei Udovenko 7

3 Related work on CNF and MILP modeling
We introduce the following notation. From now on, we assume a set G ⊆ Fn

2 of “good”
points and a set B ⊆ G of “bad” points are fixed together with a modeling system (CNF
or MILP). Note that we allow the so-called “don’t care” points from G ∪ B similarly to the
Quine-McCluskey algorithm. For these points, it is not required whether produced models
must accept or reject them.

Definition 4. A subset B ⊆ B is said to be 1-removable, if there exists a constraint C
such that all vectors from G satisfy C and no vectors from B satisfy C.

The standard approach for CNF/MILP modeling [Qui55,McC56,SHW+14], as reformu-
lated and summarized by Boura and Coggia [BC20], requires to solve two sub-problems.

Problem 1. Given the two sets G ⊆ Fn
2 ,B ⊆ G, find a (large and possibly redundant) set

of constraints that jointly remove all points from B while keeping all points from G. In
other words, find a cover of B by 1-removable sets.

Problem 2. Given the two sets G,B and a set S of constraints obtained by solving Prob-
lem 1, find a subset of S of (close to) minimum size such that it still defines a correct
model for G,B.

We briefly recall known approaches for the two problems from the literature.

3.1 Problem 1 - generating constraints
There exist two main approaches for solving Problem 1.

P1-hull Using H-representation of the convex hull of G [SHW+14] (as a subset of Rn).
The convex hull of any subset of {0, 1}n does not contain any other point from
{0, 1}n. The H-representation of the convex hull consists of linear inequalities and/or
linear equations. Conversion from the vertex representation to the H-representation
is computationally intensive3 and is typically feasible only for dimensions n ≤ 16,
depending on the structure of the given set.

P1-logic The second approach is based on logical condition modeling, introduced for
cryptographic applications in [AST+17]. In other words, a CNF formula is generated
first and then converted to a MILP system. The authors propose to use the standard
in hardware synthesis Quine-McCluskey [Qui55,McC56] algorithm to find a CNF
representation with the minimum number of clauses. The algorithm consists of
two steps which directly map to Problem 1 and Problem 2 that we outlined. The
most interesting for us is step 1 of the algorithm, which finds all the so called prime
implicants - minimal CNF clauses. Boura and Coggia reformulated this step as
searching for all a, u ∈ Fn

2 , a ∧ u = 0, such that (a ⊕ ↓ u) ⊆ B is maximal (by
inclusion).

3.2 Problem 2 - choosing a small subset of constraints
Problem 2 requires to find a small or even the smallest subset of constraints generated
from solving Problem 1, while requiring that they still jointly model the target pair G,B.
This is an instance of the NP-hard SetCover/HittingSet problem. Too approaches exist in
the literature:

3In the cryptanalysis literature [SHW+14], the convex hull is usually computed using the Sage-
Math software [The21] which simply delegates the problem to the backend - Parma Polyhedra Library
(PPL) [BHZ08].

8 MILP modeling of Boolean functions by minimum number of inequalities

P2-greedy Classic greedy approach, used in [SHW+14]. The idea is to iteratively include
a constraint that removes the largest number of remaining “bad” points. Even for
the inequalities from P1-hull this approach removes a large number of inequalities.
This is because facets of the convex hull are often redundant in terms of separating
the integer points of the convex-hull from the outer points.
It is well-known [Joh74,Lov75] that the greedy approach produces (in the worst case)
an (1 + lnn)-approximate solution to the SetCover problem, where n is the number
of points to cover, and this ratio is optimal up to lower-order terms [LY94,Fei95]
(unless NP has subexponential time algorithms, which is widely believed to be false).
For more fine-grained bounds, see Slavik [Sla97].

P2-milp Sasaki and Todo [ST17] proposed to model the problem by MILP and use modern
optimization software (such as commercial Gurobi [GO21] or open-source alternatives
SCIP [GAB+20], GLPK [Mak17]) to solve this problem. This approach was also
used more recently in [AHS21] for computations of the relaxation complexity.
This is a rather natural approach for an NP-hard problem. The idea is a s follows: a
variable is introduced per each inequality and a constraint is added per each bad
point requiring that at least one inequality removing this point is chosen.
Notably, the size of a greedy solution to the problem is within the same factor
(1 + lnn) larger than the solution to the LP relaxation of the constructed MILP
problem (which is called a fractional set cover) [Lov75].

The second approach is more preferable as optimization software is expected to perform
better than the greedy algorithm; in fact, it is often feasible to obtain an optimal set
cover solution (among constraints generated at step 1). However, for large instances with
thousands of bad points and millions of constraints, MILP software may be very slow in
finding a solution that beats the greedy algorithm. In the next subsection, we suggest a
hybrid approach as a compromise.

3.3 On the optimality and lower bounds
A set S of constraints that is heuristically generated when solving Problem 1 may not
contain a globally optimal solution. In this case, even solving the set cover (Problem 2)
perfectly would not guarantee global optimality. Neither possible it is to derive a meaningful
lower bound on the minimum size of a model from heuristic systems. For example, the
P1-hull method is heuristic; the P1-logic method is optimal (with respect to CNF/DNF
models) as it is exhaustive in maximal 1-removable groups. We introduce a definition to
distinguish these two classes of solutions.

Definition 5. A set S of constraints modeling G,B is said to be complete (in a fixed
constraint model), if it contains all maximal 1-removable groups.

Remark 2. A set of constraints that includes an optimally-sized subset does not necessarily
have to be complete. However, having a complete system as the input to Problem 2 is the
only known way to ensure optimality.

Importantly, a complete set of constraints allows to obtain nontrivial lower bounds on
the number of inequalities even when it not feasible to completely solve the corresponding
set-cover problem. For example, we can assume that all inequalities remove pairwise
disjoint groups of bad points. If the sum of sizes of t largest such groups is less than the
number |B| of bad points, then at least t+ 1 inequalities are need to cover all bad points.
This bound applies to the original system, since without the disjointness assumption the
number of required inequalities may only increase. However, such naive approach would
provide a rather weak lower bound.

Aleksei Udovenko 9

Greedy method (P2-greedy) The greedy method (P2-greedy) reduces the complexity
of solving the set cover problem dramatically. Although the optimality of modeling is
lost, greedy method still provides a lower bound: it is known that it solves the set cover
problem with approximation factor at most H(|B|) ≤ 1 + ln |B| (see more tight analysis by
Slavik [Sla97]).

(MI)LP-based method (P2-milp) A more generic approach is to use the LP relaxation
of the problem (i.e., dropping the integrality constraints) and solve it using e.g. the simplex
method. Since constraints are removed, such a solution provides a lower bound on the
objective of the original MILP instance. In fact, this technique is at the core of modern
MILP solvers and they automatically provide such or an improved lower bound as the first
step of dealing with a given problem. It is known that the LP-re

Full-MILP method (as opposed to LP-relaxation-based method) allows to find optimal
solution, or, at least, provide lower and upper bounds that are better than given by the
approximation factor of the greedy method. This comes however at the cost of increased
time complexity which renders large systems infeasible to solve with reasonable resources.

Greedy-hybrid method For large systems, we suggest a hybrid approach between the P2-
greedy and the P2-milp methods. The idea is to run the greedy algorithm to find first t ≥ 0
inequalities greedily and then apply the MILP search method to cover the remaining bad
points optimally. This relaxes the pressure on the MILP solver due to significant reduction
of the system’s size and often allows to quickly obtain good approximate solutions.

Although this method also allows to determine a lower bound (the optimal solution to
the subsystem minus at most t extra inequalities), the best lower bounds in our experiments
are obtained from running a MILP solver on the full system.

4 General technique for optimal modeling
In this section, we present our general approach for optimal MILP modeling. We aim to
solve Problem 1 and generate a complete pool of inequalities, ensuring in particular that it
contains a size-optimal subset-solution. While Problem 2 may stay the main obstacle to
obtain a globally optimal solution, a complete pool would allow to obtain close-to-optimal
solution together with a known bound on the optimality.

We start by describing a simple tool, which allows, for a set B ⊂ B, to determine if it is
1-removable and to construct the respective inequality if it exists. Then, we recall that all
1-removable groups B ⊂ B form a structure of a monotone Boolean function. Finally, we
focus on the problem of learning this structure using the oracle provided by our first tool.
We revisit known approaches to this problem, and propose a way to implement them.

The approach is essentially laid out by series of works on monotone Boolean func-
tions [Zhu78,Val84,Gai84,BI95,FK96,GK99,BEG+02,TT02,TT09], although we are not
aware of a relevant formulation of the application to the MILP modeling in the literature.
The closest studied problem is the problem of finding all maximal consistent subsystems of
a given inconsistent system of inequalities. In Subsection 4.1, we provide the missing link
between the two problems and in the rest of the section (Subsection 4.2, Subsection 4.3,
Subsection 4.4, Subsection 4.5) we review and assemble the tools to solve the problem.

4.1 (In)consistency oracle
In this subsection, we show how to decide if a set B ⊆ B is 1-removable by a MILP
inequality. This is a well-known technique in threshold logic / linear separability [Der65],
see also Gruzling’s thesis [Gru07] for a survey.

10 MILP modeling of Boolean functions by minimum number of inequalities

Recall the defined set G ⊆ Fn
2 of “good points” and the set B ⊆ G of “bad points”. The

problem is, for a given subset B ⊆ B, to determine if B is 1-removable.
Let a ∈ Rn, c ∈ R be real variables. Consider the inequality 〈a, y〉 ≥ c, where y ∈ Fn

2
is a vector of free variables. We aim to define constraints on a, c which imply that this
inequality separates G from B. For any x ∈ G, the requirement forms the inequality
〈a, x〉 ≥ c; for any x′ ∈ B the requirement forms the inequality 〈a, x′〉 < c. All these
inequalities form a system which is consistent if and only if there exists an inequality
separating B from G. Moreover, any solution of the inequality system yields such an
inequality. Note that typical MILP systems do not allow strict inequalities. This issue can
be solved by replacing the inequality 〈a, x′〉 < c with the inequality 〈a, x′〉 ≤ c− 1. The
following proposition formalizes the construction.

Proposition 2. Let G ⊆ Fn
2 , B ⊆ G. Consider the inequality system{
〈a, v〉 ≥ c, for each v ∈ G,
〈a, v′〉 ≤ c− 1, for each v′ ∈ B, , (1)

where a ∈ Rn, c ∈ R are variables. This system is consistent if and only if there exists
a′ ∈ Rn, c′ ∈ R such that the inequality 〈a′, x〉 ≥ c′ with the variable x ∈ {0, 1}n separates
G from B.

Proof. (⇒) Obvious by construction of the system. (⇐) The only subtle points are the
generality of the form 〈a, x〉 ≥ c and the gap of length 1 (in 〈a, x〉 ≤ c − 1). First, an
inequality of the form 〈a, x〉 ≤ c can be always rewritten as 〈−a, x〉 ≥ −c. Second, if there
exists an inequality 〈a, x〉 ≥ c satisfying all of G and an inequality 〈a, x〉 < c satisfying all
of B, then, due to finiteness of B, the supremum c′ of 〈a, x〉 as x ranges over B satisfies
c′ < c. Then, letting k = 1/(c− c′), the inequality 〈ka, x〉 ≥ kc satisfies all of G and the
inequality 〈ka, x〉 ≤ kc− 1 satisfies all of B.

There exist polynomial-time algorithms for solving a system of linear inequalities / linear
programming over rationals, such as Karmarkar’s algorithm [Kar84] (within the interior-
point methodology due to Dikin [Dik67]), the ellipsoid method by Khachiyan [Kha79].
On practice, the simplex method by Dantzig [Dan90] performs better, although it does
not guarantee worst-case polynomial time. An implementation is available as a part of
the open-source MILP solver GLPK [Mak17], also shipped as the default MILP solver in
the SageMath [The21] computer algebra. In fact, most MILP solvers utilize the linear
programming over Qn (LP) as a sub-procedure when solving integer optimization problems
(MILP).

4.2 Monotonicity of the inconsistency
We are interested to know which subsets of B are 1-removable. By Proposition 2, such
subsets correspond to consistent subsystems of the (possibly inconsistent) full system of
inequalities constructed for full B.

A well known observation is that inconsistency is monotonous: adding a new inequality
to an inconsistent subsystem can not make it consistent. It follows that all the consistent
subsystems form a lower set, and all the inconsistent systems form the complementary
upper set. In our terminology, all the 1-removable subsets of B form a lower set and all
the non-1-removable subsets of B form the complementary upper set. This relies on that
Definition 4 does not require points from B \B for B to be 1-removable.

Proposition 3. The set of 1-removable subsets of B forms a lower set.

A lower set (or an upper set) is equivalently described by a monotone Boolean function.
In fact, the equivalence between the set of inconsistent subsystems and a monotone Boolean

Aleksei Udovenko 11

function was mentioned by Zhuravlev already in 1978 [Zhu78, Thm 19]. More concretely,
this connection was used to show an incremental quasi-polynomial time algorithm for
identifying maximal consistent subsystems by Gurvich and Khachiyan [GK99], which we
will discuss later in Subsection 4.4.

We arrive at the problem of learning a lower set, alternatively called “inference of
a monotone Boolean function” in the literature [TT02]. Importantly, such a structure
is characterized by its extreme elements: a lower set is characterized by the set of its
maximal elements, i.e., by its max-set. It is easy to show that the complete set of maximal
1-removable subsets contains an optimal solution.

Proposition 4. Let U be a set of 1-removable subsets covering B. Then there exists a set
U ′ of maximal 1-removable subsets covering B with |U ′| = |U |.

Proof. For any subset u ∈ U, u ⊆ B it is easy to obtain a maximal 1-removable subset
u′ ⊆ B by attempting to greedily add each element of B in an arbitrary order, while
ensuring the 1-removable property. Clearly, U ′ composed of all such u′ (one per each
u ∈ U) covers B and has same size as U .

Generally, by the Sperner’s theorem, the size of a max-set can be very large: O(2n/
√
n).

However, max-sets occurring in various applications (including ours) are much smaller. For
example, the max-set of a random Boolean function is expected to be small, because a few
vectors with large weight exclude a large combinatorial variety of vectors of smaller weights.
A symmetric example with small weight vectors is the max-set of the maximal lower set
contained in a random Boolean function. In fact, in our applications we successfully learn
lower sets for n up to 700, with the max-set of size about 30,000 vectors and with the
complementary min-set of size about 1,000,000 vectors.

4.3 Learning monotone Boolean functions
We now survey the literature on learning monotone Boolean functions. We start by stating
the problem.

Problem 3. Let f : Fn
2 → F2 be an unknown increasing monotone Boolean function given

as an oracle. Find a representation of f (such as the max-set of its zeroes) by calling f as
few times as possible.

Note that this classic statement does not cover computations besides oracle calls and
this will become a practical issue that we analyze further.

One of the first studies was made by Hansel [Han66], who established the numbers of
monotone Boolean functions and introduced a method to partition the hypercube {0, 1}n

into increasing chains satisfying certain properties; such partition leads to a learning
algorithm that performs optimally based on the worst-case hardness. Later, in 1982,
Sokolov [Sok82] showed how to construct such partition dynamically, improving memory
complexity of the algorithm.

Torvik and Triantaphyllou [TT02] optimized average query complexity over all monotone
Boolean functions. Their idea is to query a vector that minimizes the difference between
the numbers of learned values of f for any of the two possible oracle answers. For example,
for a chosen v ∈ Fn

2 , assume that f(v) = 0 implies f(v′) = 0 for new n0 vectors, and
f(v) = 1 implies f(v′) = 1 for new n1 vectors. Then, the target difference is |n0 − n1|
and v should be chosen among all unknown vectors that minimizes this difference. The
authors prove that such approach leads to optimal average query complexity and also
experimentally show that it concretely improves over previous approaches. However, they
admit that their approach is not feasible on practice for n > 20, due to the complexity of
evaluating the criterion.

12 MILP modeling of Boolean functions by minimum number of inequalities

The work of most interest for us is that by Gainanov [Gai84]. It proposes algorithms
optimizing the number of queries with respect to the size of the border set, that is, the
max-set of zeroes and the min-set of ones of the target Boolean function. This measure
crucially allows to separate instances occurring in various applications and worst-case
instances having large optimal complexity. We describe the algorithm in more details
using the lower/upper set terminology.

4.3.1 Gainanov’s algorithm

Let L ⊆ Fn
2 be the target lower set being learned, and let U := L be the complementary

upper set. We aim to learn elements from MaxSet (L) and from MinSet (U) by querying
f : Fn

2 → Fn
2 such that f(x) = 1 if and only if x ∈ U . Assume that we have already learned

L̂ ⊆ MaxSet (L) and Û ⊆ MinSet (U). We will need the following procedure.

Procedure LearnUp/LearnDown Assume that we are given x ∈ Fn
2 such that f(x) is

not known (from L̂ and Û), that is,

x ∈ ↓ L̂ ∪ ↑ Û .

Let us query f(x) and without loss of generality assume that f(x) = 0. Then, in at most
n queries, we can obtain a new element of MaxSet (L). Indeed, let us iterate over all
positions i ∈ {0, . . . , n− 1}. If xi = 0, query f(x∨ ei). If f(x∨ ei) = 0, update x← x∨ ei,
otherwise continue without modifying x. It is not hard to see that after the n iterations
the resulting x will be such that:

1. f(x) = 0, i.e., x ∈ L.

2. x ∈ MaxSet (L);

3. x /∈ L̂.

The first property follows by construction. The second property follows from the fact that
for any ei with xi = 0, f(xi ∨ ei) = 1 (by monotonicity of f and the construction of x).
The third property follows from the fact that an element of ↓ L̂ could not be obtained by
starting with an element from outside and flipping some coordinates from 0 to 1.
Remark 3. An analogous procedure similarly recovers a new element of MinSet (U) in case
of f(x) = 1.
Remark 4. By iterating again over {0, . . . , n− 1} in a random order, we could possibly
obtain more new elements of MaxSet (L). In fact, LearnUp(0) would return random
elements of MaxSet (L) with higher probabilities given to elements of higher weight. This
is a useful alternative to full provable exhaustion of MaxSet (L), as it does not require
sampling an unknown vector, which turns out to be a hard problem, as we will see later.

The algorithm is simple: while there are vectors outside of ↓ L̂ and ↑ Û , find any
such vector x and query f(x). Depending on the answer, apply the procedure LearnUp
or LearnDown. This yields a new element of MaxSet (L) or MinSet (U) to be added to
L̂ or Û . The query complexity of such algorithm is |MaxSet (L)|+ |MinSet (U)| calls to
LearnUp or LearnDown, each of which incurs at most n extra queries, leading to the total
query complexity n(|MaxSet (L)|+ |MinSet (U)|).

The algorithm can be further improved by reducing cost for recovering elements either of
MaxSet (L) or of MinSet (U). Indeed, if x is sampled from the minimal “unknown” vectors
(e.g., from unknown vectors of minimum weight), it is guaranteed that x ∈ MinSet (U) in
case f(x) = 1 and so the call to LearnDown is not needed. Alternatively, if x is sampled
from the maximal “unknown” vectors (e.g., from unknown vectors of maximum weight), it

Aleksei Udovenko 13

is guaranteed that x ∈ MaxSet (L) in case f(x) = 0. This means that cost per element of
MaxSet (L) (or MinSet (U)) can be reduced to 1, while the other cost stays at most n.

In our applications, the lower set L would be typically much smaller than the comple-
mentary upper set U , and we expect there borders (extreme elements) follow the same
imbalance. Therefore, we aim to sample x from “unknown” vectors of minimum weight.
This would allow to obtain final cost of at most n |MaxSet (L)|+ |MinSet (U)| operations,
plus an extra query for the edge cases like L = ∅, where n+ 1 queries need be done per one
element (only possible for elements 0 and 1). This formulation is sketched in Algorithm 1.

Algorithm 1 Learn an unknown lower set L ⊆ Fn
2 [Gai84]

Input: f : Fn
2 → F2 such that f(x) = 0 if and only if x ∈ L

Output: MaxSet (L) ,MinSet
(
L
)

Complexity: n · |MaxSet (L)|+
∣∣MinSet

(
L
)∣∣+ 1 queries to f

1: L̂← ∅, Û ← ∅
2: while ↓ L̂ ∪ ↑ Û 6= Fn

2 do
3: x

$←− Fn
2 \
(
↓ L̂ ∪ ↑ Û

)
with minimum weight

4: if f(x) = 0 then
5: L̂← L̂ ∪ {LearnUp(x)}
6: else
7: Û ← Û ∪ {x}
8: return L̂, Û

4.4 Sampling unknown vectors
Unfortunately, methods of sampling vectors x with an unknown value of f(x) were not
proposed by Gainanov. Indeed, this was out of scope of the paper as the goal was only
to minimize the number of oracle calls. While for small n, similarly to the methods of
Hansel, Sokolov, Torvik and Triantaphyllou, this could be done in an exhaustive manner,
for larger n this approach quickly becomes infeasible. We briefly survey known results
about this problem.

Bioch and Ibaraki [BI95] studied the problem of interactive learning of a monotone
Boolean function from the complexity perspective. They prove that this problem (which
they call IDENTIFY) is polynomial-time equivalent to the problem (which they call EQ)
of determining whether given sets L̂ ⊆ Fn

2 , Û ⊆ Fn
2 are such that their respective lower

and upper closures partition Fn
2 (i.e., condition on line 2 in Algorithm 1). This problem is

often formulated as the (monotone) DUAL problem.

Problem 4 (DUAL). Let f, g : Fn
2 → F2 be monotone Boolean functions given by their

irredundant monotone DNF formulas. Test whether f and g are dual, that is, whether
f(x) = ¬g(¬x) for all x ∈ Fn

2 .

This problem belongs to co-NP (the negative result is easily certified) and there exist no
known polynomial-time algorithms. However, Fredman and Khachiyan [FK96] proposed a
quasi-polynomial algorithm for DUAL running in time O(n4l(n)+O(1)) = O(no(log n)), where
l = l(n) is such that ll = n. Due to this, it is widely believed that the problem is not
co-NP-complete. Importantly, the Fredman-Khachiyan algorithm also returns the proof in
case the functions are not dual. When mapped to our setting, such a proof constitutes an
unknown vector needed for learning (here we use the fact that the input lower/upper sets
are non-intersecting).

The algorithm of Gurvich and Khachiyan [GK99] mentioned above consists in applying
the Fredman-Khachiyan algorithm to obtain a complete quasi-polynomial solution for

14 MILP modeling of Boolean functions by minimum number of inequalities

learning maximal consistent subsystems and minimal inconsistent subsystems (which they
call convex programming).

Several works [KBEG06,EMG08,Elb08,BM09,Sed18] studied implementations of the
Fredman-Khachiyan algorithms. The implementations of [KBEG06]4 and [Sed18]5 are
available online. We attempted to use the implementation of [KBEG06] and observed
that it quickly becomes very slow or infeasible for values of n ≥ 100 and the max-set
of size ≥ 1000. The main source of complexity is that the current lower/upper sets are
reduced per each guessed bit, which requires time quadratic in the size of the respective
max-set/min-set. While this is not critical for the theoretical quasi-polynomial complexity,
it becomes the bottleneck in practice.

To combat this issue, we resort to using SAT-solvers to solve this problem on practice.
As we will show, for our purposes, modern SAT-solvers such as CaDiCaL [BFFH20]
perform extremely well and in most cases the set-cover optimization stage remains the
main difficulty even when relaxing the search to close-to-optimal results.

4.5 CNF model of sampling unknown vectors
We now briefly describe the natural CNF encoding of the problem. Let L̂ and Û be defined
as above. Let x ∈ Fn

2 be the vector of variables. For each v ∈ L̂ we add the clause∨
i∈{0,...,n−1}|vi=0

xi;

for each u ∈ Û we add the clause ∨
i∈{0,...,n−1}|ui=1

¬xi.

Clearly, each such clause excludes the principal lower set ↓ v and the principal upper set
↑ u respectively. The conjunction (AND) of all described clauses excludes ↓ L̂ and ↑ Û as
required. In other words, x is a solution of the CNF formula if and only if x is outside of
↓ L̂ and ↑ Û .

SAT-based minimization/maximization of unknown vectors As mentioned before and
suggested in Algorithm 1, it is often beneficial for performance to sample minimal (or
maximal) unknown vectors. Indeed, if the min-set of the learned upper set is expected
to be larger, sampling minimal unknown vectors allows to avoid all calls to LearnDown.
This requirement can be embedded in the CNF encoding using techniques for expressing
Boolean cardinality constraints, for example, the unary sequential counter [Sin05]. It
allows to constraint new variables vi such that vi = 1 if and only if

∑
x∈X x ≥ i for a

chosen set X of variables. This in turn allows to sample unknown vectors in an order with
non-decreasing (or non-increasing) weights, i.e., exhausting all unknown vectors of weight
0, 1, . . . , n, implying the minimality (resp. maximality) of sampled vectors.

5 Modeling monotone sets
In this section, we explore the problem of modeling monotone sets / Boolean functions.
This setting may be interesting for a range of applications and will be in particular useful
for our improved general algorithm in Section 6.

4Available at https://github.com/VeraLiconaResearchGroup/MHSGenerationAlgorithms/tree/
master/containers/fka-begk (written in C/C++)

5Available at https://github.com/WGS-TB/FK (written in MATLAB)

https://github.com/VeraLiconaResearchGroup/MHSGenerationAlgorithms/tree/master/containers/fka-begk
https://github.com/VeraLiconaResearchGroup/MHSGenerationAlgorithms/tree/master/containers/fka-begk
https://github.com/WGS-TB/FK

Aleksei Udovenko 15

Notation Without loss of generality, we restrict to modeling an upper set. Similarly to
the general setting, we allow “don’t care” points. We denote the modeled upper set by
U ⊆ Fn

2 (“good” points) and the subset of the complementary lower set by L ⊆ U (“bad”
points). Their extreme subsets are denoted by

L̂ := MaxSet (L) , Û := MinSet (U) .

On the general non-compactness In 1983, Zuev and Trishin [ZT83] proved that there
exist monotone Boolean functions that require at least

(
n
bn/2c

)
/n = O(2n/n1.5) linear

inequalities to be specified. In other words, there exist upper sets that do not allow
compact models. However, similarly to the lower set learning problem, instances arising in
applications are often much “simpler” and in fact allow significant reduction in the number
of inequalities compared to general subsets of {0, 1}n.

5.1 Exploiting monotonicity
Despite the negative result by Zuev and Trishin, the problem of modeling an upper set
is arguably simpler and more structured than modeling an arbitrary Boolean function,
i.e., of an arbitrary subset of the unit hypercube {0, 1}n. We start by defining monotone
inequalities and showing that they can only model upper sets (monotone decreasing
inequalities model lower sets, but we restrict to the increasing ones for simplicity).

Definition 6. An inequality 〈a, x〉 ≥ c, a ∈ Rn, c ∈ R is said to be monotone if a ∈ Rn
≥0.

Remark 5. The constant c has also to be nonnegative, otherwise the inequality trivially
satisfies all points.

Proposition 5. A monotone inequality models an upper set (removes a lower set).

Proof. Trivially, switching xi from zero to one can not decrease the value of 〈a, x〉 and so
can not change a satisfying x to an unsatisfying x.

The following lemma shows that any inequality removing some set B ⊆ Fn
2 can be

transformed into an inequality removing ↓ B.

Lemma 1. Let 〈a, x〉 ≥ c, a ∈ Rn, c ∈ R, be an inequality removing B ⊆ Fn
2 , i.e.,

B = {u ∈ Fn
2 | 〈a, u〉 < c}. Let

a′ = (max(0, ai) | i ∈ {0, . . . , n− 1}) ∈ Rn
≥0, c′ = c−

∑
i:ai<0

ai.

Then, 〈a′, x〉 ≥ c′ precisely removes ↓ B ⊆ Fn
2 .

Proof. If a ∈ Rn
≥ then B must be a lower set by Proposition 5 and the lemma follows.

Otherwise, assume without loss of generality that a0 < 0 and other coordinates are
nonnegative. Let u ∈ Fn−1

2 . The new inequality 〈a′, x〉 ≥ c′ is constructed in such a way
that the vector (0||u) is rejected by the new inequality if and only if the vector (1||u) is
rejected by the original inequality; the acceptance of (1||u) is unchanged. Indeed,

〈a′, (1||u)〉+ a0 = 〈a′, (0||u)〉+ a0 = 〈(0, a1, . . . , an−1), (0||u)〉+ a0 =
= 〈(a0, a1, . . . , an−1), (1||u)〉 = 〈a, (1||u)〉 .

Consider 3 cases:

1. Both 〈a, 0||u〉 ≥ c and 〈a, 1||u〉 ≥ c hold or both do not gold. In this case, the
inequality holds independently of x0 and replacing a0 by 0 does not change the
satisfying set.

16 MILP modeling of Boolean functions by minimum number of inequalities

2. 〈a, 0||u〉 < c and 〈a, 1||u〉 ≥ c. This is impossible because a0 < 0.

3. 〈a, 0||u〉 ≥ c and 〈a, 1||u〉 < c. By construction of a′, c′, the new inequality rejects a
vector from ↓ B that was accepted by the original inequality.

By applying this change iteratively to each coordinate, we obtain an inequality that
removes a subset of ↓ B. Furthermore, this inequality must be monotone by construction
and by Proposition 5 it must precisely remove full ↓ B.

Remark 6. Keeping original c would correspond to taking (0||u) as the source vector. This
would in turn correspond to taking upper closure of the accepted vectors (as opposed to
the lower closure of the removed vectors), or, equivalently, reducing the removed set to the
maximal lower set included in B.

Importantly, it follows that is sufficient to consider only monotone inequalities for
optimal modeling.
Corollary 1. There exist complete MILP models of any upper set (i.e., removing a lower
set) containing only monotone inequalities.

Another useful effect of monotonicity is that it is sufficient to separate extreme elements
- the min-set of the modeled upper set and the max-set of the complementary lower set.
Proposition 6. Let Ax ≥ C,A ∈ Rm×n

≥0 , C ∈ Rm
≥0 be a system of inequalities. Then,

Ax ≥ C accepts an upper set U ∈ Fn
2 and rejects a lower set L ⊆ U if and only if both

following conditions are true:
1. for all x ∈ MinSet (U) the system Ax ≥ C holds,

2. for all x ∈ MaxSet (L) the system Ax ≥ C does not hold.
Proof. (⇒) is trivial. For (⇐), observe that 〈a, x〉 ≤ 〈a, x′〉 when x � x′. This implies
that if 〈a, x〉 ≥ c for all x ∈ MinSet (U), then 〈a, x′〉 ≥ c for all x′ ∈ ↑ U . Similarly, if
〈a, x′〉 < c for some x′ ∈ MaxSet (L), then 〈a, x〉 < c for all x ∈ ↓ x′. Since the lower set
consists of the union of lower sets of single elements from its max-set, the proposition
follows.

5.2 Adapting the inconsistency oracle
The general inconsistency oracle from Subsection 4.1 can be easily adapted to the modeling
based on the extreme elements. Recall that the oracle allowed to find an inequality (if
it exists) that removes a given group of bad points. While it can be directly applied to
the sets L and U ignoring their monotonicity, it is much more fruitful to apply it to the
reduced sets L̂ and Û . The only modification needed is to constraint the coefficients c and
ai, 0 ≤ i < n to be non-negative (whereas in the general version of the oracle they were
allowed to be negative). Indeed, Proposition 6 and Corollary 1 guarantee that such an
inequality must exist if any general inequality removing the given group exists.

Note that 1-removable subsets of L̂ form a lower set by themselves (by the monotonicity
of inconsistency, exactly as in Subsection 4.2). Therefore, the general learning technique
developed in Section 4 applies directly to L̂ and Û . We conclude that the outlined approach
allows to find optimal solutions, as shown by the following proposition.
Proposition 7. Let S be a subset of 1-removable subsets covering L. There exists a subset
S′ of 1-removable subsets of L̂ by monotone inequalities with |S′| ≤ |S|. Furthermore,
these inequalities remove the whole L.
Proof. Without loss of generality, by Lemma 1, we assume that subsets included in S are
1-removable by monotone inequalities. Consider those subsets that include at least one
element from L̂. Since L̂ ⊆ L, full L̂ must be covered. Since inequalities are monotone, it
follows that full ↓ L̂ := L is removed.

Aleksei Udovenko 17

6 Improved technique for optimal modeling
In this section, we present an improved approach for learning all maximal 1-removable
subsets of B ⊆ G ⊆ Fn

2 in the general case.
The key idea is to understand better what kinds of subsets of B can be 1-removable.

The understanding is inspired by the reformulation of the Quine-McCluskey algorithm by
Boura and Coggia, in which sets of the form s ⊕ ↓ u are searched inside B. More precisely,
we reuse the idea to perform such a search separately per each candidate of s. In the
case of inequalities, each such candidate corresponds to a sign vector of the inequality’s
coefficients. This proves useful as for each candidate of s the problem can be restricted to
monotone set modeling, because maximal 1-removable subsets of B are lower sets (up to a
change of coordinates). Although, to ensure a globally complete system of inequalities we
have to apply a more general (and harder) learning method than the one from Section 5.
More precisely, it is necessary to consider all general 1-removable lower sets, as opposed to
considering only lower sets spanned by the extreme elements of the main lower set.

6.1 Classification of inequalities by their sign vectors
Consider an arbitrary linear inequality 〈a, x〉 ≥ c, a ∈ Rn, c ∈ R. Let s = s(a) ∈ Fn

2 be
given by

si =
{

0, if ai ≥ 0,
1, if ai < 0.

(2)

Let x′ = x⊕ s. Then, the inequality 〈a, x〉 ≥ c can be expressed as∑
i∈Supp(s)

aix
′
i +

∑
i∈Supp(s)

ai(1− x′i) ≥ c.

Let 〈a′, x′〉 ≥ c′ be its canonical form. It is easy to see that a′ has only non-negative
coefficients (the sign is switched only when si = 1 which happens only when ai < 0.

We already studied monotone inequalities in Section 5. In particular, we have shown
that such inequalities can only remove a lower set from {0, 1}n. It follows that any
inequality removes a lower set “shifted” by ⊕s. It is not surprising since inequalities are
monotone by nature. The described variable replacement only shows a concrete way to
view each inequality as a monotone increasing one, i.e., as a constraint for an upper set.

Proposition 8. Let 〈a, x〉 ≥ c be an inequality, a ∈ Rn, c ∈ R. Then, the subset of Fn
2

satisfying the inequality has form s⊕ U , where U ⊆ Fn
2 is an upper set and s = s(a) ∈ Fn

2
is defined as in (2).

Remark 7. A set of inequalities with the same sign vector s still models an upper set, as
upper/lower sets are closed under intersection and union.

6.2 Complete monotone learning
The sign-based classification allows us to build all the maximal 1-removable sets separately
per each shift s ∈ Fn

2 , where each such set corresponds is a lower set included in s ⊕ B.
Furthermore, all such sets are subsets of the single maximal lower set included in s⊕B
(which we will call the main lower set).

Proposition 9. Let L ⊆ B be a lower set. If B is a maximal 1-removable subset of L,
then it is a lower set.

18 MILP modeling of Boolean functions by minimum number of inequalities

Proof. This is true in general, even if we allow non-monotone inequalities. Similarly to
the proof of Corollary 1, we can show that an inequality removing a set B ⊆ L can be
transformed into a monotone inequality removing ↓ B (and nothing else) by replacing
negative coefficients with zeros. Since B ⊆ L implies ↓ B ⊆ L, from maximality of B
inside L it follows that B must be a lower set.

This is very similar to the situation in the Quine-McCluskey algorithm. However, here
we can not filter such lower sets by requiring the disjointness with the corresponding shift
s. In the Quine-McCluskey algorithm this is done to avoid duplicate prime implicants;
this idea exploits the fact that maximal elements are precisely maximal 1-removable sets
by CNF clauses and have a clear structure of alternative representations. In our case,
a maximal 1-removable set, while being a lower set, is not necessarily spanned by some
maximal elements of the main lower set and it is not easy to directly decide if it is a
duplicate or not.

In order to ensure a complete system of inequalities containing an optimal solution, we
have to explore all subsets of the main lower set that are lower sets themselves. This task
quickly becomes infeasible for a main lower set of large volume. However, for many dense
Boolean functions the maximum size of the main lower set over all shifts is not very large.

A simple solution to implement such complete monotone learning is to apply the general
method from Section 4 with the following optimizations:

1. The inconsistency oracle should use only monotone inequalities as in the adaptation
from Subsection 5.2.

2. When the inconsistency oracle is called on a set B ⊆ L, it is sufficient to check one
of ↓ B or MaxSet (B). The preference can be given to the best performing check,
which is typically MaxSet (B) as it includes less inequalities.

3. In the case when the oracle replies that the given unknown set B is 1-removable,
replace B with ↓ B to shorten the process of LearnUp (additionally, the lower closure
replacement can be done on each step of LearnUp).

4. In the case when the oracle replies that the given unknown set B is not 1-removable,
replace B with MaxSet (B) to shorten the process of LearnDown (if the sampling
method does not ensure minimality).

These optimizations force the exploitation of the known lower set structure of each
queried unit to shortcut the feasible maximization / infeasible minimization processes.

6.3 Eliminating redundant sets
In their reformulation of the Quine-McCluskey algorithm, Boura and Coggia utilize the
following idea to avoid duplicate prime implicants (i.e., same subsets of B with different
representation of the form s ⊕ ↓ v). Since lower closure converts bits with value 1 into
wildcards, the bits si with vi = 1 can be set assigned arbitrarily. Any choice would result
in a different representation of the same set s ⊕ ↓ v. It is also easy to see that these
representations are exhaustive. Therefore, it is sufficient to consider representations with
constraint s ∧ v = 0 to ensure non-redundant resulting set of prime implicants.

In the complete monotone learning setting, we have sets of the form s ⊕ ↓ V , where
V ⊆ Fn

2 is a set instead of a single vector v. The following lemma and corollary characterize
equivalent descriptions of maximal such sets.

Lemma 2. Let V ⊆ Fn
2 be maximal lower set such that V ⊆ B ⊆ Fn

2 . Then, for any
δ ∈ Fn

2 , there exists a lower set V ′ ⊆ Fn
2 such that

V ⊆ δ ⊕ V ′ ⊆ B

Aleksei Udovenko 19

if and only if δ �
∧

v∈MaxSet(V) v, in which case δ ⊕ V is also a lower set.

Proof. (⇐) If δ � v for all v ∈ MaxSet (V), then δ ⊕ ↓ v = ↓ v for all v ∈ MaxSet (V) and
then

V :=
⋃

v∈V

↓ v =
⋃

v∈V

(δ ⊕ δ ⊕ ↓ v) =
⋃

v∈V

(δ ⊕ ↓ v) = δ ⊕ V.

By letting V ′ = V this direction is proved. Same argument also implies that δ ⊕ V is a
lower set.
(⇒) Assume that there exists v ∈ MaxSet (V) such that δ 6� v. We have ↓ v ⊆ V ⊆ δ⊕ V ′
and thus, δ ⊕ ↓ v ⊆ V ′. Furthermore, v′ := v ∨ δ is such that v′ ∈ δ ⊕ ↓ v ⊆ V ′. Since
δ 6� v, we know that v′ � v, and since V ′ is a lower set, we obtain ↓ v′ ⊆ V ′ ⊆ B. It
follows that ↓ v is not a maximal lower set included in B and so V is not maximal too.
This contradiction shows that there exist no v ∈ MaxSet (V) such that δ 6� v.

Corollary 2. Let V ⊆ Fn
2 be maximal lower set such that s⊕ V ⊆ B ⊆ Fn

2 . Then, for any
s′ ∈ Fn

2 , there exists a lower set V ′ such that

s⊕ V ⊆ s′ ⊕ V ′ ⊆ B

if and only if (s′ ⊕ s) �
∧

v∈MaxSet(V) v, in which case s′ ⊕ V = s⊕ V .

Proof. Follows from Lemma 2 by setting B ← s⊕ B and δ ← s⊕ s′.

We now show how Corollary 2 can be embedded in the algorithm to eliminate redundant
maximal sets efficiently.

Assume that we have learned all maximal lower sets V for all s such that s⊕ V ⊆ B.
Our goal is to eliminate (mark) pairs (s, V) where V is a lower set such that there exist a
vector s′ and a lower set V ′ such that s⊕ V (s′ ⊕ V ′ ⊆ B. In case such strict inclusions
do not exist for a given pair (s, V), we aim to eliminate all equivalent representations, i.e.,
pairs (s′, V ′) such that s⊕ V = s′ ⊕ V ′. This can be done in the following way.

For each identified 1-removable subset B ⊆ B, we keep track of representations s⊕ V ,
V is a lower set, learned by the algorithm. More precisely, we consider all representations
B = s⊕ V where the lower set V is maximal such that s⊕ V ⊆ B. Let s⊕ V be any such
representation. By Corollary 2, the other respective shifts must have the form s⊕ δ where
δ � v :=

∧
v∈MaxSet(V) v (note that V is independent of the choice of the representation).

Let l := wt(v). We consider the two cases:

1. If for all δ � v the lower set V is maximal such that s ⊕ δ ⊕ V ⊆ B, then the set
B is a maximal 1-removable set. Indeed, otherwise, we could consider the shift
correspond to the inequality removing a superset of B and obtain a contradiction.
This case is distinguished by observing all 2l shifts corresponding to representations
of B returned by the learning algorithm (recall that the algorithm returns maximal
lower sets per each shift). Lastly, a single representation can be arbitrarily selected
for B and returned as non-redundant.

2. If for some δ � v there exists a lower set V ′ such that V (V ′ and s⊕ δ ⊕ V ′ ⊆ B,
then the set B is redundant, i.e., it is not a maximal 1-removable set. This case is
distinguished by observing strictly less than 2l shifts in representations of B returned
by the learning algorithm. Such sets B can be marked as redundant as there exist
shifts for which B can be extended.

6.4 Full algorithm
The full algorithm is summarized in Algorithm 2.

20 MILP modeling of Boolean functions by minimum number of inequalities

Algorithm 2 Constructing complete inequalities system for a Boolean function
Input: G ⊆ Fn

2 ,B ⊆ G
Output: complete set S of inequalities for modeling G,B
1: assume C[B] = 0 for all B ⊆ B
2: for all s ∈ Fn

2 do
3: L← the maximal lower set included in s⊕ B
4: Ss ← maximal 1-removable subsets of L by monotone inequalities (see Algorithm 1,

Subsection 5.2, Subsection 6.2); record the associated inequalities
5: for all V ∈ Ss do
6: C[s⊕ V]← C[s⊕ V] + 1
7: S ← ∅
8: for all V : C[V] > 0 do
9: v :=

∧
v∈MaxSet(V) v

10: if C[V] = 2|v| then
11: S ← S ∪ {V }
12: return S

Acknowledgements
We thank Gurobi for providing a license for this work.

References
[AHS21] Gennadiy Averkov, Christopher Hojny, and Matthias Schymura. Compu-

tational Aspects of Relaxation Complexity. In Mohit Singh and David P.
Williamson, editors, Integer Programming and Combinatorial Optimization,
Lecture Notes in Computer Science, pages 368–382, Cham, 2021. Springer
International Publishing. 2, 4, 8

[Ang88] Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319–
342, April 1988. 6

[AS21] Gennadiy Averkov and Matthias Schymura. Complexity of linear relaxations
in integer programming. Mathematical Programming, February 2021. 2

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) s-boxes to optimize probability of differ-
ential characteristics. IACR Trans. Symm. Cryptol., 2017(4):99–129, 2017. 2,
3, 7

[BBK+] Begül Bilgin, Andrey Bogdanov, Miroslav Knežević, Florian Mendel, and
Qingju Wang. Fides: Lightweight Authenticated Cipher with Side-Channel
Resistance for Constrained Hardware. In Guido Bertoni and Jean-Sébastien
Coron, editors, Cryptographic Hardware and Embedded Systems - CHES 2013,
Lecture Notes in Computer Science, pages 142–158. Springer. 26

[BC20] Christina Boura and Daniel Coggia. Efficient milp modelings for sboxes and
linear layers of spn ciphers. IACR Transactions on Symmetric Cryptology,
2020(3):327–361, 2020. 2, 3, 4, 7

[BEG+02] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, and K. Makino. Dual-
Bounded Generating Problems: All Minimal Integer Solutions for a Monotone

Aleksei Udovenko 21

System of Linear Inequalities. SIAM Journal on Computing, 31(5):1624–1643,
May 2002. 9

[BFFH20] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT
Competition 2020. In Tomas Balyo, Nils Froleyks, Marijn Heule, Markus
Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of SAT Competition
2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki,
2020. 14

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems. Science of Computer
Programming, 72(1):3–21, 2008. 7

[BI95] J. C. Bioch and T. Ibaraki. Complexity of Identification and Dualization
of Positive Boolean Functions. Information and Computation, 123(1):50–63,
November 1995. 9, 13

[BM09] Endre Boros and Kazuhisa Makino. A Fast and Simple Parallel Algorithm
for the Monotone Duality Problem. In Susanne Albers, Alberto Marchetti-
Spaccamela, Yossi Matias, Sotiris Nikoletseas, and Wolfgang Thomas, editors,
Automata, Languages and Programming, Lecture Notes in Computer Science,
pages 183–194, Berlin, Heidelberg, 2009. Springer. 14

[BSMH84] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. McMullen,
and Gary D. Hachtel. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, USA, 1984. 3

[Dan90] George B. Dantzig. Origins of the simplex method, page 141–151. Association
for Computing Machinery, Jun 1990. 10

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. Journal of
Cryptology, 34(3):33, Jun 2021. 25

[Der65] Dertouzos. Threshold Logic: A Synthesis Approach. 1965. 9

[Dik67] I. I. Dikin. Iterative solution of problems of linear and quadratic programming.
Soviet Mathematics. Doklady, 8:674–675, 1967. 10

[Elb08] Khaled M. Elbassioni. On the complexity of monotone dualization and
generating minimal hypergraph transversals. Discrete Applied Mathematics,
156(11):2109–2123, June 2008. 14

[EMG08] Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational aspects
of monotone dualization: A brief survey. Discrete Applied Mathematics,
156(11):2035–2049, June 2008. 14

[Fei95] Uriel Feige. A Threshold of Ln n for Approximating Set Cover. 1995. 8

[FK96] Michael L. Fredman and Leonid Khachiyan. On the Complexity of Dualization
of Monotone Disjunctive Normal Forms. Journal of Algorithms, 21(3):618–628,
November 1996. 9, 13

22 MILP modeling of Boolean functions by minimum number of inequalities

[GAB+20] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon
Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald,
Katrin Halbig, Gregor Hendel, Christopher Hojny, Thorsten Koch, Pierre
Le Bodic, Stephen J. Maher, Frederic Matter, Matthias Miltenberger, Erik
Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser, Felipe
Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider,
Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0.
Technical report, Optimization Online, 2020. 8

[Gai84] D. N. Gainanov. On one criterion of the optimality of an algorithm for
evaluating monotonic boolean functions. USSR Computational Mathematics
and Mathematical Physics, 24(4):176–181, January 1984. 9, 12, 13

[GK99] V. Gurvich and L. Khachiyan. On generating the irredundant conjunctive and
disjunctive normal forms of monotone Boolean functions. Discrete Applied
Mathematics, 96-97:363–373, October 1999. 9, 11, 13

[GO21] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021. 8

[Gru07] Nicolle Gruzling. Linear Separability of the Vertices of an N-Dimensional
Hypercube. Master of Science, University of Northern British Columbia, 2007.
9

[Han66] Georges Hansel. Sur le nombre des fonctions booléennes monotones de n
variables. Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences, Série B, 262:1088–1090, 1966. 11

[Jer75] R. G. Jeroslow. On defining sets of vertices of the hypercube by linear
inequalities. Discrete Mathematics, 11(2):119–124, January 1975. 2

[Joh74] David S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9(3):256–278, December 1974. 8

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing,
STOC ’84, page 302–311. Association for Computing Machinery, Dec 1984. 10

[KBEG06] Leonid Khachiyan, Endre Boros, Khaled Elbassioni, and Vladimir Gurvich.
An efficient implementation of a quasi-polynomial algorithm for generating
hypergraph transversals and its application in joint generation. Discrete
Applied Mathematics, 154(16):2350–2372, November 2006. 14

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady
Akademii Nauk SSSR, 244:1093–1096, 1979. MSC2010: 90C31 = Sensitivity,
stability, parametric optimization MSC2010: 90C05 = Linear programming
MSC2010: 68Q25 = Analysis of algorithms and problem complexity MSC2010:
65K05 = Numerical mathematical programming methods Zbl: 0414.90086. 10

[KW14] Volker Kaibel and Stefan Weltge. Lower Bounds on the Sizes of Integer
Programs without Additional Variables. In Jon Lee and Jens Vygen, editors,
Integer Programming and Combinatorial Optimization, Lecture Notes in Com-
puter Science, pages 321–332, Cham, 2014. Springer International Publishing.
2, 3

[KW15] Volker Kaibel and StefanWeltge. Lower bounds on the sizes of integer programs
without additional variables. Mathematical Programming, 154(1):407–425,
December 2015. 2, 3

Aleksei Udovenko 23

[Lov75] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13(4):383–390, January 1975. 8

[LY94] Carsten Lund and Mihalis Yannakakis. On the Hardness of Approximating
Minimization Problems. J. ACM, 41:960–981, September 1994. 8

[Mak17] Andrew Makhorin. GNU Linear Programming Kit, version 4.65. http:
//www.gnu.org/software/glpk/glpk.html, 2017. 8, 10

[McC56] E. J. McCluskey. Minimization of boolean functions. The Bell System
Technical Journal, 35(6):1417–1444, 1956. 3, 7

[Meg88] Nimrod Megiddo. On the complexity of polyhedral separability. Discrete &
Computational Geometry, 3(4):325–337, December 1988. 2

[MWGP12] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and Lin-
ear Cryptanalysis Using Mixed-Integer Linear Programming. In Chuan-Kun
Wu, Moti Yung, and Dongdai Lin, editors, Information Security and Cryp-
tology, Lecture Notes in Computer Science, pages 57–76, Berlin, Heidelberg,
2012. Springer. 2

[Qui52] W. V. Quine. The problem of simplifying truth functions. The American
Mathematical Monthly, 59(8):521–531, 1952. 3

[Qui55] W. V. Quine. A way to simplify truth functions. The American Mathematical
Monthly, 62(9):627–631, 1955. 3, 7

[Sed18] Nafiseh Sedaghat. Speeding up Dualization in the Fredman-Khachiyan Algo-
rithm B. pages 6:1–6:13, 2018. 14

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling
Song. Automatic security evaluation and (related-key) differential charac-
teristic search: Application to SIMON, PRESENT, LBlock, DES(L) and
other bit-oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 158–178. Springer,
Heidelberg, 2014. 2, 3, 7, 8

[Sin05] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints, volume 3709 of Lecture Notes in Computer Science, page 827–831.
Springer Berlin Heidelberg, 2005. 14

[Sla97] Petr Slavík. Improved performance of the greedy algorithm for partial cover.
Information Processing Letters, 64(5):251–254, December 1997. 8, 9

[Sok82] N. A. Sokolov. On the optimal evaluation of monotonic Boolean functions.
USSR Computational Mathematics and Mathematical Physics, 22(2):207–220,
January 1982. 11

[Spe28] Emanuel Sperner. Ein satz über untermengen einer endlichen menge. Mathe-
matische Zeitschrift, 27(1):544–548, 1928. 6

[ST17] Yu Sasaki and Yosuke Todo. New algorithm for modeling s-box in milp
based differential and division trail search. In Pooya Farshim and Emil
Simion, editors, Innovative Security Solutions for Information Technology
and Communications, pages 150–165, Cham, 2017. Springer International
Publishing. 3, 8

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html

24 MILP modeling of Boolean functions by minimum number of inequalities

[Sun21] Yao Sun. Towards the least inequalities for describing a subset in zn
2 . Cryp-

tology ePrint Archive, Report 2021/1084, 2021. https://ia.cr/2021/1084.
3, 5

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the Search of Differential
and Linear Characteristics with the SAT Method. IACR Transactions on
Symmetric Cryptology, pages 269–315, March 2021. 3

[SYY+] Takeshi Shimoyama, Hitoshi Yanami, Kazuhiro Yokoyama, Masahiko Take-
naka, Kouichi Itoh, Jun Yajima, Naoya Torii, and Hidema Tanaka. The Block
Cipher SC2000. In Mitsuru Matsui, editor, Fast Software Encryption, Lecture
Notes in Computer Science, pages 312–327. Springer. 27

[The21] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.3), 2021. https://www.sagemath.org. 7, 10

[TT02] Vetle I. Torvik and Evangelos Triantaphyllou. Minimizing the Average Query
Complexity of Learning Monotone Boolean Functions. INFORMS Journal on
Computing, 14(2):144–174, May 2002. 9, 11

[TT09] Vetle I. Torvik and Evangelos Triantaphyllou. Inference of monotone boolean
functions. In Christodoulos A. Floudas and Panos M. Pardalos, editors,
Encyclopedia of Optimization, pages 1591–1598. Springer US, Boston, MA,
2009. 9

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, November 1984. 9

[Wel15] Stefan Weltge. Dipl.-Math. Stefan Weltge geb. am 14. August 1986 in Licht-
enstein. PhD thesis, 2015. 2

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying
MILP method to searching integral distinguishers based on division property
for 6 lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 648–678.
Springer, Heidelberg, 2016. 2

[Zhu78] Yuri Ivanovich Zhuravlyov. Algebraic approach to the solution of recognition
or classification problems. Problemy kibernetiki, (33):5–68, 1978. 9, 11

[ZT83] Yu.A. Zuev and V.N. Trishin. The lower bound of the number of inequal-
ities which represent a monotonic boolean function of n variables. USSR
Computational Mathematics and Mathematical Physics, 23(3):155–156, 1983.
15

A Inequalities

We provide inequalities for several functions obtained using our approach. Complete digital
archive will be made publicly available.

https://ia.cr/2021/1084

Aleksei Udovenko 25

ASCON-DDT Optimal 27 inequalities for the DDT support of the 5-bit S-box of AS-
CON [DEMS21]:

−2x0 − x1 + 5x2 + 4x3 − 6x4 + 5y0 + 4y1 − 6y2 − 2y3 − 6y4 ≥ − 17 (#1)
−3x0 − 5x1 + x2 − 4x3 + 6x4 − y0 + 6y1 + 3y2 − 6y3 − 6y4 ≥ − 19 (#2)

5x0 − x1 + 2x2 − 7x3 + 7x4 + y0 − 2y1 − 7y2 − 7y3 + 7y4 ≥ − 17 (#3)
9x0 − 11x1 + 4x2 − 3x3 + 7x4 − y0 − 2y1 − 11y2 + 11y3 − 11y4 ≥ − 28 (#4)

2x0 + 4x1 + 10x2 + 5x3 − 5x4 − 10y0 − 8y1 − 6y2 + y3 − 10y4 ≥ − 29 (#5)
−4x0 + 3x1 + 6x2 + 7x3 − 7x4 − 5y0 + 6y1 − 7y2 + 2y3 + 10y4 ≥ − 13 (#6)

−11x0 − 10x1 − 8x2 − 10x3 + 11x4 + 2y0 + 12y1 + y2 + 4y3 + 4y4 ≥ − 27 (#7)
12x0 + 12x1 − 12x2 − 10x3 − 6x4 − 11y0 − 2y1 − 2y2 + y3 + 6y4 ≥ − 31 (#8)
−2x0 − 12x1 − 6x2 + 10x3 − 2x4 + 11y0 − 11y1 + 6y2 + y3 − 12y4 ≥ − 33 (#9)

6x0 − 12x1 + 12x2 − 11x3 − 9x4 − y0 − y1 + 6y2 + 12y3 + 3y4 ≥ − 22 (#10)
−3x0 − 6x1 − 12x2 + 12x3 + x4 − 8y0 − 8y1 − 4y2 + 3y3 + 11y4 ≥ − 29 (#11)
13x0 + 9x1 − 13x2 + 12x3 − 5x4 + 11y0 − 4y1 + 2y2 + y3 − 5y4 ≥ − 14 (#12)

8x0 − 4x1 − 11x2 − 15x3 − 14x4 + y0 + 16y1 + 8y2 + 12y3 + 2y4 ≥ − 28 (#13)
12x0 − 12x1 − 10x2 − 5x3 + 6x4 + y0 − 10y1 + 2y2 − 6y3 − 2y4 ≥ − 33 (#14)

−3x0 − 14x1 + 13x2 + 12x3 + 10x4 − y0 − 2y1 + 14y2 − 3y3 + 4y4 ≥ − 9 (#15)
x0 − 11x1 − 11x2 + 12x3 + 9x4 + 3y0 + 3y1 − 9y2 + y3 + 3y4 ≥ − 19 (#16)

−23x0 + 20x1 − 8x2 − 22x3 − 16x4 + 8y0 − 4y1 − 2y2 + y3 − 24y4 ≥ − 75 (#17)
−15x0 − 4x1 + 2x2 − 10x3 − 15x4 − y0 − 3y1 + 17y2 + 17y3 − 6y4 ≥ − 37 (#18)
−2x0 − 4x1 − 19x2 + 17x3 + 7x4 − 15y0 + 11y1 − 8y2 − y3 − 13y4 ≥ − 43 (#19)
−3x0 + 26x1 − 21x2 + 26x3 + 19x4 − 9y0 − 7y1 + 17y2 + y3 − 5y4 ≥ − 19 (#20)
−14x0 − 6x1 − 8x2 − 19x3 − 22x4 − 2y0 − 4y1 − 18y2 − 18y3 − y4 ≥ − 90 (#21)

9x0 + 17x1 + 16x2 + 23x3 + 21x4 + 2y0 + 4y1 − 24y2 + 8y3 − y4 ≥ 0 (#22)
−2x0 + 17x1 + 10x2 + 20x3 − 11x4 + 19y0 − 4y1 − 3y2 − y3 + 19y4 ≥ 0 (#23)

3x0 − 4x1 + 14x2 + 22x3 + 17x4 − 9y0 + 8y1 + 24y2 − 2y3 − 9y4 ≥ 0 (#24)
14x0 + 32x1 + 10x2 − 33x3 + 18x4 + 20y0 − y1 + 2y2 + 6y3 + 24y4 ≥ 0 (#25)

−16x0 + 45x1 + 20x2 − 44x3 − 31x4 − 21y0 − 3y1 − 2y2 − 10y3 − 25y4 ≥ − 105 (#26)
−8x0 + 18x1 + x2 + 33x3 − 22x4 + 13y0 + 12y1 + 15y2 − 3y3 + 20y4 ≥ 0 (#27)

26 MILP modeling of Boolean functions by minimum number of inequalities

FIDES-5-DDT Optimal 57 inequalities for the DDT support of the 5-bit S-box of
FIDES [BBK+]:

−2x0 − 5x1 + 2x2 + 5x3 − 4x4 − 5y0 + 5y1 − 5y2 − y3 − 3y4 ≥ − 20 (#1)
4x0 + 4x1 − 4x2 − 3x3 + 3x4 − y0 + 4y1 + 4y2 − y3 + y4 ≥ − 5 (#2)

8x0 − 7x1 − 4x2 − 6x3 − 8x4 − 8y0 − 2y1 + 4y2 − 8y3 − y4 ≥ − 36 (#3)
5x0 + 2x1 − 2x2 − 4x3 + 4x4 − 3y0 + 5y1 + 5y2 + y3 − 3y4 ≥ − 7 (#4)
−7x0 + 6x1 + 7x2 − 7x3 − 4x4 − 4y0 + y1 + 2y2 − 8y3 − 8y4 ≥ − 30 (#5)

12x0 + x1 + 9x2 + 11x3 + 12x4 − 5y0 − 5y1 − 2y2 + 3y3 + 11y4 ≥ 0 (#6)
10x0 − 11x1 + 10x2 − 6x3 − 10x4 − 2y0 − y1 + 12y2 − 2y3 + 6y4 ≥ − 20 (#7)

8x0 + 8x1 + 2x2 + 5x3 − 3x4 + 3y0 − 8y1 + y2 + 6y3 − 8y4 ≥ − 11 (#8)
6x0 − x1 + 4x2 + 8x3 − 8x4 + 2y0 − 7y1 − 8y2 + 4y3 − 8y4 ≥ − 24 (#9)
4x0 − 2x1 + 3x2 − 4x3 + 4x4 + 4y0 + y1 − 2y2 − 4y3 − 4y4 ≥ − 12 (#10)
−6x0 + 6x1 + 4x2 − 5x3 − 5x4 + y0 − 2y1 − 2y2 + 6y3 + 6y4 ≥ − 14 (#11)

−2x0 − 2x1 − 7x2 + 3x3 + 3x4 + 10y0 + 8y1 + 11y2 + 11y3 + 11y4 ≥ 0 (#12)
−2x0 − 4x1 − 3x2 + 4x3 − 4x4 + y0 − 4y1 − 4y2 + 2y3 + 4y4 ≥ − 17 (#13)
−3x0 − 4x1 + 3x2 + 4x3 + 2x4 + 4y0 − 4y1 − 2y2 − 4y3 + y4 ≥ − 13 (#14)
−3x0 + 4x1 + x2 + 2x3 − 4x4 − 4y0 − 4y1 − 4y2 − 4y3 − 2y4 ≥ − 21 (#15)
−3x0 + 3x1 − x2 + 3x3 + x4 − 3y0 + 2y1 − 3y2 + 3y3 + 3y4 ≥ − 7 (#16)
−6x0 − 3x1 + 6x2 + 3x3 − 2x4 + 7y0 + 7y1 + 7y2 + 5y3 + y4 ≥ − 4 (#17)
−4x0 − 4x1 + 7x2 − 7x3 + 9x4 − 5y0 − 2y1 + y2 + 9y3 − 5y4 ≥ − 18 (#18)
6x0 + 3x1 + 9x2 + 10x3 + 7x4 + y0 + 4y1 − 10y2 + y3 + 7y4 ≥ 0 (#19)
7x0 + 6x1 + 4x2 − 3x3 + 2x4 + 7y0 − 5y1 − 7y2 − y3 − 7y4 ≥ − 16 (#20)
6x0 − 6x1 − 2x2 + 4x3 + 6x4 + 7y0 + 3y1 + 7y2 + y3 + 5y4 ≥ − 1 (#21)
2x0 − 3x1 − 2x2 + 4x3 − 4x4 − y0 + 5y1 − 5y2 − 5y3 − 3y4 ≥ − 18 (#22)

−4x0 − 3x1 − 9x2 + 4x3 − 5x4 + 2y0 + 10y1 + 10y2 + 7y3 + 10y4 ≥ − 11 (#23)
5x0 − 5x1 − x2 + 4x3 + 6x4 − 7y0 + 3y1 − 7y2 − 2y3 + 6y4 ≥ − 15 (#24)

4x0 − 3x1 − 4x2 − 4x3 − 3x4 + 4y0 + y1 − y2 + 4y3 − y4 ≥ − 12 (#25)
−4x0 − 4x1 + 9x2 − 9x3 + 8x4 + 6y0 + y1 + 2y2 + 10y3 + 6y4 ≥ − 7 (#26)

5x0 + 6x1 + 6x2 + 3x3 − 4x4 + 3y0 + 6y1 − y2 − y3 + 6y4 ≥ 0 (#27)
−3x0 + x1 − 4x2 − 4x3 − 2x4 + 2y0 + 4y1 − 4y2 − 4y3 + 4y4 ≥ − 17 (#28)
−6x0 + 4x1 − 5x2 + 4x3 − 6x4 − y0 + 6y1 − 2y2 + 6y3 − 2y4 ≥ − 16 (#29)
−4x0 + 8x1 − 8x2 + 6x3 − 7x4 − y0 − 8y1 + 2y2 − 8y3 + 4y4 ≥ − 28 (#30)
−4x0 − x1 − 3x2 + 4x3 + 2x4 + 3y0 − 2y1 − 4y2 − 4y3 + 4y4 ≥ − 14 (#31)

6x0 + 4x1 − 6x2 − 6x3 + 5x4 − 2y0 − 6y1 − 6y2 + y3 − 2y4 ≥ − 22 (#32)
−3x0 − 3x1 − 3x2 + 4x3 + 2x4 + y0 − 2y1 + 4y2 − 4y3 − 4y4 ≥ − 15 (#33)

5x0 − 6x1 − 6x2 + 4x3 + 5x4 + 6y0 − 2y1 + 6y2 − y3 − 2y4 ≥ − 11 (#34)
3x0 − 2x1 − 3x2 + 6x3 − 6x4 + y0 + 7y1 + 7y2 + 7y3 + 5y4 ≥ − 4 (#35)

−11x0 − 11x1 + 10x2 − 10x3 + 8x4 − 4y0 − 2y1 − 4y2 + 12y3 − y4 ≥ − 31 (#36)
16x0 + 16x1 + 14x2 + 15x3 + 10x4 − 2y0 − 6y1 + y2 − 2y3 − 6y4 ≥ 0 (#37)

2x0 + 5x1 − 6x2 + 5x3 − 4x4 + 2y0 − 6y1 + y2 − 6y3 + 6y4 ≥ − 16 (#38)
−x0 + 3x1 − x2 + 3x3 + 2x4 − 3y0 + 2y1 + 3y2 + 3y3 − 3y4 ≥ − 5 (#39)
−2x0 + 2x1 − x2 + 2x3 + 2x4 − 2y0 + y1 − 2y2 − 2y3 − 2y4 ≥ − 9 (#40)
−6x0 − 5x1 − 3x2 − 6x3 − 6x4 + 3y0 − y1 − 6y2 − 6y3 − y4 ≥ − 34 (#41)
−6x0 + x1 − 4x2 + 2x3 + 3x4 + 6y0 + 3y1 − 6y2 + 6y3 − 6y4 ≥ − 16 (#42)
−x0 + 3x1 + 2x2 + x3 − 3x4 + 3y0 − 3y1 + 3y2 − 3y3 − 2y4 ≥ − 9 (#43)

−3x0 + 12x1 + 16x2 + 17x3 + 13x4 − 7y0 + 17y1 + 4y2 − 7y3 + 2y4 ≥ 0 (#44)
−6x0 + 4x1 + 6x2 − 5x3 − 6x4 + 2y0 + y1 − 2y2 − 6y3 − 6y4 ≥ − 25 (#45)
−4x0 − 6x1 − 5x2 − 5x3 + 5x4 − 6y0 − 6y1 + 2y2 + y3 + 2y4 ≥ − 26 (#46)
−3x0 − 2x1 + 4x2 + 4x3 − 2x4 − 4y0 − 4y1 + 4y2 + 2y3 + y4 ≥ − 11 (#47)

−7x0 + 11x1 + 2x2 − 9x3 + 11x4 + 12y0 + 3y1 + 5y2 + y3 + 12y4 ≥ − 4 (#48)
2x0 + 3x1 + 3x2 − 4x3 − 4x4 − 4y0 − 4y1 + y2 + 2y3 + 4y4 ≥ − 12 (#49)
3x0 + x1 − 4x2 − 4x3 + 2x4 + 3y0 − 4y1 − 4y2 + 2y3 + 3y4 ≥ − 12 (#50)

−9x0 + 6x1 − 12x2 − 11x3 + 11x4 + 12y0 + 6y1 + 3y2 − y3 − y4 ≥ − 22 (#51)
5x0 + 4x1 + 2x2 − 3x3 + 2x4 − 5y0 − 3y1 − 5y2 − y3 + 5y4 ≥ − 12 (#52)
4x0 − 5x1 − 6x2 + 6x3 + 6x4 − 6y0 + y1 − 6y2 + 2y3 − 2y4 ≥ − 19 (#53)
−5x0 − 4x1 − 5x2 − 4x3 − 6x4 + y0 − 2y1 + 6y2 + 6y3 − 2y4 ≥ − 22 (#54)

4x0 + 4x1 − 4x2 + 2x3 − x4 + 3y0 + 4y1 + 2y2 − 4y3 − 4y4 ≥ − 9 (#55)
2x0 + 4x1 + 3x2 − 4x3 − 4x4 − 4y0 + 4y1 − y2 − 2y3 − 4y4 ≥ − 15 (#56)

2x0 + 5x1 − 2x2 + 4x3 − 5x4 − y0 + 5y1 − y2 + 5y3 + 5y4 ≥ − 4 (#57)

Aleksei Udovenko 27

SC2000-5-DDT Optimal 60 inequalities for the DDT support of the 5-bit S-box of
SC2000 [SYY+]:

−x0 + 2x1 − 3x2 − 3x3 − 3x4 + 10y0 + 10y1 + 9y2 + 8y3 + 10y4 ≥ 0 (#1)

−3x0 + x1 − 3x2 + 3x3 + 3x4 − 3y0 − 3y1 + 2y2 − y3 − 3y4 ≥ − 13 (#2)

2x0 + x1 + 2x2 − 2x3 − 2x4 − 2y0 − 2y1 + y2 − 2y3 − 2y4 ≥ − 10 (#3)

−6x0 + 2x1 − 6x2 + x3 − 2x4 − 5y0 + 6y1 − 4y2 + 6y3 − 6y4 ≥ − 23 (#4)

6x0 − 2x1 + x2 + 6x3 − 2x4 − 5y0 + 6y1 + 6y2 − 4y3 − 6y4 ≥ − 13 (#5)

8x0 + 8x1 + x2 + 2x3 + 4x4 + 4y0 + 7y1 + 6y2 + 7y3 − 8y4 ≥ 0 (#6)

x0 + 5x1 − 9x2 − 2x3 − 9x4 − 4y0 + 7y1 + 4y2 − 9y3 + 9y4 ≥ − 24 (#7)

4x0 + 3x1 − 4x2 + 2x3 − 4x4 − 2y0 − y1 − 4y2 + 4y3 + 4y4 ≥ − 11 (#8)

3x0 − 4x1 − 4x2 + 2x3 + 4x4 − 2y0 + 3y1 − 4y2 − y3 + 3y4 ≥ − 11 (#9)

−x0 − 2x2 − 2x3 + 6x4 − 5y0 − 4y1 + 5y2 + 4y3 + 6y4 ≥ − 8 (#10)

10x0 + 10x1 + 10x2 + 7x3 + 10x4 − 5y0 + 2y1 − 5y2 + y3 + y4 ≥ 0 (#11)

−3x0 − 3x1 − 3x2 + x3 − 3x4 − 2y0 + 3y1 − 2y2 + 3y3 + y4 ≥ − 13 (#12)

2x0 − 4x1 + 4x2 − x3 − 4x4 − 3y0 + 3y1 − 4y2 − 2y3 + 4y4 ≥ − 14 (#13)

−2x0 − 6x1 − x2 − 6x3 + 2x4 + 5y0 − 5y1 − 4y2 + 6y3 + 6y4 ≥ − 18 (#14)

3x0 − 3x1 + 2x2 − 3x3 + 3x4 + 2y0 + 3y1 − 3y2 + y3 − y4 ≥ − 7 (#15)

−x0 + 7x1 − x2 + 4x3 + 7x4 + 3y0 − 6y1 − 7y2 − 3y3 + 7y4 ≥ − 11 (#16)

2x0 − 2x1 − 2x2 + 2x3 − x4 + 2y0 + y1 − 2y2 − 2y3 + 2y4 ≥ − 7 (#17)

−6x0 + 2x1 + x2 − 2x3 − 6x4 + 6y0 − 5y1 + 6y2 − 6y3 − 4y4 ≥ − 23 (#18)

−10x0 − 10x1 + 4x2 + 2x3 + 7x4 + 3y0 + 6y1 + 9y2 + 10y3 − 5y4 ≥ − 15 (#19)

8x0 − 2x1 + x2 − 2x3 + 8x4 + 8y0 − 7y1 + 2y2 − 8y3 − 6y4 ≥ − 17 (#20)

−x0 + 3x1 − x2 + 6x3 + 6x4 − 3y0 − 6y1 − 6y2 − 5y3 + 3y4 ≥ − 16 (#21)

−2x0 + 6x1 − 2x2 + 6x3 + x4 + 5y0 − 5y1 − 6y2 + 5y3 + 4y4 ≥ − 9 (#22)

8x0 + 4x1 + 8x2 + x3 + 2x4 − 7y0 + 7y1 − 6y2 + 4y3 − 6y4 ≥ − 11 (#23)

5x0 + 2x1 − 5x2 − 5x3 − x4 + 3y0 − 4y1 − 5y2 + y3 − 5y4 ≥ − 20 (#24)

−7x0 − 7x1 + x2 − 2x3 − 2x4 + 7y0 + 6y1 + 5y2 + 7y3 − y4 ≥ − 12 (#25)

−x0 + 14x1 − 5x2 + 2x3 − 5x4 + 9y0 + 14y1 + 13y2 − 3y3 + 12y4 ≥ 0 (#26)

−4x0 + 2x1 + 4x2 − x3 − 4x4 − 4y0 − 2y1 − 4y2 + 3y3 + 4y4 ≥ − 15 (#27)

−x0 − 3x1 + x2 + 3x3 − 3x4 − 3y0 − 3y1 − 2y2 − 3y3 − 3y4 ≥ − 18 (#28)

−3x0 + x1 + 3x2 − 3x3 + x4 + 3y0 − 2y1 − 3y2 + 3y3 − 3y4 ≥ − 11 (#29)

3x0 − 3x1 + 2x2 + 3x3 − 3x4 + y0 + 2y1 − 3y2 + 2y3 − y4 ≥ − 7 (#30)

x0 − 4x1 + 4x2 − 4x3 + 2x4 − 4y0 − 3y1 − 4y2 + 2y3 − 3y4 ≥ − 18 (#31)

x0 − 4x1 − 2x2 − 8x3 − 8x4 − 4y0 − 8y1 − 6y2 − 7y3 + 8y4 ≥ − 39 (#32)

2x0 + x1 + 13x2 + 13x3 + 9x4 − 12y0 − 5y1 + 7y2 − 4y3 + 11y4 ≥ − 8 (#33)

−4x0 + 4x1 + 4x2 + 4x3 − 4x4 + 2y0 + y1 − 2y2 + 4y3 + 3y4 ≥ − 6 (#34)

−2x0 − 3x1 − 3x2 − 3x3 − 3x4 + y0 + y1 + 3y2 − 2y3 − 3y4 ≥ − 16 (#35)

2x0 + 13x1 − 6x2 − 6x3 + 3x4 + 13y0 + 13y1 + 11y2 − y3 + 10y4 ≥ 0 (#36)

3x0 − 2x1 − 3x2 + 4x3 − 3x4 − 3y0 − 2y1 + 2y2 + y3 − 4y4 ≥ − 13 (#37)

4x0 + 12x1 + 2x2 + 4x3 + x4 + 11y0 + 8y1 + 10y2 − 12y3 + 11y4 ≥ 0 (#38)

−2x0 + 6x1 − 2x2 − 6x3 − 6x4 − 6y0 − 6y1 − 4y2 − 5y3 − y4 ≥ − 32 (#39)

−4x0 − 6x1 − 6x2 + 6x3 + x4 − 3y0 − 2y1 − 3y2 + 6y3 − 5y4 ≥ − 23 (#40)

12x0 − x1 + 6x2 + 3x3 − x4 + 11y0 − 6y1 − 12y2 − 9y3 − 11y4 ≥ − 28 (#41)

−5x0 − 5x1 + x2 + 5x3 − 3x4 + 4y0 − 5y1 + 3y2 − 2y3 + 2y4 ≥ − 15 (#42)

x0 + 6x1 + 12x2 + 2x3 + 2x4 + 6y0 + 11y1 − 10y2 − 11y3 − 11y4 ≥ − 20 (#43)

−7x0 + 17x1 + 4x2 − 7x3 + 2x4 + 15y0 + 12y1 + 13y2 − 3y3 + 17y4 ≥ 0 (#44)

−x0 + 4x1 + 7x2 − x3 + 7x4 − 3y0 + 7y1 + 3y2 − 7y3 + 6y4 ≥ − 5 (#45)

−2x0 − 2x1 + 8x2 + 2x3 − x4 + 8y0 + 8y1 − 7y2 − 8y3 − 6y4 ≥ − 18 (#46)

5x0 − x1 − x2 + 5x3 + 5x4 + 2y0 − 3y1 + 5y2 + 5y3 + 4y4 ≥ 0 (#47)

−6x0 + 2x1 − 6x2 − x3 + 2x4 − 5y0 + 5y1 − 6y2 + 6y3 − 4y4 ≥ − 22 (#48)

7x0 − 6x1 − 2x2 − 7x3 − 7x4 + 7y0 − 4y1 + y2 + 3y3 + 5y4 ≥ − 19 (#49)

−2x0 − 2x1 − 2x2 − 2x3 + x4 + y0 + 2y1 − 2y2 − y3 + 2y4 ≥ − 9 (#50)

x0 − 2x1 − 2x2 + 2x3 + 2x4 + y0 + y1 + 2y2 − 2y3 − 2y4 ≥ − 6 (#51)

5x0 − 5x1 − x2 + 3x3 − 5x4 − 5y0 + 2y1 + 5y2 + 2y3 − 4y4 ≥ − 15 (#52)

8x0 + 8x1 + 4x2 − 3x3 − 3x4 + 8y0 + 4y1 + 5y2 + 5y3 − 2y4 ≥ 0 (#53)

−x0 + x1 + 4x2 − 4x3 − 4x4 − y0 + 4y1 + 3y2 + 4y3 + 3y4 ≥ − 6 (#54)

10x0 − 2x1 − 3x2 − 3x3 + 10x4 + 7y0 − 10y1 + y2 − 8y3 − 9y4 ≥ − 25 (#55)

−x0 − 8x1 − 8x2 − 2x3 + 4x4 − 8y0 + 6y1 − 7y2 − 7y3 − 4y4 ≥ − 37 (#56)

−4x0 + 4x1 − 4x2 + x3 − 2x4 + 3y0 − 4y1 + 3y2 + 2y3 − 3y4 ≥ − 13 (#57)

−x0 + 3x1 + 3x2 + 9x3 − x4 − 9y0 − 8y1 + 6y2 + 8y3 − 9y4 ≥ − 19 (#58)

−3x0 − 3x1 + 3x2 + 2x3 + 3x4 − y0 + 3y1 − y2 + 3y3 + 3y4 ≥ − 5 (#59)

−6x0 − x1 + 2x2 − 6x3 + 2x4 − 5y0 + 4y1 + 6y2 − 5y3 − 4y4 ≥ − 21 (#60)

	Introduction
	Preliminaries
	Partial order and monotone Boolean functions
	CNF/DNF models
	MILP models

	Related work on CNF and MILP modeling
	Problem 1 - generating constraints
	Problem 2 - choosing a small subset of constraints
	On the optimality and lower bounds

	General technique for optimal modeling
	(In)consistency oracle
	Monotonicity of the inconsistency
	Learning monotone Boolean functions
	Sampling unknown vectors
	CNF model of sampling unknown vectors

	Modeling monotone sets
	Exploiting monotonicity
	Adapting the inconsistency oracle

	Improved technique for optimal modeling
	Classification of inequalities by their sign vectors
	Complete monotone learning
	Eliminating redundant sets
	Full algorithm

	Inequalities

