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Abstract—Deep Learning Side-Channel Attacks (DLSCAs)
have become a realistic threat to implementations of crypto-
graphic algorithms, such as Advanced Encryption Standard
(AES). By utilizing deep-learning models to analyze side-channel
measurements, the attacker is able to derive the secret key of the
cryptographic alrgorithm. However, when traces have multiple
leakage intervals for a specific attack point, the majority of exist-
ing works train neural networks on these traces directly, without
a preprocess step for each leakage interval. This degenerates
the quality of profiling traces due to noise and non-primary
components. In this paper, we first divide the multi-leaky traces
into leakage intervals and train models on different intervals
separately. Afterwards, we concatenate these neural networks
to build the final network, which is called multi-input model.
We test the proposed multi-input model on traces captured from
STM32F3 microcontroller implementations of AES-128 and show
a 2-fold improvement over the previous single-input attacks.

Index Terms—Side-channel attacks, Multiple leakage, Multi-
input model, AES, Deep learning

I. INTRODUCTION

Side Channel Attacks (SCAs) [1] are first proposed over
20 years ago and have become a realistic concern in the
hardware security community. By analysing the unintentional
physical leakage during the execution of the cryptographic
algorithms, SCAs are able to break ciphers that are assumed to
be mathematically secure. Since Kocher in 1996 [1] introduced
the attack to reveal secrets from time, many other types
of leakage have been proposed. For example, leakages via
acoustic channels [2], power consumption [3], electromagnetic
(EM) emissions [4], [5], and photon emissions [6] are now
widely studied.

Recently, with advances in deep learning [7], SCAs can
be more effective than conventional cryptanalysis and is more
practical to mount. Since well-trained deep learning models are
good at extracting features from raw data, they can help the
attacker to find correlations between physical measurements
and the internal state of the processing algorithm. Maghrebi
et al. first applies deep-learning techniques to side-channel
attacks’ context in 2016 [8], in which they investigate how
Multi-layer Perceptron (MLP) and Convolutional Neural Net-
work (CNN) could make the SCAs more efficient. Subse-
quently, many softwares [5], [9]–[11] and hardwares [12]–[15]
implementated with AES have been broken by DLSCAs. In
[16], Cagli et al. evaluates the CNN network’s performance in

datasets with jitter based on countermeasure. In [9], Huanyu
et al. study the impact of how diversity of target chips affects
side-channel attacks. In [17], the influence of the depth of
the network model on DLSCAs is studied by visualising
the heatmap. These papers provide strong evidence for the
effectiveness of deep learning in the field of side channel
attacks, demonstrating the powerful potential of deep learning
for SCAs.

In most existing DLSCAs, neural networks are trained by
traces labeled by a single attack point. The attack point is
a certain point in the encryption algorithm where known
information (e.g., plaintext, ciphertext) and physical leaks can
be linked for key recovery (note: this point is a continuous
state, e.g. the entire process of SBox’s output). The link
between the power traces and the intermediate state is used
to build a model that can be used to recover the victimised
device’s keys. There are several different attack points in AES
with varying degrees of information leakage on power traces
(e.g. SubBytes, ShiftRows, MixColumns in the first round of
AES and AddRoundKey before the first round of AES). This
means that each attack point can be used to recover the key by
building a network model. This may have been noted before,
but the advantages of attack points corresponding to multiple
leaks have not been fully explored. Therefore, this paper uses
a multi-input model to explore the benefits of using multiple
leaks to recover keys.

Notice: The phenomenon of multiple leaks refers to the fact
that a single attack point is leaked multiple times in power
traces.

A. Our Contributions

In this paper, our main contributions could be summaried
as:

• We propose a new multi-input model structure applied
to the case where multiple leaks exist in power traces.
The Concatenate layer is used for the fusion of the input
layers and then two different connection methods are
compared.

• Our results show that there are multiple leaks when the
SBox’s output of the first round of the AES algorithm is
the attack point. The same phenomenon happens in the
last round of the AES algorithm. When the SBox’s input



of the last round is used as the attack point, we can also
get that it corresponds to multiple leaks.

• Byte 5, Byte 6, Byte 7 and Byte 8 are chosen for
the experiments and the results show that leakage of
ShiftRows has a positive effect on the model when the
SBox’s output is used as the attack point.

• Our experimental results on the STM32 implementation
of AES demonstrate that when using a multi-input model
to recover keys with multiple leakage in power traces, the
last round will outperform the first round because there
are two AddRoundKey phases in the last round being used
for the trained multi-input model.

• Finally, we validate this method’s generality using the
Screaming Channel dataset [18] and the AES GPU
dataset [19], and show that multi-input model achieves
a 2-fold improve.

B. Paper Organization

The rest of the paper is organised as follows. In Section II,
we analyse the causes of multiple leakages and build the multi-
input model for the experiments. In Section III, the dataset
used for the experiments and the experimental results of the
multi-input model for multi-leaky traces are briefly described
and the results are analysed. We conclude our work and discuss
future directions in Section IV.

II. MULTI-LEAKAGE AND MULTI-INPUT MODEL

This section first analyses the principles of leakage for
different attack points in AES [20], then describes the reasons
why a specific attack point corresponds to multiple leakages,
and finally describes the structure of the multi-input model
and how to use it to solve the multiple leakage problem.

A. Leakage Analysis

Power consumption of the cryptographic device mainly
derives from the bit transitions in the CMOS cells. Thus
data processed in the device dominate its power dissipation.
As previous researchs on SCAs [8], [21], attackers have
commonly chosen the output of the SBox as the attack point
for recovering keys from device, based on the fact that the
non-linear output of the SBox has a higher level of confusion.
However, in the AES algorithm, not only the output of the
SBox that can be used as a attack point, other phases of key-
related information can also be used. Next, we analyse the
first and last rounds of the AES algorithm according to the
principles of Correlated Power Analysis (CPA). Then we can
determine the attack points that can be used. As the attack
points shown in Fig. 1, F leak is attack points in the first
round and L leak attack points in the last round.

CPA is based on the Pearson Correlation Coefficient [22], a
method that uses statistical power analysis on the correlation
between real power consumption data obtained from the target
device when it performs cryptographic operations and exper-
imentally calculated hypothetical power consumption values.
The critical aspect of CPA to recover the key is to determine
the leakage function (i.e. the intermediate value in CPA and

Fig. 1. Attack points.

the label in deep learning) at the attack points in the AES
algorithm.

In Fig. 1, F leak 1 represents the AddRoundKey’s output
before the first round of the AES algorithm, and the CPA
needs to construct the leakage function VF leak 1 when it picks
F leak 1 as the attack point, which is denoted by VF leak 1:

VF leak 1 = Pt⊕Key 0

Where Pt represents the plaintext and Key 0 represents the
original key (the Key i(i ∈ [1, 10]) is obtained by the Key
Expansion [20] of Key 0).

In Fig. 1, F leak 2 represents the output of the SubBytes
in the first round of the AES algorithm (i.e. the output of the
SBox), and the leakage function VF leak 2 for F leak 2 as a
attack point is expressed as:

VF leak 2 = SBox(Pt⊕Key 0).

In Fig. 1, F leak 3 represents the output of the ShiftRows
in the first round of the AES algorithm. The ShiftRows is a
cyclic shift operation performed on different rows in the AES
algorithm, keeping the first row unchanged, moving the second



row one byte to the left, the third row two bytes to the left, and
the fourth row three bytes to the left. Thus the leakage function
VF leak 3 for F leak 3 as a point of attack is expressed as:

VF leak 3i =


VF leak 2i+0 i = 1, 5, 9, 13
VF leak 2i+4 i = 2, 6, 10, 14
VF leak 2i+8

i = 3, 7, 11, 15
VF leak 2i+12

i = 4, 8, 12, 16

Where i denotes the i-th byte, and i + n = i + n − 16
(n = 0, 4, 8, 12) when i+ n > 16 in the formula.

In Fig. 1, F leak 4 represents the output of the MixColumns
in the first round of the AES algorithm. The MixColumns is
achieved by multiplying matrices in a finite field GF(28) as
follows, where a = VF leak 3 denotes the middle state of the
ShiftRows’s output and b = VF leak 4 denotes the middle state
of the MixColumns’s output.

b1,r
b2,r
b3,r
b4,r

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



a1,r
a2,r
a3,r
a4,r

 .
Where 1, 2, 3, 4 represent the rows in a 4 × 4 matrix and

r(r = 1, 2, 3, 4) is labelled as the column of the matrix. In the
above equation, the a’s left multiplication matrix is a fixed
matrix of MixColumns. Therefore, when byte 5, byte 6, byte
7 and byte 8 in the second column are used as target bytes,
the leakage function VF leak 4 is expressed as:

VF leak 4i =


[2× a5]⊕ [3× a6]⊕ a7 ⊕ a8 i = 5
a5 ⊕ [2× a6]⊕ [3× a7]⊕ a8 i = 6
a5 ⊕ a6 ⊕ [2× a7]⊕ [3× a8] i = 7
[3× a5]⊕ a6 ⊕ a7 ⊕ [2× a8] i = 8

Where a = VF leak 3 and i represents the i-th byte. ’×’
denotes a multiplication operation in a finite field and ’⊕’
denotes the XOR operation.

In the last round of the AES algorithm, the leakage function
VL leak is calculated in a similar way to the leakage function
VF leak in the first round. The leakage function for the last
round VL leak is shown in Table I. Notice that the relevant
information for Key10 present in the last round and in round
9 at same time.

TABLE I
LEAKAGE FUNCTION CORRESPONDING TO DIFFERENT ATTACK POINTS IN

THE LAST ROUND.

VL leak 1 Ct ⊕ Key 10

VL leak 2

VL leak 1i i = 1, 5, 9, 13
VL leak 1i+12 i = 2, 6, 10, 14
VL leak 1i+8 i = 3, 7, 11, 15
VL leak 1i+4 i = 4, 8, 12, 16

VL leak 3 SBox−1(VL leak 2)
VL leak 4 VL leak 3 ⊕ Key 9

VL leak 5i

i ∈ [5, 8]

[E × a5] ⊕ [B × a6] ⊕ [D × a7] ⊕ [9 × a8]
[9 × a5] ⊕ [E × a6] ⊕ [B × a7] ⊕ [D × a8]
[D × a5] ⊕ [9 × a6] ⊕ [E × a7] ⊕ [B × a8]
[B × a5] ⊕ [D × a6] ⊕ [9 × a7] ⊕ [E × a8]

Where Ct is the ciphertext, Key 10 is the extended key for
round 10, Key 9 is the extended key for round 9, and SBox−1

denotes the inverse of SBox. In the last row of Table I, ai
is used in place of VL leak 4 and i(i = 5, 6, 7, 8) represents
number of the bytes. In Table I, 9, B,D,E are the hexadecimal
values in the inverse MixColumns’s left multiplication matrix
in AES.

B. Label for Multi-input Model

The attacker has build leakage models in order to charac-
terise the relationship between power consumption and attack
points. Hamming Weight (HW) and Hamming Distance (HD)
models are reasonable estimations but suffer from the issue
of class imbalance in practice owing to Bernoulli Distribution
[23]. The value model (identity (ID) model) assumes the power
consumed by the device is propotional to the data processed
at the attack point. We use ID model in our experiment to
distinguish different power traces.

There is a correspondence between the attack point and the
leakage function (the leakage function are defined as label
in deep learning), and we can build a network model for
recovering the key according to each attack point. However,
in the process of this attack, the connection between different
attack points in the AES algorithm and the feature that each
attack point is correlated with the same key are not taken
into account. In order to combine information from multiple
attack points, we propose a multi-input model. Because each
attack point corresponds to a different leakage function (e.g.
the leakage function when the output of the AddRoundKey is
used as the attack point is different from the leakage function
of the SBox’s output), and because there is only one output in
the multi-input model, the leakage function VF leak of multiple
attack points need to be unified. The following describes the
way to unify the leak functions of different attack points and
the reason why multiple leakages can exist at one attack point.

The first round of AES is used as an example to investigate
the relationship between leakage functions at different attack
points. We use the leakage function of VF leak 2 instead of the
other leakage functions as label for the multi-input model. By
replacing VF leak 1 with VF leak 2, the one-to-one non-linear
transformation of SBox does not affect the classification of
the network model (e.g. after replacing all the labels of cats
with dogs and all the labels of dogs with pigs in image classi-
fication, results show that the accuracy of the network model
training does not change). The ShiftRows’s leakage function
simply shifts VF leak 2 without changing it, so VF leak 2 can
be used instead of VF leak 3. The leakage function VF leak 4

for one byte in MixColumns is obtained from four different
bytes of the VF leak 2 by the XOR operation, and VF leak 2 is
used as part of the MixColumns leakage function, so VF leak 2

can be used instead of VF leak 4 (e.g. when the AddRoundKey
is used as a specific attack point, the Key can be used as
the model’s label). The leakage function for multiple attack
points is unified as VF leak 2. This is the first step in building
a multi-input model, which is described below.



Fig. 2. Structural diagram of the multi-input model.

C. Construction of Multi-input Model

The basic architecture used in this work is a CNN with
multiple input layers, as shown in Fig. 2. The multiple inputs
are merged and connected to a Convolutional layer consisting
of 32 neurons, then they are expanded by Flatten layer after
passing through a three-strides MaxPooling layer. Afterwards,
they are connected to two Dense layers of 128 neurons.
Finally, a Dense layer with a Softmax activation function is
used to generate 256 output predictions. The Convolutional
layer and Dense layers are activated by function with Rectified
Linear Units (ReLU).

Using the Merged layer is an important aspect when build-
ing multi-input models, providing the DNN architecture with
great flexibility. Two fusion techniques are commonly used in
existing works are early fusion, and late fusion [24], [25] (i.e.
early use of the merged layer and late use of the merged layer).
Early fusion is the combination of multiple inputs which are
then connected to the first layer of the DNN. In the late fusion
architecture, features are first extracted from the input data of
individual channels. The specific information of the channels
is eventually merged and processed in further network model
layers responsible for the classification based on the extracted
features.

We find that the late fusion network model is less accurate
than the early fusion network model. Therefore, in the paper
we only conduct experiments for the early fusion network
model.

There are furthermore different types of methods to merge
layers within DNN architectures, which are explained below:

• Add: Returns the element-wise sum of two inputs
• Subtract: Returns element-wise subtracts two inputs
• Multiply: Returns element-wise multiplication of in-

puts
• Average: Returns element-wise average of the inputs
• Maximum: Returns element-wise maximum of the inputs
• Minimum: Returns element-wise minimum of the inputs
• Concatenate: Returns concatenation of the inputs

In this paper, we choose the most commonly used Concate-
nate layer for our own experiments.

D. Method for Multi-input Model

In the AES GPU [26], when the author use a template
attack to recover the last byte of the key, they find that there are
two discontinuous leakage intervals of that byte. However, the
authors only choose the segment with higher Signal-to-Noise
Ratio (SNR) [27] power traces as the experimental interval
and don’t consider about the impact of the segment with lower
SNR on recovering the key. In the Screaming Channel dataset
[18], the authors also find a specific attack point corresponding
to multiple different leakage intervals when looking for POI
but they choose only the highest SNR interval.

These works are two common ways of handling multiple
leaks when the leaks are found. When different leakage
intervals are close, the power traces of all the leakage in-
tervals can be intercepted and used for experiments. When
different leakage intervals are not close to each other, the
interval with higher SNR is usually chosen as the experimental
analysis interval. But the disadvantages of both methods are
obvious. When a partially leakage interval is selected for
experimentation, useful information for recovering the key
may lost. When the leakage intervals are all selected, the
intervals contain a lot of non-essential information, useless
information or even interfering information for recovering the
key. However, when a specific attack point corresponds to
multiple discontinuous leakage intervals, we train a multi-
input model by manually prioritising the extraction of each
leaking segment and using the method in section II-B to make
the same label for the leakage interval. This treatment makes
full use of the information in each segment that is useful for
key recovery, and by prioritising the extraction, also removes
information that is not essential for key recovery.

Finally we apply the multi-input models to the AES GPU
and Screaming Channel datasets in Section III-F to obtain
state-of-the-art results. Next we validate the advantages of the
multi-input model on multiple leakage power traces for the
STM32 implementation of AES.

III. EXPERIMENTAL RESULTS

In this section, we first present the dataset used for the
experiments and the evaluation metrics for the experiments.
Then the validity of the multi-input model for multiple leakage
power traces is verified. Finally, the experimental results are
discussed and the experiments are validated on two other well-
known datasets.

A. Dataset

The dataset used in the paper was captured by a
ChipWhisperer-Lite [28] device at a sampling frequency of
40MHz. The experimental target cryptographic board is the
CW308T-STM32F3, and the target cryptographic chip is the
Arm Cortex M4, which runs the cryptographic algorithm
TinyAES. The encryption mode of operation is the Electric
Code Book (ECB) mode. For the first and last rounds of the
AES algorithm, 60K power traces are captured as the experi-
ment’s dataset, in which, 50K are used as the training set used
for the profiling phase using random plaintext and random key,



(a) (b)

Fig. 3. (a) An example trace which represents the first round of AES; (b)
The trace represents the last round of AES.

and 10K are used as the test set for the experiments using
random plaintext and fixed key. Each power trace contains
4000 sampling points as shown in Fig. 3.

B. Evaluation Metrics

Model accuracy is defined as the probability of a model
achieving correct classification results on a test set. As one
of the most commonly used model evaluation metrics in
machine learning, model accuracy is used to characterise a
model’s ability to classify data. An increase in model accuracy
indicates that the backpropagation algorithm’s optimization
of the weights and bias parameters gradually converges to
the correct values, and the model gradually converges to the
optimal model. The loss of a model characterises the degree
of deviation between a model’s predicted and actual values.
The smaller the loss is the closer the model’s prediction is to
the actual value. The loss function used in this experiment is
the Categorical Crossentropy. The formula for the accuracy
of the model is:

acc(Xattack) =
|{xi ∈ Xattack}k̃|

Xattack
.

Where Xattack denotes the test dataset, xi denotes the ith
power trace in that dataset, k̃ denotes the calculation result,
and xi ∈ Xattack is the set of all power traces when the guess
keys are all equal to the correct key. The model’s accuracy is
the ratio of the number of power traces when the guessed key
is equal to the correct key to the total number of power traces
in all the test sets.

C. Results of The Multi-input Model on The First Round

In our experiments, we use the ρ-test as a leak detection
method [29] to find the Point of Interest (POI) of each byte
of the attack point. The POI of the first round of the AES
algorithm is shown in Fig. 4. To simplify our experiments,
we choose the 5th byte as the byte for the experimental
demonstration. The validation of other bytes is also the same.

Fig. 4 shows five regions divided by red lines as A, B,
C, D and E, representing the AddRoundKey before the first
round of the AES algorithm, and the SubBytes, ShiftRows,
MixColumns and AddRoundKey in the first round. We use the
same leakage function (i.e. the leakage function for the first
round of SBox’s output which is noted as Sout), and it is easy
to see from Fig. 4 that the E part (i.e. the AddRoundKey in

Fig. 4. POI of all bytes of the first round of the AES algorithm and the POI
of the 5th byte.

TABLE II
RESULT OF THE 5TH BYTE OF THE SINGLE INPUT MODEL.

Input section POI interval Accuracy
AddRoundKey (A) [315:375] 11.40%
SubBytes (B) [890:950] 48.27%
ShiftRows (C) [1690:1750] 0.85%
MixColumns (D) [2000:2300] 0.47%

the first round) does not contain the leaked information of the
Sout. The key in the E (i.e. AddRoundKey in the first round
) of the encryption process is the first round of keys, where
the output of MixColumns is used as plaintext. From part D,
it can be concluded that some of the Sout are still leaked
in the MixColumns. However, the part E does not leak the
Sout information, indicating that the Sout information does
not continue leaking after the MixColumns, proving that the
MixColumns has good protection for the Sout.

Next, the power traces and leakage function of byte 5 are
matched by a single input model. The part selected by the
green lines in Fig. 4 is the POI corresponding to byte 5. The
results predicted by the trained model on the test set are shown
in Table II.

As shown in Table II, the models can learn intrinsic infor-
mation about power traces and leakage function at the point
of attack from each part of the AES algorithm, which is used
to recover the key-related leakage function (we consider the
model to be effective on the SCAs when the accuracy of the
network model on the test set is higher than 1/256 ≈ 0.39%).

The joint training of multiple leaks is achieved by changing
the inputs to the network. In the experiments, the order in
which the inputs are added was based on the single-input
model’s accuracy on the test set from highest to lowest. For the
MixColumns interval input network model, we use a 5-strides
to change its length so that it is as long as other inputs. When
fusing the input data using the Concatenate layer, the second
(axis = 1) and third (axis = 2) dimensions of the input data
are allowed to fuse by changing the fusion layer’s parameters.
Table III shows the results for byte 5, byte 6, byte 7, and byte
8 when using a multi-input model.



TABLE III
RESULTS FOR BYTE 5, BYTE 6, BYTE 7, AND BYTE 8 IN THE FIRST ROUND OF THE AES ALGORITHM USING MULTI-INPUT MODELS.

Byte 5 Byte 6 Byte 7 Byte 8
POI intervals
(AddRoundKey (A),
SubBytes (B),
ShiftRows (C),
MixColumns (D))

[315:375]
[890:950]
[1690:1750]
[2000:2300]

[345:405]
[1070:1130]
[1585:1645]
[1720:2020]

[375:435]
[1240:1300]
[1645:1705]
[2560:2860]

[410:470]
[1415:1475]
[1670:1730]
[2270:2570]

1 - input models
(Accuracy)

11.40% 21.01% 23.10% 18.04%
48.27% 47.20% 53.77% 48.86%
0.85% 7.63% 1.93% 4.04%
0.47% 2.85% 1.32% 2.82%

2 - input models
(axis = 1, axis = 2)

81.60% 83.27% 86.39% 81.11%
82.67% 83.73% 85.62% 82.06%

3 - input models
(axis = 1, axis = 2)

78.14% 88.29% 86.69% 85.30%
82.51% 90.15% 86.71% 85.16%

4 - input models
(axis = 1, axis = 2)

69.79% 83.79% 75.23% 69.48%
82.87% 91.69% 87.38% 85.64%

Fig. 5. POI for the last round of the AES algorithm.

From Table III, the accuracy of the models in predicting the
correct key can be improved by using multi-input models when
multiple leaks exist. When the fusion layer is being used, its
parameters are changed so that the inputs to the models have
two different states of the union. One is a serial (axis = 1)
connection of the inputs, and the other is a parallel (axis =
2) connection of the inputs. This is the reason why we use
AveragePooling layer for the MixColumns data to make the
data length of the input models consistent. The two connection
types used in the experiments will be discussed later. Next, we
show the results of the last round of the AES algorithm for
the multi-input models.

D. Results of The Multi-input Model on The Last Round

The POI for the last round of the AES algorithm is shown by
Fig. 5. Byte 5, byte 6, byte 7, and byte 8 are the experimental
target bytes, and the results are shown by Table IV.

The five regions J, I, H, G and F in Fig. 5 are divided
by red lines, which represent the last round of AddRoundKey,
ShiftRows, SubBytes and the 9th round of AddRoundKey and
MixColumns of the AES algorithm. In the process of finding
the POI, we used the same leakage function at the attack point
(i.e. the input to the SBox in the last round which is noted
as Sin). There are leaks after the 9th round of ShiftRows.
However, the 9th round of ShiftRows does not leak information
about the Sin, which again proves that MixColumns as a
diffusion layer of the AES algorithm has good protection of
the information.

Because the MixColumns information from round 9 have
an accuracy of less than 0.39% on the test set when used in
the single-input models. This segment of information will be
discarded and will not be involved in the training of the multi-
input models. The conclusion that the multi-input models have
higher accuracy in the presence of multiple leaks in the power
traces was also demonstrated in the last round of the AES
algorithm.

E. Discussion

The results of the two sets of experiments show that the
useing of multiple-input models can effectively improve the
network model’s accuracy when the power traces exhibit as
multiple leaks. Which colud raise the following problems:

• Why are four different bytes used as the target bytes for
the experiment;

• Why are two different connections used for the inputs of
the multi-input models;

• Why are the first and last rounds of the AES algorithm
compared for the experiment.

The AES algorithm operates on a 4 × 4 byte matrix, and
the four bytes selected for the experiments are from different
rows of this matrix. Experimental results show that the 5th
byte is not shifted and it is not possible to use this information
to improve the accuracy of the multi-input model. The other
bytes where ShiftRows operations are present had an accuracy
greater than 0.39% when trained by the network model.
When using multi-input models and adding the ShiftRows
information to the models, the models accuracy improve in
all four bytes except for the 5th byte.

In the paper, we use two different connections when the
inputs to the network model are fused, and experiments
demonstrate better results when the data are connected in
parallel. The results of single-input model indicates that the
accuracy of the different inputs in the model vary considerably.
When serial connections are used, some information that has
less impact on the accuracy of the network model and even
some information that interferes with the classification of the



TABLE IV
RESULTS FOR BYTE 5, BYTE 6, BYTE 7, AND BYTE 8 IN THE LAST ROUND OF THE AES ALGORITHM USING MULTI-INPUT MODELS.

Byte 5 Byte 6 Byte 7 Byte 8
POI intervals
(AddRoundKey (J),
ShiftRows (I),
SubBytes (H),
AddRoundKey (G),
MixColumns (F))

[3170:3230]
[2890:2950]
[2090:2150]
[1510:1570]
[520:580]

[3200:3260]
[2800:2860]
[2305:2365]
[1695:1755]
[855:915]

[3230:3290]
[2835:2895]
[2520:2580]
[1875:1935]
[1190:1250]

[3260:3320]
[2880:2940]
[2580:2640]
[1450:1510]
[410:470]

1 - input models
(Accuracy)

14.73% 13.71% 23.22% 15.41%
0.39% 2.58% 2.48% 2.38%
45.32% 42.04% 48.59% 45.51%
14.27% 22.45% 10.58% 18.64%
0.37% 0.37% 0.33% 0.38%

2 - input models
(axis = 1, axis = 2)

80.41% 88.70% 74.80% 71.49%
82.20% 88.97% 76.16% 83.10%

3 - input models
(axis = 1, axis = 2)

94.71% 91.63% 92.90% 88.83%
95.17% 96.49% 94.75% 96.49%

4 - input models
(axis = 1, axis = 2)

87.96% 94.02% 93.77% 89.47%
94.27% 97.38% 95.10% 96.57%

(a) (b)

Fig. 6. (a) POI of the Screaming Channel dataset; (b) POI of the AES GPU
dataset.

network model is also used for training. This is the reason
why the number of inputs increases but the accuracy of the
network model decreases in a multi-input model. In the case
of parallel connectivity, the higher dimensional data eliminates
this detrimental effect, and this approach has been applied to
image classification [30].

In the multi-input model experiments, the last round of the
AES algorithm used for training has one more AddRoundKey
information than the first round of the leakage interval, but
one less MixColumns information. It is easy to see that
AddRoundKey has a much greater impact on the multi-input
model than MixColumns. So the multi-input model has better
results in the last round.

F. Results of Multi-input Models on Other Datasets

Multiple leakages are also presented in the Screaming
Channel dataset and the AES GPU dataset. The POI for both
datasets are shown by Fig. 6.

In Table V, we compare our work with other existing work.
There is none of the studies using these two datasets recover
the keys via the network model. We show the highest accuracy
and corresponding mean rank [5] for key recovery using the
single-input model while performing the same experiments
using the multi-input model.

TABLE V
COMPARISON OF EXISTING RESULTS AND OUR WORK.

Database Methods Accuracy Mean rank

Screaming Channel
[18] - 14
Single input 3.65% 15
Multi-input 6.25% 8

AES GPU
[26] - 50
Single input 1.74% 37
Multi-input 3.63% 13

As demonstrated in two well-known datasets, multiple leaks
are common in hardware implementations of the AES algo-
rithm.Using multi-input models based on this situation can
improve the accuracy of the model and the efficiency of
recovering keys from the devices.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a multi-input deep-learning model
for side-channel attacks, which is dedicated for the case where
multiple leakage intervals exist in traces. By utilizing these
leakages as separate inputs instead of using the entire trace
for profiling, the trained model can focus more on these leak-
ages. Two well-known publicly available datasets and traces
captured from a STM32 implementation of AES are used
in our experiments. We show that the proposed multi-input
model achieves a 2-fold improvement over the previous single-
input attacks. Besides, we further compare different fusion
layers for connecting leakage intervals. The result shows that
concatenating leakage intervals in parallel outperforms other
approaches.

Future work includes testing the proposed multi-input model
on implementations of other cryptographic algorithms and
mounting similar attacks on devices supporting AES with
other countermeasures. Besides, we plan to further investigate
the multi-leakage phenomena by training new models on other
attack points. Certainly, the most important future work should



be designing countermeasures to against deep-learning based
side-channel attacks.
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