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Abstract

Security of cryptographic primitives is usually proved by assuming “ideal” probability distributions.
We need to replace them with approximated “real” distributions in the real-world systems without
losing the security level. We demonstrate that the Hellinger distance is useful for this problem, while
the statistical distance is mainly used in the cryptographic literature. First, we show that for preserving
λ-bit security of a given security game, the closeness of 2−λ/2 to the ideal distribution is sufficient for
the Hellinger distance, whereas 2−λ is generally required for the statistical distance. The result can be
applied to both search and decision primitives through the bit security framework of Micciancio and
Walter (Eurocrypt 2018). We also show that the Hellinger distance gives a tighter evaluation of closeness
than the max-log distance when the distance is small. Finally, we show that the leftover hash lemma
can be strengthened to the Hellinger distance. Namely, a universal family of hash functions gives a
strong randomness extractor with optimal entropy loss for the Hellinger distance. Based on the results,
a λ-bit entropy loss in randomness extractors is sufficient for preserving λ-bit security. The current
understanding based on the statistical distance is that a 2λ-bit entropy loss is necessary.

1 Introduction

Security of cryptographic primitives relies on the use of randomness sources. Secret keys and random bits
are usually assumed to be sampled from uniform distributions. Various probability distributions other than
uniform ones appear in cryptography. In lattice-based cryptography, discrete Gaussian distributions are used
for the hardness of the Learning with Errors (LWE) problem [34, 33, 23, 29] and the tight reductions for the
Short Integer Solution (SIS) problem [26, 25]. Adding noise from Laplace distributions enables data privacy
of statistical databases in differential privacy [15, 14, 16].

To ensure the security of primitives, we usually define a security game played by an adversary and show
that the adversary’s success probability is sufficiently close to some value. In the proof, we assume we can
use “ideal” probability distributions. We need to replace them with approximated “real” distributions in
real-world systems. For example, in a security game of an encryption scheme, the adversary receives a
ciphertext and tries to guess which of the two plaintexts were encrypted. The scheme is secure if the success
probability is sufficiently close to 1/2. A secret key and random coins for encryption are assumed to be
sampled from uniform distributions. One may employ the output of a randomness extractor [36, 11] as a
randomness source since the output distribution is sufficiently close to the uniform distribution. However,
the distance to the ideal distribution may affect the security level of primitives. A question is which closeness
measure of distributions should be used when replacing distributions in security games.

In cryptographic literature, we mainly employ the statistical distance (a.k.a. the total variation distance)
to measure distribution closeness. The main reason is that it enables a straightforward analysis of the
resulting security levels. The statistical distance is defined as the maximum difference of probabilities of
events between two distributions. By employing a distribution P that is close to ideal Q within ϵ in the
statistical distance, we can guarantee that the adversary’s success probability only increases by at most ϵ.
However, there may not be any other reason for using the statistical distance.
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Also, achieving security by the statistical distance has some limitations. Radhakrishnan and Ta-Shma [32]
showed a lower bound on the entropy loss of randomness extractors. Roughly, the result implies that to
extract a uniformly random string from an entropy source, we need to lose 2 log(1/ϵ) of entropy, where ϵ is
the distance to the uniform distribution. Based on this result, if we extract a random string from a source of
120-bit entropy by ensuring 50-bit security, the output bit should be of length at most 120−2 ·50 = 20. This
loss of entropy is crucial when using biometric data as entropy sources [11, 8], where a limited amount of
entropy can be used. Randomness extraction (or key derivation) from weak sources arises in many situations
of cryptography, including Diffie-Hellman key exchange [17, 21] and random number generators from physical
sources [5, 4], to name a few.

Our Contribution. In this work, we propose to use the Hellinger distance for replacing distributions in
security games. Roughly speaking, we show that the closeness of 2−λ/2 in the Hellinger distance is sufficient
to preserve λ-bit security. When using the statistical distance, the closeness of 2−λ is, in general, necessary
to achieve the same security level.

To discuss the bit security, we use the framework of Micciancio and Walter [28]. Their framework can
smoothly connect the bit security between search and decision primitives. Their definition is the same as
the standard one for search primitives, where the secret is chosen from a sufficiently large space. For decision
primitives, in which the attacker tries to guess a secret bit, the definition of the advantage is different from
the standard one. See Section 3 for the details. We show that the distance closeness of 2−λ/2 in the Hellinger
distance is sufficient for preserving the bit security for both search and decision primitives.

Next, we show that the Hellinger distance gives a tighter evaluation of closeness than themax-log distance,
the probability metric introduced in [27, 28]. The work showed that the closeness of 2−λ/2 in the max-log
distance is sufficient for preserving λ-bit security. We proved that the Hellinger distance is bounded above
by the max-log distance as long as the max-log distance is at most

√
2 − 1. Also, we present a concrete

example of a distribution pair such that their Hellinger distance is exponentially small, while their max-log
distance is a constant.

Finally, we demonstrate the usefulness of using the Hellinger distance in the problem of randomness
extraction (or information-theoretic key derivation). We show that the leftover hash lemma [6, 20] can
be strengthened to the Hellinger distance without losing the security level. Namely, a universal family of
hash functions gives a strong randomness extractor with optimal entropy loss even when measuring in the
Hellinger distance. We can conclude that the entropy loss of λ-bit is sufficient for preserving λ-bit security.
In general, the entropy loss of 2λ-bit is necessary to preserve bit security when using the statistical distance.

Techniques. We describe a technical overview of our results. Although the actual proofs seem different
from the below, it reflects the difference between the statistical distance and the Hellinger distance. Let
P = (P1, P2, . . . ) and Q = (Q1, Q2, . . . ) be a pair of probability distribution ensembles such that each Pi is

close to Qi. Let ϵQA be the probability that an adversary A succeeds in the security game in which samples
from Q is used. We want to bound the probability ϵPA, which is the success probability when using P instead
of Q.

For ℓ ∈ N, we define the probability µQ
ℓ that A succeeds in at least one out of ℓ independent plays of GQ

A.
As long as ℓ is small compared to 1/ϵPA, it holds that µ

P
ℓ ≈ ℓ · ϵPA. Since the number of sample queries in each

game is bounded above by the running time TA of A, µP
ℓ ≤ µQ

ℓ + SD(P ℓ, Qℓ) ≤ µQ
ℓ + ℓTA ·maxi SD(Pi, Qi),

where SD(Pi, Qi) is the statistical distance between Pi and Qi, and P ℓ is the ℓ-fold product of P . Note that

we use the relation SD(P ℓ, Qℓ) ≤ ℓTA ·maxi SD(Pi, Qi). Now, it holds that ϵPA ≈ ℓ−1 ·µP
ℓ ≤ ℓ−1 · (µQ

ℓ + ℓTA ·
maxi SD(Pi, Qi)) ≈ ϵQA + TA ·maxi SD(Pi, Qi). Thus, if the primitive has λ-bit security, i.e., ϵQA/TA ≤ 2−λ,
then ϵPA/TA ≤ 2−λ +maxi SD(Pi, Qi). It implies that maxi SD(Pi, Qi) ≤ 2−λ is required for preserving bit
security. For the Hellinger distance HD(Pi, Qi), we provide a technical lemma (Lemma 1) showing that

SD(P ℓ, Qℓ) ≤
√
2ℓTA ·maxi HD(Pi, Qi). Therefore, we have ϵPA ≤ ϵQA +

√
2ℓ−1TA ·maxi HD(Pi, Qi). Hence,

if the primitive has λ-bit security, ϵPA/TA ≤ 2−λ +
√

2(ℓTA)−1 ·maxi HD(Pi, Qi), implying that, by choosing
ℓ = 1/ϵPA, it suffices to satisfy maxi HD(Pi, Qi) ≤ 2−λ/2 for preserving bit security.
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The leftover hash lemma essentially gives an upper bound on the collision probability of the hash functions
chosen from a universal family. If the collision probability is bounded, it is close to uniform in the Hellinger
distance. This relation was provided by Chung and Vadhan [9] using Hölder’s inequality. Based on the
relation, we show that a universal family of hash functions gives a strong randomness extractor for the
Hellinger distance. Notably, we can achieve the same parameters as in the case of the statistical distance.
Thus, the optimal entropy loss is achieved by universal hash functions.

Related Work. Barak et al. [3] initiated the study on improving the leftover hash lemma for a limited class
of primitives. The work of [3, 13] showed that the bound of [32] could be improved for the search primitives
and the square-friendly decision primitives, including stateless encryption schemes and weak pseudorandom
functions. Specifically, the entropy loss of λ is sufficient for square-friendly primitives. For search primitives,
Dodis, Pietrzak, and Wichs [12] achieved the entropy loss of O(log λ) in randomness extraction with O(λ)-
wise independent hash functions. Matsuda et al. [24] generalized the results of [13] by using the Rényi
divergence for capturing the case that the ideal distribution is not uniform. Skorski [37] showed that being
square-friendly is necessary to reduce entropy loss. Compared with the above work, our results for reducing
entropy loss do not build on a specific class of primitives but need to rely on the bit security framework
of [28], especially for the decision primitives.

In lattice-based cryptography, several probability metrics other than the statistical distance have been
employed for improving the analysis of security proofs [30, 2, 27, 31, 39]. The metrics used in these work
include the Kullback-Leibler divergence, the Rényi divergence, the max-log distance, and the relative error.

Micciancio and Walter [28] introduced a new framework of bit security that can smoothly connect the
search primitives and the decision primitives quantitatively. A feature is that it allows the adversary to
declare an attack failure. With their framework, we can say that a λ-bit secure pseudorandom generator
(a decision primitive) is also a λ-bit secure one-way function (a search primitive). In the conventional
definition, a λ/2-bit secure pseudorandom generator strangely yields a λ-bit secure one-way function. While
they showed that the max-log distance is beneficial in their framework, we show that the Hellinger distance
has the same effect and gives a tighter evaluation of closeness.

Distances/divergences between distributions other than the statistical distance have appeared in other
cryptographic literature. Chung and Vadhan [9] gave a tight analysis of hashing block sources using the
Hellinger distance as a key tool. Agrawal [1] introduced the notion of randomness extractors for the Kullback-
Leibler divergence and gave explicit/non-explicit constructions with almost the same parameters as standard
extractors. Steinberger [38] used the Hellinger distance for the improved analysis of key-alternating ciphers.
Dai, Hoang, and Tessaro [10] used the chi-square divergence to analyze the information-theoretic indistin-
guishability proofs. Berman et al. [7] studied the polarization lemma for various distance notions such as
the triangular discrimination and the Jensen-Shannon divergence to extend the region of polarization.

2 Preliminaries

We define the distances for distributions used in this work. The basic properties and general relationships
of various distances/divergences can be found in [18]. We also present a useful lemma for the Hellinger
distance, which will be used later.

Let P and Q be probability distributions over a finite set Ω. For a distribution P over Ω and A ⊆ Ω,
we denote by P (A) the probability of event A, which is equal to

∑
x∈A P (x). The statistical distance (a.k.a.

total variation distance) between P and Q is

SD(P,Q) = max
A⊆Ω

|P (A)−Q(A)|.

The data processing inequality guarantees that for any function f : Ω → {0, 1}∗, we have

SD(f(P ), f(Q)) ≤ SD(P,Q). (1)
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The Hellinger distance between P and Q is

HD(P,Q) =

√
1

2

∑
x∈Ω

(√
P (x)−

√
Q(x)

)2
=

√
1−

∑
x∈Ω

√
P (x) ·Q(x),

which takes values in [0, 1]. It holds that

HD(P,Q)2 ≤ SD(P,Q) ≤
√
2 · HD(P,Q). (2)

The Hellinger affinity is defined as

HA(P,Q) = 1− HD(P,Q)2 =
∑
x∈Ω

√
P (x) ·Q(x),

which is also known as the Bhattacharyya coefficient or fidelity.
The Hellinger distance has the following useful property, which is weaker than the Pythagorean probability

preservation defined in [27, 28].

Lemma 1. Let Q = (Q1, . . . , Qℓ) and P = (P1, . . . , Pℓ) be probability distribution ensembles over a finite
support

∏
i Ωi. Then,

SD(P,Q) ≤
√
2ℓ · max

ai∈
∏

j<i Ωj

HD(Pi|ai, Qi|ai).

Proof. Let ϵ = maxai∈
∏

j<i Ωj
HD(Pi|ai, Qi|ai). Then, HA(Pi|ai, Qi|ai) = 1 − HD(Pi|ai, Qi|ai)2 ≥ 1 − ϵ2 for

any i and ai ∈
∏

j<i Ωj . It holds that

HA(P,Q) =
∑

b1,...,bℓ∈
∏

i Ωi

√
P (b1, . . . , bℓ) ·Q(b1, . . . , bℓ)

=
∑

b1∈Ω1

√
P1(b1) ·Q1(b1) ·

( ∑
b2∈Ω2

√
P2(b2|P1 = b1) ·Q2(b2|Q1 = b1) ·

(
· · ·

·
( ∑

bℓ∈Ωℓ

√
Pℓ(bℓ|(P1, . . . , Pℓ−1) = (b1, . . . , bℓ−1)) ·Qℓ(bℓ|(Q1, . . . , Qℓ−1) = (b1, . . . , bℓ−1))

)
· · ·
))

≥ (1− ϵ2)ℓ ≥ 1− ℓϵ2.

Thus, HD(P,Q) =
√
1− HA(P,Q) ≤

√
ℓϵ. The statement follows from (2).

3 Replacing Distributions in Security Games

We consider replacing probability distributions in security games. Let Q = (Qθ)θ be an ideal distribution
ensemble in a security game. We want to replace Q with an approximated distribution ensemble P = (Pθ)θ
without compromising security. We define a general security game by following the definitions of [28, 27].

An n-bit security game GA is a game played by an adversary A interacting with a challenger C. At the
beginning of the game, the challenger chooses a uniformly random secret x ∈ {0, 1}n, represented by the
random variable X. At the end of the game, A outputs some value v, represented by the random variable
V . The goal of the adversary is to output v such that R(x, v) = 1, where R is a Boolean function. The
adversary may output a special symbol ⊥ such that R(x,⊥) = 0 for any x. During the game, A or C may

obtain a sample from a distribution Qθ by querying θ. The success probability of A is ϵQA = Pr[R(X,V ) = 1],
where the probability is taken over the randomness of the entire security game, including the randomness of
A. We may denote the game by GQ

A since we intend to replace Q with another distribution ensemble.
Micciancio and Walter [28] defined the bit security based on an advantage that is different from most

of the literature for the case n = 1. We use their framework for evaluating the security loss by replacing
distributions in security games.
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Definition 1 (Bit Security of [28]). Let Π be a primitive for which an n-bit security game GQ
A is defined.

Let X and V be random variables representing a random secret x ∈ {0, 1}n and an output value v of A in

GQ
A, respectively. We define the output probability αA = Pr[V ̸= ⊥] and the conditional success probability

βA = Pr[R(X,V ) = 1 | V ̸= ⊥]. The advantage of A is defined to be

advA =

{
αAβA n > 1

αA(2βA − 1)2 n = 1
.

The bit security of Π is defined to be

min
A

log2
TA

advA
,

where TA is the running time of A. We say the primitive is λ-bit secure if its bit security is at least λ.

We say Π is a search primitive if its n-bit security game G is defined for n > 1, and a decision primitive
if G is a 1-bit security game.

For search primitives, it is not difficult to see that Q = (Qθ)θ can be replaced with P = (Pθ)θ if
their statistical distance between Pθ and Qθ is sufficiently small and the number of queries is not so much.
Specifically, if a search primitive ΠQ is λ-bit secure and SD(Pθ, Qθ) ≤ 2−λ, then ΠP is (λ− log q)-bit secure,

where we denote by ΠQ a primitive for which a security game GQ
A is defined and q is the number of queries.

This fact implies that it is sufficient to choose P that is close to Q within 2−λ in the statistical distance for
preserving the bit security.

Micciancio and Walter [27, 28] demonstrated that if distributions are close in the max-log distance, the
closeness requirement may be relaxed. The max-log distance between distributions P and Q over Ω with
the same support S ⊆ Ω is

ML(P,Q) = max
x∈S

| lnP (x)− lnQ(x)|.

They showed that the closeness of 2−λ/2 is sufficient to preserve the bit security for search primitives in [27]
and decision primitives in [28].

Lemma 2 ([27, 28]). Let Q = (Qi)i and P = (Pi)i be distribution ensembles over the support
∏

i Ωi

satisfying ML(Pi|ai, Qi|ai) ≤ 2−λ/2 ≤ 1/4 for any i and ai ∈
∏

j<i Ωj . If a search primitive ΠQ is λ-bit

secure, then ΠP is (λ−3)-bit secure. If a decision primitive ΠQ is λ-bit secure, then ΠP is (λ−8)-bit secure.

They showed the above results for a more general class of λ-efficient divergences [27, 28]. We demonstrate
that similar effects can be obtained by using the Hellinger distance.

3.1 Security for Search Primitives

Let Q = (Qi)i and P = (Pi)i be distribution ensembles over the same support
∏

i Ωi. We consider P and Q
satisfying HD(Pi|ai, Qi|ai) ≤ 2−λ/2 for any i and ai ∈

∏
j<i Ωj . We call such a pair (P,Q) a 2−λ/2-Hellinger

close pair. We show that this closeness is sufficient for preserving bit security.

Theorem 1. Let ΠQ be a primitive for which an n-bit security game GQ
A is defined for n > 1. For any

2−λ/2-Hellinger close pair (P,Q), if ΠQ is λ-bit secure, then ΠP is (λ− 3)-bit secure.

Proof. Let ϵQA be the success probability of an adversary A in GQ
A, and TA the running time of A. Since Π

is λ-bit secure, it holds that ϵQA/TA ≤ 2−λ for any A. It is sufficient to show that ϵPA/TA ≤ 2−(λ−3), where
ϵPA is the success probability of A in GP

A.

We consider ℓ independent plays of GQ
A and define µQ

ℓ to be the probability that A succeeds in at least

one out of ℓ plays of GQ
A. Namely, µQ

ℓ = 1 − (1 − ϵQ)ℓ. We define µP
A analogously. Since the number of

queries to the distribution ensemble is at most TA in each play, it holds that∣∣∣µP
ℓ − µQ

ℓ

∣∣∣ ≤ SD
(
P ℓ, Qℓ

)
≤
√

2ℓTA · 2−λ/2,
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where P ℓ is the ℓ-fold product of P , the first inequality is by the data processing inequality, and the second
inequality follows from Lemma 1. Thus,

(1− ϵQA)
ℓ ≤

√
2ℓTA · 2−λ/2 + (1− ϵPA)

ℓ.

By the fact that (1− x)ℓ ≥ 1− ℓx for x ∈ [0, 1] and setting ℓ = 1/µP
A, it holds that

1−
ϵQA
ϵPA

≤

√
2TA · 2−λ

ϵPA
+ (1− ϵPA)

1/ϵPA <

√
2TA · 2−λ

ϵPA
+ e−1,

where we use the relation that (1− 1/x)x < e−1 for x > 0. By rewriting the inequality,(√
ϵPA −

√
TA · 2−λ

√
2(1− e−1)

)2

<
ϵQA

1− e−1
+

TA · 2−λ

2(1− e−1)2
.

It holds that √
ϵPA <

√
ϵQA

1− e−1
+

TA · 2−λ

2(1− e−1)2
+

√
TA · 2−λ

√
2(1− e−1)

.

Squaring both sides gives that

ϵPA
TA

<
ϵQA

(1− e−1)TA
+

2−λ

(1− e−1)2
+

√
2 · 2−λ/2

1− e−1

√
ϵQA

(1− e−1)TA
+

2−λ

2(1− e−1)2
.

Since ϵQA/TA ≤ 2−λ, we have ϵPA/TA < 7.851 · 2−λ < 22.973 · 2−λ. Therefore, the statement follows.

3.2 Security for Decision Primitives

Next, we show that the closeness of 2−λ/2 in the Hellinger distance is sufficient for preserving λ-bit security
even for decision primitives.

Theorem 2. Let ΠQ be a primitive for which a 1-bit security game GQ
A is defined. For any 2−λ/2-Hellinger

close pair (P,Q), if ΠQ is λ-bit secure, then ΠP is (λ− 6.667)-bit secure.

Proof. Suppose for contradiction that ΠP is not (λ−6.667)-bit secure. Namely, there exists an adversary A for

ΠP with running time TA such that αP
A(2β

P
A−1)2 > TA/2

λ−6.667, where αQ
A and βQ

A are the output probability

and the conditional success probability of A. Since ΠQ is λ-bit secure, we have αQ
A(2β

Q
A − 1)2 ≤ TA/2

λ,

where αQ
A and βQ

A are the corresponding probabilities for ΠQ. Let α = min{αQ
A, α

P
A}.

We define the games G̃Q
A and G̃P

A such that they are the same as GQ
A and GP

A with the difference that
the adversary can restart the game with fresh randomness at any time. Consider the adversary B that runs
A repeatedly until either the output value is different from ⊥ or B runs A in total 1/α times, and outputs

the same value as A does in the former and ⊥ in the latter. Let αQ
B and βQ

B be the output probability and

the conditional success probability, respectively when playing G̃Q
B . We also define αP

B and βP
B analogously.

Then, it holds that βQ
B = βQ

A and βP
B = βP

A . The running time of B satisfies TB ≤ TA/α. It follows from the
data processing inequality and Lemma 1 that

βP
B − βQ

B ≤
√

2TB · 2−λ/2.

Hence, we have

2βP
B − 1 ≤ 2βQ

B − 1 +

√
8TB

2λ
.

6



Since βQ
B = βQ

A , it holds that

2βQ
B − 1 = 2βQ

A − 1 ≤
√

TA

α 2λ
.

It follows from the above inequalities that

2βP
A − 1 = 2βP

B − 1 ≤
√

8TB

2λ
+

√
TA

α 2λ
≤
(√

8 + 1
)√ TA

α 2λ
.

Then, we have
TA

α (2βP
A − 1)2

≥ 2λ(√
8 + 1

)2 > 2−(λ−3.874).

If α = αP
A, the above inequality implies that ΠP is (λ− 3.874)-bit secure. Otherwise, we have

αQ
A = α <

TA

2λ−3.874(2βP
A − 1)2

<
αP
A

26.667−3.874
= 2−2.793 · αP

A,

where the last inequality follows from the assumption. The proof of Theorem 1 implies that αP
A < 22.793 ·αQ

A,
which contradicts the above inequality. Therefore, the statement follows.

Limitation of the Statistical Distance

We show that a similar result to Theorem 2 does not hold for the statistical distance. Namely, the closeness
of 2−λ/2 in the statistical distance is not sufficient for preserving security.

As a concrete example, we consider a modified one-time pad encryption scheme ΠQ. The probabilistic
encryption function for messages over {0, 1}λ is defined to be

Enck(m) =

{
(1,m) with probability 2−λ

(0,m⊕ k) with probability 1− 2−λ
,

where k ∈ {0, 1}λ is a key sampled according to a distribution Q. Here we assume that Q is the uniform
distribution over {0, 1}λ. Consider a distinguishing game in which, for a random secret b ∈ {0, 1}, an attacker
tries to predict b given m0, m1, and Enck(mb). The attacker can easily find the corresponding message if
the first bit of the ciphertext is 1. Otherwise, the scheme is perfectly secure, and thus the attacker has no
advantage in the distinguishing game. Let A be an attacker such that given m0,m1,Enck(mb) = (c1, c2),
where c1 ∈ {0, 1}, c2 ∈ {0, 1}λ, A outputs b such that c2 = mb if c1 = 1, and ⊥ otherwise. Then,

TA

αQ
A(2β

Q
A − 1)2

≥ TA

2−λ
≥ 2λ.

Since other adversaries cannot achieve a higher advantage than 2−λ, ΠQ has λ-bit security.
Let P be a distribution over {0, 1}λ such that

P (x) =


2−λ + 2−λ/2 x = 0λ

0 x ∈ S

2−λ otherwise

,

where |S| = 2λ/2. One may consider S a set of strings starting with 1λ/2. It holds that SD(P,Q) = 2−λ/2.
Consider an adversary A′ such that when c1 = 1, A′ outputs b satisfying c2 = mb. When c1 = 0, A′ outputs
b such that c2 = mb if c2 ∈ {m0,m1}, and ⊥ if c2 /∈ {m0,m1}. For this adversary A′, it is not difficult to see
that αP

A′ = 2−λ +(1− 2−λ)(2−λ +2−λ/2) ≥ 2−λ/2 and βP
A′ = 1. Thus, the bit security of ΠP is at most λ/2.

This indicates that the closeness of 2−λ/2 in the statistical distance may reduce the bit security by half.
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4 Relations between Max-Log Distance and Hellinger Distance

We show that the Hellinger distance is bounded above by the max-log distance when the max-log distance
is less than

√
2− 1. Namely, the Hellinger distance gives a tighter evaluation of closeness when the distance

is small.

Proposition 1. Let P and Q be distributions over Ω with the same support S ⊆ Ω. Then, HD(P,Q) ≤
ML(P,Q) as long as ML(P,Q) ≤

√
2− 1.

Proof. It follows from the relation between the Hellinger distance and the chi-square divergence (cf. [18])
that

HD(P,Q) ≤
√

1

2

∑
x∈S

(P (x)−Q(x))2

Q(x)
,

where S ⊆ Ω is the support of P and Q. Then,

HD(P,Q) ≤

√√√√1

2

∑
x∈S

Q(x)

(
P (x)

Q(x)
− 1

)2

≤

√√√√1

2

∑
x∈S

Q(x) ·max
x∈S

∣∣∣∣P (x)

Q(x)
− 1

∣∣∣∣2 =
1√
2
max
x∈S

∣∣∣∣P (x)

Q(x)
− 1

∣∣∣∣ .
Let ML(P,Q) = ϵ. By definition, for any x ∈ S,

e−ϵ ≤ P (x)

Q(x)
≤ eϵ.

Since we have the relations ey − 1 ≤ y + y2 and 1− e−y ≤ y + y2 for any y ≥ 0, it holds that

HD(P,Q) ≤ 1√
2
(ϵ+ ϵ2) ≤ ϵ,

where the last inequality holds for 0 ≤ ϵ ≤
√
2− 1.

Next, we give a concrete example of distributions for which an exponential gap exists. We show that, for
a uniform distribution Q over {0, 1}n, there is a distribution P such that ML(P,Q) = 0.6 and HD(P,Q) ≤
0.6 · 2−n/2.

Proposition 2. Let Q be the uniform distribution over Ω with |Ω| ≥ 4. There is a distribution P over Ω
such that

ML(P,Q) = ϵ and HD(P,Q) ≤

√
3(ϵ+ ϵ2)

8|Ω|

for any ϵ ∈ [0, 0.618].

Proof. Let M = |Ω|. We define P such that

P (x) =


M−1 · eϵ x = x0

M−1 · e−ϵ x = x1

(M − 2)−1 ·
(
1−M−1(eϵ + e−ϵ)

)
x /∈ {x0, x1}

.

First we show that ML(P,Q) = ϵ. It is clear from the definition that | lnP (x)− lnQ(x)| = ϵ for x ∈ {x0, x1}.
For x /∈ {x0, x1}, we need to show that

M−1 · e−ϵ ≤ (M − 2)−1 ·
(
1−M−1(eϵ + e−ϵ)

)
≤ M−1 · eϵ,

which can be rewritten as

M ≥ max

{
eϵ − e−ϵ

1− e−ϵ
,
eϵ − e−ϵ

eϵ − 1

}
.
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Since the right-hand side is at most 4 for ϵ ≥ 0, we have ML(P,Q) = ϵ.
Next, we give an upper bound on HD(P,Q). Recall that HD(P,Q) =

√
1− HA(P,Q) and HA(P,Q) =∑

x∈Ω

√
P (x) ·Q(x). For x /∈ {x0, x1},

P (x) =
1

M − 2

(
1− 1

M
(eϵ + e−ϵ)

)
≥ 1

M − 2

(
1− 1

M
(2 + ϵ+ ϵ2)

)
=

1

M

(
1− ϵ+ ϵ2

M − 2

)
,

where the inequality follows from the fact that ex + e−x ≤ 2 + x+ x2 for 0 ≤ x ≤ 1. By using the relation
that ex + e−x ≥ 2 for 0 ≤ x ≤ 1, we have

HA(P,Q) =
√
P (x0)Q(x0) +

√
P (x1)Q(x1) +

∑
x∈Ω\{x0,x1}

√
P (x)Q(x)

≥ 2

M
+

M − 2

M
·
√
1− ϵ+ ϵ2

M − 2
.

Thus,

HD(P,Q)2 ≤ 1− 2

M
− M − 2

M
·
√
1− ϵ+ ϵ2

M − 2

≤ 1− 2

M
− M − 2

M

(
1− ϵ+ ϵ2

2(M − 2)
− 1

2

(
ϵ+ ϵ2

M − 2

)2
)

=
ϵ+ ϵ2

2M

(
1 +

ϵ+ ϵ2

2(M − 2)

)
≤ 3(ϵ+ ϵ2)

8M
,

where the second and the last inequalities follow from
√
1− x ≥ 1 − x/2 − x2/2 for 0 ≤ x ≤ 1 and

(ϵ+ ϵ2)/(2(y − 2)) ≤ 1/4 for ϵ ∈ [0, 0.618] and y ≥ 4, respectively. Hence, the statement follows.

5 Randomness Extraction via Hellinger Distance

We focus on the problem of randomness extraction from entropy sources. The min-entropy of random
variable X over {0, 1}n is Hmin(X) = minx∈{0,1}n log2(1/Pr[X = x]). Randomness extractors are usually
defined as a seeded function that maps any entropy source to a distribution that is close to the uniform
distribution in the statistical distance. For n ∈ N, we denote by Un the uniform distribution over {0, 1}n.

Definition 2 (Randomness Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to be
a (k, ϵ)-(strong) extractor if for every distribution X over {0, 1}n of Hmin(X) ≥ k, it holds that
SD((Ext(X,Ud), Ud), Um+d) ≤ ϵ, where X and Ud are independent.

For (strong) extractors, the input entropy is k + d, and the output length is m + d. The difference
(k + d) − (m + d) = k − m is called the entropy loss of extractors. The entropy loss is unavoidable.
Radhakrishnan and Ta-Shma [32] showed that it must be at least 2 log(1/ϵ)−O(1).

It is known that a universal family of hash functions gives an extractor with optimal entropy loss. A
random hash function H : {0, 1}n → {0, 1}m from a family H of hash functions is called universal if for any
distinct x, x′ ∈ {0, 1}n, Pr[H(x) = H(x′)] ≤ 2−m. Specifically, let |H| = 2d and m = k − 2 log(1/ϵ). Then,
extractor Ext defined by Ext(x,H) = H(x) is a (k, ϵ/2)-strong extractor. This result is known as the leftover
hash lemma [6, 20]. The main technical lemma is a bound on the collision probability. For a random variable
X, the collision probability of X is

cp(X) = Pr[X = X ′] =
∑
x

Pr[X = x]2,

where X ′ is an independent copy of X.

9



Lemma 3 (The Leftover Hash Lemma [6, 20]). Let X be a random variable over {0, 1}n with Hmin(X) ≥ k.
Let H : {0, 1}n → {0, 1}m be a random hash function from a universal family H. Then, cp(H(X),H) ≤
2−d · (2−m + 2−k).

We define a notion of extractors for which the output distribution is close to uniform in the Hellinger
distance.

Definition 3 (Hellinger extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to be a (k, ϵ)-
(strong) Hellinger extractor if for every distribution X over {0, 1}n of Hmin(X) ≥ k, it holds that
HD((Ext(X,Ud), Ud), Um+d) ≤ ϵ, where X and Ud are independent.

It follows from (2) that if Ext is a (k, ϵ)-Hellinger extractor, then it is also a (k,
√
2ϵ)-extractor.

We use the following useful lemma of Chung and Vadhan [9] for proving a leftover hash lemma for the
Hellinger distance.

Lemma 4 ([9, Lemma 3.12]). Let X be a random variable over {0, 1}n. If cp(X) ≤ α/2n, then HA(X,Un) ≥√
1/α.

We show that a universal family of hash functions gives a Hellinger extractor with optimal entropy loss.

Theorem 3 (Leftover Hash Lemma for Hellinger). Let H : {0, 1}n → {0, 1}m be a random hash function
from a universal family H with |H| = 2d,m = k + 1 − 2 log(1/ϵ). Then, function Ext : {0, 1}n × {0, 1}d →
{0, 1}m defined by Ext(x,H) = H(x) is a (k, ϵ)-Hellinger extractor.

Proof. Let X be a random variable over {0, 1}n with Hmin(X) ≥ k. It follows from Lemma 3 that

cp(H(X),H) ≤ 2−d ·
(
2−m + 2−k

)
=

α

2m+d
,

where α = 1 + 2m−k. By Lemma 4, we have that HA((H(X),H), Um+d) ≥ α−1/2. Then, it holds that

HD((H(X),H), Um+d) =
√

1− HA((H(X),H), Um+d)2

≤
√

1− α−1/2 =

√
1− (1 + 2m−k)

−1/2

≤
√
1− (1− 2m−k−1) =

√
2m−k−1 = ϵ,

where the last inequality follows from the fact that (1 + x)−1/2 ≥ 1 − x/2 for x ≥ 0. Hence, the statement
follows.

Since we have the relation that SD(P,Q) ≤
√
2 · HD(P,Q), the lower bound of [32] implies that the

entropy loss of Theorem 3 is also optimal.

Entropy Loss of Randomness Extractors in Security Games

We consider the situations in which a uniform distribution is employed in security games, and we would like
to replace it with an output of randomness extractors. Let Π be a primitive with an n-bit security game GQ

A

such that the uniform distribution Q = Um is employed. Suppose that Π has λ-bit security.
Theorems 1 and 2 imply that for preserving the bit security when replacing Q with P , it is enough to

hold HD(P,Q) ≤ 2−λ/2. Regarding the statistical distance, the closeness of 2−λ is sufficient for preserving
security.

A universal family of hash functions can achieve the security of extractors for both distances. When using
the statistical distance, the entropy loss for achieving SD(P,Q) ≤ 2−λ is k −m = 2(λ− 1). By Theorem 3,
the entropy loss for HD(P,Q) ≤ 2−λ/2 is k−m = λ−1. Thus, by analyzing security games via the Hellinger
distance, the entropy loss for preserving λ-bit security can be reduced by half.

10



Acknowledgments

This work was supported in part by JSPS Grants-in-Aid for Scientific Research Numbers 16H01705,
17H01695, and 18K11159.

References

[1] Agrawal, R.: Samplers and extractors for unbounded functions. In: Achlioptas, D., Végh, L.A. (eds.)
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge,
MA, USA. LIPIcs, vol. 145, pp. 59:1–59:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

[2] Bai, S., Lepoint, T., Roux-Langlois, A., Sakzad, A., Stehlé, D., Steinfeld, R.: Improved security proofs in
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