
Key agreement: security / division

Daniel R. L. Brown1

August 31, 2021

Work-in-progress

1danibrown@blackberry.com

Abstract

Some key agreement schemes, such as Diffie–Hellman key agreement, reduce
to Rabi–Sherman key agreement, in which Alice sends ab to Charlie, Charlie
sends bc to Alice, they agree on key a(bc) = (ab)c, where multiplicative
notation here indicates some specialized associative binary operation.

All non-interactive key agreement schemes, where each peer indepen-
dently determines a single delivery to the other, reduce to this case, because
the ability to agree implies the existence of an associative operation. By
extending the associative operation’s domain, the key agreement scheme can
be enveloped into a mathematical ring, such that all cryptographic values are
ring elements, and all key agreement computations are ring multiplications.
(A smaller envelope, a semigroup instead of a ring, is also possible.)

Security relies on the difficulty of division: here, meaning an operator
/ such that ((ab)/b)b = ab. Security also relies on the difficulty of the less
familiar wedge operation [ab, b, bc] 7→ abc.

When Rabi–Sherman key agreement is instantiated as Diffie–Hellman
key agreement: its multiplication amounts to modular exponentiation; its
division amounts to the discrete logarithm problem; the wedge operation
amounts to the computational Diffie–Hellman problem.

Ring theory is well-developed and implies efficient division algorithms
in some specific rings, such as matrix rings over fields. Semigroup theory,
though less widely-known, also implies efficient division in specific semi-
groups, such as group-like semigroups.

The rarity of key agreement schemes with well-established security sug-
gests that easy multiplication with difficult division (and wedges) is elusive.

Reduction of key agreement to ring or semigroup multiplication is not
a panacea for cryptanalysis. Nonetheless, novel proposals for key agree-
ment perhaps ought to run the gauntlet of a checklist for vulnerability to
well-known division strategies that generalize across several forms of multi-
plication. Ambitiously applying this process of elimination to a plethora of
diverse rings or semigroups might also, if only by a fluke, leave standing a few
promising schemes, which might then deserve a more focused cryptanalysis.

2

Alice

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤
Bugsy Charlie

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

a b c

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

d = k1(a, b)

d

$$
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏

❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴ ❴

e = k2(b, c)

e

zztt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt

f = k4(a, e) h = W (d, b, e) g = k3(d, c)

Alice and Charlie’s aims:

Correctness:
(Agreement)

onmlhijkgfed`abcf = g

Basic security:
(Key secrecy)

onmlhijkgfed`abch 6= g

Figure 1: Key agreement between Alice and Charlie, but watched by adver-
sary Bugsy. Informal qualifiers: ∃[k1, k2, k3, k4] and ∀[a, c, W], for practical
functions ki and feasible function W .

Contents

1 Introduction 15
1.1 Key agreement . 15
1.2 The quantum threat . 16
1.3 Semigroups and rings . 17
1.4 Associative key agreement . 19
1.5 All key agreement is essentially associative 20
1.6 Ring and semigroup security 20

2 Key agreement 22
2.1 Schemes . 22
2.2 Diffie–Hellman . 23
2.3 Domain and Ranges . 24
2.4 Aside: rock, scissors, paper . 25
2.5 Computation and communication 26
2.6 Practical schemes . 26
2.7 Sessions . 27
2.8 Subschemes . 27
2.9 Probabilistic schemes . 27
2.10 Aside: faulty schemes . 29
2.11 Multiplicative schemes . 31
2.12 Aside: reflective and chiral schemes 33
2.13 Associative schemes . 33
2.14 Aside: non-associative scheme 34
2.15 Equivalent schemes . 35
2.16 Aside: derived schemes . 35
2.17 Essentially associative schemes 37
2.18 Diffie–Hellman is essentially associative 37
2.19 Aside: a more general Diffie–Hellman realm 39

3

4 CONTENTS

2.20 Key agreement is essentially associative 40
2.21 Aside: packed associated semigroups 43
2.22 Aside: reduction to a category 43
2.23 Reduction to a ring . 44
2.24 Reductionism . 45

3 Security aims 47
3.1 Watchers (generalized DHP) 47

3.1.1 Real world impacts of a watcher 48
3.1.2 Seclusive key agreement 52
3.1.3 Watcher existence and uniqueness 53
3.1.4 Reduction of watchers to wedges 54
3.1.5 Probabilistic watchers 57

3.2 Divulgers (generalized DLP) 62
3.2.1 Variant divulgers . 63
3.2.2 Watchers from divulgers 64
3.2.3 Extra impact of divulgers 64
3.2.4 Extra assurance against divulgers 65
3.2.5 Aside: instance-verifiability of divulgers 66
3.2.6 Reduction of divulgers to division 66
3.2.7 Divulgers by exhaustive search 66
3.2.8 Divulgers by trial search 67
3.2.9 Divesters . 67
3.2.10 Divergers . 68
3.2.11 Weak-input divulgers 68

3.3 Distinguishers (generalized DDHP) 69
3.3.1 Impact of distinguishers 70
3.3.2 Distinguishers from watchers 71
3.3.3 Variant distinguishers 71
3.3.4 Detectors . 73

3.4 Esoteric security aims . 74
3.4.1 Impact of esoteric security 75
3.4.2 Corrupted-session attacks 76
3.4.3 Base-stealing . 78
3.4.4 Multi-session attacks 79
3.4.5 Oracle attacks (generalized Gap-DHP, etc.) 81
3.4.6 Agreeable and disagreeable attack definitions 83
3.4.7 Semigroup-defined attacks 84

CONTENTS 5

4 Wedge strategies 87
4.1 Wedge by division . 87
4.2 Wedge by inversion . 89
4.3 Wedge by constant . 91
4.4 Wedge by multiplication . 92
4.5 Wedge by deletion and concatenation 93
4.6 Wedge by monomorphism . 94

4.6.1 Aside: wedge as two multiplications 96
4.7 Wedge by Rees index deletion 96
4.8 Wedge by coordinate . 98
4.9 Wedge by trial discrimination 99

5 Division strategies 100
5.1 Division by trial multiplication 101

5.1.1 Trial multiplication in finite semigroups 101
5.1.2 Eternal trials in countable semigroups 103
5.1.3 Divisible eternal trial multiplication 104
5.1.4 Aside: transfinite search in uncountable semigroups . . 105
5.1.5 Optimality of trial multiplication 106

5.2 Division by inversion . 107
5.2.1 Non-invertible elements 108

5.3 Division by identity . 109
5.4 Division by wedge . 110

5.4.1 Generalized den Boer reductions 112
5.5 Division by logarithm . 113
5.6 Division by isomorphism . 114

5.6.1 Division by monomorphism 114
5.6.2 Difficult isomorphisms 116
5.6.3 Isomorphism for factorialized addition 117
5.6.4 Numerical isomorphism? 118

5.7 Division by re-scaling . 120
5.7.1 Re-scaling by parallel right multiplication 121
5.7.2 Re-scaling by inside-out multiplication 121
5.7.3 Re-scaling by multiplying ratios 122

5.8 Division by cross-multiplication 123
5.8.1 Cross-multipliers . 123
5.8.2 Division by cross-multiplication 124
5.8.3 Cross-multiplication by trivial operations 124

6 CONTENTS

5.8.4 Cross-multiplication by collision 125
5.8.5 Arranging easier left division 125

5.9 Division in subsemigroups . 126
5.10 Division by Rees matrix index search 126
5.11 Division in product semigroups 127

5.11.1 Division by coordinate division in Cartesian products . 127
5.11.2 Division by deletion in free (co)products 128
5.11.3 Division by axial inversion in tensor products? 128
5.11.4 Division in semidirect products – ??? 128
5.11.5 Division in fiber products – ??? 128
5.11.6 Division in (co)equalizer semigroups – ??? 129
5.11.7 Wreath product division? 129

5.12 Division by binary search . 130
5.13 Division by complement-transpose 131
5.14 Division by descent . 133

5.14.1 Descenders . 134
5.14.2 Finite descent . 135
5.14.3 Subtraction . 136

5.15 Power series division . 137
5.15.1 Standard division . 137
5.15.2 Functional division . 137

5.16 Matrix division . 137
5.16.1 Matrix division over fields 138
5.16.2 Matrix division over commutative rings 138

6 Inversion strategies 139
6.1 Power inversion . 139

6.1.1 Shor’s period-finding algorithm 140
6.1.2 Elliptic curve point-counting 141

6.2 Inversion by division . 141
6.3 Inversion by wedges . 144
6.4 Inversion of relations? . 145
6.5 Inversion of matrices over fields? 145
6.6 Custom inversion algorithms 147

A Applications 148
A.1 Public-key encryption . 149
A.2 Key encapsulation . 151

CONTENTS 7

A.3 Non-interactive key exchange 151
A.4 Handshakes of interactive communication protocols 152
A.5 Trust networks . 153

B Semigroup basics 154
B.1 Operations . 156

B.1.1 Multiplicative semigroups 156
B.1.2 Unwritten multiplication 157
B.1.3 Additive semigroups 158
B.1.4 Multiplying sets . 158

B.2 Practicality . 159
B.2.1 Practical multiplication 159
B.2.2 Practical selection . 160
B.2.3 Practical representation 160

B.3 Powers and logarithms . 163
B.3.1 Scalar multiplication 164
B.3.2 Aside: exportability . 165
B.3.3 Powering sets . 167
B.3.4 Powering arrays (cyclically) 168
B.3.5 Magma powering and products 169
B.3.6 Discrete logarithms . 172

B.4 Subsemigroups . 176
B.4.1 Generated sets . 176
B.4.2 The complete lattice of subsemigroups 178
B.4.3 Order, period, and torsion 178
B.4.4 Aside: local and global properties 181

B.5 Morphisms . 184
B.5.1 Congruences . 185
B.5.2 Natural morphisms and congruences 186
B.5.3 Lattice of congruences 186
B.5.4 Induced congruences 187
B.5.5 Mergers . 187
B.5.6 Cosets . 187
B.5.7 Ideals . 188
B.5.8 Normal subsets . 188
B.5.9 Miscellaneous features 188

B.6 Idempotents . 189
B.6.1 Identity elements . 189

8 CONTENTS

B.6.2 Absorbing elements . 191
B.6.3 Comparison . 193
B.6.4 Idempotents . 194

B.7 Inverses . 195
B.7.1 Middle inverses . 197
B.7.2 Right inverses . 199
B.7.3 Mutual inverses . 199
B.7.4 Co-mutual inverses . 200
B.7.5 Sidle inverses . 202
B.7.6 Power inverses . 203
B.7.7 Divisional inverses . 204
B.7.8 Wedge inverses . 205
B.7.9 Strident inverses? . 205
B.7.10 Inflatable elements, inflators, and volume? 206

B.8 Division . 207
B.8.1 Dividers . 207
B.8.2 Existence of dividers 208
B.8.3 Alternative notations 208
B.8.4 Subtraction . 209
B.8.5 Left dividers . 209
B.8.6 Notational dividers . 210
B.8.7 Unary dividers . 212
B.8.8 Feasible dividers . 212
B.8.9 Post-dividers . 214
B.8.10 Pre-dividers . 217
B.8.11 Aside: divisibility . 224
B.8.12 Aside: Green’s relations 226
B.8.13 Co-multiples and co-divisors 228
B.8.14 Aside: division by zero 230
B.8.15 Aside: traditional division examples 231
B.8.16 Peremptory dividers 231
B.8.17 Co-associativity . 235
B.8.18 Wide social dividers? 237

B.9 Wedge operators . 238
B.9.1 Notational justification 239
B.9.2 Terminology and uniqueness 239
B.9.3 Incomplete wedges . 240
B.9.4 Binary wedge . 241

CONTENTS 9

B.9.5 Wedge algorithms . 241
B.9.6 Probabilistic wedges 241

B.10 Aside: Polarizable functions? 241
B.10.1 Free commutative semigroups 242
B.10.2 Summation maps . 243
B.10.3 Polarity functions . 244
B.10.4 Recursions for polarity functions? 244
B.10.5 Polarizable functions 245
B.10.6 Differential polarity function? 246

B.11 Aside: productive semigroups? 246
B.12 Semirings and realms . 250

B.12.1 Realms . 250
B.12.2 Subsets of realms . 251
B.12.3 Function between realms 252
B.12.4 Semirings . 254
B.12.5 Nearrings . 255
B.12.6 Why addition is often commutative 255

C Semigroup sketches 258
C.1 Semigroups with almost arbitrary multiplication 258

C.1.1 Quick review: Disjoint unions of sets 259
C.1.2 Embedding in a 3-nilpotent semigroup 259
C.1.3 Embedding into a non-nilpotent semigroup 260

C.2 Semigroups from hard homogeneous space 260
C.3 Semigroups from orderings . 262

C.3.1 Semilattices . 262
C.3.2 Orderly semigroups . 263

C.4 Small semigroups . 265
C.4.1 Empty semigroup . 265
C.4.2 Unit semigroup . 265
C.4.3 Semigroups of size 2 266
C.4.4 Semigroups of size 3 266
C.4.5 Abundance of small semigroups 266

C.5 Semigroups from sets . 267
C.5.1 Zero semigroups . 267
C.5.2 Left and right semigroups 267
C.5.3 Boolean semigroups . 267
C.5.4 Semigroups of words 268

10 CONTENTS

C.5.5 Semigroup of functions 268
C.5.6 Semigroups of relations 270

C.6 Semigroups: smaller from larger 271
C.6.1 Subsemigroups . 271
C.6.2 Image semigroups and congruences 273
C.6.3 Converse (reversal) semigroups 275

C.7 Semigroup from presentations 275
C.8 Extending a semigroup . 276

C.8.1 Solitary extensions . 276
C.8.2 The semigroup of subsets 278
C.8.3 Stickel semigroups? . 279
C.8.4 Action extensions? . 280
C.8.5 Semigroups of ratios? 281
C.8.6 Rees matrix semigroups 283
C.8.7 Semigroups of special functions on a semigroup 285

C.9 Combining semigroups . 287
C.9.1 Combining two semigroups 287
C.9.2 Combining large families of semigroups 296

C.10 Semigroups from semiautomata 298
C.11 Semigroups from combinatorial graphs 299
C.12 Semigroups from combinatorial games 299
C.13 Semigroups from topology? . 301
C.14 Semirings with given addition or multiplication 302

C.14.1 Left addition, any multiplication 302
C.14.2 Left multiplication, any idempotent addition 303
C.14.3 Null addition, any multiplication with a zero 303
C.14.4 Null multiplication, any addition with an idempotent . 304

C.15 Semirings from sets . 304
C.15.1 Boolean semiring . 304
C.15.2 Semiring of relations 305

C.16 A free semiring with one generator??? 309
C.16.1 Operation tables . 310
C.16.2 Ineffectiveness of representation 312
C.16.3 Representation as quasi-polynomials 312
C.16.4 Weighted lexicographic representation 313
C.16.5 Polynomial images . 313

C.17 Semirings of functions on a semigroup? 314
C.17.1 Nearring of semigroup functions 314

CONTENTS 11

C.17.2 Semiring of endomorphisms 315
C.18 Semilattice semirings?? . 316

C.18.1 Lattice semirings . 317
C.18.2 Total orders . 318
C.18.3 Incidence algebras? . 318

C.19 The standard semiring of positive integers 318
C.19.1 Positive integers under multiplication 318
C.19.2 Positive integers under addition 319
C.19.3 Distributing over integer multiplication 320

C.20 Semirings from semirings . 324
C.20.1 Subsemirings . 324
C.20.2 Solitary extensions of semirings 325
C.20.3 Semiring of polynomials 327
C.20.4 Semiring of matrices 330
C.20.5 Semigroup semiring . 335
C.20.6 Semiring of additive subsemigroups? 342
C.20.7 Hahn series . 345
C.20.8 Semiring of resultants (???) 345

C.21 Semigroups (and semirings) from categories 347
C.21.1 Category algebra . 347
C.21.2 Product and co-product semigroups 348
C.21.3 Category completions 349

C.22 Semirings from rings . 349
C.22.1 Weyl algebra . 349
C.22.2 Integer-valued polynomials 350
C.22.3 Semiring of (fractional) ideals 350

C.23 Semirings from calculus . 351

D Trial search 352
D.1 Trial search strategies . 352

D.1.1 Inputs to trial search 352
D.1.2 Target of trial search 353
D.1.3 Iterations of trial search 353
D.1.4 Success of trial search 354
D.1.5 Impact on asynchronous key agreement 355
D.1.6 Trial multiplication for division 355

D.2 Metrics for trial search . 356
D.2.1 Runtime and workload 356

12 CONTENTS

D.2.2 Success rate and entrophy 357
D.2.3 Eternal search . 357

D.3 Imitative search . 358
D.4 Optimal search . 361
D.5 Reduced search: trading workload for entrophy 362
D.6 Average bit length of deliveries 364

E Previous work 367
E.1 A brief history of key agreement 367
E.2 On associative key agreement 369
E.3 On semigroups in crypto . 369
E.4 On division algorithms . 370
E.5 On semigroups themselves . 370

List of Figures

1 Key agreement . 2

13

List of Tables

2.1 Rock, scissors, paper . 25
2.2 A semigroup from Diffie–Hellman (mod 5) 39
2.3 A semigroup from key agreement 42

B.1 Some semigroup notations, terminology and definitions 155
B.2 Generalized inverses . 196

14

Chapter 1

Introduction

Key agreement is now used often to securely connect devices through the
internet. For example, when a browser visits a secure web site, the browser
and the web server often use key agreement to agree on a secret key known
only to the browser and server.

In more detail, the secure Hypertext Transfer Protocol (HTTPS) uses
the Transport Layer Security (TLS) security protocol, whose latest version
(1.3) requires Diffie–Hellman key agreement for the initial connection. After
the key agreement step, web content between the browser and server is then
protected with the agreed key and some kind of symmetric-key authenticated
encryption (such as AES-GCM).

Appendix A discusses applications of key agreement more generally.

1.1 Key agreement

In this report, key agreement means the idea sketched in Figure 11. Formal
definitions are in Chapter 2. Key agreement is a generalization of basic
Diffie–Hellman key agreement, and is usually part of a larger system such as
a secure handshake as a step for key distribution in a secure communication
protocol.

Key agreement allows two users to agree on a key by delivering each other
information. Delivery is non-interactive: each delivery can be independently

1Douglas Stebila suggested the crossing of arrows in the figure to distinguish from key
encapsulation. I since learned of similar but non-crossing rhombic diagram in an article
of De Feo [Feo17].

15

16 CHAPTER 1. INTRODUCTION

generated, starting from some initial joint information. If the key agreement
is secure, then the agreed key will be a secret known only to the agreeing
parties.

Adversaries may see the deliveries, but security depends on the adver-
saries not modifying the deliveries. In other words, key agreement, as we
define it, is unauthenticated. Generally, to avoid an man-in-the-middle at-
tack, some extra security techniques must be applied, to authenticate the
deliveries. For example, digital signatures might be applied to the deliveries.
These extra mechanisms are not part of key agreement, but a necessary part
of larger system.

A few schemes for key agreement are

• Diffie and Hellman’s original (1978) modular exponentiation based key
agreement,

• Koblitz (1987) and Miller’s (1985) elliptic curve variant of Diffie–Hellman
key agreement,

• Menezes, Qu and Vanstone’s (1995) double-key variant of Diffie–Hellman
key agreement, and

• De Feo, Jao and Plut’s (2014) super-singular isogeny Diffie–Hellman.

The few schemes above (and yet fewer variations) are widely conjectured
to contribute significantly to security, at least when used correctly within
a larger protocol. (Furthermore, some kinds of password-authenticated key
exchange, such as SPEKE and SPAKE2, also fit this model of key agreement.)

Other than these few schemes and similar ones, secure key agreement seem
elusive. The key agreement schemes with well-established security are sim-
ilar to those above.2 Obscurer key agreements do not have well-established
security (although may well be secure nonetheless).

1.2 The quantum threat

Shor’s algorithm and a large-enough quantum computer would break Diffie–
Hellman key agreement, including variants ECDH and ECMQV. This quan-
tum computer threat justifies the search for other key agreement schemes.

2To be clear, the previous two sentence do not refer interactive key encapsulation
schemes.

1.3. SEMIGROUPS AND RINGS 17

Super-singular isogeny key exchange, for example, is a key agreement
scheme not known to be vulnerable to Shor’s algorithm. Other key agreement
schemes, such as those based on braid groups, have been proposed too. More
schemes might mitigate the quantum threat further.

(Public-key encryption and key encapsulation are alternatives to key
agreement. These alternatives are interactive in the sense that one party
acts as an initiator and one acts as a responder. In some applications, in-
teractivity is not an obstacle. Some of these, such as RSA-KEM (a key
encapsulation method based on factorization of integers), would are also be
vulnerable to Shor’s quantum computer algorithm. Others, such as code-
based McEliece and lattice-based NTRU, are not known to be vulnerable to
any quantum attacks.)

1.3 Semigroups and rings

Modern algebra deals often with rings, and sometimes with semigroups. This
report uses both rings and semigroups. Although both ring and semigroup
are standard notions in algebra, we now review them briefly.

Diversion 1.3.1. Easy examples can be better refreshers than rigorous definitions. The
most fundamental ring is the set

Z = {0, 1, −1, 2, −2, . . .} = {. . . , −2, −1, 0, 1, 2, . . .}

of integers under the two usual operations of addition and multiplication.
Semigroups have only a single associative operation, and can be quite a bit quirkier

than rings. The set {0, 1, 4, 9, 16, . . .} of perfect square integers form a semigroup under
multiplication. The set {3, 4} ∪ {n ∈ Z : n > 5} forms semigroup under addition.

A semigroup is a set S together with an associative binary operation.
Most often the binary operation is written as multiplication, and the semi-
group said to be multiplicative, in which case, the associative axiom is

a(bc) = (ab)c,

for all a, b, c ∈ S. In an additive semigroup S+, the associative axiom is
a + (b + c) = (a + b) + c. A monoid is a semigroup with identity element,
usually written 1, such 1a = a1 = a for all a. (In additive notation, the
identity element is written as 0.) A group is a monoid, in which each
element b has an inverse q such that bq = qb = 1. An abelian group is a
commutative group meaning ab = ba for all a, b.

18 CHAPTER 1. INTRODUCTION

Some textbooks on semigroup theory are listed in the references of this
report. The journal Semigroup Forum covers semigroup theory.

For completeness, Appendix B reviews some notation (new and old) for
semigroups, and proves a few basic results. This report has a focus on divi-
sion, which means that our notation emphasizes the division operation more
than traditional notation does in ring theory and semigroup theory.

For concreteness, Appendix C provides some examples of semigroup (with
the caveat that these should be deemed insecure for use in cryptography).

A ring is a set R together with two binary operations, written as addition
and multiplication (unless otherwise indicated), which obey a stricter set of
axioms:

a + (b + c) = (a + b) + c,

a(bc) = (ab)c,

a(b + c) = (ab) + (ac),

(a + b)c = (ac) + (bc),

a + b = b + a

R + b = R,

for all a, b, c ∈ R, and we define R + b = {a + b : a ∈ R}. The last condition,
implies existence of a binary operation −, called subtraction, such that
(a − b) + b = a. Subtraction then implies existence of an additive identity 0,
and a negation operation, so that addition forms a group.

In other words, a ring is set with two operations: addition forming an
abelian group, multiplication forming a semigroup, and multiplication dis-
tributing over addition. Many authors also require multiplication to form
a monoid, and would label the looser definition above (without identity 1)
as a rng3. In the sub-discipline of commutative algebra, rings are usually
assumed to have commutative multiplication. A field is a ring in which mul-
tiplication forms an abelian group upon exclusion of the additive identity
0.

Ring theory is a mainstream topic of modern algebra, and is taught in
many textbooks and courses. For most ring theory, this report relies on the
plentiful literature on ring theory. The structure of an extra operation, and
the stricter axioms, gives ring theory a much richer character than semigroup
theory.

3Not to be confused with a random number generator

1.4. ASSOCIATIVE KEY AGREEMENT 19

Nonetheless, rings and semigroups are related, such that some part of
their theory can be reduced to each other. One direction is immediate:
each ring R forms two semigroups with the same set of elements as R: an
additive semigroup R+ whose operation is addition of R, and a multiplicative
semigroup R× with multiplication of R as the operation.

In the other direction, every semigroup S is a subsemigroup of the mul-
tiplicative semigroup of a ring. For example, consider the semigroup ring
R = C[S], whose elements are a finite formal linear combinations

∑

i ci[si]
where the coefficients ci belong to a base ring C with an identity 1, and
the distinct si belong to S. The full set of axioms for a semigroup ring are
treated later in this report. The element s of S maps into element 1[s] of R,
such that S is embedded into R×.

The semigroup ring is typically much larger than the the semigroup. A
semigroup S can have special properties and algorithms that do immediately
derive from properties and algorithms holding over the larger semigroup ring
R = C[S]. In other words, general ring theory might not solve all problems
in semigroup theory.

1.4 Associative key agreement

This report studies associative agreement, which uses semigroup multipli-
cation. Rabi and Sherman [RS93] mentioned this idea. Berenstein and
Chernyak [BC04] also mention the idea.

In associative key agreement, three elements a, b, c in a ring (or a semi-
group) are needed. Alice chooses element a as a secret known only to her,
ideally using a cryptographically secure random number generator. Charlie
chooses c similarly. The value b is pre-arranged, but is not necessarily secret:
b could be fixed for all users, or b could be custom for Alice and Charlie.

Alice computes d = ab and delivers d to Charlie. The value of d might
be seen by other parties: it is a major aim of key agreement for Alice and
Charlie to establish a shared secret without any pre-existing means of secret
communication.

Charlie must somehow be sure that d is actually from Alice. The means
Charlie uses to authenticate that d is from Alice is outside the scope of key
agreement: Alice and Charlie must use some extra authentication mecha-
nism4.

4For example, Alice might apply a digital signature to d, or perhaps d could be delivered

20 CHAPTER 1. INTRODUCTION

Charlie computes e = bc and delivers e to Alice, by similar authenticated
means5.

Charlie can compute and deliver e before receiving d from Alice. Alice
and Charlie could even send each other deliveries simultaneously.

Alice computes a key f = ae and Charlie computes a key g = dc. The
keys agree because f = ae = abc = dc = g, due to associativity of the
semigroup. The main aim is for shared key abc to be a secret known only to
Alice and Charlie. For a superficial plausibility of this aim, notice that that
Alice and Charlie have used their secrets a and c to compute abc, and having
not directly revealed their secrets a and c to anbody else (or each other).

Associative key agreement is defined more formally in Chapter 2.

1.5 All key agreement is essentially associa-

tive

Every key agreement scheme is essentially associative, after relabeling the
values appropriately, and extra elements, as shown in Chapter 2.

In short, the fact that Alice and Charlie can agree is essentially equivalent
to the associative law. Extra elements can used to fill in a full multiplicative
semigroup table. For example, most missing operations not defined by Alice
and Charlie standard key agreement computations can be defined as zero.

As already noted, a semigroup can also be embedded into a ring. There-
fore, the key agreement values can be re-labelled as ring elements.

In particular, Diffie–Hellman key agreement is associative. The associated
semigroup is related to the usual Diffie–Hellman group.

1.6 Ring and semigroup security

The primary question is whether an adversary seeing the two deliveries d and
e can also compute the key abc. In other words, can abc be computed from
d, b and e? A secondary question is whether an adversary can deduce a from
d, which could be an additional problem for Alice if she re-uses a, in the key

over an authenticated (but public) channel.
5In some applications, only one of the parties of authenticated, perhaps with post-

agreement authentication being used for the party whose delivery was not authenticated.

1.6. RING AND SEMIGROUP SECURITY 21

agreement, or otherwise. These questions can be re-stated as computational
problems for a semigroup or a ring.

The basic security of key agreement requires that a hard computational
problem in the underlying semigroup, the wedge problem of computing abc
from [ab, b, bc]. If the wedge problem is easy, then the associative key agree-
ment scheme is insecure.

The division problem must also be hard. For example, if a = d/b, then
Alice’s secret a can be computed from d and b, neither of which are secret.
An adversary who also sees e can compute Alice’s key f = ae. If Alice
uses the secret a for other purposes, then the division problem can be more
important than the wedge problem.

In Diffie–Hellman key agreement, the underlying semigroup has division
problem equivalent to the discrete logarithm problem, and has a wedge prob-
lem equivalent to the well-known Diffie–Hellman problem.

Chapter 2

Key agreement (inter-operation
and reduction)

This chapter

• defines a key agreement scheme to be a quadruple of functions that
inter-operate correctly, and

• reduces key agreement to semigroups.

Security definitions for key agreement are deferred to Chapter 3.

2.1 Schemes

A scheme for key agreement is specified by four inter-operating functions.

Definition 2.1.1. A key agreement scheme is an array k = [k1, k2, k3, k4]
of functions such that:

k3(a, k2(b, c)) = k4(k1(a, b), c) (2.1.1)

for all a, b, c such that k1(a, b) and k2(b, c) are defined.

Diversion 2.1.1. Various alternative terminology has been used. Some variation of non-

interactive, one-round, unauthenticated key exchange is typical.

Diversion 2.1.2. Figure 1 illustrates this interoperability definition plus some security
requirements.

22

2.2. DIFFIE–HELLMAN 23

Diversion 2.1.3. Intention of security would perhaps be implied or inferred by the term
key agreement, even though insecure key agreement would be properly understood.

Outside this report, confusion about intent can perhaps be avoided by calling Defini-
tion 2.1.1 operational key agreement, to help disclaim intention of security by empha-
sizing the interoperability instead, allowing us to freely discuss key agreement schemes at
the level of interoperability, deferring security questions to a later point.

2.2 Diffie–Hellman

The original Diffie–Hellman (using modular exponentiation) is a key agree-
ment scheme:

Lemma 2.2.1. Let p be a positive integer. Let k = [k1, k2, k3, k4] where

k1(a, b) = ba mod p,

k2(b, c) = bc mod p,

k3(a, e) = ea mod p,

k4(d, c) = dc mod p,

with the input variables non-negative integers less than p. Then k is a key
agreement scheme.

Proof. Definition 2.1.1 holds because

k3(a, k2(b, c)) = k3(a, bc)

= (bc)a

= bca

= bac

= (ba)c

= k4(b
a, c)

= k4(k1(a, b), c)

where all exponentiation is done modulo p.

Diversion 2.2.1. Lemma 2.2.1 assumes the standard notational convention that r =
n mod p means that n = qp + r for 0 ≤ r < p.

Diversion 2.2.2. Writing out all the mod-p reductions in the proof of Lemma 2.2.1, would
make clear that a key step of the proof is a mini-lemma that (z mod p)e mod p = ze mod p
for all integers e, z with e ≥ 0.

24 CHAPTER 2. KEY AGREEMENT

Diversion 2.2.3. Lemma 2.2.1 assumes that 00 = 1, which is the conventional definition,
although arguably somewhat arbitrary.

An alternative definition, 00 = 0, is less conventional, and requires an additional
proviso to Lemma 2.2.1, which is that p is a radical number (not divisible by the square
of any prime). (For example, the proviso is necessary when p = 12 and [a, b, c] = [0, 6, 8],
because 0 = 00 = (68)0 6= (60)8 = 18 = 1.)

To avoid any confusion, and exceptional corner cases, it will be convenient to work
with positive integers only.

Definition 2.2.1. Diffie-Hellman key agreement is scheme k defined in
Lemma 2.2.1 with all input variables a, b, c, d, e restricted to positive integers,
and p restricted to prime numbers. In this case, write the scheme as kDH mod p.

Diversion 2.2.4. This definition is properly defined because if 0 < a, b < p, then 0 <
(ab mod p) < p. This works whenever p is a radical number (not divisible by a perfect
square other than 1), so Diffie–Hellman can be defined reasonably for such p.

Diversion 2.2.5. Diffie–Hellman key agreement, for large primes p, is intended, and be-
lieved, to meet some of the basic security definitions of Chapter 3.

2.3 Domain and Ranges

It is often useful to study details of k that are implicit in Definition 2.1.1,
such as the domains and ranges of the functions.

Diversion 2.3.1. The usual Cartesian product of sets is S1 × S2 = {[s1, s2] : si ∈ Si},
where [s1, s2] indicates a two-element array. (A two-element array is also known as an
(ordered) pair.)

Diversion 2.3.2. Arrays and Cartesian products can be indexed using subscript nota-
tion: [s1, s2, . . . , sn]i = si and (S1 × S2)i = Si.

Diversion 2.3.3. The domain of a two-input function is really just a set of two-element
arrays. In other words, ki(x, y) = ki([x, y]), with the left side considered an abbreviation.

Each function ki has form ki : Dom(ki) → Ran(ki), with a defined do-
main Dom(ki) and range Ran(ki). The image of ki is the set Im(ki) =
ki(Dom(ki)) = {ki([x, y]) : [x, y] ∈ Dom(ki)}, which is a subset of its range,
so Im(ki) ⊆ Ran(ki).

Diversion 2.3.4. An alternative definition of function is a range-less function, repre-
senting a function as a set of pairs {[x, f(x)] : x ∈ Dom(ki)}. Each function defines a
range-less function by ignoring or forgetting the range. Each range-less function defines
many functions, by choosing any range that contains the image.

2.4. ASIDE: ROCK, SCISSORS, PAPER 25

This report works with ranged functions in most definitions. But, in many cases, the
main concerns could also work with range-less versions of the same functions.

Range is used occasionally to model special types of security, for example, indistin-
guishability, where the range indicates the set of values from which the key agreement
values are to be indistinguishable. It seems simpler to work with ranged functions, and
ignore the ranges when they are irrelevant than to have two sets of working definitions,
one ranged, one range-less.

Diversion 2.3.5. A function f is surjective if Im(f) = Ran(f). Asking if a range-less
function f is surjective is meaningless because Ran(f) is undefined. In many applications
of functions, being surjective a significant condition, and in these applications range-less
functions are inapplicable.

The fundamental key agreement equation (2.1.1) implies the following
relations between the domains and images:

Dom(k1)2 = Dom(k2)1

Dom(k3) ⊇ Dom(k1)1 × Im(k2),

Dom(k4) ⊇ Im(k1) × Dom(k2)2.

In other words, equation (2.1.1) holds for all [a, b, c] such that [a, b] ∈ Dom(k1)
and [b, c] ∈ Dom(k2).

2.4 Aside: rock, scissors, paper

As a clarifying example, the common game rock, scissors, paper can be
shown to fit the operational interface of key agreement in Definition 2.1.1.

Let a, c ∈ {Rock, Scissors, Paper}. Let k1(a, b) = a and k2(b, c) = c, and
k3(a, e) = k4(d, c) ∈ {Left, Tie, Right}, per Table 2.1. To see that Defini-
tion 2.1.1 holds, compute:

k3(a, k2(b, c)) = k3(a, c) = k4(a, c) = k4(k1(a, b), c).

Rock Scissors Paper
Rock Tie Left Right

Scissors Right Tie Left
Paper Left Right Tie

Table 2.1: Rock, scissors, paper: an example of insecure key agreement

26 CHAPTER 2. KEY AGREEMENT

Diversion 2.4.1. Rock, scissors, paper was never intended to be a secure key agreement
scheme. It is not secure under Chapter 3, because of many very feasible attacks.

2.5 Computation and communication

Alice and Charlie will use a key agreement scheme k, with the following
computations and communications.

1. Alice selects a, Charlie selects c, and they both select the same b.

2. Alice computes d = k1(a, b) and communicates d to Charlie; Charlie
computes and communicates e = k2(b, c) to Alice.

3. Alice computes key f = k3(a, e); Charlie computes key g = k4(d, c).

Definition 2.1.1, ensures that Alice and Charlie compute the same key,
f = g, because

f = k3(a, e) = k3(a, k2(b, c)) = k4(k1(a, b), c)
︸ ︷︷ ︸

Definition 2.1.1

= k4(d, c) = g.

In other words, the keys of Alice and Charlie agree, and Alice and Charlie
have achieved key agreement.

Key agreement is usually just part of a larger protocol, as discussed in
Appendix A.

2.6 Practical schemes

A practical key agreement scheme is any scheme k = [k1, k2, k3, k4] where
each function ki can be implemented by a known, practical algorithm.

Diversion 2.6.1. A practical algorithm is one that always returns a (correct) answer
with a cost convenient to the user (in terms of time, energy, and so on).

The convenience of user cost can be subjective. It can be relative to the benefit,
in which case it depends on the security. It can relative to comparable key agreement
schemes. It can be relative to other costs (such as application cost, such as user interfaces
and symmetric-key encryption).

2.7. SESSIONS 27

2.7 Sessions

It will be convenient to gather all the values that Alice and Charlie compute
into an array.

Definition 2.7.1. A session of key agreement scheme k is an array

[a, b, c, d, e, f]

such that

d = k1(a, b),

e = k2(b, c),

f = k3(a, e).

Diversion 2.7.1. A key agreement scheme k is almost determined by its set of sessions.
If two schemes k and K have the same set of sessions, they are sessionally identical.

Sessionally identical schemes can differ, for example, in the ranges of the functions ki.

2.8 Subschemes

Definition 2.8.1. A key agreement scheme k is a subscheme of key agree-
ment scheme K if every session [a, b, c, d, e, f] of k is a session of K.

The prototypical example is a subscheme of Diffie–Hellman key agreement
in which b is fixed to be an element of multiplicative order q modulo p (where
q is prime). Also, a and c are often taken to be integers strictly between 1
and q.

Diversion 2.8.1. More generally, k is subscheme of K if each function ki is a domain-
restriction of the function Ki (meaning Dom(ki) ⊆ Dom(Ki) and ki(x) = Ki(x) for all
x ∈ Dom(ki)).

Diversion 2.8.2. In some applications of key agreement, the ranges Ran(ki) are important
to track. A full-ranged subscheme k of K is a subscheme k of K such that Ran(ki) =
Ran(Ki).

2.9 Probabilistic schemes

Key agreement defined above is deterministic, but in many applications it
will be run probabilistically, as defined formally below.

28 CHAPTER 2. KEY AGREEMENT

Definition 2.9.1. A probabilistic key agreement scheme [a, b, c, k] consists
of three random variables a, b, c and a key agreement scheme k, such that
random variables k1(a, b) and k2(b, c) are always defined.

To use [a, b, c, k], means that Alice samples random variable a, Charlie
samples c, and they together sample b. In many cases, random variable b will
a constant random variable (all random samples taking the same constant
value).

Diversion 2.9.1. Generally, the conditional random variables a|b and c|b should be inde-
pendent, so that random variable b contains the only mutual information between Alice
and Charlie.

Diversion 2.9.2. Probabilistic key agreement will help model practical security in Chap-
ter 3 by quantifying an attacker’s ability to simply guess the values a or c chosen by Alice
and Charlie.

One way to see why probability helps is consider efficiency. For the functions ki to be
efficiently implementable (bounded run-time for any input), their images must be finite
sets. But finite images of k1 and k2 enable guessing adversaries with nonzero success rate.
To resist guessing adversaries, Shannon’s theory has made clear:

• security uses secrecy;

• secrecy is hidden information;

• information is quantified by entropy;

• entropy is defined in terms of probability.

So, resisting these real-world attackers means Alice and Charlie will need to deploy some
kind of random variables in combination with deterministic functions.

Random variables affect interoperability: sampling random variables takes time, and
different samples as inputs to the algorithms implementing the function ki have different
run-times. Run-time affects interoperability and usability, so random variables are also
include in this chapter about interoperability.

Definition 2.9.2. A probabilistic key agreement scheme is uniform if each
triple [a, b, c] (valid in the sense k1(a, b) and k2(b, c) are defined), is equally
likely.

Diversion 2.9.3. If k1 and k2 have finite domains, then there exists exactly one uniform
[a, b, c, k].

Diversion 2.9.4. Determining probabilities generally requires assumptions, guesswork,
or statistical inference. So, though random variables have great theoretical value, they
leave open some questions of rigor.

The deterministic definition of key agreement avoids these questions of rigor, yet still
permits important questions to be investigated.

2.10. ASIDE: FAULTY SCHEMES 29

Definition 2.9.3. The support of the probabilistic key agreement scheme
[a, b, c, k] is the subscheme k′ of k whose sessions [a, b, c, d, e, f] consists of
those with nonzero probability under [a, b, c, k].

Diversion 2.9.5. If [a, b, c, k] and [A, B, C, K] are probabilistic key agreement schemes,
then [a, b, c, k] is subscheme of [A, B, C, K], if k is a subscheme K and a is a restriction1

of A, b a restriction of B, and c a restriction of C.

Generally, a probabilistic key agreement will only be practical if it is
discrete, as defined below.

Definition 2.9.4. A probabilistic key agreement scheme is discrete if [a, b, c]
is a discrete random variable2.

Diversion 2.9.6. Non-discrete probabilistic key agreement implies that Alice and Charlie
would need to communicate and compute with an uncountable set of values, which are
rather impractical.

2.10 Aside: faulty schemes

Faulty key agreement is not studied in this report, but is defined in this
section, for completeness and clarification. Faulty key agreement relaxes the
condition on k in a probabilistic key agreement scheme.

Definition 2.10.1. A procedural key agreement scheme is an array
[a, b, c, k] where a, b, c are random variables, and k = [k1, k2, k3, k4] is array
of functions such that ki such that both

k3(a, k2(b, c)), k4(k1(a, b), c)

are defined with probability 1.

1A random variable x is a restriction of random variable X if a condition like the
following holds: (i) there exists a set R such that Pr[X ∈ R] 6= 1 and (ii) for all S ⊆ R

such that Pr[X ∈ S] is defined, then Pr[x ∈ S] = Pr[X∈S]
Pr[X∈R] .

2 Recall that a discrete random variable v takes countably many values v1, v2, . . . with
nonzero probabilities pi such that

∑

i pi = 1.
By contrast, a continuous random variable assigns probabilities to events, subsets of a

universe, generally using a measurable space as the universe, taking an event to be any
measurable subset of the space, and letting the probability of an event be the integral of a
probability density function computed over the measurable subset. A continuous random
variable has probability zero of taking any particular value.

30 CHAPTER 2. KEY AGREEMENT

Any probabilistic key agreement is a procedural key agreement, but some
procedural key agreements are not probabilistic key agreement schemes.

Definition 2.10.2. A faulty key agreement scheme is a procedural key
agreement scheme which is not a probabilistic key agreement scheme.

Diversion 2.10.1. Generally, what makes [a, b, c, k] a faulty key agreement scheme is that
k is not a key agreement scheme.

The similarity in usefulness of faulty key agreement to that of probabilistic
key agreement is measured by the following probability.

Definition 2.10.3. The success rate σ of a faulty key agreement scheme
is the probability that k3(a, k2(b, c)) = k4(k1(a, b), c). The failure rate is
1 − σ.

Diversion 2.10.2. The term faulty is arguably too harsh if the failure rate is negligible
(or even zero), because, in this case, faulty key agreement might be quite reasonably
secure.

So, the term faulty serves mainly to delimit of this report’s scope to a focus on
associative key agreement and a reduction to semigroup theory.

Diversion 2.10.3. Faulty key agreement would typically be constructed by combination
of approximate key agreement and error correction.

In approximate key agreement k′ = [k′
1, k′

2, k′
3, k′

4], the key agreement equation is
replaced by a bound on a function ∆ : Ran(k3) × Ran(k4) → T , where T an ordered set.

∆(k′
3(a, k′

2(b, c)), k′
4(k′

1(a, b), c)) ≤ δ.

Typically, ∆ would be distance metric, where Ran(k3) = Ran(k4) and T is the set of
non-negative real numbers.

A faulty key agreement scheme k = [k1, k2, k3, k4] is then obtained by applying an
error correction function R : T → U , as

k3(a, e) = R(k′
3(a, e)),

k4(d, c) = R(k′
4(d, c)).

A typical error correction function R with continuous domain involves rounding of real-
valued variables. Error correction functions R with discrete or finite domains can be more
sophisticated than simple rounding.

Diversion 2.10.4. If a faulty key agreement scheme [a, b, c, k] has a success rate one and
a, b, c are discrete random variables, then it ought to be possible to extract a probabilistic
key agreement scheme [a′, b′, c′, k′] as subscheme of [a, b, c, k] (with same general meaning
as subschemes of probabilistic schemes).

2.11. MULTIPLICATIVE SCHEMES 31

Diversion 2.10.5. Allowing faulty key agreement may expand the scope of possibly useful
schemes, but also may take extra work to handle nonzero failure rate in various contexts
(the worst case being when an attacker can induce the failure case with probability higher
than the failure rate).

Furthermore, the reduction of key agreement to semigroups, might become a (faulty?)
reduction from faulty key agreement to faulty semigroups (partially associative magmas),
a much larger category of mathematical object, which is less well-studied (and less well-
behaved). Besides, the scope obtained from all semigroups is already very large, at least
from the perspective of providing many targets for cryptanalysis.

For such reasons, faulty key agreement is not considered further in this report.

2.11 Multiplicative schemes

The focus of this report is the following type of key agreement (see [RS93,
BC04]).

Lemma 2.11.1. Let S be a multiplicative semigroup3. Let kS = [k1, k2, k3, k4]
where

k1(a, b) = ab, (2.11.1)

k2(b, c) = bc, (2.11.2)

k3(a, e) = ae, (2.11.3)

k4(d, c) = dc, (2.11.4)

for all a, b, c, d, e ∈ S. Then kS is a key agreement scheme.

Proof. Check the key agreement equation:

k3(a, k2(b, c)) = k3(a, bc)

= a(bc)

= (ab)c

= k4(ab, c)

= k4(k1(a, b), c),

where the outer equations are from the definition, the middle equation is due
to the associativity law.

3A semigroup is (recall) a set S with an associative binary operation. A multiplicative
semigroup uses multiplicative notation for the binary operation. In a multiplicative semi-
group, the associative law is written a(bc) = (ab)c for all a, b, c ∈ S in a multiplicative
semigroup. For more detail on semigroups, see Chapter B.

32 CHAPTER 2. KEY AGREEMENT

Definition 2.11.1. A multiplicative key agreement scheme is a scheme
kS = [k1, k2, k3, k4] from Lemma 2.11.1.

The scheme kS is associated with semigroup S, and is the unique mul-
tiplicative scheme associated with S.

A semigroup that uses a non-multiplicative notation is isomorphic to a
semigroup with multiplicative notation, so can also be associated with a key
agreement scheme.

A converse to Lemma 2.11.1 can be formed, using the next notion.

Definition 2.11.2. A key agreement scheme [k1, k2, k3, k4] is symbiotic

• k1 = k2 = k3 = k4, and

• Dom(k1) = Ran(k1) × Ran(k1).

Diversion 2.11.1. Saying ki are equal means Ran(ki) are equal, and Dom(ki) are all
equal, and of course ki(a, b) = k1(a, b) for all i and all [a, b] ∈ Dom(k1).

Diversion 2.11.2. The mnemonic for symbiotic is same binary operation.

A multiplicative key agreement scheme is symbiotic, because ki(a, b) = ab,
and Dom(ki) = S × S and Ran(ki) = S, for a semigroup S. Conversely, the
following holds.

Lemma 2.11.2. Let k be a symbiotic key agreement scheme. Let S be the
set Ran(k1) with a multiplication operation defined by

ab = k1(a, b).

Then S is a semigroup, and k is the multiplicative key agreement associated
with S.

Proof. To prove the associative law in S, compute as follows

a(bc) = k1(a, bc)

= k1(a, k1(b, c))

= k3(a, k2(b, c))

= k4(k1(a, b), c)

= k1(k1(a, b), c)

= k1(ab, c)

= (ab)c,

2.12. ASIDE: REFLECTIVE AND CHIRAL SCHEMES 33

which shows that a(bc) = (ab)c for all a, b, c ∈ S.
To show that k is the multiplicative scheme associated with S, check that

k1(a, b) = k1(a, b) = ab,

k2(b, c) = k1(b, c) = bc,

k3(a, e) = k1(a, e) = ae,

k4(d, c) = k1(d, c) = dc,

using equality of the ki and definition of multiplication as k1.

Multiplicative (and symbiotic) key agreement might seem rather special,
but later it will be shown that it is actually quite general.

2.12 Aside: reflective and chiral schemes

Definition 2.12.1. A key agreement scheme k = [k1, k2, k3, k4] is reflective
if

k1(a, b) = k2(b, a)

k3(a, b) = k4(b, a)

for all a, b in the appropriate domains. Otherwise, k is chiral.

Diffie–Hellman key agreement (Definition 2.2.1) is reflective. If S is a
commutative semigroup, then the multiplicative key agreement scheme kS

(Definition 2.11.1) is reflective, otherwise kS is chiral.

Diversion 2.12.1. In reflective key agreement, the roles of Alice and Charlie are inter-
changeable.

In chiral key agreement, Pat must use Charlie’s functions k2 and k4 to talk Alice.
Similarly, Pat must use Alice’s functions k1 and k3 to talk to Charlie. The roles of Alice
and Charlie can be renamed left and right, when more than two parties are involved.
Chiral key agreement does not permit agreement between two parties playing the same
role, such as left and left.

2.13 Associative schemes

Definition 2.13.1. An associative key agreement k is a subscheme of a
multiplicative key agreement scheme K.

If K is associated with semigroup S, then say that k is associated with
S.

34 CHAPTER 2. KEY AGREEMENT

Every session of an associative key agreement scheme takes the form:

[a, b, c, d, e, f] = [a, b, c, ab, bc, abc].

In particular, choose three subsets A, B, C ⊆ S of a multiplicative semi-
group S. Let kA,B,C,S be an associative key agreement scheme that is a
subscheme of the multiplicative scheme kS with all sessions [a, b, c, d, e, f]
having [a, b, c] ∈ A × B × C. More precisely, kA,B,C,S = [k1, k2, k3, k4] where

k1 : A × B → S : [a, b] 7→ ab,

k2 : B × C → S : [b, c] 7→ bc,

k3 : A × S → S : [a, e] 7→ ae,

k4 : S × C → S : [d, c] 7→ dc.

Call kA,B,C,S an induced associative key agreement scheme (induced by
[A, B, C]).

2.14 Aside: non-associative scheme

A non-associative key agreement scheme is any scheme k that is not asso-
ciative.

In particular, Diffie–Hellman key agreement k (Definition 2.2.1) is not as-
sociative. To see this, first k1(a, b) = k3(a, b) = ba 6= ab = k2(b, a) = k4(b, a),
for most a and b. But if k were associative, then it would be the subscheme of
a multiplicative scheme K, and would have k1(a, b) = K1(a, b) = K2(a, b) =
k2(a, b), a contradiction.

For a smaller non-associative scheme, consider rock, scissors, paper key
agreement again. Represent it as k1(a, b) = a and k2(b, c) = c and k3(a, b) =
k4(a, b) = (a − b) mod 3, where all a, b, c ∈ Z/3 = {0, 1, 2}, making each ki a
binary operation on Z/3. Recall that this is a key agreement scheme because
k3(a, k2(b, c)) = k3(a, c) = (a − c) mod 3 = k4(a, c) = k4(k1(a, b), c). Suppose
that k is a subscheme of a multiplicative scheme K. Then all the sessions of
k must be sessions of K, so k1(a, b) = K1(a, b) and k2(b, c) = K2(b, c). But
since K is multiplicative, K is symbiotic with K1 = K2. Clearly, k1 6= k2, so
k cannot be a subscheme of K.

2.15. EQUIVALENT SCHEMES 35

2.15 Equivalent schemes

Key agreement schemes k and K are isomorphic if they differ only by a re-
labeling of the values Alice and Charlie use. In more detail, a key agreement
scheme k is isomorphic to a key agreement scheme K if there is an array
[α, β, γ, δ, η, φ] of bijections, such that,

• If [a, b, c, d, e, f] is a session k, then [α(a), β(b), γ(c), δ(d), η(e), φ(f)] is
a session of K.

• Every session of K has the form [α(a), β(b), γ(c), δ(d), η(e), φ(f)] for a
session [a, b, c, d, e, f] of k.

Two schemes k and K are equivalent if they are isomorphic and the re-
labeling maps are efficient functions in both directions (so, a 7→ α(a) and
α(a) 7→ a, and similar).

Diversion 2.15.1. A slightly stricter type of isomorphism is range-isomorphism. In this
case, the bijections cover the entire domains and ranges of the functions ki and Ki. To be
completed.

2.16 Aside: derived schemes

Given a key agreement scheme k, another scheme can be formed by applying
appropriate functions to the inputs and outputs of the functions ki.

Lemma 2.16.1. Let k = [k1, k2, k3, k4] be a key agreement scheme. Let
α, β, γ, δ, δ′, η, η′, φ be functions, such that

K1(a, b) = δ(k1(α(a), β(b)))

K2(b, c) = η(k2(β(b), γ(c)))

K3(a, e) = φ(k3(α(a), η′(e)))

K4(d, c) = φ(k4(δ
′(d), γ(c))).

are well-defined. If δ′(δ(x)) = x and η′(η(x)) = x for all x in the appropriate
domains, then K = [K1, K2, K3, K4] is a key agreement scheme.

36 CHAPTER 2. KEY AGREEMENT

Proof. The key agreement equation for K can be checked as follows:

K3(a, K2(b, c)) = φ(k3(α(a), η′(K2(b, c)))))

= φ(k3(α(a), η′(η(k2(β(b), γ(c))))))

= φ(k3(α(a), k2(β(b), γ(c))))

= φ(k4(k1(α(a), β(b)), γ(c)))

= φ(k4(δ
′(δ(k1(α(a), β(b)))), γ(c)))

= φ(k4(δ
′(K1(a, b)), γ(c)))

= K4(K1(a), c).

In other words, when Alice selects a in K, Alice is effectively selecting α(a)
in k. For Charlie, using c in K amounts to using γ(c) in k. When Alice
delivers d in K, Alice effectively delivering δ′(d) in k. And so on.

Diversion 2.16.1. The scheme K will be well-defined if each of

Im(α) × Im(β) ⊆ Dom(k1),

Im(β) × Im(γ) ⊆ Dom(k2),

Dom(k1) × Im(η) ⊆ Dom(k3),

Im(η) × Dom(k1) ⊆ Dom(k4),

holds, for example.

Write µ = [α, β, γ, δ, η, φ] and K = µ(k), and say that K is derived from
k.

Diversion 2.16.2. Cryptographers might appreciate examples of derived schemes with:

• α and γ some kind of pseudorandom domain expansion, such as a password-based
key derivation function, or a pseudorandom random number generator mapping
a raw entropy source into a uniformly distributed value, or domain-adjustment
operation mapping one uniform distribution to another nearly uniform distribution
over a different domain;

• δ and η some kind of encoding or formatting functions, such as leading-zero-bit-
padding, radix expansion (8-bit, 32-bit, ...), endianness-switching, or syntax for-
matting (ASN.1, JSON, XML);

• φ some kind of key derivation function, such as a hash function to remove bias as
bit string, or a labeled one-way function to produce multiple effectively independent
sub-keys, or even a stream cipher to produce a key stream to encrypt a message.

Intuition might suggest that less derived schemes might be easier to break, so might be
the proper target of cryptanalysis.

2.17. ESSENTIALLY ASSOCIATIVE SCHEMES 37

The maps µ = [α, β, γ, δ, η, φ] define morphisms between key agreement
schemes, forming a mathematical category of key agreement. Maps can be
composed, map composition is associative, and the identity map 1k from k
to itself is the array of identity functions on appropriate domains.

Two schemes k and K are isomorphic if there are maps µ and ν such that

k = µ(k)

K = ν(K)

µ ◦ ν = 1K

ν ◦ µ = 1k

In other words, isomorphic schemes k and K differ only by bijective coordi-
nate re-labelings of the sessions [a, b, c, d, e, f].

A subscheme k of K is derived from K by making each re-labeling function
an embedding function, so that α(a) = a for all a ∈ Dom(k1)1, and so on.

2.17 Essentially associative schemes

Equivalence extends associativity to the following larger class of key agree-
ment schemes.

Definition 2.17.1. A key agreement scheme is essentially associative if
it is equivalent to an associative scheme.

2.18 Diffie–Hellman is essentially associative

Lemma 2.18.1. The Diffie–Hellman key agreement scheme kDH mod p from
Definition 2.2.1 is essentially associative.

Proof. Form a semigroup on set

S = {[1], . . . , [p − 1], [p + 1], [p + 2], . . . [2p − 1]} (2.18.1)

with multiplication defined as

[a][b] =

[(ab − 1 mod (p − 1)) + 1] if a < p, b < p,

[(ab mod p) + p] if a > p, b < p,

[(ba mod p) + p] if a < p, b > p,

[p + 1] if a > p, b > p.

(2.18.2)

38 CHAPTER 2. KEY AGREEMENT

In other words, for a, b ∈ {[1], . . . , [p − 1]}, use multiplication modulo p − 1,
except that the result is put into the range [1, p − 1] (instead of the usual
range [0, p − 2] computed using remainders). If exactly one of a or b is in
{[p + 1], . . . , [2p − 1]}, then use exponentiation modulo p, except the result
is put into the range [p + 1, 2p − 1] (instead of the usual [0, p − 2] range
computed using remainders). If both a and b are in {[p + 1], . . . , [2p − 1]},
then default to returning [p + 1].

Associativity of S can be proved by looking at how many of the relevant
variables exceed p.

If none of the variables a, b, c exceed p, so a, b, c < p, then

[a]([b][c]) = [((abc) − 1 mod p − 1)) + 1] = ([a][b])[c]. (2.18.3)

To see this, consider that the inner parenthesized product on each side, has a
result less than p, so all computations are essentially multiplications modulo
p − 1.

If one of the variables a, b, c exceeds p, say, one of a, b, c has value e with
e > p, and the others have values x, y < p, then

[a]([b][c]) = [exy mod p] = ([a][b])[c]. (2.18.4)

To see this, consider that the inner parenthesized product on each side is
either a power computed modulo p, or a product modulo p − 1, and then the
outer product on each side is a power computed modulo p.

If two or more of the variables a, b, c exceed p, then

[a]([b][c]) = [p + 1] = ([a][b])[c]. (2.18.5)

To see this, consider that the inner parenthesized product on each side has
a result greater than p, and is actually p + 1, if the the unused variable is
less than p. The outer product is then of two values exceeding p, which
results in p + 1, or involves p + 1 and a number smaller than p, resulting an
exponentiation, but that exponentiation leads back to p+1 because the base
of exponentiation is p + 1.

Let A = C = {[1], . . . , [p − 1]} and B = {[p + 1], . . . , [2p − 1]}. Form the
induced associative key agreement scheme K = kA,B,C,S. (See §2.13.)

Then K is equivalent to the given Diffie–Hellman key agreement k =
kDH mod p, with session [a, b, c, d, e, f] of k mapping to the session

[[a], [b + p], [c], [d + p], [e + p], [f + p]]

of K.

2.19. ASIDE: A MORE GENERAL DIFFIE–HELLMAN REALM 39

Table 2.2 lists the multiplication table of p = 5 version of the semigroup
used in the proof, which is a small but typical example.

[1] [2] [3] [4] [6] [7] [8] [9]
[1] [1] [2] [3] [4] [6] [7] [8] [9]
[2] [2] [4] [2] [4] [6] [9] [9] [6]
[3] [3] [2] [1] [4] [6] [8] [7] [9]
[4] [4] [4] [4] [4] [6] [6] [6] [6]
[6] [6] [6] [6] [6] [6] [6] [6] [6]
[7] [7] [9] [8] [6] [6] [6] [6] [6]
[8] [8] [9] [7] [6] [6] [6] [6] [6]
[9] [9] [6] [9] [6] [6] [6] [6] [6]

Table 2.2: Multiplication table for a Diffie–Hellman semigroup, with p = 5

Diversion 2.18.1. Lemma 2.2.1 shows that a similar key agreement scheme allowing input
variables with value 0. Adding an element [p] to S in the proof can be done under a similar
multiplication rule, lumping [p] into the cases with a > p, but does not give an associative
multiplication. (For example, ([5][2])[2] = [5][2] = [5] and [5]([2][2]) = [5][4] = [6].)

Finding an equivalent associative key agreement is still possible (see §2.20).

Diversion 2.18.2. The proof makes uses of the requirement that p is prime. In particular,
multiplication in the semigroup uses reduction modulo p − 1, which arises because of
Fermat’s little theorem ab mod p = a(b mod p−1) mod p, for all a with 0 < a < p.

Diversion 2.18.3. Earlier it was shown that Diffie–Hellman is not associative. Therefore
equivalence does not preserve the associativity of key agreement.

2.19 Aside: a more general Diffie–Hellman

realm

A realm is set with two binary operations, written as addition and multipli-
cation (see §B.12). The Diffie–Hellman realm RDH[S] of a multiplicative
semigroup S consists of the following.

• Non-negative integers, written as usual, 0, 1, 2, . . . ,, with the usual
(standard) addition and multiplication.

• Infinity, written as ∞, with operations defined by the usual conventions
∞+r = r +∞ = r∞ = ∞r = ∞, for all other elements r (those above

40 CHAPTER 2. KEY AGREEMENT

and those below).

• Copies of elements S, written as [s] for s ∈ S. Elements of [S] operate
among themselves as:

[s] + [t] = [st]

[s][t] = ∞

Elements of [S] operate with positive (finite) integers as:

[s] + n = n + [s] = ∞,

[s]n = n[s] = [sn].

Diversion 2.19.1. Addition and multiplication in RDH[S] are each associative. (To be
verified.) (Write RDH[S]+ for its an additive semigroup (magma), RDH[S]× for its multi-
plicative semigroup (magma).)

If S is commutative (or power-commutative, meaning that (st)n = sntn for all s, t ∈ G
and all positive integer n), than multiplication in RDH[S] is distributive over addition,
making RDH[S] a semiring. To see this, calculate n([s] + [t]) = n([st]) = [(st)n] = [sntn] =
[sn] + [tn] = n[s] + n[t], for example.

Diversion 2.19.2. Suppose S is a group. Suppose also that there exists a positive integer
m, such that every element of S has an order dividing a m. We can then define a realm
congruence on RDH[S] in which the integers are reduced modulo m, which we call the
reduced Diffie–Hellman realm of G.

Diversion 2.19.3. Associative key agreement using the multiplicative semigroup RDH[S]×

is essentially Diffie–Hellman (exponentiative) key agreement over the multiplicative semi-
group S, as explained below.

The secrets a and c (of Alice and Charlie) will be integers. Values b, d, e, f, g ∈ [S], say
b = [B], and d = [D] and so on. So, d = ab means that [D] = a[B] = [Ba], for example.

2.20 Key agreement is essentially associative

All key agreement, not just Diffie–Hellman, is essentially associative:

Lemma 2.20.1. Every key agreement scheme is essentially associative.

Proof. Let k = [k1, k2, k3, k4] be a key agreement scheme. The aim is to
construct a semigroup, S = Sk, and subsets A, B, C ⊆ S such that k is
equivalent to the induced associative scheme kA,B,C,S .

2.20. KEY AGREEMENT IS ESSENTIALLY ASSOCIATIVE 41

The high-level strategy to define semigroup S is to use the key agreement
functions ki as the multiplication operation wherever possible, and otherwise
to make multiplication zero-valued (for a formal value 0).

Because the domains of the function ki may overlap, with ki and kj taking
inconsistent values on the overlaps, disjoint copies of the domains are needed
to make multiplication well-defined.

Define a set S = Sk, with elements of the seven forms:

0, [1, a], [2, b], [3, c], [4, d], [5, e], [6, f],

where [a, b, c, d, e, f] are sessions of k. Equivalently,

a ∈ Dom(k1)1,

b ∈ Dom(k1)2,

c ∈ Dom(k3)2,

d ∈ Ran(k1),

e ∈ Ran(k2),

f ∈ Ran(k3) ∪ Ran(k4).

Define multiplication in S by

[1, a][2, b] = [4, k1(a, b)],

[2, b][3, c] = [5, k2(b, c)],

[1, a][5, e] = [6, k3(a, e)],

[4, d][3, c] = [6, k4(d, c)],

whenever the inputs to the functions ki on the right side of each equation
belong to the correct domain; and otherwise

st = 0,

for all s, t ∈ S (except for inputs s, t as listed above). Table 2.3 summarizes
multiplication in S. Multiplication in S is associative because, if [s, t, u] =

42 CHAPTER 2. KEY AGREEMENT

0 [1, a] [2, b] [3, c] [4, d] [5, e] [6, f]
0 0 0 0 0 0 0 0

[1, a] 0 0 [4, k1(a, b)] 0 0 [6, k3(a, e)] 0
[2, b] 0 0 0 [5, k2(b, c)] 0 0 0
[3, c] 0 0 0 0 0 0 0
[4, d] 0 0 0 [6, k4(d, c)] 0 0 0
[5, e] 0 0 0 0 0 0 0
[6, f] 0 0 0 0 0 0 0

Table 2.3: Multiplication for Sk

[[1, a], [2, b], [3, c]], then

s(tu) = [1, a]([2, b][3, c])

= [1, a][5, k2(b, c)]

= [6, k3(a, k2(b, c))]

= [6, k4(k1(a, b), c)]

= [4, k1(a, b)][3, c]

= ([1, a][2, b])[3, c]

= (st)u,

and, otherwise, s(tu) = 0 = (st)u. (To see this, suppose s(tu) 6= 0. Then,
s = [i, a] for some a and some i ∈ {1, 2, 4}, by looking at the rows of Table 2.3
non-zero entries. Similarly, tu = [j, e], for some e and j ∈ {2, 3, 5}, by looking
at columns with non-zero entries. But tu 6= 0, so looking at the form all non-
zero entries in the table, we get tu = [j, e] with j ∈ {4, 5, 6}. Therefore
j ∈ {2, 3, 5} ∩ {4, 5, 6}, so j = 5. This forces i = 1 and t = [2, b] and
u = [3, c] for some b and c. The argument for (st)u is similar.)

Let

A = {[1, a] : a ∈ Dom(k1)1},

B = {[2, b] : b ∈ Dom(k1)2},

C = {[3, c] : c ∈ Dom(k2)2}.

The associative key agreement scheme K = kA,B,C,S is equivalent to k, with
session [a, b, c, d, e, f] of k mapping to session

[[1, a], [2, b], [3, c], [4, d], [5, e], [6, f]].

2.21. ASIDE: PACKED ASSOCIATED SEMIGROUPS 43

of K. This gives an isomorphism, with efficient maps in both directions.

2.21 Aside: packed associated semigroups

If key agreement k is associated with semigroup S, define a subset Sk ⊆
S, the set of sessional elements, by including each entry of each session
[a, b, c, d, e, f] of k, as mapped to elements of an associated semigroup S,
via the equivalence of k to a subscheme of the multiplicative scheme kS.
The sessionality of S associated with k is the cardinality |Sk| of the set of
sessional elements. A semigroup S is a packed associated semigroup of k, if
its sessionality is minimal among all associated semigroups of k.

For example, for Diffie–Hellman agreement mod p, the associated semi-
group from the proof Lemma 2.20.1 has sessionality of 6p − 6, while the
associated semigroup from the proof of Lemma 2.18.1 has sessionality 2p−2.
Therefore, the former semigroup is not a packed associated semigroup of k,
because the latter has lower sessionality.

Diversion 2.21.1. For key agreement schemes with an infinite number of sessions, the
cardinality of the set of sessional elements is likely not very informative, but a more refined
approach based on functions into the semigroup may be more informative.

Let S and T be two associated semigroup of S. Say S is at least as packed as T if
there exists a function p : Tk → Sk, such that for any entry x of any session [a, b, c, d, e, f],
such that x maps to t ∈ Tk and to s ∈ Sk, then p(t) = s. Say that S is relatively packed
if for all T at least as packed as S it holds that S is at least as packed as T .

For finite sessionality semigroups, being packed implies being relatively packed.

2.22 Aside: reduction to a category

Category theory is an abstraction that unifies many notions across modern al-
gebra. Perhaps, it is then unsurprising that key agreement can be abstracted
into category theory.

Recall that category has objects and morphisms between objects. Mor-
phisms compose associatively. (There is also a unique identity morphism
form each object to itself, but we shall not need that.) Write Mor(O, P), for
the set of morphisms between two objects O, P . Write f ◦ g ∈ Mor(O, P)
for the composition of morphisms, f ∈ Mor(P, Q) and g ∈ Mor(O, Q). (This
convention means the objects have opposite left-to-right ordering from the
morphisms in a product.)

44 CHAPTER 2. KEY AGREEMENT

First, we construct a key agreement scheme from any category, and any
four objects O1, O2, O3, O4 in the category. Define a key agreement scheme
k as follows:

k1 : Mor(O4, O3) × Mor(O3, O2) → Mor(O4, O2) : [a, b] 7→ a ◦ b

k2 : Mor(O3, O2) × Mor(O2, O1) → Mor(O3, O1) : [b, c] 7→ b ◦ c

k3 : Mor(O4, O3) × Mor(O3, O1) → Mor(O4, O1) : [a, e] 7→ a ◦ e

k4 : Mor(O4, O2) × Mor(O2, O1) → Mor(O4, O1) : [d, c] 7→ d ◦ c

Second, we construct a category with four objects O1, O2, O3, O4 from any
key agreement scheme k.

Let Mor(Oi, Oi) = {1Oi
}. Let Mor(Oi, Oj) = {} if i < j. Let Mor(O4, O3) =

Dom(k1)1, meaning all a such that k1 is defined for some input of the form
[a, b] (for some value of b). Similarly, let Mor(O3, O2) = Dom(k1)2 and
Mor(O2, O1) = Dom(k2)2. Let Mor(O4, O2) = Im(k1) and Mor(O3, O1) =
Im(k2) and Mor(O4, O1) = Im(k3). Define morphism composition as

◦ : Mor(O4, O3) × Mor(O3, O2) → Mor(O4, O2) : [a, b] 7→ k1(a, b)

◦ : Mor(O3, O2) × Mor(O2, O1) → Mor(O3, O1) : [b, c] 7→ k2(b, c)

◦ : Mor(O4, O3) × Mor(O3, O1) → Mor(O4, O1) : [a, e] 7→ k3(a, e)

◦ : Mor(O4, O2) × Mor(O2, O1) → Mor(O4, O1) : [d, c] 7→ k4(d, c)

together with the usual category axiom that identity morphisms compose
without effect.

Although category theory is important in modern algebra, it is not often
viewed algorithmically.

2.23 Reduction to a ring

Any multiplicative semigroup is a subsemigroup of the multiplicative semi-
group of a ring. For example, the ring can be taken as a semigroup ring of
the semigroup. The semigroup ring contains a copy of the given semigroup.

Therefore, the session values of a key agreement can be represented as
ring elements, and the key agreement functions as ring multiplications.

Such rings can be constructed that are larger than the given semigroup,
sometimes much larger. This ring view has the potential risk that division
in the very small subsemigroup is much easier than in the ring at large.

2.24. REDUCTIONISM 45

Diversion 2.23.1. Cash, Kiltz and Shoup [CKS08] introduced twinned Diffie–Hellman.
This can be interpreted using the semigroup ring construction above. Essentially, what
they propose amounts to taken a formal sum of two elements in the semigroup associated
with Diffie–Hellman.

2.24 Reductionism

Because of Lemmas 2.11.1 and 2.20.1, a question about a key agreement
can be translated into a question about semigroups, and a question about
semigroups can be translated into a question about key agreement. In other
words, key agreement theory is almost reduced to semigroup theory. The
reduction is not perfect, by any means, for at least the following two major
reasons.

• For each semigroup S, there are many associative key agreement schemes
kA,B,C,S.

• For each key agreement scheme k, there may be many different semi-
groups S, such that k is equivalent to an associative key agreement
scheme kA,B,C,S .

Diversion 2.24.1. A minor imperfection is that the main formal notions for equivalence
of schemes ignore the overall range of the functions ki, but in several applications of key
agreement the ranges are important.

Diversion 2.24.2. The reduction is not claimed to be a functor in the mathematical sense
of category theory.

Semigroup theory is older than key agreement. Optimism leads to a hope
that semigroup theory is re-usable to understand key agreement. Pessimism
leads to a doubt that most existing semigroup theory is not useful to under-
stand key agreement. For example, existing semigroup theory likely

• addresses only mathematically nicer semigroups that would be insecure
if used for associative key agreement,

• examines the underlying structure of semigroups existentially, without
much focus on critical practical issues such as algorithms.

Diversion 2.24.3. The semigroup S constructed in the proof of Lemma 2.20.1 is arguably
unnatural:

46 CHAPTER 2. KEY AGREEMENT

• its multiplication table has a patchwork appearance of mostly zeros with a four
disconnected rectangular patches derived from the four key agreement functions,
and

• the semigroup is 4-nilpotent, meaning s4 = 0 for all s ∈ S.

The capacity for an unnatural semigroup to hold a nearly arbitrary patchwork of functions
strongly suggests that a general theory of semigroups cannot prove useful to study such
arbitrary key agreement.

Nonetheless, the general results suggests a hope that the following approach will be
more useful than the generic approach of using Lemma 2.20.1.

Given key agreement scheme k, find the most natural semigroup S associated with k.
The natural semigroup S, especially if it is group-like, may be more amenable to known
semigroup theory. Similarly, form a ring R from S, and perhaps the ring theory will be
useful to understanding R, then S, and then k.

Diversion 2.24.4. As far as naming the directions of translation can help, perhaps the
terms below are most appropriate:

• to descend is to translate from key agreement to semigroups, from practice to
theory, from applications to basics, from concrete to abstract, from engineering to
mathematics, from divulgers to dividers, from focus on [A, B, C, S] to focus on S;

• to ascend is to translate from semigroups to key agreement, from theory to prac-
tice, from basics to applications, from abstract to concrete, from mathematics to
engineering, from dividers to divulgers, from focus on S to focus on [A, B, C, S].

Under these terms, this report aims to descend from key agreement to the basics of semi-
group theory and ring theory.

Chapter 3

Security aims of key agreement

Security aims for key agreement

• generalize well-known security aims of Diffie–Hellman key agreement,
and its derived variants,

• specialize well-known security aims of more general definitions of key
exchange,

• are formalized here for completeness (but coined new names to avoid
the overloading old terminology, whether specific to Diffie–Hellman or
generic to wider classes of key exchange), and

• can usually be reduced into the difficulty of certain semigroup problems
(some of which, such as division, are well-known and much older than
public-key cryptography).

Attack strategies against some of the basic security aims are deferred to
Chapters 4 and 5 (and expressed in terms of semigroups).

3.1 Watchers (generalized DHP)

The main security aim for any key agreement scheme is to resist the next
type of attack:

Definition 3.1.1. A watcher of a key agreement scheme k = [k1, k2, k3, k4]
is a function W such that

W (k1(a, b), b, k2(b, c)) = k3(a, k2(b, c)), (3.1.1)

47

48 CHAPTER 3. SECURITY AIMS

for all [a, b, c] with [a, b] ∈ Dom(k1) and [b, c] ∈ Dom(k2).

Diversion 3.1.1. In the case of the Diffie–Hellman key agreement scheme (Definition 2.2.1),
computing the watcher function is equivalent to the (variable-base) standard computa-
tional Diffie–Hellman problem, because in this case

W (d, b, e) = W ((ba mod p), b, (bc mod p)) = (bac mod p).

3.1.1 Real world impacts of a watcher

The real-world impact of a watcher depends on how key agreement is used.
Almost all key agreement usage makes the agreed key f a critical secret. An
attacker who knows f would defeat security of the entire application of key
agreement, in a non-recoverable, devastating way.

If Alice represents a user of k1 and k3 and Charlie represents a user of k2

and k4, then let Bugsy represent a user of W . Bugsy aims to compute f = g,
using only b, d = k1(a) and e = k2(c).

3.1.1.1 Fake delivery (man-in-middle) attacks

The impact of a practical watcher algorithm should be compared to the
impact of a simpler alternative attack, the man-in-the-middle attack, or
more accurately speaking, the fake delivery attack, described below.

In this attack, Bugsy does not use a watcher W at all, but instead replaces
Alice’s or Charlie’s delivery with his own. For example, Bugsy replaces Alice’s
delivery d by his own delivery d′. Bugsy has his own secret a′, distinct from
Alice’s secret. Bugsy computes d′ = k1(a′, b). Bugsy computes agreed key
f ′ = k3(a

′, e). Charlie’s agree key is g′ = f ′. Of course, Charlie’s key f ′ is
different from the key f he would have computed, had Charlie been given
Alice’s actual delivery d.

Nonetheless, Charlie might think that he has agreed on a key g′ with
Alice, and that g′ is known only to Alice and Charlie. Unfortunately for
Charlie, it actually Bugsy who knows g′, not Alice. To make Charlie think g′

is known only to Alice and Charlie, Bugsy needs to deceive Charlie to think
that the fake delivery d′ is from Alice.

Bugsy can also work on both sides, making a double fake delivery
attack. As above, Bugsy replaces d by d′, but Bugsy also replace e by e′.
Bugsy computes two distinct keys: f ′ and g′. Key f ′ is agreed with Alice,
and key g′ is agree with Charlie. Alice and Charlie’s keys do not agree. At
this point, Bugsy may run a relay attack. Bugsy intercepts encrypted traffic

3.1. WATCHERS (GENERALIZED DHP) 49

that Alice or Charlie sends. He decrypts with the appropriate key to get the
plaintext. Then he re-encrypts, and re-authenticated to the other victim. All
traffic between Alice and Charlie is relayed as if they had agreed on the same
key f = g. Alice and Charlie are not likely to notice this, except perhaps
for the subtle delays, or if they have a second layer of cryptographic defense,
beyond just key agreement.

Bugsy’s cost in this man-in-the-middle attack is not much more than the
cost of the users Alice and Charlie. His computations are just the functions
ki. Perhaps his most difficult to task is to stop all the intermediate traffic,
and replace it with this own version.

Thwarting these fake delivery attacks (in other words, man-in-the-middle
attacks) is usually necessary in most applications of key agreement. A typical
protection against these attacks is to apply a digital signature to the delivery
of Alice or Charlie, or both their deliveries. (The signature verification key
must be authentic for this to be effective.)

In many cases, only one of the deliveries is authenticated. The other
delivery is consider anonymous, and is vulnerable to a fake delivery attack.

A common example is Alice using key agreement through TLS 1.3 inside
a web browser. Alice is typically anonymous, with her (elliptic curve) Diffie–
Hellman key agreement delivery not digitally signed. Charlie runs a web
server, and his (elliptic curve) Diffie–Hellman key agreement delivery is au-
thenticated, using a digital signature (such as ECDSA or RSA). Alice knows,
cryptographically speaking, that she is talking to Charlie, due to Charlie’s
digital signature. On other hand, Alice is cryptographically anonymous. As
far as Charlie knows, he could be taking to Bugsy, at least until some extra
authentication steps are taken.

Many web server will have Alice authenticate herself to Charlie, but only
after key agreement has been used to provide a private connection. For exam-
ple, Alice sending Charlie a secret token, such as a (slow) hash of a password,
or a cookie previously stored in Alice’s web browser. Key agreement, Char-
lie’s digital signature, and encryption together assure Alice that her secret
token is only seen by Charlie, and not some adversary.

Instead of Charlie signing his own delivery, he may have a third party
sign it, in which case the delivery is part of a certificate. Since the third
party would likely only sign the delivery once, the certified delivery is static,
and would re-used across many sessions. In this case, Charlie should worry
about forward secrecy. To recover forward secrecy, he might use two sessions
key agreement with Alice. The first, with the static certified delivery, is used

50 CHAPTER 3. SECURITY AIMS

only to authenticated, the ephemeral delivery.

The Menezes–Qu–Vanstone (MQV) key agreement is an instance can be
considered as a merger of two agreement sessions, one ephemeral and one
static. Instead of the static session authenticating the ephemeral session, only
a single key is computed, derived as a combination of the various inputs. An
alternative viewpoint is that that each MQV delivery has two parts, one part
certified for authentication, the other part ephemeral, for forward secrecy.

Yet another mitigation against man-in-the-middle attacks is to use non-
block-able deliveries. In this case, the authentication of the deliveries is
not due to cryptography, but due to some physical means. For example,
Alice and Charlie might presume that Bugsy might be able to send them
fake deliveries, but is not able to block their own deliveries from arriving.
If Alice and Charlie are expecting each other’s deliveries, and only receive
one delivery each, then then can deduce that the deliveries are not fake. If
Alice or Charlie receives two deliveries, then one must be fake, so an ongoing
attack can detected, and an appropriate alert raised.

Some systems overtly rely on similar forms of non-cryptographic authen-
tication. A common form authentication is known as trust-on-first-use
(TOFU), based on the notion that the Bugsy will not be ready to block de-
liveries from the initial communications between Alice and Charlie, perhaps
because many there are too many pairs of peers initiating communications.

3.1.1.2 Privacy violation

If Alice (or Charlie) uses the agreed key f to encrypt a message to Charlie
(or Alice), then Bugsy using a watcher can compute f and then decrypt the
ciphertexts encrypted with f , and read the encrypted messages that were
meant to be private.

Diversion 3.1.2. Encryption using an agreed key is a common application of variants of
Diffie–Hellman key agreement. For example, the Transport Layer Security (TLS) version
1.3, requires use of elliptic curve Diffie–Hellman key agreement, and derives a encryption
key from the agreed key, using the derivation method that Bugsy can replicate easily.

In this mode of attack, Bugsy is an entirely passive observer. Bugsy does
not need to send any data to Alice or Charlie. Bugsy does not need to block
or delay any traffic between Alice and Charlie. Bugsy need only observe
d, b, e and the ciphertexts that to be decrypted with f .

In particular, this mode of attack is not thwarted by any level of authen-

3.1. WATCHERS (GENERALIZED DHP) 51

tication on the deliveries.

In this sense, it is more severely damaging than a man-in-the-middle
attack. In other words, the extra impact of an efficient watcher function
(over man-in-the-middle) is that it can break authenticated forms of key
agreement, and it is arguably stealthier, because the attacker can maintain
total network silence.

3.1.1.3 Impersonation

If Alice or Charlie uses the agreed key f to authenticate a message to the
other, then using a watcher, Bugsy can compute f and forge any message.
In other words, Bugsy can impersonate the sender.

Diversion 3.1.3. Authentication using agreed keys is a common application of variants
of the Diffie–Hellman key agreement. For example, the Transport Layer Security (TLS)
version 1.3, requires use of elliptic curve Diffie–Hellman key agreement, and derives an
authentication key from the agreed key, using the derivation method that Bugsy can
replicate easily.

In this mode of attack, after passively observing the key agreement values
d, b, e, Bugsy begins to send out data to Alice or Charlie.

In some applications, Charlie will only trust the agreed key f once. In
other words, Charlie will verify one single message from Alice per key agree-
ment session.

In this case, for Bugsy to impersonate Alice, he must also block Al-
ice’s authenticated message to Charlie. Otherwise, Charlie will receive two
authenticated messages, when he only expects one. Charlie will either be
alerted to an ongoing impersonation effort, or will just reject one of the au-
thenticated messages, perhaps Bugsy’s forgery (which is likely if it arrives
after Alice’s message). If Charlie is careless in the sense of not looking for a
second message, then Bugsy need merely arrange for the forgery to be deliv-
ered to Charlie before the truly authentic message. If the watcher algorithm
is slow, then Bugsy may need to delay Alice’s authenticated message, to give
him time to evaluate the watcher function and produce an impersonated
message.

The advantage over of this impersonation attack using a watcher, over the
fake delivery (man-in-the-middle) attacks is that this impersonation attacks
works even if the deliveries d and e are authenticated.

So, if Alice and Charlie authenticate their deliveries d and e, they can

52 CHAPTER 3. SECURITY AIMS

then safely the agree key f to authenticate messages, provided that Bugsy
has no efficient watcher algorithm. In other words, key agreement enables the
authentication of the initial deliveries to be transferred to the authentication
of later messages.

With a watcher, Bugsy can defeat this transfer of authentication.

Diversion 3.1.4. Such authentication transfer is a common application of variants of
Diffie–Hellman key agreement. The transport layer security protocol TLS 1.3 works this
way. A server’s Diffie–Hellman delivery is digitally signed, but then all payload message
data is authenticated in the record layer using the agree keys.

3.1.2 Seclusive key agreement

Definition 3.1.2. A key agreement scheme is seclusive if its watcher is
infeasible.

Diversion 3.1.5. A function f is feasible if it can be evaluated correctly using a feasible
algorithm A.

A feasible algorithm means that A always runs and returns an answer within cost
that its user (which is the attacker Bugsy in the case of a watcher function) can afford;
correct evaluation means that every input x in the domain of the function, the algorithm
returns the correct output f(x).

These definitions have zero tolerance for exceptions. An algorithm is incorrect even if
it is only wrong on one single output. An algorithm is infeasible even if its cost only exceeds
the attacker’s budget on one single input. The strictly deterministic setting does not allow
for partially correct algorithms and partially feasible algorithms. These are allowed in the
probabilistic setting, where meaning is formally attached how probable certain events are,
and incorrectness rates and average costs can be quantified.

A function is infeasible if it is not feasible. Equivalently: every correct algorithm is
infeasible; or, every feasible algorithm is incorrect. Due to the zero tolerance of exceptions,
a function might be infeasible if just a single one of its inputs has an output that is not
feasible to compute. For example, if one single output length has 21000 bytes, then it is
infeasible to produce this output, just due to its sheer length.

Such trivially infeasible functions will either not arise for watchers of efficient key
agreement schemes, or will be quantifiably accounted for in the probabilistic setting.

Diversion 3.1.6. If no feasible algorithm to implement the watcher is yet known, then
the key agreement can be called either currently or conjecturally seclusive, depending
on the amount of effort spent trying to discover a feasible watcher algorithm.

Definition 3.1.3. The seclusiveness of a key agreement scheme is the set
of costs of algorithms to implement a watcher, especially the minimal costs.

Diversion 3.1.7. Reasonable measures of algorithm cost include total energy consump-
tion, monetary expenditures, custom hardware, memory usage, distributed communica-

3.1. WATCHERS (GENERALIZED DHP) 53

tion, CPU cycles, and total time.

Diversion 3.1.8. The strict formalization of seclusiveness does not guarantee effective
resistance to probabilistic watchers §3.1.5, where a feasible algorithm finds the agreed key
for most (or many) choices of watcher input [d, b, e].

Nonetheless, seclusiveness is generally a necessary condition for secure key agreement,
a bare minimum bar to pass. Because seclusiveness can be defined and studied without
reference of probability, its logical simplicity makes it a sensible and worthwhile security
aim to isolate.

Furthermore, in some cases, the best known probabilistic watchers actually turn out
to be only slightly better than deterministic watchers, anyway.

3.1.3 Watcher existence and uniqueness

For convenience, let

A(k) = {[a, b, c] : [a, b] ∈ Dom(k1), [b, c] ∈ Dom(k2)},

D(k) = {[k1(a, b), b, k2(b, c)] : [a, b, c] ∈ A(k)},

so that the definition of a watcher W is an equation about the values W
takes on inputs from D(k).

Lemma 3.1.1. For each key agreement scheme k, there exists a watcher W .
If R ⊇ Ran(k3), there exists at most one watcher of the form W : D(k) → R.

Proof. To show W exists, construct a watcher W : D(k) → Ran(k3) as fol-
lows. For each [d, b, e] ∈ D(k), choose some [a′, b, c′] ∈ A(k) such that [d, e] =
[k1(a

′, b), k2(b, c′)], which exists by the definition of D(k). Let W (d, b, e) =
k3(a

′, k2(b, c′)).

To show that W defined above is a watcher, consider any [a, b, c] ∈ A(k),
and consider [d, b, e] = [k1(a, b), b, k2(b, c]] as an input to W . By definition of
W ,

W (d, b, e) = k3(a
′, k2(b, c′))

for the chosen a′ and c′, which may be distinct from a and c, but do satisfy

54 CHAPTER 3. SECURITY AIMS

k1(a
′, b) = d = k1(a, b) and k2(b, c′) = e = k2(b, c). Calculating

W (d, b, e) = W (k1(a, b), b, k2(b, c))

= k3(a′, k2(b, c′))

= k3(a′, k2(b, c))

= k4(k1(a
′, b), c)

= k4(k1(a, b), c)

= k3(a, k2(b, c)),

so, W meets the definition of a watcher: it is correct for [a, b, c], even though
it was defined another choice [a′, b, c′].

To see the uniqueness part, consider two functions W, W ′ : D(k) → R.
Let [d, b, e] ∈ D(k). By definition of D(k), d = k1(a, b) and e = k2(b, c)
for some a and c. By definition of watchers, W (d, e) = k3(a, k2(b, c)), and
W ′(d, e) = k3(a, k2(b, c)). So, W (d, e) = W ′(d, e) for all [d, b, e] ∈ D(k). In
other words, W = W ′.

Because of this lemma, it is usually unambiguous to refer to the watcher
of a key agreement scheme.

Diversion 3.1.9. Mathematicians might care and know whether existence of the watcher
requires the axiom of choice for infinite-domain key agreement schemes, and perhaps even
if existence of a watcher is equivalent to the axiom of choice.

3.1.4 Reduction of watchers to wedges

In defining key agreement, notions of equivalence and subschemes helped
provide a reduction of key agreement to semigroups. This section shows that
watchers undergo the same reduction.

3.1.4.1 Watchers of equivalent schemes

Let k and K be isomorphic key agreement schemes, as described in §2.15.
The sessions of k and K are one-to-one correspondence: [a, b, c, d, e, f] in k
mapping to [α(a), β(b), γ(c), δ(d), η(e), φ(f)] in K, where α, β, γ, δ, η, φ are
bijections.

Let w be a watcher for k. Define a watcher W for K by

W (D, B, E) = φ(w(δ−1(D), β−1(B), η−1(E)).

3.1. WATCHERS (GENERALIZED DHP) 55

Similarly, if W is a watcher for K, then

w(d, b, e) = φ−1(W (δ(d), β(b), η(e)),

is a watcher for k.

If k and K are also equivalent, meaning the relevant bijections and their
inverses are efficient, then the w is feasible if and only if W is. Therefore K
is seclusive if and only if k is seclusive.

Diversion 3.1.10. Actually, if k and K are only weakly equivalent, meaning that
bijection δ, β, η, φ and their inverses are only feasible (not necessarily efficient), then the
seclusiveness of k and K are basically equivalent, under the loose principle that the cost of
running five feasible algorithms is still feasible (there being no sharp line between feasible
and infeasible).

The arguments above and the previous lemmas imply the following.

Lemma 3.1.2. Every seclusive key agreement scheme is equivalent to a
seclusive associative key agreement scheme.

Proof. Let k be a seclusive key agreement scheme. Lemma 2.20.1 means that
k is equivalent to an associative scheme K.

If K were not seclusive, then a feasible watcher W for K would exist. By
the arguments above, this would imply a feasible watcher w for k. That would
mean that k is not seclusive, a contradiction. So, K must be seclusive.

3.1.4.2 Watchers of subschemes

Subschemes were defined in §2.8.

Lemma 3.1.3. If k is a subscheme of K, and W is a watcher of K, then w
defined by

w(d, b, e) = W (d, b, e)

for all [d, b, e] ∈ Im(k1) × Dom(k1)2 × Im(k2), is watcher of k.

Proof. When inputs to functions ki are restricted to the appropriate values
from sessions of k, each function ki is a restriction of function Ki, so that
ki(x, y) = Ki(x, y), since the output value of ki is another value in the session,
and every session of k is a session of K.

56 CHAPTER 3. SECURITY AIMS

Therefore, the watcher condition on W transfers to w. Formally,

w(k1(a, b), b, k3(b, c) = W (k1(a, b), b, k3(b, c))

= W (K1(a, b), b, K3(b, c))

= K3(a, K2(b, c))

= K3(a, k2(b, c))

= k3(a, k2(b, c)),

which (repeating the arguments above) uses the fact that if [a, b, c] generates
a session [a, b, c, d, e, f] of k, then this is also a session of K.

If W is feasible, then w is feasible, using the same implementation algo-
rithm for the function. If k is seclusive, then K is seclusive.

Diversion 3.1.11. The converse can fail: a seclusive key agreement scheme might have
an inseclusive subscheme.

In particular, every seclusive associative key agreement scheme is a sub-
scheme of a seclusive multiplicative key agreement scheme. Combining this
with Lemma 3.1.2 gives the next result.

Lemma 3.1.4. If k is seclusive, then there exists a semigroup S such that
key agreement scheme K = kS is seclusive, and k equivalent to a subscheme
of kS.

3.1.4.3 Watcher by wedges

In multiplicative key agreement, a watcher is exactly the wedge operation
[ab, b, bc] 7→ abc of the associated semigroup. (The wedge operation is defined
more formally in §B.9.)

This equivalence is formalized as the next two lemmas, one for each di-
rection:

Lemma 3.1.5. If S is a semigroup, and kS is its associated multiplicative
key agreement scheme, and W is a watcher for kS, then

d ∧b e =

W (d, b, e) if W (d, b, e) is defined

b if W (d, b, e) is not defined

defines a wedge operator for S.

3.1. WATCHERS (GENERALIZED DHP) 57

Lemma 3.1.6. If S is a semigroup, and kS is its the associated multiplicative
key agreement scheme, and ∧ is a wedge operator for S, then

W (d, b, e) = d ∧b e

defines a watcher for kS.

Combining with Lemma 3.1.4, gives the following:

Lemma 3.1.7. If k is a seclusive key agreement scheme, then there exists
a semigroup S with no feasible wedge operator, and k is equivalent to a
subscheme of kS.

This shows that the reduction of key agreement to semigroups also reduces
seclusiveness to infeasible wedge operators.

Diversion 3.1.12. The converse can fail: even if a semigroup S has no feasible wedge
operator, the multiplicative key agreement scheme kS can have subschemes that are not
seclusive. For example, the subscheme k{a},{b},{c},S has a constant functions w(d, b, e) =
abc for a watcher.

Instead, a partial converse holds. A watcher of a scheme implies an incomplete wedge
(§B.9.3) against an associated semigroup.

Chapter 4 lists some strategies to compute wedges.

3.1.4.4 Faulty watchers

Although a watcher W always exist for any k, it might be infeasible. Instead
one may wish to relax the condition on W , and define a faulty watcher
W ′ as some arbitrary function. Faulty watchers should be measured some-
how, and it would be best to measure their success against probabilistic key
agreements.

This would be a straightforward to do, but it seems better to consider a
more general definition of a probabilistic watcher, defined in the next section.

3.1.5 Probabilistic watchers

Probabilistic watchers are modified watchers, defined formally as:

Definition 3.1.4. A probabilistic watcher a pair [p, W], where p is a
random variable, and W is a function.

58 CHAPTER 3. SECURITY AIMS

Diversion 3.1.13. Generally, while a deterministic watcher is a ternary function, the
function W in a probabilistic watcher is quaternary function, with the first input being
taken as a sample of the random variable.

Diversion 3.1.14. Given that deterministic watchers exist, it is natural to question the
need for probabilistic watchers at all. One reason is that through randomization, greater
efficiency is possible.

Probabilistic watchers can target both probabilistic and deterministic key
agreement schemes.

3.1.5.1 Success rate against probabilistic key agreement

A probabilistic watcher can target probabilistic key agreement scheme, with
success rate defined:

Definition 3.1.5. The success rate of [p, W] against [a, b, c, k] is the prob-
ability

σ[p,W]([a, b, c, k]) = Pr[W (p, k1(a, b), b, k2(b, c)) = k3(a, k2(b, c))], (3.1.2)

taken over the random variables a, b, c, p.

Diversion 3.1.15. Implicit in the definition of success rate is that function W might not
even be defined for some sessions of k. Undefined cases of W , where the inputs to W are
not part of the domain of W , contribute nothing to the success rate. In other words, the
success rate accounts only for these inputs to W with defined outputs, measuring only the
rate of correct outputs.

3.1.5.2 Success rate against deterministic key agreement

A probabilistic watcher can target deterministic key agreement scheme k,
with success rate defined:

σ[p,W](k) = inf
[a,b,c]

Pr[W (p, k1(a, b), b, k2(b, c)) = k3(a, k2(b, c))], (3.1.3)

where the [a, b, c] range over all [a, b, c] possible in sessions of k.

Diversion 3.1.16. Success rate against probabilistic key agreement is at least the success
rate against any deterministic key agreement

σ[p,W]([a, b, c, k]) ≥ σ[p,W](k) (3.1.4)

due to the deterministic success rate being defined with an infimum.

3.1. WATCHERS (GENERALIZED DHP) 59

Diversion 3.1.17. Using a supremum instead of an infimum leads to a vacuous definition,
with success rate always equal to 1. Choose p to be a constant random variable [p1, p2, p3] =
[a0, b0, c0], and define W (q, d, b, e) = k3(q1, k2(q2, q3)). At [a, b, c] = [a0, b0, c0], the proba-
bility on the right of the defining equation is 1. With a supremum-based definition, the
success rate would be one.

3.1.5.3 Faulty watcher as a probabilistic watcher

A faulty watcher w of k is any ternary function that is not a watcher. Each
faulty watcher induces a probabilistic watcher [p, W] defined by W (q, d, b, e) =
w(d, b, e), where p is any random variable.

Conversely, if a probabilistic watcher [p, W] has the property that W (q, d, b, e) =
W (r, d, b, e) for all q and r, then say that [p, W] is deterministic. Letting
w(d, b, e) = W (q, d, b, e), then w is either a watcher or a faulty watcher.

Essentially, a faulty watcher is a probabilistic watcher, which does not
use its own randomness. A faulty watcher can have success rate against
probabilistic key agreement. Because a faulty watcher is not a watcher, the
success rate of its induced probabilistic watcher against deterministic key
agreement is zero.

3.1.5.4 External probabilistic watchers

Probabilistic watcher [p, W] is separated from probabilistic key agreement
scheme [a, b, c, k] if random variable p is independent of random variables
a, c.

A probabilistic watcher separated from a probabilistic key agreement
scheme models the ideal situation that no information leaks about Alice
and Charlie’s secret random variables a and c leaks to the adversary.

3.1.5.5 Probabilistic seclusiveness

Definition 3.1.6. A probabilistic scheme [a, b, c, k] is π-seclusive if no fea-
sible probabilistic watcher [p, W] separated from [a, b, c, k] has success rate
σ ≥ π against [a, b, c, k].

Diversion 3.1.18. A probabilistic watcher is feasible if both p and W are feasible. As
always, a function, in this case W , is feasible if it can be implemented correctly by an
algorithm running with a cost affordable to the attacker.

A random variable, in this case p, is feasible if the attacker has affordable means to
sample p. This might rule out a random variable p that depends so much on the secret
random variables a and c that its value reveals one of the vales a or c.

60 CHAPTER 3. SECURITY AIMS

Diversion 3.1.19. To avoid a technically vacuous definition of seclusiveness, we have
restricted to probabilistic watchers that are separated from the target scheme. If we had
not made this restriction, then we could have chosen p as the random variable [p1, p2, p3] =
[a, b, c], and the function W as W (p, d, b, e) = k3(p1, k2(p2, p3)).

Consequently, our definition of seclusive of probabilistic key agreement does not at all
address adversaries that somehow obtain leakage of information about a and c.

Because there is no sharp line between feasible and infeasible, there may
well be no sharp line marking π-seclusiveness.

Diversion 3.1.20. A π-seclusive deterministic key agreement scheme k can be defined
similarly, using the success of probabilistic watchers [p, W] against k.

It seem simpler use seclusiveness for deterministic key agreement, and π-seclusiveness
of probabilistic key agreement, without mixing the probabilistic and deterministic cases.

3.1.5.6 Costs of probabilistic watchers

To be completed.
The average cost of probabilistic watcher [p, W] means the average total

cost of sampling p and implementing W , where the average is computed over
[a, b, c, p].

The worst-case cost of probabilistic watcher [p, W] means supremum cost
of sampling p and implementing W , where the maximum is taken over all
values of [a, b, c, p].

Diversion 3.1.21. The π-seclusiveness of a probabilistic key agreement scheme can be
defined as the set of costs of all probabilistic watchers of the scheme with success σ ≥ π.

3.1.5.7 Success rate 1 probabilistic watchers

Watchers and probabilistic watchers of success rate 1 are closely related, as
one might expect.

Lemma 3.1.8. If W is a watcher of k, then [p, w] for w defined by

w(q, d, b, e) = W (d, b, e),

is a probabilistic watcher with success rate 1 against all probabilistic key
agreement of the form [a, b, c, k].

Proof. Suppose W is a watcher of k, and w is defined as w(q, d, b, e) =
W (d, b, e). Then, σ[p,w] = 1, by inspection of the definitions.

3.1. WATCHERS (GENERALIZED DHP) 61

3.1.5.8 De-randomization

A probabilistic watcher [p, W] of [a, b, c, k] is de-randomizable if there is
exists a function Q such that:

w(d, b, e) = W (Q(d, b, e), d, b, e)

gives a watcher w of k. In this case, we call Q a de-randomizer.

Lemma 3.1.9. If [p, W] is a probabilistic watcher of [a, b, c, k] with success
rate 1, and the support of [a, b, c, k] is k, then there exists a de-randomizer.

If p is also independent of [a, b, c], then there exists a constant de-randomizer.

Proof. Let Q be a function with an everywhere-nonzero conditional prob-
ability Pr[p = Q(d, b, e)|k1(a, b) = d, b, k2(b, c) = e]. Such a Q exists by
taking the value with highest conditional probability. Because the support
of [a, b, c, k] is k, the function Q is well-defined, because condition (defining
the conditional probability) has nonzero probability.

If w defined by w(d, b, e) = W (Q(d, b, e), d, b, e) fails to be a watcher, then
for some [a, b, c], with d = k1(a, b) and e = k2(b, e) and f = k3(a, e), we have
w(d, b, e) 6= f .

Because the support of [a, b, c, k] is k, the session [a, b, c, d, e, f] has nonzero
probability, say ǫ. The conditional probability that p = Q(d, b, e) is nonzero
too, say φ. This implies that the success rate of W is at most 1 − ǫφ, which
is less than 1.

If p is independent of [a, b, c], then all the conditional probabilities for each
output Q(d, b, e) do not depend on the input [d, b, e], so Q can be chosen as
constant.

3.1.5.9 Repetition (to be corrected)

To be corrected and completed.
A probabilistic watcher [p, W] with success rate σ can be iterated n times

by taking n independent copies of p, say [p1, . . . , pn].

For input [d, b, e], this gives n different outputs fi = W (pi, d, b, e). For
some [p, W], the probability that one of fi is correct might be 1 − (1 − σ)n.
If testing the correctness of fi is easy (such as by decrypting a message
encrypted with f), then [p, W] with small success rate σ could have its success
rate increased, through iteration, to approximately 1 − e−nσ.

62 CHAPTER 3. SECURITY AIMS

3.1.5.10 Probabilistic watchers of equivalent schemes

To be completed.
If key agreement schemes k and K are (weakly) equivalent, then a prob-

abilistic watcher [p, w] with success rate σ against k, can be converted into a
probabilistic watcher [p, W] of K of the same success rate, by applying the
suitable session transformation functions to the inputs and outputs of w.

3.1.5.11 Probabilistic watchers of subschemes

To be completed.
Recall that a seclusive key agreement scheme K can have a non-seclusive

subscheme k. The same failure can happen for π-seclusive schemes. A sub-
schemes of a π-seclusive scheme can be fail to be π-seclusive.

Recall that if scheme K has a seclusive subscheme k, then K is seclu-
sive. In other words, seclusiveness is inherited from a subscheme. But π-
seclusiveness is not inherited from a subscheme. A scheme K can have a
subscheme k that is π-seclusive, even though K is not π-seclusive. For ex-
ample, K could have the property that, outside of sessions drawn from k,
all other sessions have the same non-secret agreed key, and furthermore, the
number of these non-k session vastly outnumbers those k, with a probability
of session of K being a non-k close to one.

This observation about drastic differences between π-seclusiveness of a
scheme and its subscheme weakens the strength of our reduction of key agree-
ment to semigroups. In some sense, the observation shows how the difficulty
of attacks hinges not so much on the whole semigroup, but rather special sets
of inputs. However, as long as we keep this mind for the later, we can first
attempt to solve semigroup problems as though the average difficulty did not
vary with the inputs, and then later account the varying average difficulty
as needed.

3.2 Divulgers (generalized DLP)

The discrete logarithm problem (DLP) must be difficult for Diffie–Hellman
security. The DLP can be generalized as follows.

Definition 3.2.1. A (right) divulger is a function L = L1 such that

k1(L1(k1(a, b), b), b) = k1(a, b) (3.2.1)

3.2. DIVULGERS (GENERALIZED DLP) 63

for all [a, b] ∈ Dom(k1). A (left) divulger is a function L2 such that

k2(b, L2(b, k2(b, c))) = k2(b, c) (3.2.2)

for all [b, c] ∈ Dom(k2).

Diversion 3.2.1. In Diffie–Hellman key agreement, a discrete logarithm solver provides
a divulger:

L1(d, b) = logb(d) = log mod p
b (d)

because k1(a, b) = ba mod p, so

k1(L1(k1(a, b), b), b) = blogb(ba) = ba = k1(a, b).

Conversely, L1 provides a discrete logarithm solver.

Diversion 3.2.2. A mnemonic for this report’s use of the jargon divulger is division (to
be seen later), and logarithm.

The divulgers L1 and L2 make use of the input b, so when further clari-
fication is needed, we call L1 and L2 basic divulgers.

3.2.1 Variant divulgers

Various less important types of divulgers can be defined similarly. Despite
being less important, their similarity to basic divulgers, means that they
share the relationship to division (and logarithms).

For example, a right keyed divulger L3 such that

k3(L3(k3(a, e), e), e) = k3(a, e), (3.2.3)

which takes as its first input the agreed key k3(a, e), which would normally
be a secret. A function L4 can be defined similarly. A reason the keyed
divulgers are less important for most of applications of key agreement is that
their inputs include values that the key agreement users would normally keep
secret, and an attacker who has these secrets is often considered to have won.

Each of the function definitions for Li can be reversed, allowing reverse
divulgers to be defined

k1(a, L′
1(a, k1(a, b))) = k1(a, b) (3.2.4)

k2(L
′
2(k2(b, c), c), c) = k2(b, c) (3.2.5)

k3(a, L′
3(a, k3(a, e))) = k3(a, e) (3.2.6)

k4(L′
4(k4(d, c), c), c) = k4(d, c) (3.2.7)

64 CHAPTER 3. SECURITY AIMS

The reverse divulgers take as input one of the private keys a or c, which is
even more unlikely and severe than an attacker who gains access to an agreed
key. The reverse divulgers L′

1 and L′
2 recover a value b′ which is effectively

equivalent to b. In most cases, this is harm, since b is public. In a few cases, b
is secret, but an alternative b′ is harmless, unless b′ = b. The reverse divulger
L′

3 finds an alternative e′ equivalent to e. This seems harmless if e is public
or if e′ 6= e for secret e.

3.2.2 Watchers from divulgers

If L1 is a divulger, then a watcher W can be constructed as:

W (d, b, e) = k3(L1(d, b), e). (3.2.8)

To see that this is a watcher, let a′ = L1(k1(a, b), b) and compute

W (k1(a, b), b, k2(b, c)) = k3(L1(k1(a1, b), b), k2(b, c))

= k3(a
′, k2(b, c))

= k4(k1(a
′, b), c)

= k4(k1(L1(k1(a, b), b), b), c)

= k4(k1(a, b), c)

= k3(a, k2(b, c))

by the properties of L1 and k.

Diversion 3.2.3. Resisting watchers requires resisting to divulgers.

Diversion 3.2.4. For some key agreement schemes k, the best known way to construct a
watchers W is the construction above of using a divulger. For example, this is essentially
the case for (elliptic curve) Diffie–Hellman key agreement.

3.2.3 Extra impact of divulgers

Suppose that Alice re-uses the same a in more just then one single session of
k. Perhaps Alice uses a in multiple different session of k. Perhaps, Alice uses
a in systems related to k, in their use of k1. For an example of the latter for
Diffie–Hellman, Alice may opt to use her Diffie–Hellman secret a as a digital
signature key.

A divulger jeopardizes the re-usage of a, worse than a watcher alone would
jeopardize re-usage of a.

3.2. DIVULGERS (GENERALIZED DLP) 65

In attacks against re-use of a and k, a divulger has a more impact than a
watcher, because the divulger need only be evaluated once, whereas a watcher
must be evaluated for each e.

In attacks against re-use of a outside of k, finding a (or an equivalent)
should undermine any benefit that Alice gets from the secrecy of a. For
example, if a is used a digital signature key, and attacker could use divulger
to find a (or an equivalent), then forge signatures of Alice. By comparison,
a watcher alone might not have such an impact.

3.2.4 Extra assurance against divulgers

In applications where divulger does more damage than a watcher, it is may be
desirable to have better security assurance against divulgers. Such security
assurance is generally achieved by studying divulgers more intensely than
studying watchers.

In the case of Diffie–Hellman, the divulgers are discrete logarithm solvers,
we arguably have more confidence in the difficulty of divulger than in the dif-
ficulty of watchers, which are computational Diffie–Hellman problem solvers.

In order to discuss this clearly, we can name resistance to divulgers as
exclusiveness.

Diversion 3.2.5. Exclusiveness is essentially equivalent to the function a 7→ k1(a, b) being
one-way, or more formally, second pre-image resistant.

Many one-way functions are known in cryptography, where very few secure key agree-
ment schemes are known. This makes second pre-image resistance seem something easier
to achieve. This generally makes exclusiveness more plausible than seclusiveness.

Diversion 3.2.6. A mnemonic for the jargon exclusiveness is seclusiveness and expo-
nentiation (as in the opposite of a logarithm, as in a divulger).

Seclusiveness requires exclusiveness, but sometimes:

• exclusiveness can be more critical than seclusiveness, because extra
impact of divulgers;

• exclusiveness is better understood than seclusiveness, resulting in greater
confidence and security assurance in exclusiveness.

66 CHAPTER 3. SECURITY AIMS

3.2.5 Aside: instance-verifiability of divulgers

A divulger L1 is instance-verifiable meaning that the correctness of any
valid instance of the output L1(d, b) can be verified without knowledge of any
secrets, by checking that k1(L1(d, b)) = d.

Diversion 3.2.7. A watcher W is not generally instance-verifiable. An exception is if a
distinguisher (discussed) is efficient.

A watcher can be empirically tested by choosing inputs [d, b, e] from sessions whose
secrets a and c chosen by the tester.

Diversion 3.2.8. Instance-verifiability helps somewhat in creating un-cheatable chal-
lenges, for example, by selecting d and b as pseudorandom hashes of short strings.

However, instance-verifiability alone is not enough in general to generate such chal-
lenges, because for random d and b, there might not exist any a at all such that d = k1(a, b).

3.2.6 Reduction of divulgers to division

In multiplicative key agreement kS, for multiplicative semigroup S, a divider
in S (an operator / such that ((ab)/b)b = ab for all a, b ∈ S, see §B.8 for
formal definitions) is equivalent to a divulger:

L1(d, b) = d/b.

Left divulgers are equivalent to left dividers:

L2(b, e) = b\e.

Chapter 5 gives various strategies to divide in semigroups.

3.2.7 Divulgers by exhaustive search

Divulgers exist, for reasons similar to the existence of watchers.
Given a well-ordering of the set Dom(k1)1, where the divulger output

should lie, there exists a minimal divulger defined

L1(d, b) = min{a : k1(a, b) = d}

If Dom(k1)1 is countable, and there is an algorithm to enumerate its elements
as a0, a1, . . . , then the minimal divulger can be implemented by an algorithm.
Such an algorithm is called exhaustive search.

3.2. DIVULGERS (GENERALIZED DLP) 67

Exhaustive search can only be feasible if Dom(k1)1 is finite, with a size n
small enough that the adversary can afford to do n computations of k1. This
finiteness requirement is because applying exhaustive search to deterministic
key agreement, we drop all notions of probability, and insist the algorithms
must always run in a feasible time.

3.2.8 Divulgers by trial search

Probabilistic divulgers can also be defined, similarly to probabilistic watchers.

Probabilistic divulgers can be applied to probabilistic key agreement.
Probabilistic divulgers can greatly expand what is considered as feasible
attacks. By using a notion of success rate, cases take a long time for an
implementation can be discounted if they are somehow rare.

Deterministic exhaustive search generalizes to probabilistic trial search.
Rather than searching a fixed list, the search list can be generated proba-
bilistically. A notion of success rate, incorporating the choice of this list and
probabilistic key agreement.

Trial search, also well-known, is reviewed in Chapter D.

3.2.9 Divesters

A divester is a divulger L1 such that

L1(k1(a, b), b) = a, (3.2.9)

for all [a, b] ∈ Dom(k1). A left divester is defined similarly from a left divul-
ger.

A divester has potentially more impact than a general divulger because
it can find the exact value of a, instead of an effectively equivalent value
a′. This means that a could be attacked even if a used in systems totally
unrelated to k.

Ideally, the secret value a should not be used outside of the system using
k. With this ideal practice, a divester should have no more impact than a
divulger. Nonetheless, in complicated systems, this is ideal might be difficult
to achieve.

In multiplicative key agreement, a divester corresponds to a post-divider
(see §B.8.9).

68 CHAPTER 3. SECURITY AIMS

A set-divester is the a function L′
1 such that

a ∈ L′
1(k1(a, b), b), (3.2.10)

In other words, a set-divester is like a divester except that it outputs a set
containing the target value a. A set-divester always exists.

Diversion 3.2.9. A divulger can essentially be characterized by the condition that L1(k1(a, b), b) ∈
L′

1(k1(a, b), b), where L′
1 is a set-divester.

The impact of the set-divester on a key agreement depends on both the
size of the output set L′

1(k1(a, b), b), and the ability of the attacker to enu-
merate through the set to test and confirm the target a. If a was used for
some other purpose – such as another session of the key agreement scheme
but with a different value of b or such as to derive a key for a completely
different kind of cryptography – an attacker may be able to confirm the value
of a and thereby compromise the other cryptographic application of a.

A set-divester is essentially equivalent to compute a division-set, see
§B.8.11.1.

3.2.10 Divergers

A diverger is a divulger L1 such that

k1(L1(d, b), b) = d, (3.2.11)

for any d ∈ Ran(k1). A left diverger is defined similarly from a left divulger.
Divergers generally do not have more impact than a general divulger. An

exception might be if the key agreement scheme is used in a specialized way.
For example, an application might somehow arrange to embed meaningful
information into d, as an extra feature. In this case, a diverger might be able
to attack this extra feature, by embedding a false d′ with some arbitrarily
malicious information, and then using a diverger to find an associated value
a′.

In multiplicative key agreement, a diverger corresponds to a pre-divider
(see §B.8.10).

3.2.11 Weak-input divulgers

Weaker versions divulgers Li can be defined, where the success domain for
Li is made smaller than the domain of ki.

3.3. DISTINGUISHERS (GENERALIZED DDHP) 69

For example, we can narrow the definition of L1 by restricting b to a
smaller set B of weak bases. So,

k1(L1(k1(a, b), b), b) = k1(a, b) (3.2.12)

for all [a, b] ∈ Dom(k1) with b ∈ B. A weak base divulger is not as powerful
as a general divulger L1, because it only succeeds if b ∈ B. But there might
exist B such that a weak-base divulger is much more efficient than than a
general basic divulger.

Diversion 3.2.10. In the case of Diffie–Hellman key agreement, examples of weak base
divulger include using a base b that has low multiplicative order.

Weak-base divesters can also be defined.

Diversion 3.2.11. In some cases, user Alice re-uses a many times. This might lead to an
iterative weak-base divulger. (See section of esoteric security aims).

In many applications of key agreement, the base value b must be authen-
ticated, and is perhaps even fixed. Forcing b into a weak base might be
infeasible for the attacker.

A weak-delivery divulger is like the keyed divulger L3, except that
success is only required when input d belongs to a set D of weak delivery
values.

3.3 Distinguishers (generalized DDHP)

Some applications of key agreement need the agreed key to be indistinguish-
able from agreed key of any other session. This is one way to generalize the
decision Diffie–Hellman problem.

Definition 3.3.1. A (left) distinguisher for k is a function U such that

U(d, b, e, {f, f ′}) = f (3.3.1)

for all [a, a′, b, c, d, d′, e, f, f ′] such that both [a, b, c, d, e, f] and [a′, b, c, d′, e, f ′]
are sessions of k.

Diversion 3.3.1. To clarify, the last input of the distinguisher is a set, using standard
mathematical notation, which is not ordered: in particular, {f, f ′} = {f ′, f}.

(By contrast, several computer languages, including C, use braces to specify an ordered
array or other ordered data structures, rather than for an unordered set.)

70 CHAPTER 3. SECURITY AIMS

Diversion 3.3.2. As was the case for watchers, many applications wish to avoid proba-
bilistic version of adversaries, at least those with sufficiently large success rates.

So, a probabilistic distinguisher could be formalized to address this. Informally,
one probabilistic distinguisher outputs one element of {f, f ′} uniformly at random. Its
probability of being correct is 1/2. In most applications, such as probability 1/2 is not
considered a successful, because the threat model already accommodates this risk. So,
instead success rate would measured by advantage over the base correctness probability.

3.3.1 Impact of distinguishers

To be clarified!
The impact of a distinguisher depends on how the agreed key f is used.
Some applications use f as a key in a second cryptographic scheme E,

such as an authenticated encryption algorithm. If this second scheme is
robust enough, then a distinguisher U against k does not immediately result
in an attack against the combination of k and E. For example: E might
tolerate biased keys, such as by hashing its keys before using them; E have
good security provided that its key f is sufficient secrecy (entropy unknown
to the attacker).

Some applications might use f as in a second cryptographic scheme E ′

that is less robust. An example of E ′ is the Vernam cipher, also know as one-
time-pad. In this case, E ′ treats f as a key-stream. However, E ′ generally
does not tolerate bias in the key-stream f . Key-stream bias in the candidate
key-stream can be used to confirm the correctness of the candidate message.
A distinguisher U can be used detect the bias, and confirm the message.

Diversion 3.3.3. In the Vernam cipher, the cipher z for message m is computed as
z = m + f , for some form of addition (not necessarily associative). Decryption with f is
defined by m = z − f . So, subtraction should obey the axiom (m + f) − f = m (for all
relevant m and f needed by users).

Suppose z is the observed ciphertext, encrypted with f from a key agreement session
[a, b, c, d, e, f]. Suppose that an attack knows a set {m, m′}, meaning the message sent is
narrowed down to one of two possible messages.

Suppose the addition is also equipped with a left (post)-subtraction operator, say ∼,
such that x ∼ (x+y) = y for all x, y. If addition is commutative, then just let x ∼ y = y−x,
using the same right subtraction operation that decryption uses.

With left subtraction, the attacker can recover two guesses for the agreed key f =
m ∼ z and f ′ = m′ ∼ z.

If both candidate agreed keys f and f ′ are compatible with sessions of k, then a
distinguisher U can then be used to determine which of f or f ′ matches the observed
d, b, e values of the session.

The match of f or f ′ determines the match m or m′.

3.3. DISTINGUISHERS (GENERALIZED DDHP) 71

Diversion 3.3.4. Another way to use a distinguisher, continuing from the previous note,
consists of testing whether an observed ciphertext z is for a guessed message m. One call
to the distinguisher is used for each guessed message.

Given z and message guess m, that attacker chooses some a′, computes his own
f ′ = k3(a′, e), effectively generating an alternative hypothetical session [a′, b, c, d′, e, f ′]
(computing d′ is unnecessary for this attack). The attacker then runs the distinguisher
U(d, b, e, {m ∼ z, f ′}). If the guessed message m is correct, then f = m ∼ f , and U should
return f , by definition.

If guess m is incorrect, then f 6= z − m, so distinguisher U is not guaranteed to
produce valid output. It seems reasonable to suspect that U in this setting might return a
pseudorandom element of {m ∼ z, f ′}. If so, then a correct guess is more likely to return
m ∼ z, so U returning m ∼ f means that m is more likely correct than not.

Key derivation is a well-known, general-purpose transformation that is
used, among other things, to try to produce unbiased output from biased
inputs. Generally, key derivation functions are one-way and pseudorandom,
and so on.

Diversion 3.3.5. A stream cipher also does a comparable task, taking a small secret key,
and producing a key-stream that is difficult to distinguish from a uniformly distributed a
stream of the same length.

Given a key agreement scheme k, and key derivation function F (or a
stream cipher), a second key agreement scheme k′ can be obtained by replac-
ing each agreed key f of k, by f ′ = F (f). Due to the properties of a strong
key derivation F , this seems to defeat most distinguishers.

3.3.2 Distinguishers from watchers

A distinguisher can be constructed from a watcher, by letting:

U(d, b, e, {f, f ′}) = W (d, b, e). (3.3.2)

This distinguisher U has the same cost to evaluate as the watcher W .

3.3.3 Variant distinguishers

Some minor variations on the definition of distinguishers are natural.

72 CHAPTER 3. SECURITY AIMS

3.3.3.1 Right distinguishers

A right distinguisher U is defined similarly by the same equation

U(d, b, e, {f, f ′}) = f

but the equations needs to hold whenever [a, b, c, d, e, f] and [a, b, c′, d, e′, f ′]
are sessions of k.

Diversion 3.3.6. Several obvious extensions are possible. For example, a left-and-right

distinguisher

U(d, b, e, {f, f ′}) = f

whenever [a, b, c, d, e, f] and [a′, b, c′, d′, e′, f ′] are sessions. For another example, a left-

with-right distinguisher:

U(d, b, e, {f, f ′, f ′′}) = f

whenever there exist sessions [a, b, c, d, e, f] and [a′, b, c, d′, e, f ′] and [a, b, c′′, d, d′′, f ′′].

3.3.3.2 Replay distinguishers

A replay distinguisher U gets an extra input, the variable d′.
For the previous distinguishers, the alternative values a′, d′, f ′ are only

hypothetical values that Alice could have used, but did not use. For the
replay distinguisher, a′, d′, f ′ are a second set of values Alice actually used.

The replay distinguisher has replayed Charlie’s delivery e (hence the
name). (It might be infeasible for Alice to test Charlie’s deliveries for re-
peats.)

The right replay distinguisher gets input e′ instead of d′.

3.3.3.3 Session distinguishers

A session distinguisher U2 attacks two independent sessions, meaning

U2(d, b, e, d′, b′, e′, {f, f ′}) = f (3.3.3)

whenever [a, b, c, d, e, f] and [a′, b′, c′, d′, e′, f ′] are sessions of k.
A baseless session distinguisher needs only to be correct (or to generate

output) when b = b′.

Diversion 3.3.7. Is a baseless sessional distinguisher U2 easily constructible from a dis-
tinguisher U?

3.3. DISTINGUISHERS (GENERALIZED DDHP) 73

3.3.3.4 Boolean distinguishers

A boolean distinguisher is function U1 such that

U1(d, b, e, f) ∈ {0, 1} (3.3.4)

with U1(d, b, e, f) = 1 if and only if there exists a session [a, b, c, d, e, f] of k.
A distinguisher can be constructed from boolean distinguisher by letting

U(d, b, e, {f, f ′}) = f if U1(d, b, e, f) = 1.

Diversion 3.3.8. The definitional downside of a boolean distinguisher is the difficulty
extending it to the probabilistic setting, because it becomes vacuous. An attacker could
always output 0 and be correct most of the time. The distinguisher taking input {f, f ′}
has a more natural success when generalized to the probabilistic setting.

To be completed.

3.3.4 Detectors

To be completed.

Definition 3.3.2. A role-i detector is a function Ti : Ran(ki) → {0, 1} such
that Ti(r) = 1 if and only if r ∈ Im(ki).

Diversion 3.3.9. A session detector Ti is variant of the detector such that Ti(r) = 1 if
and only if there exists a session [a, b, c, d, e, f] of k such that ki in the session has produced
output r.

3.3.4.1 Impact of detectors

To be completed.

Diversion 3.3.10. Suppose that the agreed key f will be used directly as a key-stream,
as in a Vernam cipher. Suppose also that the message space is much larger than the space
of triples [a, b, c].

In this setting, it makes sense to choose the range for f (i.e. the range for k3 and k4)
to be all possible streams that could be added to the message. In this case, the number
of actual f that could arise in sessions, which is at most the number of triples [a, b, c], is
much smaller than the range. For example, perhaps | Im(k3)| ≪ | Ran(k3)|.

A detector T3 models the ability to determine whether a given stream is actually real
key-stream that can be generated by key agreement scheme.

The attacker who sees a ciphertext z and has a guess at the message can recover a
guess at the key-stream by inverting the Vernam cipher, computing a candidate key-stream
as f ′ = m′ ∼ z, via left subtraction as explained in previous notes. (When commutative
addition is used, just take m′ ∼ z = z − m′.) A detector may then reveal if the message

74 CHAPTER 3. SECURITY AIMS

is incorrect, as follows. If the attacker knows that z was computed using z = f + m for f
an agreed key of session, but the detector says f ′ is not an agreed key of any session, then
the attacker can reject the guessed message m′.

Diversion 3.3.11. If key agreement is used to generate Vernam cipher key-streams, a
detector and a distinguisher can be used together to confirm message guesses.

If the sessional detector reports that f ′ is an agreed key for at least one session, then
the attacker can try to use a distinguisher to see whether it matches the observed values
[d, b, e] from a specific session.

3.3.4.2 Detectors in general semigroups

To be completed.
Detectors are defined as range-dependent, depending very much on the

ranges of the functions ki, whereas other attackers, such as watchers and
distinguishers, are only concerned with images of the functions ki.

The main definitions of subscheme and equivalent schemes were given as
range-independent notions. Therefore, detectors do not translate as cleanly
as other attackers, when translating to subschemes or between equivalent
schemes. In particular, in the reduction of key agreement to semigroups, the
issues of the range have been mostly ignored.

Nonetheless, a range-aware reduction may be possible, by letting the
semigroup have elements belonging to the ranges of the functions ki. These
ranges are subsets of the semigroups, but there might not be a clean way to
describe a detector without calling out these subsets.

One artificial approach is to set the ranges to be the whole semigroup, and
to also set the domains to the whole the semigroup. (Extending the domain
should only the detector’s task more difficult). In this case, detectors T2 and
T3, can be defined Ti : S → {0, 1} : a1a2 . . . ai 7→ 1, and otherwise Ti(a) = 0.
(Also, let T1 = T2 and T4 = T3.)

In other words, a detector tests if a semigroup element can be factored
into 2 or 3 elements.

3.4 Esoteric security aims

The basic security aims of key agreement are resistance to a watcher, divulger
or distinguisher.

Any other security aims of key agreement should be considered esoteric.
This report does not focus on esoteric security. This chapter just briefly

3.4. ESOTERIC SECURITY AIMS 75

covers these definitions.

Diversion 3.4.1. Previously published correctness definitions for (implicitly-authenticated)
key exchange might cover key agreement, at the level of interoperability (but perhaps with
the addition of authentication).

If so, then one should expect that security aims previously published for (implicitly-
authenticated) key exchange, such as the extended Canetti–Krawczyk model, might well
rather thoroughly cover the set of attacks worth resisting.

As such, the esoteric security aims are likely then just a subset of the aims listed in
previous publications.

3.4.1 Impact of esoteric security

Application systems sometimes apply (Diffie–Hellman) key agreement in such
a way that the system’s security subtly relies upon some esoteric security
property of the key agreement. In other words, esoteric security of key agree-
ment is sometimes necessary for an application’s security.

In the “provable security” research area, sometimes an esoteric security
property of key agreement is proved to imply a security property of the ap-
plication system. Gaps between necessary and sufficient security properties
arise. The esoteric security properties sufficient for proofs are not always
necessary to avoid known attacks. Partly, this is due to the esoteric security
properties involving hypothetical oracles. Resistance to such oracle-based
security properties helps to prove things. Failure to resist to security proper-
ties does not always lead to attacks, because in some case, even the attacks
do not have such hypothetical oracles.

In summary, applications can rely on esoteric security of key agreement,
either to avoid potential attacks, or to help acquire assurance from proofs.

Diversion 3.4.2. Ideally, an application system should only rely upon the main security
aim of key agreement, resistance to a watcher (seclusiveness). Failing that, the application
should only rely on basic security aims.

In reality, it often happens that the only known practical solution relies on esoteric
security of key agreement, forcing the study of esoteric security aims.

Diversion 3.4.3. Some key agreement schemes can be interpreted as applications of sim-
pler key agreement schemes, by means of enhancing the simpler key agreement into a more
sophisticated key agreement.

Key agreement schemes that enhance simple Diffie–Hellman key agreement include

• Hashed Diffie–Hellman key agreement,

• Menezes–Qu–Vanstone key agreement (and variants such as HMQV),

76 CHAPTER 3. SECURITY AIMS

• EKE and SPEKE password-authenticated key agreement,

• Cash–Kiltz–Shoup twinned Diffie–Hellman.

One purpose of enhancing a simpler scheme is to boost security, often from basic security
to esoteric security.

For hashed Diffie–Hellman, one security boost is to avoid a detector attack. Another
boost is to combine with random-oracle approximations of the hash function for security
proofs (against hash-generic adversaries).

Enhancing key agreement schemes can be sometimes be reduced to the enhancing
semigroups: modifying a simpler semigroup into one with better security.

To be completed.

3.4.2 Corrupted-session attacks

Some attackers have an extra capability. They can corrupt a key agreement
session [a, b, c, d, e, f], weakening it in some way. Session corruption can make
that task of a watcher, finding f , easier than it would otherwise be. (Session
corruption might also help divulger, distinguishers, and detectors, too.)

Various forms of session corruption are discussed in this section.

3.4.2.1 Leaky attackers

A leaky attacker of a key agreement scheme gets to see some information
about a or c. This is formalized below.

Diversion 3.4.4. Probabilistic watchers, defined previously, already account for this pos-
sible form of session corruption, which could arise the random variable p depended on the
random variables a or c.

In this section, we formalize this leakage differently, making things more deterministic.

Let L be a function, called the leakage function. An L-leaky watcher is a
function WL such that WL(d, b, e, L(a, c, f)) = f for any session [a, b, c, d, e, f].

Every watcher W makes a leaky watcher WL by letting WL(d, b, e, l) =
W (d, b, e). Conversely, every leaky watcher that ignores its fourth input (is
constant on it), provides a watcher.

A leaky watcher is lazy if L(a, c, f) ∈ {a, c, f}. Lazy leaky watcher
are easy to implement. If l = L(a, c, f) = f , then WL(d, b, e, l) = l. If
L(a, c, f) = a, then WL(d, b, e, l) = k3(l, e), and so on.

The difficult question is whether there is a non-lazy leaky watcher more
efficient than a watcher. (More precisely, by non-lazy, we mean that the

3.4. ESOTERIC SECURITY AIMS 77

leakage function should not immediately most information about a or c or
f .)

Leaky divulgers, distinguishers and detectors can be defined similarly.

3.4.2.2 Bossy attackers

Let T be a function, called the tampering function. A T -bossy watcher is
a function WT such that WT (d, b, e) = f ′ for any session [a, b, c, d, e, f] and a
tampered session [a′, b′, c′, d′, e′, f ′], in which [d′, b′, e′] = T (d, b, e)q.

Every watcher W makes a bossy watcher WT by letting WT (d, b, e) =
W (d′, b′, e′). A bossy watcher is left controlling if T (d, b, e) = [k1(a

′, b), b, e],
for some a′ (perhaps a function of [d, b, e]). A left controlling bossy watcher is
easy: let WT (d, b, e) = k3(a

′, e), because the tampered session is [a′, b, c, d′, e, k3(a
′, e)].

A right controlling bossy watcher can be defined similarly, and is also found
easily.

The interesting question is to find a bossy watcher more efficient than a
watcher, for a non-controlling tampering function. (More precisely, a non-
controlling bossy watcher lacks a large degree.)

Bossy divulgers, distinguishers and detectors can also be defined. Watch-
ers that are both bossy and leaky can be defined too.

Diversion 3.4.5. The Menezes–Qu–Vanstone key agreement tries to resist bossy attack-
ers, for the tampering function that permits total control the ephemeral Diffie–Hellman
public keys, but leaves the static Diffie–Hellman public keys untouched.

Diversion 3.4.6. Signed Diffie–Hellman key agreement is used in some protocols, such as
TLS 1.3.

One of the deliveries contains ephemeral Diffie–Hellman values, its digital signature,
and a signature verification keys. The signature verification key is authenticated via a
certificate. The certificate makes the signature verification key immune to tampering (in
the context of key agreement). The ephemeral and Diffie–Hellman value are targets for
tampering.

The hope of signed Diffie–Hellman is that a bossy watcher fails to tamper, because
he cannot forge a valid signature. So, he must use the honest Diffie–Hellman values, and
then cannot compute the Diffie–Hellman agreed key.

3.4.2.3 Invalid session attackers

It might be useful to broaden the definition of a bossy watcher by allowing
the tampered session [a′, b′, c′, d′, e′, f ′] to not correspond to any valid session.
Instead, just ask that f ′ = k3(a, e′) or f ′ = k4(d

′, c).

78 CHAPTER 3. SECURITY AIMS

In this case, we have an invalid-session bossy watcher.

To be completed.

3.4.3 Base-stealing

In some key agreement applications, the base value b in a session [a, b, c, d, e, f]
is a weak secret. Most typically, the value b is derived from a password pre-
shared between Alice and Charlie.

Several password-authenticated key exchange schemes fall into this class.

To be completed.

3.4.3.1 Base-faker

A base-faker against k is a pair [κ2, κ4] of functions such that

κ4(k1(a, b)) = k3(a, κ2(k1(a, b)))

whenever [a, b] is in the domain of k1.

To be completed.

3.4.3.2 Base-buster

A base-buster against k is a function β such that

β(d, f, e) = b

whenever [a, b, c, d, e, f] is a session of k.

To be completed.

Diversion 3.4.7. In associative key agreement, a base-buster is essentially a function
β : [ab, abc, bc] 7→ b.

Diversion 3.4.8. In some semigroups, the function define β(d, f, e) = e ∧f d computes
[ab, abc, bc] 7→ b. In such semigroups, a watcher implies a base-buster.

For example, if the semigroup is a group (with an identity and inverses), then e∧f d =
ef−1d = (bc)(abc)−1(ab) = bcc−1b−1a−1ab = bb−1b = b. Furthermore, in a group, the
converse holds, so watchers and base-busters are equivalent.

3.4. ESOTERIC SECURITY AIMS 79

3.4.3.3 Double-base-tester (simultaneous DHP)

A double-base-tester of k is a function τ with the following properties.
For all a, a′, b, b′, such that d = k1(a, b) = k1(a

′, b′), then

τ(d, b, b′) = [e, f, f ′],

where

f = k3(a, e),

f ′ = k3(a
′, e).

Suppose that Alice shares a password with Charlie. Adversary Pester knows
that Alice has one of two possible passwords, p and p′, from which Alice
derived one of two bases b or b′. Pester sees Alice deliver d to Charlie.
Pester uses a double-base-tester to generate an e. Pester sends e to Alice,
as though from Charlie. Alice computes either f or f ′. Pester can easily
determines which Alice computes by observing her subsequent actions, or
reactions. (Alice might encrypt or authenticate a message with one of f or
f ′, or Alice might decrypt or verify a message with one of f or f ′, and react
accordingly).

Diversion 3.4.9. Left double-base-testers can be defined similarly, as functions [e, b, b′] 7→
[d, f, f ′].

Diversion 3.4.10. Multiple base-tests can also be defined, replacing {b, b′} by a larger
set.

Diversion 3.4.11. In the context of Diffie–Hellman, a double-base-tester has sometimes
been called the simultaneous Diffie–Hellman problem.

Diversion 3.4.12. Double-base testing in an associative key agreement scheme can be
implemented using strict cross-multiplication §B.8.13.3.

To be completed.

3.4.4 Multi-session attacks

A key agreement scheme is likely to be used in more than one session, and
perhaps by more than one user. Consequently, it makes sense to define multi-
session attacks and multi-user attacks.

80 CHAPTER 3. SECURITY AIMS

3.4.4.1 Independent sessions

Let s and t be positive integers. An [s, t]-watcher is a function Ws,t such that

Ws,t([d1, b1, e1], . . . , [dt, bt, et]) = [[i1, fi1], . . . , [is, fis
]] (3.4.1)

with positive integers i1 < · · · < is, whenever [ai, bi, ci, di, ei, fi] are sessions
of k.

An [s, t]-watcher can be constructed by applying a watcher s times, by
choosing any i1 < · · · < is arbitrarily, and setting fij

= W (dij
, bij

, eij
).

If s > 0, then a watcher can be constructed by applying an [s, t]-watcher
once, by letting [di, bi, ei] = [d, b, e] for all i, running Ws,t and letting W (d, b, e) =
fi1 .

Diversion 3.4.13. It is possible to define probabilistic [s, t]-watcher, similarly to how
probabilistic watchers are defined. By default, one would define the success rate against t
independent sessions.

A probabilistic [s, t]-watcher can be constructed from probabilistic watcher by the
same construction as for the deterministic versions described above. If the probabilistic
watcher has success rate σ, then the probabilistic watcher would have success rate σs.

A probabilistic watcher could be constructed from a probabilistic [s, t]-watcher by the
same construction as for the deterministic versions described above. However, if t > 1 and
the probabilistic watcher has success rate less than one, then the resulting probabilistic
watcher might have success rate zero, because the [s, t]-watcher might fail when all its
inputs are identical.

An alternative construction of a probabilistic watcher from a probabilistic [s, t]-watcher
is follows. It makes u = t/s calls to the [s, t]-watcher. In each, of the u calls to Ws,t,
randomly select one of the t inputs to be the input [d, b, e] to the probabilistic watcher.
Choose the other t − 1 inputs by generating fresh sessions. Each call to the probabilistic
[s, t]-watcher has probability s/t of solving the input [d, b, e]. After u = t/s calls, the
success rate becomes non-negligible.

Diversion 3.4.14. Diffie–Hellman key agreement has the property, usually sometimes
random self-reducibility, that a single call to probabilistic [1, t]-watcher efficiently implies
a watcher.

If s < u, an [s, t]-watcher can be constructed by applying a [u, t]-watcher
once by taking any s-element sub-array of the u-element array output of the
[u, t]-watcher.

Diversion 3.4.15. The derivation of the definition [s, t]-watcher from the definition watcher
can be applied to almost any problem, solving s of t independent instances of a given a
problem.

In particular, this suggests it should be possible to defined an [s, t]-divulger, an [s, t]-
distinguisher, and so on.

3.4. ESOTERIC SECURITY AIMS 81

3.4.4.2 Re-usage attackers

Sometimes Alice will use the same a in more than one session, or even more
than one scheme.

Diversion 3.4.16. Alice may do this for a few reasons.
A weak reason is to lower cost. For example, Alice may compute d = k1(a, b) just

once, and then re-use d in multiple sessions, and even in other schemes. (Alice must still
compute f = k4(a, e) separately for each session.)

A stronger reason is if Alice uses d = k1(a, b) as a trusted public key, whether it is
certificated, or pre-distributed.

A natural question is whether multiple uses of the secret a makes any of
the previous attacks easier.

A re-usage [s, t]-watcher has the same definition as an [s, t]-watcher ex-
cept that its input domain are restricted, so that the underlying sequence of
sessions satisfy:

a1 = a2 = · · · = at. (3.4.2)

Any [s, t]-watcher gives a re-usage [s, t]-watcher, by restricting the domain.

Diversion 3.4.17. As before, a probabilistic re-usage [s, t]-watcher could be defined. In
this case, there seems not to be a generic conversion between either way between re-usage
[s, t]-watcher and non-re-usage [s, t]-watchers, except perhaps through the probabilistic
watcher, by viewing [s, t]-watcher and re-usage [s, t]-watcher as two different ways to gen-
eralize a watcher (by varying a different set of inputs).

To be completed.

To be completed.

3.4.5 Oracle attacks (generalized Gap-DHP, etc.)

Sometimes a function f has an input g which is itself a function. Call such f
an oracle function, and call the function input g an input oracle of f . An
oracle algorithm implements an oracle function f . The oracle algorithm
treating its input oracles as externally defined subroutine, that can be called
outside of the oracle algorithm.

Typically, when determining the cost of an oracle algorithm, counts each
call to the input oracle as a single unit of efficient cost. It might be case that
in the real world, the only known algorithm to implement the input oracle is
infeasible. Nevertheless, the oracle algorithm could be efficient or feasible, if
it uses a sufficiently low amount computational resources.

82 CHAPTER 3. SECURITY AIMS

Diversion 3.4.18. An oracle algorithm might have variable cost, meaning its as runtime
or memory usage, depend on the outputs of its input oracles. If no feasible algorithm
for the input oracles is known, then it might be too difficult to determine the cost of an
variable-cost oracle algorithm. So, caution is warranted to detect this case.

An oracle attack is an attack using an oracle algorithm. An oracle
attack only works given some input oracles.

3.4.5.1 User-oracle attacks

A fairly realistic class of oracle attacks is where the user implements the
input oracle for the attacker.

Some general notation helps indicate concisely what input oracles that
users provide to certain user-oracle attacks.

Let f be a function with n inputs. Let X1, . . . , Xn be sets. Let f |S1,...,Sn

indicate the function f but with domain restricted to S1 × · · · × Sn, so it
maps [x1, . . . , xn] 7→ f(x1, . . . , xn) provided xi ∈ Si. As abbreviations, write
Si = T ′

i for the complement set, meaning xi 6∈ Ti, and write Si = s for the
singleton set {s}.

Fix a session [a, b, c, d, e, f] of key agreement scheme k. A user-oracle
watcher is a function Ω such that:

Ω(d, b, e, k1|a,{b,e}′ , k2|{b,d}′,c, k3|a,{b,e}′ , k4|{b,d}′,c) = f.

Let I ⊂ {1, 2, 3, 4}. An I-only user-oracle watcher ignores its oracle inputs
for kj with j 6∈ I. In other words, it only uses oracles for ki with i ∈ I.

Diversion 3.4.19. Diffie–Hellman is vulnerable to a I-only user-oracle watcher if I 6= {}.
Hashed Diffie–Hellman is vulnerable to a user-oracle watcher if 1 ∈ I or if 2 ∈ I.

User-oracle distinguishers and divulgers can be defined similarly.

Diversion 3.4.20. A user-oracle divulger in the case of Diffie–Hellman is known as the
q-strong Diffie–Hellman problem.

Arguably the user-oracle watcher is not very realistic, because the oracle
access to k3 and k4, representing users directly revealing the agreed keys f
and g. Most applications of key agreement do not immediately reveal the
agreed keys, so it is unrealistic to have an oracle that directly reveals the key.

On the other hand, it is quite realistic to detect whether any particular
guess of the agreed key has been used.

3.4. ESOTERIC SECURITY AIMS 83

To this end, another general notation is introduced. If F is a n-input
function, let F ? be the Boolean-valued function taking n+1 inputs, such that
F ?(x1, . . . , xn, xn+1) is true only if F (x1, . . . , xn) = xn+1. Call this function
a test for F . In the restricted-domain function F |S1,...,Sn

, write Si = ∗ to
indicate no restrictions on the input xi.

A test-user-oracle watcher is a function

ω(d, b, e, k1|a,{b,e}′ , k2|{b,d}′,c, (k3|a,∗)?, (k4|∗,c)?) = f.

3.4.5.2 Irreducibility-oracle attacks

Sometimes, proofs with strong security conclusions arise by conjecturing the
lack of a reduction between hard two problems.

For example, there is no known efficient reduction that uses a decision
Diffie–Hellman problem solver to solve the Diffie–Hellman problem. In some
cases, the best general algorithms to solve the problems are equally efficient,
yet there is no proof of equivalence, despite much effort.

Diversion 3.4.21. Sometimes, these problems are called gap problems, indicating that
there is a gap in the known reductions. But this name is misleading if there no known gap
in difficulty of the problems.

The extensive effort spent trying to find a reduction, suggests that no
reduction exists, a condition that could be called irreducibility. This is
evidence is that an oracle to solve one problem does not help solve another.

Some applications of key agreement have been proven to meet realistic
security aims if the key agreement resist irreducibility-oracle attackers.

To be completed.

3.4.6 Agreeable and disagreeable attack definitions

To be completed.
Sometimes, definition of attack types can be described using oracle func-

tions. For example, the success condition of a watcher, can be described into
terms of the equality of two oracle functions:

α : [a, b, c, W, k1, k2, k3, k4] 7→ W (k1(a, b), b, k2(b, c)),

υ : [a, b, c, W, k1, k2, k3, k4] 7→ k3(a, k2(b, c)).

Furthermore, the success condition does nothing more than move and copy
the non-oracle inputs. This makes the definition of a watcher applicable to

84 CHAPTER 3. SECURITY AIMS

any key agreement scheme. Informally, we call such a definition an agreeable
attack definition, because the definition makes sense for any key agreement,
because treats the function ki as oracles, and any the data values involved
as opaque values to copied between various input oracles.

Informally, a disagreeable attack definition is one that is not agreeable.
The attack might defined for a some k, but it is undefined for other choices
of k. Disagreeable attack definitions can be said to be over-specific to the
key agreement scheme k over which they are defined.

As an example, we describe a modified watcher definition, made dis-
agreeable and over-specific to Diffie–Hellman. The original watcher W com-
putes W (d, b, e) = W (ba, b, bc) = bac. The modified watcher W ′ computes
W ′(ba, b, bc) = bac+1 + 1. For Diffie–Hellman, the watcher and modified
watcher are essentially equivalent, since it only involves a multiplication by
b and an addition of 1. But the original watcher is not a disagreeable defi-
nition, because its success condition can be defined using the functions ki as
oracles. The modified watcher involves the extra operations (multiplication
by b and addition of 1), which might not be meaningful or applicable to key
other key agreement schemes, and in particular to ki given as oracles.

Diversion 3.4.22. Just to be clear, the modified watcher given above against Diffie–
Hellman is actually a watcher against a modified Diffie–Hellman key agreement scheme.

Diversion 3.4.23. Intuitively speaking, suppose that some application of a key agreement
scheme k relies on resistance against a disagreeably defined attacker against k.

Then the application is not really using k for key agreement.

3.4.7 Semigroup-defined attacks

To be completed.

Abstractly, one can to formulate nearly arbitrary problems in a semi-
group, or a ring.

Under the reductionist viewpoint of the previous chapter, one can pon-
der whether each such problem corresponds to a security property for key
agreement.

This question might illustrate why security definitions can be hard to get
right: the open-endedness of the security means the difficult quite arbitrary
problems might be relevant to security.

3.4. ESOTERIC SECURITY AIMS 85

3.4.7.1 Systems of a equations

A watcher W (or a wedge) against a multiplicative key agreement scheme
can re-formulated as a function for partially solving the following system the
equations in a semigroup:

d = ab,

e = bc,

f = abc,

where d, b, e are the known variables, and the a, c, f are the unknowns. A
watcher tries to find one of the unknowns, namely f .

Such systems can be generalized. Let h1, . . . , hm be knowns. Let x1, . . . , xn

be unknowns. Consider a system of equations:

Li(h1, . . . , hm; x1, . . . , xn) = Ri(h1, . . . , hm; x1, . . . , xn),

for i ∈ {1, . . . , q}. Each of Li and Ri are known functions taking a semigroup
product of some sequence of their inputs.

In the case of watchers, let [h1, h2, h3] = [d, b, e] and [x1, x2, x3] = [f, a, c],
and let the six functions be:

L1(h1, h2, h3; x1, x2, x3) = h1

R1(h1, h2, h3; x1, x2, x3) = x2h2

L2(h1, h2, h3; x1, x2, x3) = h3

R2(h1, h2, h3; x1, x2, x3) = h2x3

L3(h1, h2, h3; x1, x2, x3) = x1

R3(h1, h2, h3; x1, x2, x3) = x2h2x3

Given such a system, some natural problems arise.

• Is there a solution x1, . . . , xn?

• Find x1 (for some solution x1, . . . , xn)?

Because there are so many possible system of equations, it would seem that
some should have very little security impact on an application of key agree-
ment. Perhaps the following type of systems are the ones relevant to key
agreement.

86 CHAPTER 3. SECURITY AIMS

Consider t sessions [ai, bi, ci, di, ei, fi] of k. The set of variables in the
system is {ai, bi, ci, di, ei, fi : 1 ≤ i ≤ t}. Some of the variables are known
to the attacker. Some of the variables are unknown to the attacker. In
multiplicative key agreement, the system of equations include the session
equations:

di = aibi,

ei = bici,

fi = aibici

The system may also include some extra equations. Typically, the extra
equations are just equalities between some of the variables, usually between
some of the ai, or between some of the ci, representing the situation where
Alice or Charlie re-usages their secrets.

The attacker then tries to find one or more of the unknown variables. The
attack could instead just try to determine whether the system is solvable.

Diversion 3.4.24. The attacker might know partial information about some of the un-
knowns. For example, a distinguisher (defined previously) knows a set of the two unknowns
containing the target unknown, leaving only single of bit information about the target un-
known for the attacker to determine.

The attacker might also be able to choose some of the variables. Some of the (partially)
known variables might get revealed after some of the choices, allowing for subsequent
choices of variables to be adaptive.

Diversion 3.4.25. In the probabilistic setting, success rate generally needs to be cali-
brated, in a way meaningful to the application, to compare against a baseline attacker
that ignores (all) the input, and simply guesses the output.

Chapter 4

Wedges: some generic
strategies

This chapter lists some strategies to compute a wedge (Definition B.9.1),
which, recall, is a ternary operator with notation [d, b, e] 7→ d ∧b e and the
property that (ab) ∧b (bc) = abc for all a, b, c.

Seclusiveness of key agreement (its basic security) is resistance to watch-
ers, which amounts to the difficulty of computing a wedge operator (see
§3.1.4.3).

4.1 Wedge by division

Dividing (Definition B.8.1) is a way to compute a wedge (Definition B.9.1):

Lemma 4.1.1. If / is a divider, then

d ∧b e = (d/b)e, (4.1.1)

defines a wedge operator.

Proof. Let / be a divider (meaning ((ab)/b)b = ab for all a, b).

87

88 CHAPTER 4. WEDGE STRATEGIES

If [d, b, e] = [ab, b, bc] for any a, b, c, and ∧ is defined as in (4.1.1), then

(ab) ∧b (bc) = d ∧b e

= (d/b)e

= ((ab)/b)(bc)

= ((ab/b)b)c

= (ab)c

= abc,

(4.1.2)

where the second equality is from (4.1.1), the first and third from the defini-
tion of d and e, the fourth and sixth from associativity, and the fifth from /
being a divider.

This holds for all [a, b, c], so ∧ : [ab, b, bc] 7→ abc meets the definition of a
wedge operator.

Diversion 4.1.1. A wedge is at most one multiplication more costly than division.

Division on the left (§B.8.5) can also be used:

Lemma 4.1.2. If \ is a left divider, then

d ∧b e = d(b\e), (4.1.3)

defines a wedge operator.

Proof. Mirror image of proof of Lemma 4.1.1.

Diversion 4.1.2. The wedge operator symbol ∧ is motivated by the merger of the formulas

(d/b)e = d ∧b e = d(b\e). (4.1.4)

So, ∧b is a concatenation of 3 symbols: / and \ and b. A directly concatenated notation
d/b\e is too easily misconstrued as two divisions.

Wedge by division essentially works even if the divider / has outputs
outside the given semiring S. Suppose that T is an extension or super-
semigroup of S, meaning that S ≤ T (S is a subsemigroup of T). Suppose
that / is a divider for semiring T , which might have d/b 6∈ S even if d, b ∈ S.

Fix any function f : S3 → S and define an extended wedge by division
operator:

d ∧b e =

(d/b)e if (d/b)e ∈ S,

f(d, b, e) if (d/b)e 6∈ S.
(4.1.5)

4.2. WEDGE BY INVERSION 89

To see that this defines a wedge in S, consider any a, b, c ∈ S, put d = ab
and e = bc. Because / is a divider in T , we have ((ab)/b)b = ab. Multiplying
this on the right by c shows that (d/b)e = ((ab)/b)(bc) = ((ab)/b)b)c =
abc ∈ S. Therefore, d ∧b e = (d/b)e by the definition of ∧ above. Therefore,
(ab) ∧b (bc) = abc for all a, b, c ∈ S.

For some key agreement schemes, an incomplete wedge §B.9.3 suffices to
build a watcher. In this case, a faulty divider (§B.8.6) can be enough to
construct an incomplete wedge.

Lemma 4.1.3. If / is a faulty divider with divider-set T , then

d ∧b e = (d/b)e, (4.1.6)

defines an incomplete wedge operator correct for seeds [a, b, c] ∈ T × S.

Proof. Restrict a, b, c in the proof of Lemma 4.1.1 to the case that [a, b] ∈
T .

Diversion 4.1.3. A semigroup can be said to be wedge-divisive if the least costly al-
gorithm for the wedge operation is not significantly more costly than a division and a
multiplication. (Wedge-divisive semigroups exist: for example, those in which division
can be achieved using a wedge, §5.4.)

A semigroup can be said to be wedge-severe if the opposite holds, in other words, if
there is an algorithm to solve the wedge problem that is significantly more efficient than
computing a division (by b) and a multiplication (the algorithm of Lemma 4.1.1). Wedge-
severe semigroups exist, some with wedge algorithms listed in the rest of this chapter.

Diversion 4.1.4. Side-division (§B.8.6.4) also suffices to compute a wedge. Conversely,
any wedge operator of the form d ∧b e = f(d, b)e defines a side-division algorithm d/b =
f(d, b).

Diversion 4.1.5. In non-associative magma, a left wedge is a function with [ab, b, bc] 7→
(ab)c, but the construction in (4.1.1) does not necessarily result in a wedge. In other
words, the proof of Lemma 4.1.1 relies essentially on the associativity of the semigroup.

4.2 Wedge by inversion

Fix b in a semigroup S. We say that q is wedge inverse of b if there is a
wedge operator with

d ∧b e = dqe, (4.2.1)

90 CHAPTER 4. WEDGE STRATEGIES

for all d, e ∈ S. Equivalently, q is a wedge inverse of b if

abqbc = abc (4.2.2)

for all a, c ∈ S. One type of wedge algorithm is to apply a wedge inversion
algorithm (an algorithm to find a wedge inverse q of b) and then applying
two multiplications.

When used as a watcher, the work in finding q can be re-used across all
key agreement sessions that use the same base value b. Some applications of
key agreement might re-use the non-secret b many times.

The wedge by inversion algorithm is not entirely distinct from the previous
(§4.1) wedge by division algorithm. The two algorithms can overlap when
division by inversion (§5.2) is used.

Diversion 4.2.1. In some semigroups, a wedge inverse tends also to be a divisional

inverse (defined in §5.2), thereby implying the existence an effectively equivalent division
algorithm.

Diversion 4.2.2. The algorithms also overlap since, if q is a wedge inverse of b, then
d/b = dq defines a side-division algorithm (§B.8.6.4).

The following lemma limits idempotent-free semigroups from having any
wedge inverses.

Lemma 4.2.1. If any element of a semigroup has a wedge inverse, then the
semigroup has an idempotent element.

Proof. Suppose that q is the wedge inverse of b. Let e = qbqb, then

ee = (qbqb)(qbqb)

= (qbqbq)(bqb)

= (qbq)(bqb)

= (qbqbq)(b)

= (qbq)(b)

= (qb)(qb)

= qbqb

= e,

using associativity and the wedge inverse rule abqbc = abc with a = c = q.

4.3. WEDGE BY CONSTANT 91

Diversion 4.2.3. Two examples of idempotent-free semigroups include: {1, 2, 3, . . .}+,
the positive integers under addition; and {2, −2, 4, −4, . . .}×, the even nonzero integers
under multiplication.

Diversion 4.2.4. Although b might not have a wedge inverse in S, there sometimes exists
a semigroup extension T of S in which b does have an inverse. For two examples: S
could be the positive integers under addition, and T the set of all integer; S be integers
larger than 10 under multiplication, and T be the set of positive rational numbers under
multiplication.

But, the mere existence of such T does not imply an effective algorithm for wedge
by inversion. For example, the practicality of the multiplication in T might depend on
practical division in S.

4.3 Wedge by constant

A wedge by constant has d ∧b e = u ∧v w for all d, b, e, u, v, w ∈ S.

Let z = u ∧v w for some u, v, w ∈ S. Then (ab) ∧b (bc) = u ∧v w = z and
(ab) ∧b (bc) = abc, so abc = z for all a, b, c ∈ S.

Elements z is absorbing. To see this, compute yz = yabc = (ya)bc =
a′bc = z, writing a′ = ya. Similarly, zy = z. By convention, we can write
z = 0. So abc = 0 for all a, b, c ∈ S, if S has a wedge by constant. In
other words, S is 3-nilpotent. Conversely, if S is 3-nilpotent (abc = 0 for all
a, b, c ∈ S), then S has a wedge by constant: d ∧b e = 0.

A multiplicative semigroup S is n-nilpotent for positive integer n if the
subset Sn = {s1s2 . . . sn : si ∈ S} has only one element.

Diversion 4.3.1. If S is n-nilpotent, then the sole element of Sn is an absorbing element
(§B.6.2), so, under standard conventions, we (re-)write the sole element of Sn as 0.

(To see that 0 ∈ Sn is absorbing, observe that Si ⊆ Si+1 for all i, since s1 . . . sisi+1 ∈
Si+1 is a product of i factor, as in (s1) . . . (si−1)(sisi+1), the last factoring being sisi+1.
Now, for any s ∈ S, we have 0s, s0 ∈ Sn+1, since 0 ∈ Sn. But Sn+1 ⊆ Sn = {0}, so
0s, s0 ∈ {0} and 0s = s0 = 0, so 0’s absorbing, as required.)

Diversion 4.3.2. A t-nilpotent semigroup is (t + 1)-nilpotent. For example, a 2-nilpotent
semigroup is a 3-nilpotent.

Diversion 4.3.3. Recall that a nilpotent element s of a ring is an element such that
sn = 0 for some positive integer n. The ring definition and semigroup definition are
related. Ring element s is nilpotent if and only if semigroup {0, s, s2, s3, . . . } is nilpotent.
(This semigroup is a subsemigroup of the ring’s multiplicative semigroup.)

To minimize confusion, nilpotent applied to an element means ring nilpotent, and
applied to a semigroup means semigroup nilpotent.

92 CHAPTER 4. WEDGE STRATEGIES

A potential confusion is that a non-nilpotent ring element s can generate a nilpotent
semigroup 〈s〉 = {s, s2, s3, . . . }. What can happen is that the 0 of the ring does not
belong to 〈s〉, even though 〈s〉 has its own absorbing element. In semigroup theory, such
s generating a nilpotent semigroup are sometimes called aperiodic. This report prefers
to call such elements period 1 elements (§B.4.3).

Alternative names include idemperiodic, to emphasize the idempotents have period
1, or nilperiodic, to emphasize the nilpotent (ring) elements have period 1. But these
two terms are bit too awkward, and are not needed often enough in this report to adopt
them.

Diversion 4.3.4. In group theory, the terminology nilpotent has a more indirect mean-
ing, and is not closely related to the meaning in semigroup theory. Unfortunately, these
two meanings of nilpotent clash. A group is never nilpotent as semigroup, unless it is
trivial. A non-trivial nilpotent group is not nilpotent as semigroup (even though it is a
semigroup). A non-trivial nilpotent semigroup is not nilpotent as a group (and not even
a group at all).

Diversion 4.3.5. If division is difficult in 3-nilpotent semigroup S, then S is a wedge-
severe semigroup (Diversion 4.1.3).

Difficult division in 3-nilpotent semigroups is plausible, because a 3-nilpotent semi-
group can be formed from any binary operation, including cryptographic function like
HMAC, as described in §??.

Division in these semigroups seems difficult in general.

Diversion 4.3.6. If S is 3-nilpotent, then the wedge operator d∧be = 0 may be considered
to be an instance of the wedge by side-division algorithm (§B.8.6.4), for the side-division
algorithm d/b = 0.

4.4 Wedge by multiplication

A wedge by multiplication has d ∧b e = de. Some semigroups have wedge
by multiplication, which usually means the key agreement scheme is insecure
(unless the multiplication of d and e is somehow infeasible).

A semigroup S is self-distributive if abc = abac = acbc, for all a, b, c ∈
S. In other words, a self-distributive semigroups is a semiring where the
addition and multiplication operations are identical, a + b = ab for all a, b,
because then abc = a(b + c) = ab + ac = abac and abc = (a + b)c = ac + bc =
acbc. To make the notation more familiar, when clear from context, write
a + b = ab in a self-distributive semigroup.

Self-distributive semigroups have a wedge by multiplication. To see this,

4.5. WEDGE BY DELETION AND CONCATENATION 93

compute as follows:

(ab) ∧b (bc) = (ab)(bc)

= (a(bb))c

= (a(b + b))c

= (ab + ab)c

= ababc

= a(ba + bc)

= ab(a + c)

= abac

= ab + ac

= a(b + c)

= abc,

(4.4.1)

for any a, b, c ∈ S, as required for a wedge operator.

Diversion 4.4.1. Wedge by multiplication can sometimes be considered wedge by division
(§4.1) combined with division by identity (§5.3). So, for example, wedge by multiplication
works in polarized semigroups (in addition to self-distributive semigroups).

4.5 Wedge by deletion and concatenation

Fix a function h : L × R → M . The h-free semigroup Sh is defined below.
For one-way h, division has difficult instances, but the wedge is easy.

Diversion 4.5.1. Cryptographers can base h to their favorite hash function, for example,
h(a, b) = SHA-256(a‖b), where a‖b means representing a and b as octet strings and then
concatenating them.

The elements of Sh are non-empty sequences with entries in the disjoint
union L ⊎ R ⊎ M (using distinguishable copies of each of L and R and M).
All such sequences are allowed except those with an entry in L followed by
an entry in L. (In other words, it is L × R-free.)

To multiply sequences a = [a1, . . . , ai] and b = [b1, . . . , bj], compute

ab =

[a1, . . . , ai, b1, . . . , bj] if [ai, b1] 6∈ L × R,

[a1, . . . , h(ai, b1), . . . , bj] if [ai, b1] ∈ L × R.

94 CHAPTER 4. WEDGE STRATEGIES

In other words, multiplication is concatenation of sequences, unless that
would create adjacent entries in L × R (which are not allowed). The ad-
jacent entries in L × R are replaced by an entry in M , by application of the
function h.

Equivalently, Sh is the free semigroup generated by the set L ⊎ M ⊎ R
modulo the congruence generated by the relations [a][b] = [h(a, b)] for [a, b] ∈
L × R.

Division in Sh has some difficult instances. Consider a = [a1] with a1 ∈ L
and b = [b1] with b1 ∈ R. Then d = ab = [h(a1, b1)]. Computing d/b amounts
to finding a pre-image of the function a 7→ h(a, b), which should be infeasible
if h is a one-way function.

Computing a wedge in Sh is easy. Compare the final entries the left
entries of e to the entries of b. In relevant instances, they will match except
possibly for the single rightmost entry of b. Do the same comparison for d,
except one compares the right entries of d, and only the leftmost entry of b
might fail to match.

Let d′ be d with the matched entries deleted. Let e′ be e with the matched
entries deleted. Let b′ be b with unmatched end-entries (first or last) deleted
(so, if b1 does not match the corresponding entry of d, then delete it). Con-
catenate d′ and b′ and e′ as the value for d ∧b e.

4.6 Wedge by monomorphism

The wedge problem in one semigroup can be solved by using an injective
morphism into another semigroup.

Lemma 4.6.1. If f : S → T is a semigroup morphism, and g : T → S is a
function such that g(f(s)) = s for all s ∈ S, then

d ∧b e = g
(

f(d) ∧f(b) f(e)
)

(4.6.1)

defines a wedge operator in S, given a wedge operator in T .

Proof. Suppose d = ab and e = bc for a, b, c ∈ S. It suffices to prove that

4.6. WEDGE BY MONOMORPHISM 95

d ∧b e = abc using (4.6.1). Now

d ∧b e = g
(

f(d) ∧f(b) f(e)
)

= g
(

f(ab) ∧f(b) f(bc)
)

= g
(

(f(a)f(b)) ∧f(b) (f(b)f(c))
)

= g (f(a)f(b)f(c))

= g (f(abc))

= abc

as desired.

An important special case is wedge in a subsemigroup S of T . In this case,
the injective morphism is f : S → T : s 7→ s. The function g : T → s can be
defined g(t) = t if t ∈ S and g(t) = h(t) if t 6∈ S, where t : (T − S) → S is
any function from T − S = {t ∈ T : t 6∈ S} to S. In other words, the wedge
∧ in subsemigroup S ≤ T can be taken as the same as that in T , except any
outputs in T can be moved arbitrarily into S.

Diversion 4.6.1. Lemma 4.6.1 provides a feasible wedge operator for S if:

• the morphism f is feasible,

• the wedge operator in T is feasible,

• the function g is feasible.

Diversion 4.6.2. The existence of g means that f is an injective function, so that |T | ≥
|S|. The reason that a finding wedge in T helps to find a wedge in S cannot be because
T is smaller in size. Rather, T must have some specialized structure making the wedge
operator easier. The morphism f and function g can be viewed as methods to extend this
special structure of T into S.

Diversion 4.6.3. Because f is an injective morphism, we may regard S as a subsemigroup
of T . More precisely, T has a subsemigroup f(S) that is isomorphic to T .

The function g need not be a morphism, but the restriction of g to domain f(S), as
in g : f(S) → S, provides one direction of the isomorphism between S and f(S).

Diversion 4.6.4. We also did a transfer (a reduction) of a wedge from one semigroup to
another, in the §4.7, but that transfer did not directly use a injective morphism.

96 CHAPTER 4. WEDGE STRATEGIES

4.6.1 Aside: wedge as two multiplications

Consider the subset bSb of S. This subset is closed under the binary wedge
operator ∧b. Furthermore, ∧b is uniquely defined on bSb, and it is associative
on bSb. Therefore, so bSb forms a semigroup with operation, ∧b. Write this
as T = (bSb)∧b .

Let U = S∨b be the following semigroup with operation ∨b defined

a ∨b c = abc.

So, the underlying set of U is the same as the underlying set of S. The binary
operation U (its multiplication) costs two multiplications in S.

Diversion 4.6.5. The semigroup U is isomorphic to a Rees matrix semigroup Reem(S)
(see §4.7 and §C.8.6). Put m = [b], meaning a 1 × 1 matrix with sole entry valued b. The
isomorphism is h : a 7→ [1, a, 1], satisfying h(a ∨b c) = h(a)h(c).

The function f : S∨b → (bSb)∧b : a 7→ bab is a semigroup morphism
because f(a ∨b c) = f(abc) = babcb = bab ∧b bcb = f(a) ∧b f(c).

So, the wedge operator ∧b on bSb is an image of the binary operator ∨b,
which costs two multiplications in S. Using this viewpoint to implement ∧b

in bSb∧b would require inverting f . Inverting f , seems to require at least two
divisions. This would only partially implements ∧b in S, because it is limited
to arguments in the subset bSb, whereas ∧b has relevant inputs outside of
bSb.

Diversion 4.6.6. This observation shows that if finding an efficient isomorphism between
any two isomorphic semigroups is easy, then at least some of the inputs to a wedge operator
would cost only two multiplications.

This partially suggests that the semigroup isomorphism is difficult in general. Other-
wise, wedges would seem to be easy in the general.

To be completed.

4.7 Wedge by Rees index deletion

The Rees matrix semigroup Reem(S), detailed in §C.8.6, for a base semi-
group S and rectangular matrix m with entries m(i, j) ∈ S, has elements
and multiplication defined by:

[h, a, i][j, b, k] = [h, am(i, j)b, k],

where a, b ∈ S and h, i, j, k are indices to the matrix m (with h, j being left
indices, and j, k right indices).

4.7. WEDGE BY REES INDEX DELETION 97

Lemma 4.7.1. In Reem(S), the wedge operator can be computed as

[g, d, h] ∧[i,b,j] [k, e, l] = [g, d ∧b e, l], (4.7.1)

where ∧ on the right is a wedge operator in S.

Proof. Write

A = [g, a, n],

B = [i, b, j],

C = [o, c, l],

D = [g, d, h],

E = [k, e, l].

Assume D = AB and E = BC. Expanding both sides of D = AB as triples,
gives

g = g,

d = am(n, i)b,

h = j.

Similarly, for E = BC,

k = i,

e = bm(j, o)c,

l = l.

So,

D ∧B E = ABC

= [g, am(n, i)bm(j, o)c, l]

= [g, (am(n, i)b) ∧b (bm(j, o)c), l]

= [g, d ∧b e, l]

as desired.

Diversion 4.7.1. The inputs to the definition (4.7.1) of a wedge operator in Reem(S) that
have (i, j) 6= (k, g) are not valid instances of the wedge problem in Reem(S). A wedge
operator is permitted to produce arbitrary outputs for such invalid inputs, because they
are irrelevant to the wedge operator.

98 CHAPTER 4. WEDGE STRATEGIES

Diversion 4.7.2. In general, the wedge operator (4.7.1) seems faster than using division
in Reem(S), because the best division algorithm (that I could find) seems to requires a
search for a factor of d and e.

Consequently, it seems that, in general, a Rees matrix semigroup is wedge-severe
(Diversion 4.1.3).

Diversion 4.7.3. To be completed.
A theorem of Rees [Wikipedia] says that a completely simple semigroup S is iso-

morphic to a Rees matrix semigroup Reem(G) where G is a group. If both directions of
the isomorphism are efficient (are they?), then the wedge problem in S is reducible to the
wedge problem in a group G, which should be equivalent to inversion in the group.

4.8 Wedge by coordinate

Suppose that S = S1 × S2 × · · · × Sn is a Cartesian product of finitely
semigroups S1, S2, . . . , Sn, meaning that the elements of S are sequences
[s1, . . . , sn] with coordinate si ∈ Si, and multiplication has multiplies the
coordinates, so

[a1, . . . , an][b1, . . . , bn] = [a1b1, . . . , anbn].

Then wedge by coordinate means applying of n wedges, one wedge in each
coordinate:

[d1, . . . , dn] ∧[b1,...,bn] [e1, . . . , en] = [d1 ∧b1 e1, . . . , dn ∧bn
en]. (4.8.1)

Diversion 4.8.1. Wedge by coordinate can also be defined similarly for infinitary Carte-
sian products, although in that case, wedge by coordinate should be not considered as a
practical strategy, since there will be infinitely many coordinates, and thus infinitely many
wedges to evaluate. But in this multiplication by coordinate should not be considered an
algorithm.

Diversion 4.8.2. Subsemigroups of Cartesian products sometimes arise. Then a combi-
nation of wedge by monomorphism (the subsemigroup embedding) combined with wedge
by coordinate might be applicable.

An example of subsemigroup of an (infinitary) Cartesian product, consider the positive
integers P = {1, 2, 3, . . . } under multiplication. For each prime q, let Pq = {1, q, q2, . . . }
be the subsemigroup of P consisting of powers of q. Consider P as a subsemigroup of the
infinitary Cartesian product P2 × P3 ×P5 × . . . , by way of prime-power factorization. For
example, 20 maps to [4, 1, 5, 1, 1, 1, . . .].

Sometimes such subsemigroup permit efficient multiplication by coordinate or wedge
by coordinate, despite having an infeasibly large number of coordinates (infinite). This
could be because only finitely many coordinates are non-trivial.

4.9. WEDGE BY TRIAL DISCRIMINATION 99

In the example of P above, multiplication by coordinate and wedge by coordinate are
not very practical as algorithms, when P is represented by the standard decimal represen-
tation, because it requires prime-power factorization, which is slow.

4.9 Wedge by trial discrimination

For any semigroup, define a discrimination function δ : S4 → {0, 1} by the
rule:

∆(w, x, y, z) =

1 if [w, x, y, z] = [ab, b, bc, abc] for some a, b, c

0 if [w, x, y, z] 6= [ab, b, bc, abc] for all a, b, c
(4.9.1)

A wedge by trial discrimination algorithm computes d ∧b e is specified
by a list [z1, z2, . . .]. The algorithm loops over i, starting from i = 1 and
incrementing i by 1 at each iteration. In each iteration, the loop computes
∆(d, b, e, zi). The loop ends as soon as ∆(d, b, e, zi) = 1. After the loop ends,
the algorithm returns zi as the value of d ∧b e.

Diversion 4.9.1. Given a wedge operator ∧, let function ∆∧ be defined by ∆∧(w, x, y, z) =
[(w ∧x y) = z], taking value 1 only if w ∧x y = z, and otherwise taking value 0.

The function ∆∧ often fails to be a discrimination function, for example if there does
not exist [a, b] such that [w, x] = [ab, b]. However, if ∆∧ is multiplied by two boolean
divisibility functions (testing if [w, x] = [ab, b] and if [x, y] = [b, bc], then the resulting
product function is a discrimination function.

In some cases, the fastest known way to compute the discrimination func-
tion requires computing the wedge w ∧x y and comparing this to z. In these
cases, computing a wedge by trial discrimination does not help. In other
cases, the discrimination function can be computed more quickly then a
wedge.

A wedge by trial discrimination is an instance of the more general trial
search method. Probabilistic forms of trial search are discussed in Ap-
pendix D. Probabilistic forms of trial search can be applied to trial discrim-
ination.

Chapter 5

Division: some generic
strategies

This chapter lists some generic strategies for division, meaning to compute
an operator / such that

((ab)/b)b = ab

for all a, b (in a multiplicative semigroup, or in a ring, or in two subsets of a
semigroup or ring, or for given random variables defined over a semigroup or
ring). (See §B.8 for more detailed definitions of division, and some general
theory of division.)

Division impacts key agreement because it can be used to compute wedges,
as shown in §4.1, which can be used to construct watchers that defeat seclu-
siveness (the main security aim of key agreement). Conversely, in some cases,
division is the fastest known way to compute wedges, and thus is the fastest
known way to defeat the main security aims of key agreement. Division
also be used to build a divulger against a key agreement scheme, which has
slightly more security impact than a watcher, as shown in §3.2.6.

The description of division strategies here deliberately belabors the ob-
vious. When applying division strategies to sophisticated real-world semi-
groups, the obvious might become obscured. When considering a real-world
key agreement scheme, it might help to take a step back, and walk through
a checklist of the obvious, since it would be unfortunate to overlook an easy
attack.

The division strategies list here are mostly generic in the sense that
they do not focus on a specific multiplication. Instead, relatively simple

100

5.1. DIVISION BY TRIAL MULTIPLICATION 101

algorithms are listed that seems to divide for a variety forms of multiplication.
A thorough security analysis of a specific key agreement scheme can consider
such generic attacks, but should also include more specific efforts to attack
the scheme under consideration.

5.1 Division by trial multiplication

Division by trial multiplication, as discussed in this section, is arguably
the simplest and most general division strategy. Trial multiplication is an
instance of a more general strategy: trial search, which find pre-images of
an arbitrary function (multiplication by b, in this instance).

This section focuses on deterministic trial multiplication. Probabilistic
versions of trial search are discussed in Chapter D.

Diversion 5.1.1. Division by trial multiplication is a minimum baseline by which to
measure how difficult division is in a semigroup.

5.1.1 Trial multiplication in finite semigroups

In this section, the semigroup S is assumed to be finite. Division by trial
multiplication is parameterized by a trial function.

Definition 5.1.1. A trial search function is a surjective function

t : {1, . . . , n} → S.

The number n is the length of trial function.

Of course, n ≥ |S| for any trial function.

Diversion 5.1.2. Whenever clear from context, n denotes the length of a trial function.
In the context of a trial function t, when the notation variable n indicates the size of the
domain of t,

We next define notational divider / that will later be proven to be an
actual divider.

Definition 5.1.2. The trial multiplication divider / derived from trial
search function t computes d/b as follows:

1. Let i = 1.

2. Let e = t(i).

102 CHAPTER 5. DIVISION STRATEGIES

3. If i < n and eb 6= d, then

(a) Increase i by 1,

(b) Go back to Step 2.

4. Return e.

The trial multiplication divider / is not just a notational divider, it is
actual divider, as proved next.

Lemma 5.1.1. If / is a trial multiplication divider, then it is a divider
meaning ((ab)/b)b = ab for all a, b ∈ S.

Proof. Consider any a, b ∈ S, and let d = ab. Suppose that the procedure to
compute d/b ends with e such that eb = d. Then

((ab)/b)b = (d/b)b = eb = d = ab.

Otherwise, the procedure must have ended with eb 6= d, which will be shown
to be impossible, due to contradiction.

The procedure must have ended with i = n, because if i < n, condition
eb 6= d, which have cause another iteration.

Reaching i = n means that eb 6= d for all trials, so that

t(i)b 6= d

for all i ∈ {1, . . . , n}. Equivalently, d 6∈ {t(i)b : 1 ≤ i ≤ n}.
But t is surjective, so this means that d 6∈ {sb : s ∈ S}. But that is a

contradiction, because d = ab ∈ {sb : s ∈ S}, by setting s = a.

Diversion 5.1.3. In practice, a trial function should be implemented by a practical (fea-
sible) algorithm.

The basic cost of implementing trial multiplication divider / is up to n
multiplications in S and n applications of the function t. A more detailed
cost analysis, using probabilistic trial functions, is given in Chapter D.

Diversion 5.1.4. In some semigroups, multiplication itself has a cost varying with the
elements being multiplied. In such semigroups, the cost of trial multiplication may be
complicated to assess. In fact, the cost assessment might be meaningless for assessing the
practical security of associative key agreement. In such cases, probabilistic trial search
might lead to more meaningful assessments.

5.1. DIVISION BY TRIAL MULTIPLICATION 103

5.1.2 Eternal trials in countable semigroups

The natural extension of trial multiplication to countably infinite semigroups
is defective in two respects.

• It is not generally guaranteed to produce a divider, or even a complete
function, because if there is no suitable d/b, infinitely many trials will be
tested, and the procedure will not return any value for d/b whatsoever.

• The cost, in the deterministic setting, is infinite, or more precisely,
taking an unbounded number of trials and multiplications.

Nonetheless, remedies to the defects, discussed further below, make the nat-
ural extension worth defining, as done next.

Definition 5.1.3. An eternal trial search function is a surjective func-
tion

t : {1, 2, 3, . . . } → S.

Definition 5.1.4. The eternal trial multiplication divider / derived from
eternal trial search function t computes d/b as follows:

1. Let i = 1.

2. Let e = t(i).

3. If eb 6= d, then

(a) Increase i by 1,

(b) Go back to Step 2.

4. Return e.

Again, eternal trial multiplication as described above, is not always fully
defined, sometimes never returning an answer. This defect has some remedies
such as the following:

• In the probabilistic setting, the expected (average) cost can be finite
(see Chapter D for details).

• Given a test for divisibility, never-ending searches can be avoided (see
§5.1.3), ensuring that the / always terminates with a correct answer,
thus providing a divider.

104 CHAPTER 5. DIVISION STRATEGIES

• If a pre-divider exists (see §B.8.9), then the eternal trial multiplication
will always terminate, as formally proved below.

Lemma 5.1.2. If S has a pre-divider (see §B.8.9), then eternal trial multi-
plication defines a divider.

Proof. As in the proof for the finite case, if the eternal trial multiplication
computation of d/b returns e with i < ∞, the eb = d, so if (d/b)b = d, (and
if d = ab, then ((ab)/b)b = ab.

Otherwise, the procedure to compute d/b iterates forever. This means
that t(i)b 6= d for all i ≥ 1. But t is surjective, this means d 6= eb for all
e ∈ S.

Since a pre-divider exists, say ÷, then (d ÷ b)b = b, by definition of
pre-divider. Since d ÷ b ∈ S, we get a contradiction.

5.1.3 Divisible eternal trial multiplication

To be completed.

Definition 5.1.5. A divisibility function is a function | : S2 → {true, false} :
[d, b] 7→ b|d such that b|d is true if and only there exists a such that d = ab.

Eternal trial multiplication can be modified to make it into a divider as
follows.

Definition 5.1.6. The divisible eternal trial multiplication divider /
derived from eternal trial search function t compute d/b as follows:

1. If b|d, then

(a) Let i = 1.

(b) Let e = t(i).

(c) If eb 6= d, then

i. Increase i by 1,

ii. Go back to Step 1b.

(d) Return e.

2. Return d.

Divisible eternal trial multiplication always terminates, and always pro-
duces an answer d/b. The resulting operator d/b is a divider.

5.1. DIVISION BY TRIAL MULTIPLICATION 105

Diversion 5.1.5. To do: find an example of a semigroup with an efficient divisibility
function and trial multiplication being the best possible division strategy.

Diversion 5.1.6. To do: sufficiently fast divisibility functions sometimes speed up the
average runtime of finite trial multiplication, because it replaces n trial and multiplication
when the inputs [d, b] have b ∤ d. (Average run-time is properly defined only in the
probabilistic setting.)

Diversion 5.1.7. A divisibility function can be defined using a divider, since b|d if and
only if (d/b)b. But divisibility would not help to compute d/b, so divisibility is only likely
to help if it is faster than division.

5.1.4 Aside: transfinite search in uncountable semi-
groups

More abstractly, trial multiplication may be viewed as the finite (or count-
able) case of a theoretical transfinite search.

Definition 5.1.7. A transfinite trial search function is a surjective
function

t : W → S,

where the domain W is well-ordered by a relation ≤.

Definition 5.1.8. The transfinite trial multiplication divider / derived
from transfinite trial function t compute d/b as follows:

d/b =

t(m) if m = min{v : t(v)b = d},

d if {} = {v : t(v)b = d}.

Diversion 5.1.8. Well-ordering of W is used in the definition in order to formally gen-
eralize the features of trial search. In particular, the order of the trials can affect the
outcome of the result.

Diversion 5.1.9. Division by transfinite trial multiplication proves that a divider always
exists, in uncountable semigroups.

Diversion 5.1.10. In some cases. there might exist divider / that are not obtained by
transfinite trial multiplication, at least as we have described it.

Suppose aibj = d for i, j ∈ {1, 2}. Suppose that d/bi = ai. Then this divider is not
obtained by trial multiplication. Suppose that a1 < a2 in the well-ordering of S. Any trial
multiplication would have d/b2 6= a2, because d/b2 ≤ a1 < a2.

One could define a different well-orderings for different inputs to the divider, to get
around this. But then it should no longer be considered trial multiplication, because the

106 CHAPTER 5. DIVISION STRATEGIES

dependency of the well-ordering on the inputs is something more powerful than trying
all multiplications. In other words, such input-dependency would make the division more
advanced.

In the extreme case, take any divider at all, /, for each input d, b define a well-ordering
that makes d/b minimal. Then only one trial multiplication is used, and actually the trial
is unnecessary because the trial is define to be successful.

Diversion 5.1.11. The axiom of choice, instead of well-ordering, can be used, but it less
constructive (at least according to some naive set theory).

For each b, d ∈ S, define a set d//b = {a : ab = d}, and a set d///b such that
d///b = d//b if d//b is not empty, and otherwise d///b = S. All the sets d///b are not
empty. By the axiom of choice, there exists a function / such that d/b ∈ d///b for all
b, d ∈ S.

To see that operator / is a divider, consider (ab)/b. By definition, (ab)/b ∈ (ab)///b.
But a ∈ (ab)//b, so (ab)//b is not empty, meaning (ab)///b = (ab)//b, by definition.
Therefore (ab)/b ∈ (ab)//b, which means that ((ab)/b)b = (ab).

This has merely shown the existence of a divider /. In some case, there may be many
different /, and the axiom of choice does not help which of these choices. By compari-
son, each well-ordering defines a specific /, and can thus be viewed as more constructive
(ignoring the issues of transfinite).

5.1.5 Optimality of trial multiplication

To be revised.

Diversion 5.1.12. For two examples where trial multiplication might be the fastest di-
vision algorithm, consider the semigroups S〈AES〉 and S〈HMAC〉 formed as the semigroup
closures of AES and HMAC, as described in §??.

The semigroup S〈AES〉, right division has input consisting of a message block and a
cipher block, with the goal being to compute the key (or an equivalent key). The security
of AES therefore relies on difficult right division in S〈AES〉. Indeed, the fastest right
division algorithm seems to be trial multiplication. Left division is S〈AES〉 is easy, because
it corresponds to recovering the message given the key and cipher block.

The security of HMAC also relies on difficult right division, because it corresponds to
the task of finding the HMAC key from the message and its HMAC tag. Again, the best
right division algorithm seems to be trial multiplication. Semigroup S〈HMAC〉 seems to
have difficult left division, being the problem of recovering the message from the HMAC
key and the HMAC tag. Generally, the advertised security HMAC does not rely on
difficult left division in S〈HMAC〉, because the standard security definition for a message
authentication code (such as HMAC) does not guard the secrecy of the message (that task
is deferred to encryption).

Despite the difficult division, both left and right, in S〈HMAC〉, associative key agree-
ment from S〈HMAC〉 is not secure at all, as explained in §??.

Diversion 5.1.13. A semigroup in which trial multiplication is the fastest division algo-

5.2. DIVISION BY INVERSION 107

rithm (for both left and right division) should perhaps be called division-triable.

Diversion 5.1.14. In some semigroups, trial multiplication is not the best division algo-
rithm: significantly faster division algorithms exist.

Indeed, the example S〈AES〉 has right division in which trial multiplication seems to
be the best algorithm, but has a left division algorithm (decryption) that has essentially
the same cost as multiplication (encryption).

Diversion 5.1.15. Perhaps the most secure possible semigroup would be one where:

• division is the best wedge algorithm (which we called wedge-divisive in the chapter
on wedge algorithms),

• trial multiplication is the best division algorithm (which we called division-triable).

Unfortunately, this report finds quite the opposite: all division-triable semigroups contem-
plated in this report are wedge-severe (the wedge problem is easy).

If this pattern is due to some fundamental reason, then other division and wedge
algorithms must be considered.

5.2 Division by inversion

Sometimes b has an inverse q (see §B.7 for various definitions of inverse). In
this case, division by b using inversion is possible.

Lemma 5.2.1. There exists a divider / such that, for each b with a right
divisional inverse (Definition B.7.5),

d/b = dq (5.2.1)

for a right divisional inverse q of b.

Proof. Define d/b as follows.

• If b has a right divisional inverse, then let d/b = dq for some arbitrary
choice q of right divisional inverse of b.

• If b has no right divisional inverse and {e : eb = d} is non-empty, then
let d/b as any arbitrary choice c of element in {e : eb = d}.

• Otherwise, let d/b be any arbitrary choice z of element in S.

108 CHAPTER 5. DIVISION STRATEGIES

To see that / is divider, for any a, b ∈ S, compute

((ab)/b)b =

abqb if b has a right divisional inverse

cb if b has no right divisional inverse

where: q is the chosen inverse of b, and c is the chosen element of {e : eb = ab}.
The set {e : eb = ab} is not empty, because it contains a, so, the third case
of (ab)/b being defined as an arbitrary choice z in S does not arise when
computing (ab)/b.

In the first case above, we get abqb = ab because q is a right divisional
inverse of b. In the second case above, we get cb = ab because c ∈ {e : eb =
ab}.

So ((ab)/b)b = ab for all a, b, meaning that / is a divider.

Diversion 5.2.1. Conversely, q is a right divisional inverse of b if there exists a divider /
with d/b = dq for all d.

More generally, if Q : S → S is a function such that Q(b) is a right
divisional inverse of b for all b ∈ S. Then d/b = dQ(b) is a divider.

An algorithm that computes an inverse q of b in order to compute division
d/b = dq by a single multiplication can be called a division by inversion
algorithm.

Strategies to compute inverses vary widely. Some are discussed in Chap-
ter 6.

5.2.1 Non-invertible elements

In many important semigroups, some elements are not invertible. For exam-
ple, in the semigroup P of positive integers under multiplication, the only
element with any kind of inverse is 1. In other words, division by inversion
does not always work.1

Diversion 5.2.2. Sometimes, a given semigroup can be extended to allow inverses, for
example the the positive integers P under multiplication can be extended to positive
rationals Q>0 under multiplication.

Existence of such extensions does not lead immediately to division algorithms. The
extension’s multiplication can effectively require division in the the base semigroup.

The example of positive rationals as an extension of the positive integers shows this.
To compute 91/13 in the positive integers, we could compute 91× 1

13 , where 1
13 is a positive

1Hence the rest of this chapter.

5.3. DIVISION BY IDENTITY 109

rational and the inverse of 13. Multiplication in positive rationals takes two multiplications
of positive integers, multiplying numerators and denominator, and also a reduction step
to put the fraction in lowest terms. (A unique form, a monogram, is needed for key
agreement.) The reduction step implies an ability to divide positive integers, since 91

13
reduces to 7

1 = 7.

5.3 Division by identity

Under special conditions, letting d/b = d or d/b = b, leads to successful
division. Division by an idempotent (an element b with bb = b, see §B.6) is
an example.

Lemma 5.3.1. There exists a divider such that

d/b = d (5.3.1)

whenever b is idempotent.

Proof. There exists a divider ÷. Let d/b = d if b is idempotent, and let
d/b = d ÷ b otherwise. We need to prove that ((ab)/b)b = ab for all a, b. If b
is not idempotent, then ((ab)/b)b = ((ab) ÷ b)b = ab, because ÷ is a divider.
If b is idempotent, then ((ab)/b)b = (ab)b = a(bb) = ab, because bb = b.

Diversion 5.3.1. An idempotent is its own inverse. Division by inversion would compute
d/b = db.

If the semigroup S is a monoid (it is unital with multiplicative identity 1), then 1 is
also a right divisional inverse of any idempotent element. So, in a monoid, division by
inversion can take the form d/b = d1 = d from Lemma 5.3.1.

When S is not monoid, it might be case the computing d/b = d is considerably faster
than computing d/b = db.

Diversion 5.3.2. Idempotent semigroups with costly multiplication may exist.
For an artificial example of an idempotent semigroup, take boolean sets under intersec-

tion and apply an arbitrary, but very slow-to-implement bijection to obtain an isomorphic
idempotent semigroup whose multiplication is very slow.

To make this less abstract, we can use cryptography. Fix an AES key k and an integer
N ≈ 250. Let the semigroup S = {0, 1}128 have underlying set consisting of all bit strings
of length 128. Define multiplications as follows: st = AES−N

k (AESN
k (s)& AESN

k (t)), where

& indicates bit-wise multiplication (AND), and AES±N
k indicates N applications of AES

encryption with the fixed key k (and −N applications of decryption if N is negative).
This semigroup seems to have very slow multiplication, because a single multiplication

seems to require three applications of very slow bijections. But division is very fast because
all its elements are idempotents, so we can compute d/b = d, essentially for free.

110 CHAPTER 5. DIVISION STRATEGIES

This example shows that division can be much faster than multiplication. This artifi-
cial semigroup is a proof-of-concept for the possibility that a semigroup can have division
more efficient than multiplication. In other words, it serves a reminder, or a warning flag,
that even if a multiplication is slow, division might be faster.

More specifically, this argument argues strongly against a strategy of devising a semi-
group with decelerated (deliberately slow) multiplication. This example shows that decel-
erating multiplication does not necessarily decelerate division.

In other words, obtaining slow division requires more fundamental than slow multi-
plication.

A special class of semigroups that has been considered in semigroup the-
ory is the class of polarized semigroups.

Definition 5.3.1. A semigroup is polarized if abc = ac for all a, b, c.

Division-by-identity works well in a polarized semigroup.

Lemma 5.3.2. In a polarized semigroup, the operator / defined by

d/b = d,

for all d, b, is a divider.

Proof. Put d = ab and compute ((ab)/b)b = (d/b)b = db, because d/b = d.
But db = abb, because d = ab. Put c = b in the equation abc = ac to get
abb = abc = ab. Therefore ((ab)/b)b = ab.

A divider defined d/b = b for all d, b can also be considered. If d/b = b de-
fines a divider in a semigroup S, then the semigroup has the following limited
structure: S can be partitioned into disjoint non-empty subsets S1, . . . , Sn,
with elements ei ∈ Si such that ab = ei whenever b ∈ Si.

Furthermore, if d/b = b defines a divider /, then d ÷ b = d also defines a
divider ÷. To see this, compute ((ab) ÷ b)b = (ab)b = (((ab)b)/b)b = bb =
((ab)/b)b = ab. In other words, a divider defined d/b = b, is redundant, since
d ÷ b = d can be used instead.

Overall, the conditions under which division-by-identity works seem quite
easy to detect, and easy to avoid.

5.4 Division by wedge

We saw already that the wedge problem is solvable by division. Sometimes,
the converse applies. In these cases, the the division problem has even greater

5.4. DIVISION BY WEDGE 111

importance, since the main attacks against key agreement all rely on the
difficulty of the division problem.

Lemma 5.4.1. There exists a divider such that

d/b = d ∧bb b, (5.4.1)

whenever b is sidle-invertible (meaning there exists q with bbq = b = qbb, and
see §B.7.5).

Proof. As done in other proofs of this report, define / by modifying any
existing divider ÷. In this case, change its output to that in (5.4.1) whenever
the second input b is sidle-invertible. Otherwise, let d/b = d ÷ b. To show
that / is divider, means to show that ((ab)/b)b = ab. When b is not sidle-
invertible, this follows from ÷ being a divider. All that remains is to prove
it when b is sidle-invertible.

Let q be the sidle inverse of b, meaning bbq = b = qbb. Then

((ab)/b)b = ((ab) ∧bb b)b

= ((a(qbb)) ∧bb (bbq))b

= (((aq)(bb)) ∧bb ((bb)q)b

= ((aq)(bb)q)b

= aq(bbq)b

= aq(b)b

= a(qbb)

= ab

as required.

Diversion 5.4.1. Lemma 6.2.1 shows that if b has a sidle inverse, then it has a middle
inverse (which is easily seen to be right divisional inverse). Therefore, division by inversion
in applicable in the case.

Nonetheless, division by wedge is relevant for at least two reasons. First, computing
a wedge could be easier than computing an inverse. Second, division by wedge can serve
as reductionist argument, even if not a practical attack, excluding the possibility that the
wedge operation is somehow easier than division.

Combining division-by-wedge algorithm above with the wedge-by-division
algorithm results in the following wedge-by-wedge algorithm:

d ∧b e = (d/b)e = (d ∧bb b)e. (5.4.2)

112 CHAPTER 5. DIVISION STRATEGIES

The middle input to the wedge on the right is bb, not b. This wedge-by-
wedge algorithm might be useful if computing a wedge with middle input bb
is easier than computing a wedge with middle input b. This wedge-by-wedge
algorithm might work even if b is not sidle-invertibility.

Diversion 5.4.2. Perhaps a binary wedge operator ∧bb is infeasible, even though ∧b is
feasible. We still might want to divide by b (in attacking key agreement, an attacker who
divides might learn Alice’s long-term secret a, not just the session key f). An alternative
strategy is to divide using the formula

d/b = (d ∧b

√
b) ∧b

√
b.

This formula requires a method to compute an element
√

b such that b =
√

b
√

b. It
probably also requires some invertibility condition for

√
b, such as sidle-invertibility.

More obviously, division can sometimes be achieved by d/b = d∧b1, which
works if b has a right unital inverse, meaning a q such that bq = 1. To see
this, compute ((ab)/b) = ((ab) ∧b 1)b = ((ab) ∧b bq) = abq = a1 = a, which
shows that / is a (cancelling) post-divider, and therefore a divider (multiply
both sides by b on the right).

5.4.1 Generalized den Boer reductions

Suppose that S is a commutative semigroup, that ∧b is given as an oracle,
that we want to divide d/b where d = ab with a = gx for a known g and
unknown positive integer x, and g has the property g = gn+1 for a positive
integer n. Suppose that n is a product of small number n = n1 . . . nt, such
that we know each ni.

Here is a method to compute d/b in this situation. The idea generalizes
a method due to den Boer for solving discrete logarithms using a Diffie–
Hellman oracle.

The plan is to compute xi = x mod ni for each i, then solve for x using
the Chinese remainder theorem. Then output a = gx.

Diversion 5.4.3. Finding x via the the xi is essentially the Pohlig–Hellman algorithm for
solving discrete logarithms. The wrinkle in the den Boer algorithm is that we do not deal
directly with gx but rather representations in another semigroup.

To compute xi, we need to compute gx(n/ni)b, and compare it to gy(n/ni)

for y ∈ {0, . . . , ni − 1}. The matching y is xi.
The procedure to compute gx(n/ni)b is most easily explained with a little

extra notation. Write [a] for ab. Let [S] be the semigroup {[a] : a ∈ S}

5.5. DIVISION BY LOGARITHM 113

with multiplication law [a][c] = [a] ∧b [c]. (More formally, we should write
[(Sb)∧b] to more clearly indicate the inner semigroup has the binary wedge
∧b as its output, and the enclosed semigroup translates this to multiplicative
notation.)

Expanding the definition, [a][c] = [a] ∧b [c] = ab ∧b cb = ab ∧b bc = abc =
acb = [ac], by commutativity of S. Therefore, the map [·] : S → [S] is a
semigroup morphism.

Since [·] is a semigroup morphism, we have gx(n/ni)b = [gx(n/ni)] = [gx]n/ni .
But we also know the base [gx] = gxb = ab = d, and the exponent n/ni, so
we can compute the power [gx]n/ni using the square-and-multiply algorithm
in [S] (again, where multiplication of S is the wedge operation ∧b of S).

Diversion 5.4.4. Actually, this algorithm requires merely that b commute with g. In
particular, it actually does not require that the whole semigroup S is commutative. But
the subsemigroup generated by b and g needs to be commutative.

Diversion 5.4.5. An improvement on the den Boer algorithm, due to Maurer–Wolf, uses
some extra algebraic structure on the semigroup S, such that to the set [S] can be equipped
with an extra operation +, making it a ring.

With this ring structure on on [S], the Maurer–Wolf idea is to form a random elliptic
curve over [S], and then try Pohlig–Hellman.

The den Boer method does not work if any of the ni are too large. The Maurer–Wolf
method might work in these cases, because heuristic conjectures suggest that a random
elliptic curve would have an effectively random size near to n, and with an non-negligible
probability of the curve size being a product of small numbers, enabling Pohlig–Hellman.

The extra algebraic structure is available in the Diffie–Hellman setting. The operation
+ on [S] in that case is multiplication mod p in the Diffie–Hellman mod p. More generally,
as in in elliptic curve Diffie–Hellman, the operation + on [S] is the multiplication on the
group G whose exponentiation operation is used to define multiplication of S.

5.5 Division by logarithm

A discrete logarithm (§B.3.6 for details) of d to the base b, is a positive
integer such that de = b. If e ≥ 2, then

d/b = be−1 (5.5.1)

provides a division algorithm, which we call division by logarithm. More
precisely, division by logarithm means computing d/b by first computing a
discrete logarithm e of d to the base b, if such a discrete logarithm exists,
and then computing be−1.

114 CHAPTER 5. DIVISION STRATEGIES

Diversion 5.5.1. The exceptional case of e = 1, which means computing b/b, can be
considered division by logarithm in some cases. If 1 ∈ S, then we can set b/b = 1, which
can be considered division by logarithm by the convention that d/b = be−1 = b0 = 1.
(Often 1 is given, and easy to find, but there might exist semigroups in which 1 is not easy
to find, in which division by logarithm needs some extra work.)

But a more precise meaning of b0 is defined in §B.7.4: with b0 = bb−1 for the unique
b−1 is a co-mutual inverse. In this case, the subsemigroup 〈b, b−1〉 is a group, and b0 is its
multiplicative identity, even if it is not the multiplicative for the whole of S. Finding b0,
like finding 1, might take extra work, beyond what should be division by logarithm.

The main cost of division by logarithm is usually finding a discrete log-
arithm e. The powering computation be−1 is usually less costly, being done
with square-and-multiply, with at most 2 log(e) multiplications in S.

If there is known to be a discrete logarithm e ≤ E for some known integer
E, then e can be found in a small multiple of 2

√
E multiplications in S. Such

algorithm are well-known in cryptography: Shanks’ baby-step-giant-step and
Pollard ρ.

Diversion 5.5.2. A simple generalization is division by subtracting logarithms: if
d = ge and b = gf for positive integers e and f with e ≥ f , then let d/b = ge−f .

Diversion 5.5.3. Division by subtracting logarithms can sometimes be extended to handle
the case that e < f . If gn = 1 for some n, then let d/b = g(e−f) mod n.

5.6 Division by isomorphism

If two semigroups S and T are isomorphic, then division by isomorphism
in S means to map the inputs in S to their images in T , then divide the
images in T and then map the output in T back to S.

The cost of division by isomorphism is one division in T plus three iso-
morphism evaluations.

If the isomorphisms between S and T are efficient, then division S and T
is essentially equivalent.

5.6.1 Division by monomorphism

A slight generalization of division by isomorphism is division by monomor-
phism. Recall that a monomorphism is an injective morphism from a given
semigroup S into another T , and that isomorphisms are precisely the surjec-
tive monomorphisms.

5.6. DIVISION BY ISOMORPHISM 115

Lemma 5.6.1. If

• function f : S → T is a semigroup morphism,

• function g : T → S is a function such that g(f(s)) = s for all s ∈ S,

• operator ÷ is a divider in T , and

• image f(S) is closed under the ÷ operator in T ,

then the operator / in S defined as

d/b = g (f(d) ÷ f(b)) (5.6.1)

is a divider in S.

Proof. For any a, b ∈ S, we have f(ab), f(b) ∈ f(S), so f(ab) ÷ f(b) ∈ f(S),
since f(S) is closed under ÷ by hypothesis. So, there exists e ∈ S with
f(ab) ÷ f(b) = f(e). Calculate,

((ab)/b)b = g (f(ab) ÷ f(b)) b

= g(f(e))b

= eb

= g(f(eb))

= g (f(e)f(b))

= g ((f(ab) ÷ f(b))f(b))

= g (((f(a)f(b)) ÷ f(b))f(b))

= g (f(a)f(b))

= g (f(ab))

= ab,

so ((ab)/b)b = ab, for all a, b ∈ S.

For / in (5.6.1) to be an algorithm for division in S, algorithms for the
functions f and g are needed, as well an algorithm for the divider ÷ in T .

Diversion 5.6.1. A given divider ÷ in T might not have the property that f(S) is closed in
÷. In other words, not every division algorithm for T can used to divide by monomorphism.

Interestingly, such a closure property was not required for reduction of wedges via a
morphism (in §4.6).

116 CHAPTER 5. DIVISION STRATEGIES

Diversion 5.6.2. Division by monomorphism can be considered as division by isomor-
phism because semigroup S and f(S) are actually isomorphic. The morphisms f and g
above are isomorphisms between them (when the range of f is restricted to f(S) and, more
importantly, the domain of g is restricted to f(S)). With this view, the main difference is
that f(S) lives inside a larger semigroup T , which may naturally occur commonly to spell
out the full setting.

Diversion 5.6.3. It is sometimes possible to define partial division by partial mor-

phism, by weakening the condition of f so that it is only a partial morphism: multiplica-
tive only for the inputs of interest.

Diversion 5.6.4. Division by subtracting logarithm can be considered as a case of partial
division by partial morphism, the partial morphism being the discrete logarithm function.

5.6.2 Difficult isomorphisms

Evaluating a morphism f : S → T is not always easy, even if f is known to
exist and is easy to define (by an implicit equation, for example). In this case
f can be said to be difficult morphism. Similarly, if f is easy, but its inverse
g is difficult, then we call also call f a difficult isomorphism. In either
case, division by isomorphism is difficult, given only a difficult isomorphism.

A important example is Diffie–Hellman key agreement. Consider the
semigroup S from the proof of Lemma 2.18.1, which has an example mul-
tiplication in Table 2.2 with p = 5. There exists an isomorphism from this
semigroup to another semigroup where all division is efficient. The isomor-
phism requires evaluating a discrete logarithm modulo p. For large p, it is a
difficult isomorphism. More detail is given below.

Let g be a primitive element modulo p, which recall, means that for
all y 6≡ 0 mod p, there exists a unique integer x with 0 ≤ x < p − 1 and
gx ≡ y mod p. In other words, g generates the multiplicative subsemigroup
of nonzero integers modulo p, and x is the discrete logarithm of y. Write
x = logg(y), when clear the context.

Next, we define a semigroup T with same underlying set {[0], . . . , [p −
2], [p − 1], . . . , [2p − 3]} and multiplication:

[a][b] =

[ab mod (p − 1)] if a < p − 1, b < p − 1,

[(ab mod (p − 1)) + p − 1] if a > p − 1, b < p − 1,

[(ab mod (p − 1)) + p − 1] if a < p − 1, b > p − 1,

[p − 1] if a > p − 1, b > p − 1.

(5.6.2)

5.6. DIVISION BY ISOMORPHISM 117

In other words, the only non-trivial part of multiplication is multiplication
modulo p−1. Division is easy in T . For example, use the extended Euclidean
algorithm to find q such bq ≡ 1 mod p − 1. Then compute [d]/[b] = [(dq mod
(p − 1)) + e] where e ∈ {0, p − 1}, choosing whichever value of e such that
([d]/[b])[b] = [d], if there is any (and there will be if [d] = [a][b]).

We next define an isomorphism f : S → T , as follows:

f([y]) =

[y mod (p − 1)] if y < p,

[logg(y) + p − 1] if y > p.
(5.6.3)

To be verified.

Diversion 5.6.5. If division by morphism minus the cost of evaluating the (partial) mor-
phism f is efficient, then we can say that division is metamorphically easy.

Otherwise, we can say that division is amorphously difficult. Key agreement using
a semigroup with amorphously difficult division could be called amorphously seclusive.
Or, perhaps more clearly, it could be called structurally seclusive, on the grounds that
the mathematical term structure is often used to mean something preserved across the
isomorphism class.

5.6.3 Isomorphism for factorialized addition

This section considers a nonstandard semigroup operation on positive inte-
gers, factorialized addition (discussed further in §C.19.3.2). Factorialized
addition +! is defined using prime factorizations via

∏

i≥1

pai

i

+!

∏

j≥1

p
bj

j

 =
∏

i,j≥1

p
aibj

i+j , (5.6.4)

where the positive prime integers are p1, p2, . . . ,. (So, p5 = 13, for example.)
Because multiplication requires factorization of the inputs, multiplication

is generally slow for large inputs, unless the inputs are represented in a
factorized form. For the rest of this section, we switch to multiplicative
notation, by writing write [a][b] = [a +! b].

We define a morphism f : S → T , where T is multiplicative semigroup of
the ring Z[x] of integer (univariate) polynomials, defined as

f :

∏

i≥1

pai

i

 7→
∑

i

aix
i. (5.6.5)

118 CHAPTER 5. DIVISION STRATEGIES

For example, f([20]) = f([p2
1p3]) = 2x + x3. Evaluating f has a cost very

similar to a single multiplication in S.
Division in T = Z[x] is achieved by a standard and efficient algorithm:

polynomial division (see §?? for a review).
The image f(S) is the subsemigroup of T consisting of polynomials with

with no constant term and all other coefficients non-negative.
The function g needed for division by morphism can be computed by

determining primes of indices of the given indices corresponding to the degree
of polynomial terms, raising to them powers of the coefficients. Algorithms to
find a prime given its index are at least as efficient as factorization algorithms.

Consequently, the cost of division in S is almost the same as multiplication
in S, being dominated by the cost of two factorizations of integers.

Diversion 5.6.6. The example semigroup aims to illustrate the arguably obvious fact
that obscure complications to semigroup multiplication do not necessarily imply insur-
mountable obstacles for division.

In other words, it is not easy to devise difficult division. Of course, this is just another
special instance of the cryptology maxim that obscurity does not ensure security.

5.6.4 Numerical isomorphism?

Work in progress, to be verified.
Suppose that S is a multiplicative semigroup. Suppose that S is practical,

as described in §B.2. Suppose that T = P+, the additive semigroup positive
integers, under standard addition. Suppose that f : S → T is an injective
morphism, as in Lemma 5.6.1. Suppose that the complement f(S) in T is a
finite set.

Diversion 5.6.7. Subsemigroups of the non-negative integers under addition are often
called numerical semigroups (usually if their complement is finite).

The theory of numerical semigroups is non-trivial (surprisingly), and has applications
(due to Kakeya) to the theory of the symmetric functions.

Since {0} ∪ f(S) is a numerical semigroup (the f and S defined), we call such a
morphism f a numerical morphism.

Next, we suppose a technical condition related to the usage of the semi-
group in key agreement. We suppose that the complement of f(S) is sig-
nificantly smaller than than the sets of a and c values used by Alice and
Charlie.

Finally, suppose that the procedure defining the inputs of the division
problem has the following non-growth property. The seed values a and b,

5.6. DIVISION BY ISOMORPHISM 119

used to generate the instance [d, b] = [ab, b], each have a probability distri-
bution with the following property. Draw a random sample r drawn from
the probability distribution, and let p(n) be the probability that f(r) = n.
We require that the p(n) is a non-increasing function of n. In other words,
larger values of f(r) are rarer than smaller values of f(r).

We now outline an idea for an algorithm to implement a morphism f :
S → T with the property above, and also to compute its inverse function
g : T → S, as needed for division by morphism.

First there is a pre-computation phase, that is done before the input to
f is given.

Select a sparse matrix m with entries small non-negative integers mi,j ,
mostly filled with zeros, but with no column being all zeros.

Then sample many values r1, . . . , rn from S, using the probability for the
value a and b. The value zi = f(ri) is now an unknown value, which we will
try to determine using linear algebra over the integers.

For matrix column j, compute the value:

cj = r
m1,j

1 r
m2,j

2 . . . rmn,j

n .

Each factor of the form r0
i is omitted from the product. Since no column is

all zeros, each product on the right is non-empty, and therefore defined.
Scan for collisions in these value between columns. Suppose that cj = ck

is collision. Form, an integer equation for the unknown f(ri).

0 = (m1,j − m1,k)f(r1) + · · · + (mn,j − mn,k)f(rn).

These equations are sparse.
Repeat until enough collisions to give a solvable system of linear equation

for the n unknowns z1 = f(r1), . . . , zn = f(rn). This equations are homoge-
neous, so we can only solve up to a scalar factor. Because of the non-growth
property of sampling, we take lowest scaling (or a small multiple thereof), as
the most probable solution.

We expect that the solved values f(ru) to be the smaller values, since
smaller integers are more likely to satisfy small-coefficient linear equations.

Next, instead of computing d/b = g(f(d) − f(b)) using Lemma 5.6.1, we
outline a more direct division algorithm, based on Shanks’ baby-step giant-
step algorithm.

The direct division will be more general than Lemma 5.6.1 in the sense
that it does not require computation of f(b), and does not require b to drawn

120 CHAPTER 5. DIVISION STRATEGIES

by the sampling procedure as a and the values ri. Nonetheless, it is essentially
the same idea as Lemma 5.6.1.

Each step of the algorithm requires computing a value g(t), for some
positive integer t, as described below. First, try to solve

t = x1f(r1) + · · · + xnf(rn)

with xi positive integers. This is an equation in integers (and is a variant of
the subset sum problem?). Given the xi, then let

g(t) = rx1
1 . . . rxn

n .

In order for this method of computing g to be effective for small values of t,
we need the known values of f(ri) to be sufficiently small.

Next compute two lists:

D = {dg(u)}, B = {bg(t)}

where the integers t are selected randomly, from some appropriate range.
Then try to find an intersection of these two lists, so that dg(u) = bg(t).

Then answer d/b = g(u − t).
We would need g(u − t) = a, so we should choose u in the range of sums

of two random samples, such as f(r1) + f(r2).
A critical question is how costly is this type of algorithm? In particular,

is it any faster than trial multiplication?

5.7 Division by re-scaling

The section describes various division-by-rescaling methods, which meaning
transforming the inputs, then dividing. Either the re-scaled inputs allow for
easier division, or else it is form a self-reduction, showing that the difficulty
of division does not vary (much) over the choice of inputs, at least for the
semigroups in which division-by-rescaling works.

Several versions of division by re-scaling share the common features,
whose notation will be the following.

The re-scaled divider will be written as /.
In most case, the re-scaled divider makes use of an existing divider, which

will be written ÷. The point of ÷ is that its computation might be easy
for specially crafted inputs, or more theoretically, ÷ is used a hypothetical

5.7. DIVISION BY RE-SCALING 121

solution to the show the division problem can be self-reductive, with its
difficulty not varying much over the inputs.

Let r ∈ S be some element, that we call the re-scaler. In some case the
re-scaler r can be chosen at random. In other cases, a special re-scaler r is
selected, and division by re-scaling includes the cost of finding the special
re-scaler.

5.7.1 Re-scaling by parallel right multiplication

Lemma 5.7.1. If (sr)÷r = s for all s (in other words, r is right-cancellative),
then operator / defined by

d/b = (dr) ÷ (br) (5.7.1)

is a divider.

Proof. Compute:

((ab)/b)b = (((abr) ÷ (br))b

= (((abr) ÷ (br))br) ÷ r

= (((a(br) ÷ (br))(br)) ÷ r

= (a(br)) ÷ r

= ((ab)r) ÷ r

= ab,

so ((ab)/b)b = ab for all a, b.

Diversion 5.7.1. The divider / from (5.7.1) can sometimes work even if r is not fully
right-cancellative.

For example, in the proof, right cancellation by r is used in two steps.

5.7.2 Re-scaling by inside-out multiplication

Lemma 5.7.2. If (s ÷ r)r = s for all s, (in other words, r divides s, on the
right, written r|s, for all s ∈ S), then operator / defined by

d/b = (d ÷ (rb))r (5.7.2)

is a divider.

122 CHAPTER 5. DIVISION STRATEGIES

Proof. Compute:

((ab)/b)b = (((ab) ÷ (rb))r)b

= ((((a ÷ r)r)b) ÷ (rb))(rb)

= ((((a ÷ r)(rb)) ÷ (rb))(rb)

= (a ÷ r)(rb)

= ((a ÷ r)r)b

= ab,

so ((ab)/b)b = ab for all a, b.

Diversion 5.7.2. The condition that r|s for all s is very restrictive on r. For example, it
implies that r has a left inverse q such that qrr = r (see Table B.2), which is q = (r÷r)÷r.

For example, it is true for r = 1, but then the lemma is vacuous, since d/b = (d ÷
(1b))1 = d ÷ b.

Diversion 5.7.3. The divider in (5.7.2) can sometimes even when r|s fails to hold for all
s ∈ S.

For example, in the proof, the only step requiring divisibility by r has s = a. When
trying to compute d/b, we are not given a, so it may be difficult to find a specific r that
divides a.

A variation of the divider in (5.7.2) takes input d and somehow tries to find r such
that r|a given that d = ab.

5.7.3 Re-scaling by multiplying ratios

Lemma 5.7.3. If (r ÷ s)s = r and (t ÷ r)r = t and for all s, t ∈ S (in other
words s|r|t for all s, t), then operator / defined by

d/b = (d ÷ r)(r ÷ b) (5.7.3)

is a divider.

Proof. Compute:

((ab)/b)b = ((ab) ÷ r)(r ÷ b)b

= ((ab) ÷ r)r

= (ab),

so ((ab)/b)b = ab for all a, b.

5.8. DIVISION BY CROSS-MULTIPLICATION 123

Diversion 5.7.4. The divider / from (5.7.3) uses the divider ÷ twice, and is only useful
when it can be arranged somehow that on cost of one of these is at most half of the cost
that one is aiming for.

Diversion 5.7.5. The condition that s|r|t for all s, t that s|t for all s, t ∈ S.

Diversion 5.7.6. If 1 ∈ S, then putting r = 1 in the divider of (5.7.3) is essentially
division by inversion, it becomes d/b = (d ÷ 1)(1 ÷ b).

Diversion 5.7.7. Putting r = eb in (5.7.3) gives d/b = (d ÷ (eb)((eb) ÷ b), which is very
much like (d ÷ (eb))(e), which is very much like divider (5.7.2).

Diversion 5.7.8. The proof above also works, for given d and b, if b|r|d.

Given b and d, finding such an r with that property would allow this division to work.

Diversion 5.7.9. In the semigroup of §2.18 derived from Diffie–Hellman key agreement,
we can choose an r that depends on d, such that computing d ÷ r in (5.7.3) is easy. Let
1 < h < p, and let r = d[h]. Then, d ÷ r = [h−1 mod (p − 1)].

Choosing h uniformly at random in the given range, makes r range uniformly over
the set of Diffie–Hellman public keys. In other words, computing a discrete logarithm (to
fixed a base) is essentially equally difficult over all inputs.

5.8 Division by cross-multiplication

This section describes division by cross-multiplication.

Diversion 5.8.1. They can be many kinds of cross-multiplication, and only some will
lead to division by cross-multiplication.

In other words, although division by cross-multiplication involves cross-multiplication,
something more essential underlies division by cross-multiplication. Nonetheless, the name
division by cross-multiplication describes what is happening at least at superficially high-
level.

5.8.1 Cross-multipliers

A cross-multiplier is a binary operator written ∗/ such that

(a ∗/ b)b = (b ∗/ a)a, (5.8.1)

for all a, b ∈ S such that there exists x, y ∈ S with xb = ya. See §B.8.13.3
for more detail.

124 CHAPTER 5. DIVISION STRATEGIES

5.8.2 Division by cross-multiplication

A right divider / is division by cross-multiplication if:

d/b = (b ∗/ d)\(d ∗/ b). (5.8.2)

for some left divider \ and some cross-multiplier ∗/.
To be clear, equation (5.8.2) can fail to define a right divider, for some

choices of \ and ∗/.

Diversion 5.8.2. In some semigroups, some of the fastest dividers use an equation (5.8.2),
at least at a high-level. An example is Shanks’ Baby-Step-Giant-Step algorithm.

An example of division by cross-multiplication is the following.

Lemma 5.8.1. If ∗/ is a cross-multiplier, and \ is a left post-divider and
there exists a right post-divider, then the operator / defined by (5.8.2) is is
a post-divider.

Proof. To prove that / is a post-divider means to prove that (ab)/b = a for
all a, b, which is to say that d/b = a if d = ab. A post-divider exists, so let
÷ be any post-divider. Calculating,

d/b = (b ∗/ d)\(d ∗/ b)

= (b ∗/ d)\(((d ∗/ b)b) ÷ b)

= (b ∗/ d)\(((b ∗/ d)d) ÷ b)

= (b ∗/ d)\(((b ∗/ d)(ab)) ÷ b)

= (b ∗/ d)\((((b ∗/ d)a)b) ÷ b)

= (b ∗/ d)\((b ∗/ d)a)

= a,

proving that / is a post-divider.

5.8.3 Cross-multiplication by trivial operations

Some cross-multipliers are not too helpful for division, even though can be
described easily.

• In a commutative semigroup, a ∗/ b = a defines a cross-multiplier.

• In a semigroup with a zero, then a ∗/ b = 0 defines a cross-multiplier.

5.8. DIVISION BY CROSS-MULTIPLICATION 125

• In a group, then a∗/b = b−1, defines a cross-multiplier. (More generally,
in a semigroup with a left post-divider, then defining a ∗/ b = q for any
middle inverse q of b defines a cross-multiplier).

Cross-multiplication can also be obtained by applying co-multiplication
and division, see §B.8.13.3.

A recursive strategy for cross-multiplication is to let:

a ∗/ b =

a if ab = ba,

((ba) ∗/ (ab))a if ab 6= ba.

This strategy succeeds if it terminates (by reaching the first case after many
iterations), but fails if it enters an infinite loop (repeating the second case
forever).

5.8.4 Cross-multiplication by collision

A randomized strategy for cross-multipliers is to find matching entries (col-
lisions) in two arrays [r1a, r2a, . . . , rma] and [s1b, . . . , snb], so that ria = sjb,
and then set a ∗/ b = ri and b ∗/ a = sj.

5.8.5 Arranging easier left division

Division by cross-multiplication uses division itself, specifically it uses a left
division to implement a right division. This seems to limit to its general
usefulness, but there are two useful case, despite this limitation.

Firstly, in a reductionist argument, division by cross-multiplication can
show that right division is not much harder than left division, only needing
some cross-multiplications extra. For example, in commutative semigroups,
the left-operand function cross-multiplier define a ∗/ b = a can be used to
show that left and right division are equally difficult (as one would expect).

Secondly, with a careful choice of cross-multiplier, it can be arranged
that inputs to the left division operation fall into an easy case for evaluation.
In other words, division by cross-multiplication is useful for division if the
cross-multiplier produces easy-to-divide elements.

For example, in §2.18, the semigroup of associated with Diffie–Hellman
key agreement, has elements, [x] with x < p, in which division is easy. The
cross-multiplication by collision method can be used to find such an easy-
to-divide cross-multiplier. This resulting division algorithm is essentially a

126 CHAPTER 5. DIVISION STRATEGIES

form of Shanks’ Baby-Step-Giant-Step algorithm for computing the discrete
logarithm.

5.9 Division in subsemigroups

Recall that a subsemigroup S is a semigroup T is a subset S of T closed
under the multiplication of T , which makes S into its own semigroup, with
multiplication defined the same as T (except it is less general).

Diversion 5.9.1. Division in subsemigroups can be considered as a special case of division
by isomorphism. It seems an important enough case to treat separately.

Subsemigroup S might not be closed under a given divider / in T . For
example, even if a, b ∈ S, it might be that (ab)/b 6∈ S. In other words, a
divider in T is not sufficient to construct a divider in S.

Nonetheless, the fact that S is not closed under / is not an obstacle for
computing a wedge by division in S. See §4.6.

A subsemigroup S ≤ T can potentially have much faster division than in
T . In other words, even if T is secure for key agreement, a subsemigroup S
might not be secure.

Diversion 5.9.2. Even if S is closed under the division operator / in T and the operator
/ is fast on average, in the sense of probabilistic division, applying / might be slow on
average. For example, if S has size (or probability measure) negligible in comparison to
T , then the cost / in S might contributed only negligibly to the cost of / in T .

5.10 Division by Rees matrix index search

A strategy for division in the Rees matrix semigroup (see §4.7 and §C.8.6)
Reem(S) is to compute, is try computing

[i, d, l]/[k, b, l] = [i, (d/(m(j, k)b), j] (5.10.1)

for multiple trials of j, until (d/(m(j, k)b))m(j, k)b = d. In other words,
we seek j such that (m(j, k)b)|d. The cost of this division in Reem(S) is at
most |J | division plus 2|J | multiplications in S (where J is the set of possible
values for J , one of the index-sets for the matrix m).

Diversion 5.10.1. For comparison, computing a wedge in Reem(S) by the method §4.7
did not use a search over J . So, computing a wedge is |J | times faster than division.

5.11. DIVISION IN PRODUCT SEMIGROUPS 127

5.11 Division in product semigroups

To be completed.

There are several ways to combine two (or more) semigroups into a yet
another semigroup.

This section looks at how to divide in these various combinations.

Diversion 5.11.1. If one can show that the various product constructions do not increase
the difficulty of division (or the wedge problem), then one can confine one’s consideration
to semigroup not composed by some constructions (indecomposable relative to such con-
structions).

5.11.1 Division by coordinate division in Cartesian prod-
ucts

The Cartesian product of semigroups S and T is the set of pairs S × T ,
with multiplication defined [s, t][u, v] = [su, tv]. In the Cartesian product,
division by coordinate division means a divider / such that:

[d, e]/[b, c] = [d/b, e/c], (5.11.1)

where the dividers on the right are in S and T . In other words, divide in
each coordinate.

Diversion 5.11.2. More generally, the cartesian product can be defined for any family of
semigroups {Si}i∈J , as the functions f : J → ⋃

i∈J Si, with the property that f(i) ∈ Si.

Coordinate division is defined similarly,

Diversion 5.11.3. The cost of the division by coordinate division in S × T is typically
the sum of the costs of division in S and T .

Diversion 5.11.4. When considering probabilistic division, the success rate of division
by coordinate division in S × T is typically product of the success rates in division in each
of S and T .

More precisely, this assumes that the input distribution of the coordinates in S × T
are independent. For correlated inputs, the success rate is not necessarily the product.

Diversion 5.11.5. Sometimes, there can be dividers in S × T that are not division by
coordinate division.

For example, if S has (at least) two distinct dividers, say / and ÷, and T has more
than two elements, then a divider in S × T can be defined to use / or ÷ on its first
coordinate, depending on the values of the second coordinate.

128 CHAPTER 5. DIVISION STRATEGIES

5.11.2 Division by deletion in free (co)products

The free product (or co-product) of semigroups S and T is set of non-
empty arrays with entries in the disjoint union S ⊎T modulo the congruence
generated the condition that a pair adjacent entries in the same component
semigroup (S or T) can be replaced by a single entry consisting of the prod-
uct.

Diversion 5.11.6. In the category of monoids, a different free product arises, which is
the semigroup free product modulo the further congruence that allows any entry of value
of 1, in either S or T to be dropped.

The following division by deletion will not generally work in this free monoid product.
(Is the free monoid product related to a fiber product?)

In the free product U of semigroups S and T , each element can be put in
a canonical form where the array entries alternate between S and T .

A divider / in the free product is division by deletion if d/b is computed
as follows. Put d and b standard form, with entries alternating in S and
T , and suppose that these alternating arrays are b = [b1, . . . , bn] and d =
[d1, . . . , dm+n], with n ≥ 1 and m ≥ 0.

If m ≥ 1 and dm+1 = b1, then let d/b = [d1, . . . , dm]. If m = 0 or
dm+1 6= b1, then let d/b = [d1, . . . , dm, dm+1/b1] (with d1, . . . , d0 indicating no
array entries).

5.11.3 Division by axial inversion in tensor products?

To be completed.

A tensor product of semigroups S and T can be defined. (See §C.9.1.5
for more discussion of the tensor product of semigroups.)

5.11.4 Division in semidirect products – ???

To be completed.

5.11.5 Division in fiber products – ???

To be completed.

5.11. DIVISION IN PRODUCT SEMIGROUPS 129

5.11.6 Division in (co)equalizer semigroups – ???

To be completed.

5.11.7 Wreath product division?

Diversion 5.11.7. Wreath products arise in the Krohn–Rhodes structure theorem of
semigroups. Consequently, division in wreath products might be especially important.

To be verified?
Given two multiplicative semigroups S, T , the left wreath product is

S ≀ T is a semigroup with underlying set T × ST , (where, as usual, ST is the
set of functions T → S), and multiplication rule:

[A, α][B, β] = [AB, (α ◦ λB)β] (5.11.2)

where:

• λB : T → T : t 7→ Bt is left multiplication by B;

• ◦ means function composition, so that α ◦ λB ∈ ST , with α ◦ λB : t 7→
α(Bt);

• ST is considered a semigroup with multiplication φθ : t 7→ φ(t)θ(t),
using multiplication in S.

Diversion 5.11.8. The right wreath product is defined similarly, except the underlying
set is ST × T and right multiplication ρA : t 7→ tA is used instead of left multiplication,
so [α, A][β, B] = [α(β ◦ ρA), AB].

Diversion 5.11.9. We assume that some practical means is available to represent func-
tions in the set ST . If T is infinite, then this is probably infeasible, unless we restrict
to some subsemigroup of the full wreath product, having only those functions which are
practically representable, and so on.

A potential right division algorithm in the left wreath product is defined as:

[D, δ]/[B, β] =
[

D/B, (δ/β) ◦ λ̂B

]

(5.11.3)

where:

• D/B means applying a division algorithm in T ;

130 CHAPTER 5. DIVISION STRATEGIES

• δ/β means applying a division in semigroup ST , by extending to divi-
sion algorithm S (to each value of the function);

• λ̂B : T → T : t 7→ B\t represents left division.

It can be verified that this division algorithm is successful as a mid-divider,
provided that the left division by B, the function λ̂B, is successful as an
pre-divider.

Diversion 5.11.10. A similar right division algorithm in the right wreath product can
probably be built using only right division in the base semigroups: as [δ, D]/[β, B] =
[(δ/β) ◦ ρ̂B, D/B].

To be completed.
What about the wedge in the wreath?

5.12 Division by binary search

Suppose that S is a countable, totally ordered semigroup. Fix an enumeration
s : P → S of S. Division by binary search is the following algorithm to
compute d/b.

1. Let n = 1.

2. Repeat the following:

(a) Let in be the smallest integer such that, for all m < n, it is true
that s(im)b < s(in)b if and only if s(im)b < d.

• If no such in exists, stop and output an arbitrary value (likely
incorrect).

(b) If s(in)b = d, then output d/b = s(in) and stop.

(c) Else increase n by 1, and continue.

Division by binary search provides division because d = ab, then a = s(j)
for some j.

To be completed.

Diversion 5.12.1. The enumeration s : P → S can be arbitrary, and need not have any
connection with semigroup operation or the ordering. However, it should be efficient if
the binary search algorithm is to be efficient.

5.13. DIVISION BY COMPLEMENT-TRANSPOSE 131

Diversion 5.12.2. Binary search is a well-known general algorithm, with many more
applications (not just division).

Diversion 5.12.3. When choosing in, one need not keep the history of all previous im,
only the maximum below d and the minimum above d (whichever of these exist.)

Diversion 5.12.4. Division by binary search is like a type of trial multiplication, except
the trial values a′ = s(in) can depend on inputs to division d and b. (Strictly speaking,
trial multiplication as we have defined it, the trial values cannot depend at all on d or b.)

5.13 Division by complement-transpose (of re-

lations)

The semigroup Rel(X) of relations on a set X, under composition, is well-
known. For a review of detail, and some notations, see §C.5.6 and §C.15.2.

Two unary operations on Rel(X) are complement (written d 7→ dc) and
transpose (written b 7→ bt).

Definition 5.13.1. The complement-transpose divider / in Rel(X) is
defined as

d/b = (dcbt)c. (5.13.1)

Lemma 5.13.1. The complement-transpose divider in Rel(X) is a (right)
divider.

Proof. The task is to show that ((ab)/b)b = ab for all a, b (from Defini-
tion B.8.1 of a mid-divider). For the complement-transpose divider, the task
is then to show

((ab)cbt)cb = ab. (5.13.2)

Some notation and terms: for points x, y ∈ X and relation a ∈ Rel(X),
write xay to mean that (x, y) ∈ a, and call xay a relationship. Also, say
xay is false if (x, y) 6∈ a.

We aim to prove (5.13.2) by showing xaby implies x((ab)cbt)cby, and con-
versely. So, the two directions of the implication are described separately, in
each of the next two paragraphs.

Suppose xaby. By definition of ab in Rel(X), this means there exists
z ∈ X, such that with xaz and zby. Fix this z (for rest of this paragraph).
For all w, either zbw or not. If zbw is false, then wbtz is false (by definition
of the transpose relation bt). If zbw is true, then, since we already have xaz,

132 CHAPTER 5. DIVISION STRATEGIES

together with zbw, we get xabw, and therefore x(ab)cw is false (by definition
of complement). So, for each w, at least one of x(ab)cw or wbtz is false.
Equivalently, no w has both x(ab)cw and wbtz. Therefore, x(ab)cbtz is false.
Consequently, x((ab)cbt)c)z is true. Since zby already, we have x((ab)cbt)c)cby,
as desired.

Suppose x((ab)cbt)c)by. Then there exists z with x((ab)cbt)cz and zby.
The relationship x(ab)cbt)cz means that for all w, at least of one x(ab)cw and
wbtz is false. In particular, this applies if w = y: at least one of x(ab)cy of
ybtz is false. But zby means ybtz, which is not false, so x(ab)cy must be false.
If x(ab)cy is false, then xaby, as desired.

Diversion 5.13.1. The proof above resorted to first principles, dealing with elements of
X and so on.

A better proof might exist: one that works at the level of operating on relations using
some more fundamental axioms between the various operations.

Diversion 5.13.2. In alternative notation for complement and transpose, the complement-
transpose divider formula is d/b = (d−b′)−.

Diversion 5.13.3. The cost of the complement-transpose divider is superficially easy to
assess in terms of the underlying operations. However, the cost of the three operations in
the semigroup Rel(X) might be difficult to assess.

If X is a large enough set, implementing semigroup multiplication for arbitrary re-
lations might be infeasible. Even so, there may potentially be special subsemigroups
of Rel(X) in which multiplication is, for some reason, efficiently implementable. These
subsemigroups might not be closed under the complement or transpose operations. Nev-
ertheless, the formula for the complement-transpose divider is at least worrisome.

To be completed.

Diversion 5.13.4. The complement-transpose divider is neither a post-divider nor a pre-
divider.

Diversion 5.13.5. An existing theory of residuated lattices might include the complement-
transpose divider.

Diversion 5.13.6. Left division in Rel(X) can be obtained from right division using
transposition: b\d = (dt/bt)t. Starting with complement-transpose right division, this
process obtain complement-transpose left division b\d = (btdc)c, because b\d = (dt/bt)t =
(dtcbtt)ct = (dctb)tc = (dcttbt)c = (dcbt)c.

Diversion 5.13.7. The following terse snippet of J programming language code demon-
strates, how associative key agreement using the semigroup of relation, and how complement-
transpose division works.

5.14. DIVISION BY DESCENT 133

mul=:+./ .*.

div=:(-.@mul~-.)~|:

rnd=:0=(?@$~2&#)"0

d=:a mul b[e=:b mul c['a b c'=:4 rnd 3#7

4 2$(f-:g);b;a;c;d;e;(f=:a mul e);(g=:d mul c)

(f-:(d div b) mul e),d-:(d div b) mul b

This code represents relations using boolean matrices.

5.14 Division by descent

Algorithms for integer division and polynomial division are well known.

Diversion 5.14.1. Integer division strategies date to ancient times. Polynomial division
is also well-known and standard.

For a thorough treatment of classical division polynomial, see Knuth [Knu98, §4.3.1,
Algorithm D] for integer division and [Knu98, §4.6.1], for polynomial division.

The division by descent strategy is one possible generalization of such
classical integer and polynomial division algorithms.

Diversion 5.14.2. Classical division algorithms also allow the computation of a remainder
when division is not exact. This means classical division problems actually solve a stricter
problem that exact division that is of interest to key agreement.

This also means that classical division algorithms are not always the fastest division
algorithms, because they are designed to a little extra work, namely finding a remainder
if there is one.

For example, a strategy to compute 424263/141421 is to notice that both inputs have
the same number of digits, and then divide the first (two) digits only, as in 4/1 = 4, or
42/14 = 4. On the premise that 424263 = a × 141421, this is likely to be correct. But
the classical algorithms, and division by descent also, could be configure to start in a such
manner, but would usually take at least one more step than beyond this of computing
4 × 141421 comparing to 424263. Ultimately, this because the first (two) digits are not
enough to determine the remainder, or even if the result is 3.99 to be rounded down to 3,
or 4.01 to be rounded down to 4.

Of course, the strategy in this paragraph might not work for general inputs, but the
point is merely to state the division as define in this report can be easier, for some inputs,
than the classical quotient-and-remainder problem.

Diversion 5.14.3. In number theory, special significance is attached to Euclidean do-
mains, where there is a well-define notion of quotient and remainder.

In computational algebra, there is also a notion of multinomial division using Gröbner
bases which is to used to find well-defined remainders.

134 CHAPTER 5. DIVISION STRATEGIES

5.14.1 Descenders

Division by descent uses addition, subtraction and a descender, which is
now defined.

First, some background on addition and multiplication. A realm R is a
set together with two binary operations, addition and multiplication. (See
§B.12 for more discussion of realms.) Write R× for the multiplicative magma
of R, and R+ for the additive magma. (If multiplication in R is associative,
then R× is a semigroup.)

Definition 5.14.1. Binary operator ∨ : R2 → R on realm R is a descender
if there exists a divider / for R× and a subtracter − for R+, such that:

d/b ∈ {d ∨ b, ((d − ((d ∨ b)b))/b) + (d ∨ b)}, (5.14.1)

for all d, b ∈ R.

As detailed in the following section, the idea for division by descent is
recursively apply the formulas above.

Diversion 5.14.4. Every divider / is descender. To see this, put d ∨ b = d/b, then the
d/b ∈ {d ∨ b, . . . } = {d/b, . . . } holds (vacuously).

Consequently, descenders always exist, since dividers always exist.

Diversion 5.14.5. Suppose that realm R is a field. Every binary operator ∨ is a descen-
der. Choose a divider / such that d/0 = d ∨ b. (If b 6= 0, then d/b = db−1 is the only
possible value for d/b.)

Diversion 5.14.6. If 0 ∈ R is both an additive identity and multiplicatively absorbing,
then the constant zero-value operator d ∨ b = 0 is a descender.

To see this, note that ((d − (d ∨ b)b)/b) + (d ∨ b) = ((d − 0b)/b) + 0 = (d − 0)/b = d/b.
(The usual rule that d − 0 = d holds for any subtracter − because d − 0 = (d + 0) − 0 =
((d + 0) − 0) + 0 = d + 0 = d.)

As will be seen the zero descender will not be usable for division by descent.

Diversion 5.14.7. In the realm of positive integers, the operator d ∨ b = d + b is not a
descender.

To see this, consider d = ab. Then d/b = (ab)/b = a < a(b + 1) = ab + b = (ab) ∨ b, so
d/b 6= d∨b. But d∨b < ((d−(d∨b)b)/b)+(d∨b), so d/b 6∈ {d∨b, ((d−((d∨b)b))/b)+(d∨b)}.

Diversion 5.14.8. In the realm of positive integers, an operator ∨ is a descender if and
only if (ab) ∨ b ≤ a for all a, b.

Suppose that ∨ is a descender. Then (ab)/b ∈ {(ab) ∨ b, · · · + ((ab) ∨ b)}, implies each
case, a = (ab)/b ≤ (ab) ∨ b, so the inequality holds.

5.14. DIVISION BY DESCENT 135

Suppose that (ab) ∨ b ≤ a for all a, b. Define a divider / be the usual rule (ab)/b = a,
for all a, b, and otherwise d/b = d ∨ b if d 6= ab for all a. If d 6= ab for all a, then
d/b = d ∨ b ∈ {d ∨ b, . . . }, as required. If d = ab, then d/b = (ab)/b = a. If d ∨ b = a,
then d/b ∈ {d ∨ b, . . . }, as required. Otherwise, the hypothesis implies (ab) ∨ b < a, which
means that ((ab)− ((ab)∨b)b) = (a− ((ab)∨b))b, so that ((a− ((ab)∨b)b)/b)+((ab)∨b) =
(a − ((ab) ∨ a)) + ((ab) ∨ b) = a = d/b, as required.

Diversion 5.14.9. For concreteness, consider the following descender for the semiring of
positive integers under multiplication. To compute d ∨ b, let e = 1. Then loop as follows:
while 10eb ≤ d, replace e by 10e. Then return the last value of e as the value of d ∨ b.

Diversion 5.14.10. Here is a worked example of how to use the previous descender to
divide positive integers. We aim to compute 217/7.

First compute 217∨7. Put e = 1. Test the loop condition, which 10×e×7 = 70 ≤ 217,
so replace e by 10e = 10. Testing the loop condition, we see that 10 × e × 7 = 700 6≤ 217,
so we stop, and get 217 ∨ 7 = 10.

Clearly, since (217 ∨ 7) × 7 = 70 6= 217, it seems that 217/7 6= 217 ∨ 7, here assuming
that 7 divides 217. That would mean 217/17 = (217 − (217 ∨ 7)7)/7 + (217 ∨ 7) =
(217 − 70)/7 + 10 = 147/7 + 10.

A similar calculation gives 147 ∨ 7 = 10, and 147/7 = 77/7 + 10. A third calculation
gives 77 ∨ 7 = 10, and 77/7 = 7/7 + 10.

Now, we get 7 ∨ 7 = 1, since starting with e = 1, the loop test condition 10e ≤ 7
fails. But now have (7 ∨ 7)1 = 7, so 7 ∨ 7 meets the condition needed for 7/7, giving
7/7 = 7 ∨ 7 = 1.

Therefore, 217/7 = 147/7+10 = 77/7+10+10 = 7/7+10+10+10 = 1+10+10+10 =
31.

5.14.2 Finite descent

Iterated descent means the operators defined:

d ∨0
± b = d ∨ b, (5.14.2)

d ∨i+1
± b = ((d − (d ∨ b)b) ∨i

± b) + (d ∨ b). (5.14.3)

Above, i is a non-negative integer, and the operator ∨i
± depends on the

descender ∨ and on the addition and subtraction operators + and −.
A divider / uses division by descent if

d/b = d ∨i(d,b)
± b (5.14.4)

for some function i : R2 → N = {0, 1, 2, . . .}.
A simple method to compute i(d, b) is take the minimum i such that

(d∨i
±b)b = d. In a realm that has division by descent (for the given descender

136 CHAPTER 5. DIVISION STRATEGIES

and subtracter), then this simple method could be almost the faster way to
compute division by descent. The main difficulty would be for inputs with b
not dividing d, such that d 6= ab for all a. In this case, the division condition
will never be realized, and some other condition will be needed to terminate
the method.

For the purposes of attacking the seclusiveness of key agreement, we can
assume that d = ab. For subtler attacks, we may instead wish to determine
whether b divides d. In this latter, the question becomes whether division by
descent can be used effectively to test divisibility.

Generally speaking, the efficiency of division by descent requires some no-
tion of size of elements in the realm. Each division, descent, and subtraction
need to make the sizes smaller, until a minimal size is reached.

5.14.3 Subtraction

Division by descent uses subtraction, so some method for subtraction is
needed.

Subtraction is the additive version of division, so some of the strategies for
division might be applicable. (Even division by descent might be applicable,
if one has a suitable second operation to pair with addition).

Subtraction of polynomials, for example, can be done by coordinate sub-
traction (treating the polynomial coefficients as coordinates).

Subtraction of positive integers can use binary search, but a more prac-
tical version uses quotient and remainder over a special value r, which we
call a radix (such as r = 10 for integers represented in decimal). This means
two operators / and % such that d = (d/r)r + d%r for all d, such that
(r − (d%r)) + (d%r) = r. The following property:

d − b ∈ {(d/r − b/r)r + (d%r − b%r),

((d − r)/r − b/r)r + (((d%r) + r) − b%r)}, (5.14.5)

holds, and suggests to subtract recursively, by choosing the first element
of the set whenever it leads to correct subtraction. The second elements
correspond to the need to carry in long subtraction.

5.15. POWER SERIES DIVISION 137

5.15 Power series division

Formal power series are an extension of polynomials, allowing arbitrary many
terms. They form a semigroups under various operations, including addition,
multiplication, and function composition (with some restrictions).

A practical implementation of power series cannot store an infinite amount
of information of all the coefficients. So, either a finite set of coefficients is
stored, an approximation or reduction modulo xN , or else some kind of more
formulaic representation is stored (such as rational functions, composite ex-
pression such as ex cos(x)/(1 + x)).

5.15.1 Standard division

The semigroup of power series under standard multiplication can be divided
by methods similar to polynomial division, except that one usually starts by
determining the lower degree coefficients of the quotient first.

Knuth [Knu98, §4.7] describes such an algorithm.

5.15.2 Functional division

Power series, including polynomials, can be sometimes composed as func-
tions.

This produces a semigroup, if we restrict to subsets of power series that
are closed under function composition. For two examples: polynomials are
closed under function composition; power series with zero constant term are
closed under composition.

In this case, the usual algorithm for division d/b in this semigroup, is
to invert b, as a power series (even if b was a polynomial). To avoid any
confusion with standard inversion, this process is usually called reversion.

The basic algorithm for reversion of power series is due to Lagrange.
Knuth [Knu98, §4.7, Algorithm L] describes this algorithm thoroughly, as
well as two other algorithms for reversion (his Algorithms T and N).

5.16 Matrix division

Square matrices, with entries in a semiring, have associative multiplication
(see §C.20.4).

138 CHAPTER 5. DIVISION STRATEGIES

Division of square matrices is part of linear algebra, which is well studied,
at least when the underlying semiring is a commutative ring or when the
underlying semiring is a skew field (division ring).

5.16.1 Matrix division over fields

For n × n square matrices with entries in a field, matrix division can be
done with at most O(n3) field operations, using the algorithm usually called
Gaussian elimination. There are very many matrix division algorithms.

Diversion 5.16.1. Matrix division amounts to solving a system of linear equations, which
goes back almost to ancient times, far before Gauss.

Many matrix division algorithms freely use of inversion of the (nonzero)
matrix entries. In some semirings, inverses might not exist, or might be
infeasible to compute. These matrix division algorithm will therefore be
undefined or infeasible, in these cases.

5.16.2 Matrix division over commutative rings

The Bareiss algorithm divides matrices without using inversion in the semir-
ing of matrix entries. Instead, division in the base semiring is used.

The Bareiss algorithm require the semiring of matrix entries to have com-
mutative multiplication.

Chapter 6

Inversion: some generic
strategies

This chapter lists some inversion strategies that try to find an inverse of an
invertible element. (See §B.7 for discussion of the various types of inverses.)

The division-by-inversion and wedge-by-inversion strategies depend on an
inversion strategy. Feasible inversion strategies can lead to attacks on the
associated key agreement scheme (if it uses an invertible base point).

6.1 Power inversion

If b is a torsion element, meaning b = bp+1 for some positive integer p (see
B.4.3 for more detail), then, then b has a power inverse q (see B.7.6), meaning
that q = bn for some positive integer n, and q = bqb. Any positive integer n
such that b = bn+2 is an inversion degree.

Power inversion means an algorithm to compute power inverse using
knowledge about an inversion degree n.

If an inversion degree n is known exactly, then bn can computed us-
ing the well-known square-and-multiply exponentiation, which takes at most
2 log2(n) multiplications.

Diversion 6.1.1. The well-known square-and-multiply algorithm iterates the equation

bn =

{

(bm)2 if n = 2m,

(bm)2b if n = 2m + 1.

The idea is to use this equation recursively, meaning to compute bm by the same equation,
replacing n by m. Each iteration takes at most two multiplications: one squaring of a

139

140 CHAPTER 6. INVERSION STRATEGIES

value bm, and at most one multiplication by b. Since m ≤ n/2, it takes at most log2(n)
iterations to reach that case m = 1, where bm = b is given, and no more iterations are
required.

If an inversion degree is known to exist within an interval [m, M] for two
exactly known positive integers m, M , then a power inverse can computed in
at most 2 + (M − m) + 2 log2(m) multiplications:

• Compute bm, using the square-and-multiply algorithm, at a cost of at
most 2 log2(m) multiplications.

• Compute bi for i ∈ {m + 1, m + 2, . . . , M + 2}, using 2 + M − m
multiplications by b.

If m ≤ n ≤ M is an inversion degree of b, then bn+2 = b, so bi = b for
i = n + 2. Therefore, some i will meet the that condition bi = b, and then
n = i − 2 will be an inversion degree, and bi−2 is an inverse of b.

Diversion 6.1.2. An alternative name for power inversion is inversion-by-exponentiation.
Another alternative name is Fermat inversion, when considering multiplication modulo
a prime integer, because of Fermat’s little theorem.

Diversion 6.1.3. Division-by-power-inversion can be compared to division-by-trial-multiplication.
Given an inversion degree, with n < |S|, then division-by-power-inversion takes at 2 logs(|S|)
multiplication, while division-by-trial-multiplication requires |S| multiplication.

Diversion 6.1.4. Measured cost in multiplications can be misleading.

The cost of a multiplication in S may not be constant. In particular, elements might
grow in size as they are multiplied. (This effect is most plausible if S is infinite.)

It is therefore possible that power inversion might not be slower than some forms
of trial multiplication, if the powers bi grow in size such that computing them becomes
infeasible.

Power inversion of b requires some knowledge of an inversion degree n of
b. A further strategy is needed to find this n.

6.1.1 Shor’s period-finding algorithm

Shor’s quantum-computer algorithm can sometimes find the order of a group.
This might be usable to the period, and thus inversion degree of a torsion
element of a semigroup.

6.2. INVERSION BY DIVISION 141

Diversion 6.1.5. To do this, it might should help be able to distinguish and generate
elements of 〈b〉 separately from other elements of S. In this case, 〈b〉 is a group, and is
ready for application of Shor’s algorithm.

Perhaps the converse is true. Being able to run Shor’s algorithm on group 〈b〉 might
imply being able to isolate 〈b〉 from the rest of S.

6.1.2 Elliptic curve point-counting

As an interesting pre-quantum example of finding the order is elliptic curve
groups.

One of the best known algorithms for finding the cardinality of the elliptic
curve group S over a finite field is to use finite group is the Schoof–Elkies–
Atkin algorithm, which takes something like log(|S|)4 bit operations.

This example is a rather moot, however, because elliptic curve groups
have much more efficient inversion algorithms than power inversions.

6.2 Inversion by division

In some cases, inversion of an invertible b is possible using division (by b or
some other element).

Diversion 6.2.1. Inversion is only a means to end in this application of this report.
Inversion-by-division will end up as being part of division-by-division or wedge-by-division.
The main attack advantage will then be easier cases of division, or fewer applications of a
more general division algorithm.

Lemma 6.2.1. If b has a sidle inverse (meaning q such that bbq = b = qbb,
see §B.7.5), then b/(bb) is a middle inverse of b.

Proof. Suppose that p is a sidle inverse of b, meaning pbb = bbp = b. We aim
to prove that q = b/(bb) is a middle inverse, meaning bqb = b. Calculating,

bqb = b(b/(bb))b

= b((pbb)/(bb))(bbp)

= b(((pbb)/(bb))(bb))p

= b(pbb)p

= bbp

= b,

142 CHAPTER 6. INVERSION STRATEGIES

where the fourth equation removes / from the expression using the usual rule
that ((xy)/y)y = xy, in this case with x = p and y = bb.

Consequently, if b(b/(bb))b 6= b, then b has no sidle inverse, it is not
sidle-invertible. Testing sidle-invertibility is possible with any divider.

When the previous inversion-by-division algorithm is in division-by-inversion
algorithm, we get the following division-by-division algorithm. Let / be a
given divider. A new modified divider ÷ by the rule

d ÷ b =

d(b/(bb)) if b(b/(bb))b = b,

d/b if b(b/(bb))b 6= b.
(6.2.1)

The new modified divider ÷ uses the old divider / one or two times (depend-
ing on the case above), and does two or three multiplications (depending on
the case above). The main advantage of ÷ over / is when dividing by the
same b many times. If that b is sidle-invertible, then operation / is used only
once for all the operation ÷ involving the same b.

If semigroup S has a (cancelling) post-divider /, then another inversion
by division is possible.

Lemma 6.2.2. If / is a post-divider and \ is a left divider and b is middle
invertible, then

b\(b/b) (6.2.2)

is a middle inverse of b.

Proof. Let p be a middle inverse of b, meaning bpb = b. We need to prove
that q = b\(b/b) is a middle inverse of b, meaning bqb = b. Calculating,

bqb = b(b\(b/b))b

= b(b\((bpb)/b))b

= b(b\((bp))b

= (bp)b

= b,

where the step (bpb)/b = bp follows from / being a post-divider.

Diversion 6.2.2. The previous result could be strengthened by only requiring / to be
partial post-divider, since it really only need /b to be unary post-divider.

6.2. INVERSION BY DIVISION 143

If a semigroup has (fractioning) pre-dividers, of both the left and right
kind, then yet another inversion-by-division is possible.

The following result goes back to at least 1951, as special case of a result
of Green (the special case being when a semigroup has a single H-class).

Lemma 6.2.3 (Green?). If S is a non-empty (multiplicative) semigroup, and
/ is an right pre-divider, and \ is a left pre-divider, then S is a group.

The identity is 1 = b/b, for any b ∈ S. The inverse of b is b−1 = 1/b.

Proof. Since S is non-empty, there exists some b ∈ S. Let 1 = b/b. Then

1b = (b/b)b = b,

with the second equation being due to / being an pre-divider. Let a be any
element of S. Then

1a = 1(b(b\a)) = (1b)(b\a) = b(b\a) = a,

with the first and last equations being due to \ being an pre-divider. The
second equation is due to associativity, the third due to the previous result
that 1b = b. Moreover,

a1 = ((a/1)1)(1) = (a/1)(1(1)) = (a/1)(1) = a,

with the first and last equations from / being an pre-divider. The third
equation is due to the previous result 1a = 1, which holds if a = 1.

We have established that 1a = a1 = a for all a ∈ S, so the S is a unital
semigroup, with identity 1 = b/b.

For each a ∈ S, define a−1 = 1/a. Then

a−1a = (1/a)a = 1,

where the second equation follows by / being an pre-divider. For brevity,
write a′ = a−1 = 1/a for any a ∈ S. Then

aa−1 = (1)(aa′) = (a′′a′)(aa′) = a′′(a′a)a′ = a′′(1)a′ = a′′a′ = 1.

Therefore, a−1 provides the usual two-sided inverse of a group.

In particular, if a semigroup S is not a group, then it lacks a pre-divider
on at least one side.

144 CHAPTER 6. INVERSION STRATEGIES

Diversion 6.2.3. The lemma above does not hold if the condition of pre-dividers is re-
placed by condition of post-dividers. For example, consider semigroup P× of positive
integers under multiplication. The standard integer division / is a post-divider, because
ab/b = a for all a, b. A left post-divider is provided simply by swapping the operands.
The positive integers do not form a group.

Moreover, the subsemigroup {2, 3, 4, . . . } of positive integers greater than 1, is non-
unital, and still has a right and left post-dividers.

Diversion 6.2.4. If S is a commutative semigroup, then an pre-divider / exists if and
only if S is a group.

Diversion 6.2.5. Recall that if S is a finite semigroup, then a divider / is pre-divider if
and only if it is a post-divider.

Diversion 6.2.6. Recall that an pre-divider / exists if and only if right multiplication ×b

is surjective for each b. If we define a binary operation to be surjective (or injective)
precisely if the functions obtained by fixing one of the input have the property, then the
lemma says that if a semigroup has surjective multiplication, then its multiplication is
injective (but not necessarily the converse).

Diversion 6.2.7. Recall that the left semigroup S = L(X) on a set X has multiplication
rule ab = a for all a, b ∈ S. Then / defined by d/b = d is an (right) pre-divider. Clearly,
L(X) is not a group. So, the lemma truly requires both left and right pre-dividers to exist.

Diversion 6.2.8. The lemma computes the identity and the inverse using right division.
Therefore efficient inversion is possible if the right pre-divider is efficient. The left pre-
divider need not be efficient: it suffices merely to exist.

However, an efficient left divider can be re-constructed by left multiplication by the
inverse (assuming multiplication is efficient).

6.3 Inversion by wedges

Lemma 6.3.1. If b is co-mutually invertible (meaning there exists an element
q such that bqb = b and qbq = q and qb = bq, see §B.7.4), then the co-mutual
inverse of b can be found using wedge operator ∧bbb via:

q = b ∧bbb b. (6.3.1)

Proof. Let p be the co-mutual inverse of b. We need to show that q = p. But
b = bbbpp = ppbbb, by our previous observations, so

q = (b ∧bbb b) = (ppbbb ∧bbb bbbpp) = ppbbbpp = p. (6.3.2)

6.4. INVERSION OF RELATIONS? 145

So, if b is co-mutually invertible (which is true if S is an inverse semi-
group S), then we no longer need to worry that the wedge problem might be
significantly easier than the division or inversion problem. Instead, we can
study the division or inversion problem.

More obviously, suppose that S is a multiplicative monoid (a unital semi-
group), and that b ∈ S has a unital inverse q, meaning that qb = bq = 1.
Then, q = qbq = qb ∧b bq = 1 ∧b 1.

6.4 Inversion of relations?

To be confirmed.
Let b be a relation on a set X. Let S = Rel(X) be the semigroup of

relations under composition. Then b has a middle inverse in S if and only if

b(btbcbt)cb = b, (6.4.1)

in which case, q = (btbcbt)c is a middle inverse of b.

6.5 Inversion of matrices over fields?

To be verified and corrected.
A square matrix b over a field has a middle inverse, even if it is non-

singular (determinant zero).

Diversion 6.5.1. A square matrix over the field of real numbers has an even stricter type
of inverse: the Moore–Penrose inverse. (The Moore–Penrose inverse is a middle inverse.)

Assuming the existence of a middle inverse q, a simplistic way to find
q relies on the fact that bqb = b defines a linear system in the entries of
the unknown matrix q. Existence of q, implies the system has at least one
solution, so that it is solvable.

Conventional linear algebra algorithms for solving systems can therefore
be applied to solve for q. When b is an n × n square matrix, the the linear
system for q amounts to solving a linear system of n2 equations in n2 un-
knowns. Therefore, this approach might not be the most efficient, since it
converts an n × n matrix problem into an n2 × n2 matrix problem.

We next describe another algorithm to find middle inverse. It is derived
from any algorithm for finding the matrix inverse of non-singular matrices, of

146 CHAPTER 6. INVERSION STRATEGIES

size equal to b or smaller. The described algorithm also proves the existence
of a middle inverse.

Again, the next algorithm is probably not the most efficient algorithm
for computing a middle inverse. The standard matrix inverse of non-singular
matrix is a stricter condition than being a middle inverse. Being based on
a looser condition, finding a middle inverse should be easier to find than a
standard inverse.

If b is non-singular, then just use standard matrix inversion.
If b is singular with rank k, then b can be factored into two rank k

rectangular matrices as b = cr where c has k columns and r has k rows.
For example, c can be chosen by taking k independent columns of b, with
r indicating how other columns of b are linear combinations of the columns
in c. Some standard matrix inversion algorithms will produce c and r when
applied to singular matrices.

The matrix rc will be a k × k square matrix.
If rc is a non-singular matrix, then we can compute usual matrix inverse

(rc)−1 by the given standard algorithm. Then we can put q = c(rc)−2r, with
the effect that

bqb = (cr)(c(rc)−2r)(cr) = c((rc)(rc)−1)((rc)−1(rc))r = c(1)(1)r = b.

so bqb = b, showing that q is a middle inverse. Similar calculations show that
qbq = q and bq = qb so that q is a co-mutual inverse of b.

Diversion 6.5.2. It would nice to write q = b−1 for a co-mutual inverse q of b, because
a co-mutual is unique. But, this could cause confusion here, because the notation b−1 is
usually only used for non-singular b. Some readers seeing b−1 might interpret this to imply
that b is non-singular, which is not the intention here.

Diversion 6.5.3. The matrix b = (0 1
0 0) has no co-mutual inverse q. To see this, suppose

q were a co-mutual inverse. Then b = bqb = bbq = 0, because b2 = 0. So, the matrix rc
fails to be non-singular, for this b.

Otherwise rc is singular, and a more general method is needed.
If r̂ is k-row matrix such that r̂c = Ik, the k × k identity matrix, and ĉ

is k-column matrix such that rĉ = Ik, then q = ĉr̂ is a middle inverse of b,
since bqb = crĉr̂cr = c1k1kr = cr = b. (It is also a mutual inverse, but not
necessarily a co-mutual inverse.)

A matrix r̂ can also be found using the standard matrix inverse. Extend
the k-column matrix c to a non-singular square matrix C, by appending

6.6. CUSTOM INVERSION ALGORITHMS 147

independent columns that form a basis of the vector space. Matrix C has
the same shape as C. In fact, if c is formed from the columns of b, then
C takes those columns, places them to the left, and fills in the remaining
columns, non-singularly, meaning that C can be regarded a non-singularized
modification of b.

Next, compute the matrix inverse C−1, by the given matrix inversion
algorithm for non-singular matrices. The rows of C−1, as vectors, form a
dual basis to the columns of C, as vectors. Let r̂ be formed from the first k
rows of C−1. The k rows of r̂ are dual to the k columns of c, so r̂c = 1k.

Similarly, the matrix ĉ can be constructed, transposing rows and columns
in the construction above. This constructions always work, since any inde-
pendent set of vectors can be extended to a basis. Therefore, the middle
inverse always exists.

To repeat, there is likely a much more efficient algorithm.

6.6 Custom inversion algorithms

In some semigroups, specific fast inversion algorithms are available. For
example,

• In the group Z+ of integers under addition, inversion is the function
a 7→ −a. For typical integer implementations, this merely requires
toggling of the sign flag (stored as a bit).

• In F+
p , with additive notation, inversion of a is obtained by p−a (using

standard integer subtraction).

• In F×
p , inversion of nonzero a can be obtained through the extended

Euclidean algorithm, or one of its variants.

• In elliptic curve groups, inversion is usually more efficient than multi-
plication. For example, in short Weierstrass coordinates, the inversion
of point (x, y) is (x, −y).

Appendix A

Some applications of key
agreement

Key agreement is not an end in itself, but a means to a greater security aim.
Typically, key agreement must be part of a larger system, such as:

• a subsystem that authenticates the key agreement deliveries d and
e, because, otherwise key agreement would vulnerable to man-in-the-
middle, where an adversary replaces a delivery, say d, by his own d′,

• a subsystem that applies the agreed keys for some purpose, such as
keeping application data private between Alice and Charlie, because,
otherwise, (if the keys were not used at all), then there would be no
need to agree on them,

In other words, the application relies on the key agreement, and the key
agreement relies on the authentication. These three subsystems may be
thought of a chain, each subsystem being a link. The usual saying applies:
a chain is only as strong as its weakest link.

Diversion A.0.1. In some cases, the method used to authenticate deliveries in key agree-
ment can be re-used to authenticate the application data. For example, if deliveries are
authenticated using a digital signatures, then application data can be authenticated using
digital signatures.

In other cases, the authentication method for deliveries is not re-usable for application
data. For example, Alice and Charlie can use public hand-off to authenticate their de-
liveries. Public hand-off means that they meet in public, verbally read out their deliveries
to each other (making minimal effort to hide the deliveries), and then type these deliveries
into the secure devices. (The point of public hand-off to minimize the reliance on any

148

A.1. PUBLIC-KEY ENCRYPTION 149

third parties for authentication, especially any network devices that connects to Alice and
Charlie’s secure devices.)

If Alice and Charlie use public hand-off to authenticate their deliveries, then they can
also exchange digital signature verification keys. Then, the digital signatures can be used
from then on for authentication. So, authentication of the application data can be done
using digital signatures, without ever relying at all on key agreement.

In practice, Alice and Charlie may purchase their secure devices from a trusted re-
tailer, who has installed within the secure devices some digital signature verification keys.
Essentially, the retail purchase is a form a public hand-off. These directly verified keys
are known as trust anchors. The owner of the trust anchor key as a root certifica-

tion authority. Authentication of messages is then achieved by combining a certification
chain with a digital signature of application data. These system, excluding to the part
about signing the actual application, are part of a system, usually called a public key

infrastructure (PKI).

If key agreement is securely achieved, then Alice and Charlie can use also a message
authentication code (MAC) instead of digital signature to authenticate application data.
Modern approaches to symmetric-key cryptography tend to combine both encryption and
authentication. Using a MAC with an agreed key has the advantage of relying less on the
security of digital signature scheme. If the deliveries use public hand-off, then trust in the
third parties of the PKI can be avoided.

In some situations, the authentication method for deliveries is not desirable for the
application data. In particular, digital signatures can be forwarded to third parties for
verification. Digital signatures lack deniability. Asynchronous key agreement has a high
degree of deniability, because both Alice and Charlie can independently compute the
agreed key. In other settings, a digital signature is perhaps too slow. (One of these reasons
might explain why the transport layer security (TLS) protocol using digital signature for
authentication in the handshake sub-protocol but not in the record sub-protocol.)

A.1 Public-key encryption

In public-key encryption, Alice would publish her delivery d as fixed value.
The published delivery is then called a public key, and can be written as
A = d, to better illustrate the relation between Alice’s value a and her public
key A.

Diversion A.1.1. In many applications of asynchronous key agreement, the deliveries are
meant to be used only once. The term delivery reflects this fact. It is little odd to re-use
a delivery. Thus, re-branding may be appropriate when the deliveries are re-used.

Diversion A.1.2. The term public key has a very strong tradition, so we follow it
now, despite the many reasons for not following this tradition for the corresponding term
delivery in general key agreement.

Yet other alternatives for the term public key are considered briefly here.

150 APPENDIX A. APPLICATIONS

The Bitcoin protocol used the term address for values derivable from a public (sign-
ing) key. In my opinion, their term address would be an improvement over public key,
even if applied directly to the public key.

The terms address is also closely connected in meaning to delivery. Usually the
recipient’s address must be know to the sender, so the term address seemed inappropriate
for asynchronous key agreement.

The term address already has many other meanings, such as email address, IP ad-
dress, web site address, postal address. So, I would suggest calling crypto address. The
term crypto address is a little like a postal code, an important value, but not meant
human consumption, but rather for the underlying system.

In yet other expositions, I have used the term locus, to represent the similarity of the
delivery to a lock, to a location (address), and to the fact that a delivery in elliptic curve
DH key agreement is a point in the plane, which may also be described a locus of zeros of
a set of equations (an elliptic curve, and one or more lines).

When Charlie wishes to send a message m to Alice, he does the following.

1. He fetches her published delivery d = A (now also called a public key,
or even crypto address), from a trusted source.

2. He computes his delivery e, according to the asynchronous key agree-
ment scheme.

3. He computes the agreed key g.

4. He then uses a (probabilistic) function E, usually called authenti-
cated encryption, to a create a cipher(text) C = Eg(m).

5. He sends [e, C] to Alice.

When Alice receives [e, C], she computes her agreed key f , which should equal
g, unless [e, C] has been modified. Then she uses another function D, called
authenticated decryption, to recover a possible message m′ = Df(C). If
[e, C] was transmitted successfully, we will have m = m′, because f = g and
Df(Ef (m)) = m for all f and m.

Diversion A.1.3. The pair consisting of the authenticated encryption and decryption
functions are also called data encapsulation mechanism (DEM), as explained in further
below.

The security of public-key encryption has various definitions, such one
abbreviated to IND-CCA2. In some case, a security proof for a public-key
encryption is condition on some assumption, including the basic security of
underlying key agreement scheme, such as Diffie–Hellman key agreement.

A.2. KEY ENCAPSULATION 151

A.2 Key encapsulation

Shoup introduced the notion of key encapsulation, as a notion which in-
termediate between some types of key exchange and public-key encryption.

A key encapsulation mechanism (KEM), as this report would call it,
is essentially non-asynchronous key agreement scheme, except that two of
the four functions are merged into one.

Each asynchronous key agreement scheme can be used to develop a KEM,
simply by merging two of the functions on one side into one function.

Again, security proofs for a KEM are often relations to the basic secu-
rity of the underlying key agreement scheme (such as Diffie–Hellman key
agreement).

To be completed.

A.3 Non-interactive key exchange

An asynchronous key agreement scheme can be used as part of a non-
interactive key exchange (NIKE) scheme, a folklore notion named and
formalized by Cash, Kiltz, and Shoup [CKS08], to generalize what is some-
times called static Diffie–Hellman key exchange.

In terminology of this report, a NIKE scheme has each user generate a
single, static delivery value. The single delivery is registered with an author-
ity, together with an identifier for the user. When two users use NIKE, the
authenticity of the static deliveries is provided by the authority. The two
users do not need to interact directly with each other in real time, having
obtained the static deliveries from the authority during some provisioning
phase. Hence the term non-interactive.

Conversely, any given NIKE scheme implies an asynchronous key agree-
ment by forgetting such details as the registration authority, the identifiers
and so on.

Past definitions of NIKE assume that each user has identical pair of algo-
rithms, public key generation and exchanged key computation. Con-
sequently, the existing NIKE definitions assume that the underlying asyn-
chronous key agreement scheme is ambidextrous (per earlier notes): there
are no left and right users.

However, it may only only require minor modification of the NIKE defi-
nitions to accommodate chiral asynchronous key agreement schemes.

152 APPENDIX A. APPLICATIONS

A.4 Handshakes of interactive communication

protocols

Perhaps the application of key agreement most often used in practice, is an
interactive secure connection protocol between Alice and Charlie. Exam-
ples include the Transport Layer Security (TLS) protocol and the Internet
Key Exchange (IKE) protocol, both of which can use Diffie–Hellman key
agreement.

In this type of application, (asynchronous) key agreement is used near
the start of the secure connection session during a phase called handshake.
Often, handshake includes key agreement deliveries from both sides, which
are only used once, to achieve a property often called forward secrecy. A
handshake might also include other information beyond the deliveries used
in key agreement. It may include introductions, negotiations, and authenti-
cation tags, which are outside the scope of key agreement as defined in this
in report.

Diversion A.4.1. Forward secrecy, and several other advanced security aims, are best
defined at the level of the handshake part of the secure communication protocol. At the
lower level of (asynchronous) key agreement, which is merely a component of the higher
protocol, more basic security aims can be defined, with the advanced security aims deriving
from the basic security security.

For example, forward security can only be defined when it is clear which of Alice and
Charlie’s secrets a and c are to be re-used, and which are used only once. The handshake
protocols within secure communication protocol define such details. The lower level key
agreement scheme, as defined in this report, does not specify whether the secrets are
re-used or not, so forward secrecy is not define-able.

Cryptographers have implicitly accepted this in the context of Diffie–Hellman, by
separating higher security aims from more basic problems such as Diffie–Hellman problem.

This report generalizes Diffie–Hellman to larger class of mathematical operations,
under the label of key agreement scheme, but retains the distinction that the generalization
is a more basic primitive whose security properties are more basic.

As with both public-key encryption and non-interactive key exchange,
these handshake protocols include steps for authenticating the delivery val-
ues. Many handshake protocols ensure the authenticity of the deliveries
(usually Diffie–Hellman public keys), by applying a digital signature to the
fresh deliveries. The signing keys used for digital signature, are authenticated
using certificates, as part of a public key infrastructure.

A.5. TRUST NETWORKS 153

A.5 Trust networks

Typically, Alice and Charlie must use some means to protect the deliveries
d and e, for reasons of security, such as to avoid a man-in-the-middle
attack. Generally, such protections are provided outside the narrow scope of
key agreement (as defined in this report).

Diversion A.5.1. The term out-of-band is often use to describe communication through
an alternative channel, and in cryptography, some security aims may be achieved using
a out-of-band channel. This notion applies to key agreement if think of all data beyond
the key agreement deliveries as out-of-band: then security aims such as protection against
man-in-middle attacks is provided out-of-band.

Of course, in other settings, the data sent to authenticate the deliveries will share the
same the communication band as the deliveries, so this usage of out-of-band is not entirely
appropriate.

Many of the applications above rely upon some kind of many-party trust
network, such as a public key infrastructure with certification author-
ities and trust anchors.

A typical public-key infrastructure involves applying digital signatures to
public keys. As a network, it may be distributed, or it may hierarchical.

It may also be possible to build a trust network without digital signa-
tures, instead relying on asynchronous key agreement. For example, Alice
could hand an initial delivery d to Charlie, and Charlie could hand an initial
delivery e to Alice. They keep these deliveries safe, but only used the agreed
key to authenticated fresh deliveries that they send each over unauthenti-
cated channels. The fresh agreed keys are authenticated using the initial
authenticated keys.

This would only create one link between Alice and Charlie. But as each
user develops more links, an authenticated network would be grow. Then
authenticated deliveries could be sent through this network between non-
adjacent members of the network. Of course, such a scheme would require
careful study to determine its security: some mechanism would be needed to
resist corruption at a single node of the network, for example.

Appendix B

Semigroup theory: some basics

This chapter covers a few relevant basic properties of semigroups in general.

• It reviews customary notions and notations (such as associativity, semi-
groups, multiplication, addition, powers, subsemigroups, generators,
zero, one, idempotents, inverses, morphisms, and Green’s relations).

• It states some idiosyncratic definitions (such as various definitions of
division, wedges operation, and epigram or monogram representations).

• It proves a few elementary facts (such as relations between division
types – proofs being special cases of classical algebra like Green’s the-
orem).

Table B.1 summarizes the most essential basics.
Other parts of this report use these basics to describe various strategies

for semigroup algorithms.
More thorough treatments of semigroup theory can found outside this

report, in the listed references, Wikipedia, or the journal Semigroup Forum,
and it is by skimming these resources that any non-trivial results appear
in this chapter. This chapter adopts narrower treatment a semigroup theory
than in other treatment of semigroup theory. It is not ambitious, and does not
describe any of the powerful classification theorems for semigroups. Rather,
it aims to answer (my own) naive semigroup-beginner questions that lead up
to some properties division and wedges that might aid in the understanding
for the security analysis of many forms of associative key agreement. Along
the way, there are many small diversions, which could easily be irrelevant to
cryptography.

154

155

Term Notation Condition

Magma M∗ ∗ : M2 → M
Operation a ∗ b [a, b] 7→ a ∗ b
Additive magma M+ [a, b] 7→ a + b
Multiplicative mg. M (or S) [a, b] 7→ ab
Associative (mult.) ab a(bc) = (ab)c
Commutative (mult.) ab ab = ba
Medial (mult.) ab (ab)(cd) = (ac)(bd)
Semigroup (= assoc. mg.) S∗ ∗ : S2 → S, a ∗ (b ∗ c) = (a ∗ b) ∗ c
Multiplicative sg. S S2 → S : [a, b] 7→ ab, a(bc) = (ab)c
Multiplication (times) ab In semigroup S: a(bc) = (ab)c
Addition (plus) a + b In semigroup S+: a + (b + c) = (a + b) + c
Division (over) a/b ((ab))/b)b = ab
Subtraction (minus) a − b ((a + b) − b) + b = a + b
Wedge d ∧b e (ab) ∧b (bc) = abc
Left division a\b b(b\ba) = ba
Post-division, (cancelling) a/b (ab)/b = a
Pre-division, (fractional) a/b (a/b)b = a
Identity (one) 1 (or I) 1a = a1 = a, 1 ∈ S
Identity (zero) 0 (or 0+) 0 + a = a + 0 = a, 0 ∈ S+

Absorbing (zero) 0 (or ∞) 0a = a0 = 0 ∈ S
Absorbing (infinity) ∞ ∞ + a = a + ∞ = ∞ ∈ S+

Power (exponentiation) an ∈ S a1 = a, an+1 = ana, (n ∈ {1, 2, 3, . . . })
Idempotent e e2 = e
Idempotent-ordering e ≤ f e = ef = fe, e2 = e, f2 = f
Morphism µ : S → S µ(ab) = µ(a)µ(b)
Subsemigroup T ≤ S a, b ∈ T =⇒ ab ∈ T
Generated sbsg. 〈B〉 ⋂

T :B⊆T ≤S T = {b1b2 . . . bn : bi ∈ B}
Order ord(b) ord(b) = |〈{b}〉| = |{b, b2, b3, . . . }
Period, torsion p bn = bn+p, p ∈ {1, 2, 3, . . . }
Middle inverse q bqb = b
Co-mutual inverse b−1 bb−1b = b, b−1bb−1 = b−1, bb−1 = b−1b.
Nilpotent sg. Sn = {s1s2 . . . sn : si ∈ S} = {0}, n ∈ {1, 2, 3, . . . }.

Table B.1: Some semigroup notations, terminology and definitions

156 APPENDIX B. SEMIGROUP BASICS

Ring theory is mainstream and well-developed topic in modern algebra,
and arguably more mature and more richly developed than semigroup theory.
Because every semigroup embeds into a ring being isomorphic to a subset of
the ring that is closed under multiplication, many of the deep theorems in
ring theory might have impact in semigroup theory, and thereby impact on
key agreement. But, by comparison, the basics presented chapter are all the
more negligible in comparison to deep theory of rings.

In other words, the reader is asked to read this chapter with plenty of
proverbial salt.

B.1 Operations

A semigroup is a standard definition from algebra:

Definition B.1.1. A semigroup S∗ is a set S together with an associative
binary operation ∗ : S2 → S : [a, b] 7→ a ∗ b.

Diversion B.1.1. Recall again that binary operation ∗ is associative if

a ∗ (b ∗ c) = (a ∗ b) ∗ c

for all a, b, c ∈ S.

Diversion B.1.2. A magma is a weaker notion: a magma S∗ is a set S together with a
binary operation on S. Every semigroup is magma, but a magma is not a semigroup if its
binary operation is not associative.

Typical proofs that S∗ forms a semigroup first show that S∗ is magma, and then show
that ∗ is associative.

Some definitions and facts about semigroups generalize to magmas. In particular,
division can be defined for magmas.

Diversion B.1.3. Semigroups are ubiquitous in algebra. A few examples of semigroups
are sketched in Appendices C.

B.1.1 Multiplicative semigroups

If the binary operation of a semigroup is written ×, or any other notation
called multiplication, such as · or ∗ or ⊗, then the semigroup is said to be
multiplicative.

Being multiplicative is merely a matter of notation and terminology.
Every semigroup can be made multiplicative by changing the notation and

B.1. OPERATIONS 157

terminology for its binary operation, without affecting its structure, its effi-
ciency or its security.

Diversion B.1.4. Given a non-multiplicative semigroup, such as S◦, with a binary oper-
ation written ◦, we sometimes form a multiplicative semigroup by surround elements of S
in square brackets, as [a] for a ∈ S, so that [a][b] = [a ◦ b].

By default, assume that a semigroup is multiplicative. For example, when
considering hypothetical semigroups, or semigroups in general, work the mul-
tiplicative notation and terminology.

Diversion B.1.5. When one set has two associative binary operations, multiplicative
notation can only be used clearly for one of the two operations. Common example are
the integers, the rationals, the reals, polynomials, and many other rings, all of which have
associative binary operations: addition and multiplication.

Diversion B.1.6. Call familiarization the practice of re-using familiar notation, such
as multiplication, for potentially strange objects, such as arbitrary semigroups.

A benefit is factor out similarities between the familiar from the strange, in order
words, to leverage our existing intuition or wisdom.

A cost is to falsely suggest all that is true of the familiar (such as standard rational
or arithmetic) is also true for the strange (such as arbitrary semigroups), which may have
counterintuitive features.

This report continues the program of familiarization for multiplicative notation to
other notations, such as division. Indeed, this report perhaps goes further more so than
in standard notation for semigroups (let alone in cryptography). The familiar notations
of division and divisibility are carried over to general semigroups, rather than introducing
newer notations.

Again, the caveat with re-using standard notations no longer obey all of the usual
rules when applied to arbitrary semigroups.

B.1.2 Unwritten multiplication

By default, the multiplication symbol is implicitly omitted in algebraic for-
mulas, a traditional mathematical convention. Put another way, the multi-
plication symbol is empty, silent, or invisible.

Diversion B.1.7. When reading ab to others, one can say a b or a times b, depending
on the need concision or clarity.

The tradition of an unwritten multiplication symbol is extended the label
for the semigroup: instead of writing S∗ or S×, we write S, indicating an
unwritten multiplication symbol. In other words, a semigroup is indicated by

158 APPENDIX B. SEMIGROUP BASICS

its underlying set, with the multiplication operation being understood from
context.

Diversion B.1.8. Disadvantageously, this unwritten multiplication tradition sometimes
precludes elements of S to be written with multiple symbols per element, because these
could be confused with multiplication of the symbols, as in the following examples.

• It prevents multi-letter variable names, used so often in computer programming.
Most mathematicians can dealt with issue quite well, by the use of subscripted
variables, such x1, x2, . . . or even xlength, and so on.

• Multi-digit numerical elements, such as real numbers, are formed by concatenation
of digits, and possibly a decimal point. Multiplying two numbers, such as 1.1 and 5,
can be notated by explicit indicating multiplication operator as 1.1 × 5 = 5.5. Or,
to zealously avoid writing ×, by using parentheses as in (1.1)(5) = 5.5. Superfluous
superscripts can also save parentheses, as in 90 = 21325. Sufficiently abstract
expositions can side-step this particular issue by forgoing multi-digit arithmetic
examples.

• Some semigroups have elements represented by sequences of elements (words) drawn
from some set (an alphabet). Using commas to separate sequence is a heavy nota-
tion, so a common convention is to represent the word as the concatenation of the
letters. When the words also equal the product their elements, then this conven-
tion largely matches the default notation for multiplication, up to a point, perhaps
of equivalency of sequences. This also introduces a potentially new confusion be-
tween the variables and alphabetic values for sequence elements (word letters, or
alphabet).

B.1.3 Additive semigroups

A semigroup such as S+ with semigroup operation is written as +, is called
additive, and the operation is usually called addition. Semigroups with
similar notation, such as ⊕, are also called additive.

Diversion B.1.9. Usually a + b is read as a plus b.

B.1.4 Multiplying sets

Subsets of a semigroup (or magma) are often multiplied.

Definition B.1.2. If A, B ⊆ S, then let

AB = {ab : a ∈ A, b ∈ B}. (B.1.1)

Also, write aB = {a}B and Ab = A{b}.

B.2. PRACTICALITY 159

Diversion B.1.10. In non-multiplicative semigroups, translate as usual, so A + B in
additive semigroups.

Diversion B.1.11. Set-multiplication makes 2S, the set of subsets of a semigroup, into
its own semigroup.

B.2 Practicality

Semigroups need to be practical, in the sense described in this section, to
be useful either for associative key agreement (§2.13) or for probabilistic key
agreement (§2.9).

The general idea is that all the user algorithms in associative key agree-
ment are practical, meaning users can run them in a short time.

Diversion B.2.1. The reason to distinguish practical semigroups is the abstract semi-
group theory includes many impractical semigroups.

B.2.1 Practical multiplication

Users of an associative multiplication will need to multiply semigroup ele-
ments.

Definition B.2.1. A multiplicative semigroup S has [A, B, C]-practical
multiplication if the the natural associative key agreement scheme k[A,B,C,S] =
[k1, k2, k3, k4] of §2.13 has all ki implemented by known practical algorithms.

Diversion B.2.2. Essentially, a semigroup has practical multiplication if users have prac-
tical algorithm to multiply for the inputs appearing in associative associative key agree-
ment.

So, the users have practical algorithms to compute four functions [a, b] → ab, and
[b, c] → bc and [d, c] 7→ d and [a, e] → ae, where [a, b, c, d, e] = [a, b, c, ae, bc] for [a, b, c] ∈
A × B × C.

Diversion B.2.3. For non-multiplicative semigroups, practicality of the operation applies
similarly.

A semigroup S has fully practical multiplication if it has [S, S, S]-
practical multiplication. In many cases of interest, S has fully practical
multiplication, even though it is not always necessary.

160 APPENDIX B. SEMIGROUP BASICS

B.2.2 Practical selection

Users of associative key agreement must select semigroup elements.

Definition B.2.2. A semigroup S has [A, B]-practical selection for sub-
sets A, B ⊆ S if there exists practical algorithms for injective function
a : |A| → A and b : |B| → B.

Diversion B.2.4. For any set A, let |A| denotes both its cardinality, and the smallest
ordinal number with cardinality |A|. When A is finite, then |A| = {0, 1, . . . , |A| − 1}, and
when A is countable, then |A| = N = {0, 1, 2, 3, . . .}.

Diversion B.2.5. There might be semigroups with fully practical multiplication, yet even
finding elements is quite impractical. For example, let n = pq be a product of primes, and
define a multiplicative semigroup S with set {p, 2p, . . . , n − p} with multiplication modulo
n. Knowing n gives a practical multiplication algorithm. Being able to find an element of
S leads to a factorization of n, which can be difficult in general.

Diversion B.2.6. In probabilistic form of associative key agreement, practicality can be
defined relative to random variables a, b, c.

Instead of selection, the users must sample the variables.
For multiplication of random variables, the practicality can be defined using some no-

tion of practicality for probabilistic algorithms such as average run-time. To be completed.

B.2.3 Practical representation

Many semigroups are formally defined such that the elements of the semi-
group are equivalence classes. These equivalence classes can be very large
set, often infinite sets.

B.2.3.1 Impractical representations

If each semigroup element representation uses extremely large amounts of
information, for example 260 bits, then multiplication cannot be efficient,
because generating such long outputs takes too long.

Moderately large representations might admit sufficiently efficient multi-
plication, yet still be impractical for other reasons. For example, Alice and
Charlie will need communicate semigroup element representations to each
other. Communication is not free: part of the cost is proportional to the
data size. A communication of 240 bits may be consider impractical. So, we
can regard semigroup element representations of 240 bits or larger as imprac-
tical.

B.2. PRACTICALITY 161

B.2.3.2 Epigrams

An epigram is an efficient, compact representation of a semigroup element.
This means the usual. Each semigroup element has at least one epigram.

Distinct elements have distinct epigrams: if a′ is an epigram of element a,
and b′ is an epigram of element b with and a 6= b, then a′ 6= b′. An efficient
algorithm takes inputs a′ and b′ and computes as output an epigram c′ of
the element ab, where a is the element represented by epigram a′, and b is
the element represented by epigram b′. The set of epigrams is usually a set
of finite-length bit strings.

Actually. efficiency and compactness of the representations forming epi-
grams are only required for the semigroups elements that Alice and Charlie
will use in associative key agreement. For example, it is possible for an infi-
nite semigroup to have an epigrams, because Alice and Charlie will only ever
use finite subsets of the infinite semigroup.

Diversion B.2.7. In associative key agreement, epigrams will be used for deliveries. The
systems of epigrams used by Alice and Charlie must be mutually intelligible.

Generally, an implementer of semigroup can use any desired internal representation of
semigroup elements that need to be multiplied. Generally, these representations will also
be compact, and could be used for epigrams.

However, for the purpose intercommunication, a single mutually intelligible system of
epigrams (an epigraphy) must be in place.

One of the most common examples of epigram is a member of an equiva-
lence class. In more detail, suppose that the semigroup elements represented
by equivalence classes (sets, possibly infinite, or impractically large). An
epigram for this semigroup element is any member of the equivalence class.
For this to be considered an epigram, the equivalence relation defining the
equivalence class must be efficiently implementable.

Diversion B.2.8. For an example, consider the integers modulo 7 under multiplication.
Mathematically, each semigroup element is an equivalence class, which is an infinite set of
integers. For example, one semigroup element is the equivalence class

{. . . , −10, −3, 4, 11, 18, 25, . . .}

, consisting of integers congruent to 4 modulo 7.
As suggested, any member of this set could be used as an epigram for the class, for

example, −3 or 4 or 11.

Diversion B.2.9. For another example, consider an elliptic curve group defined by a
projective cubic curve. Each semigroup element is a point in the projective plane. Math-

162 APPENDIX B. SEMIGROUP BASICS

ematically, each point in the projective plane is a line through the origin in an affine
3-space.

A common epigram for a projective point, is a nonzero point on the affine line (through
zero). These affine points are represented by their coordinates, but in writing them down,
one often separates the coordinates by colons instead of commas, as a helpful mnemonic
that the ratio between the coordinates is what defines the projective point. So, for example,
[1 : 2 : 3] and [−5 : −10 : −15] are two epigrams for the same projective point.

B.2.3.3 Monograms

Some semigroup epigram systems have the defect that each semigroup ele-
ment has multiple different epigrams. We call this situation epigram am-
biguity.

Epigram ambiguity is problematic for keys. It prevents Alice and Charlie
form agreeing on the same key.

Diversion B.2.10. Other problems arising from epigram ambiguity arise from the extra
information necessary to represent to accommodate the ambiguity in a epigram, such as
Alice’s delivery, include the following:

• Ambiguous epigrams are not optimally compressed representations of semigroup
elements.

• The choice of epigram might become an information side-channel: revealing infor-
mation about Alice’s secret a.

Any process that resolves epigram ambiguity is called a monography.
To each semigroup element, a monography assigns one epigram, called the
monogram of the element. If a semigroup has a practical monography, then
we say that the semigroup is monographic.

A practical semigroup must be monographic.
The monography process for finding a monogram might be more costly

than merely just finding any epigram. So, Alice and Charlie might opt to
use monography only where necessary, such as for keys.

Diversion B.2.11. Consider again the integers modulo 7 under multiplication, and the
semigroup element which is formally the equivalence class. {. . . , −10, −3, 4, 11, 18, . . .}.

The most common monography for this (and similar) is to select the monogram is as
the least non-negative integer epigram, which in this case is 4. A less common monography
is to use the integer closest to zero, which in this case is −3.

Diversion B.2.12. Monograms are also called canonical representations or normal

forms, and probably many other names.
This report use the term monogram to emphasize non-preference, whereas previous

terms sometimes imply specific monographies for certain semigroups.

B.3. POWERS AND LOGARITHMS 163

Diversion B.2.13. An epigram system may have an efficient algorithm to test whether
two epigrams represent the same element. In this case, we say that the epigrams are
equalizable.

In a semigroup with monography, the epigrams are equalizable by computing the
monogram for each epigram and the testing equality of the two resulting monograms.

However, in many cases, there might exist an algorithm for testing equality of epigrams
that is faster than computing monograms.

Diversion B.2.14. Mathematically, a monography on a semigroup S can be considered
as an isomorphism from the original semigroup S to the set of monograms. A reason to
make the distinction between these two isomorphic semigroups is that algorithms in the
original semigroup, such as those using epigrams, could potentially be much faster than
those in the monographic image of the semigroup.

Diversion B.2.15. Returning to the elliptic curve group defined over a cubic projective
curve, a common monogram is to map the projective point to an affine point, often by
setting one of the coordinates to value 1. The cost of the monography is then generally a
field inversion, which is often considerably more costly than a semigroup operation.

In the case of elliptic curve cryptography, it is common to use monograms for commu-
nication deliveries, because the ambiguity epigrams is sometimes a source of side-channel
leakage.

Diversion B.2.16. More generally, cryptography has rather low tolerance for ambiguity
in data representation.

For example, consider hashing text (a password or a message to be signed). Unfor-
tunately, text, and even integers, is notorious for having multiple representations as bit
strings. Even simple roman-alphabet text can be represented ASCII or EBCDIC. Lines
of text can be separated in different ways, via LF, CR, or CRLF. International text has
many encodings, but even Unicode has multiple representations, such as UTF-8 or UTF-
16. Integers can be represented in big-endian or little-endian form. Even ASN.1, permits
multiple encodings, such BER and PER. (Though ASN.1 has two encodings, DER and
CER intended to provide monograms.)

Diversion B.2.17. Semigroups are sometimes described using presentations, given by
generators and relators. The Knuth–Bendix algorithm seems to be applicable to finding
a monography.

B.3 Powers and logarithms

Powering, or exponentiation, generalizes to any multiplicative semigroup.

Definition B.3.1. A power an of an element a in a multiplicative semigroup

164 APPENDIX B. SEMIGROUP BASICS

S to an positive integer exponent is n is the product:

an = aa . . . a
︸ ︷︷ ︸

n copies of a

(B.3.1)

Diversion B.3.1. Inductively, a1 = a and an+1 = ana.

Diversion B.3.2. In general semigroups, the power an is only defined for positive integers
n. So, in general, familiar expressions of standard (real number) arithmetic, such as a0,
a−1, a1/2 are undefined.

In multiplicative semigroups, some elements a might have a special kind of inverse
called co-mutual inverse. In this case, we write a−1 for co-mutual inverse, and a−n =
(a−1)n for the powers of a−1, and a0 = aa−1. In this report, the notation an with n a
non-positive integer is only to be used in this situation, if a has a co-mutual inverse.

Diversion B.3.3. The function n 7→ an could be called exponentiation, while the
function a 7→ an could be called nth-degree powering. The binary operation [a, n] 7→ an

could be called either exponentiation or powering, without much ambiguity.

Powering in semigroups shares some of the familiar rules of standard
arithmetic, such as

aman = am+n,

(am)n = amn,

where the addition and multiplication in the exponents on the right side of
the equations are the standard operations for positive integers.

Diversion B.3.4. In some semigroups, powering or exponentiation is defined for the
underlying set has

B.3.1 Scalar multiplication

In an additive semigroup, the operation analogous to powering is sometimes
called scalar multiplication and is written:

na = a + a + · · · + a
︸ ︷︷ ︸

n copies of a

, (B.3.2)

where clear from context.
In some cases, one would write an instead of na. In some cases, the

notations na and an are unsuitable, and a notation such as [n]a or {n}a can
be used for extra clarity.

See later sections.

B.3. POWERS AND LOGARITHMS 165

B.3.2 Aside: exportability

Powering allows us to define below exportability, which generalizes field
characteristic, in the sense that the exportability of the additive semigroup
of field equals the field’s characteristic.

A few preliminary definitions are presented first.

Definition B.3.2. An exportable subset B of a multiplicative semigroup
is a set that does not contain all powers of all its elements.

Diversion B.3.5. Exportable subsets of additive semigroup are defined using scalar mul-
tiples instead of powers.

For each exportable set, we define the following number.

Definition B.3.3. The exporter e of an exportable subset B is the smallest
positive such that

ae 6∈ B (B.3.3)

for some a ∈ B.

Diversion B.3.6. Exporters in additive semigroups are defined used scalar multiplication
instead of powering.

Lemma B.3.1. Exporters are prime.

Proof. Let e be the exporter of exportable set B. Let a ∈ B with ae 6∈ B.
(Such a exists by definition of exporter.)

Suppose that e is not a prime.
First, e 6= 1, because a1 ∈ B for all a ∈ B. So, e > 1, which means that

there exist positive integer f, g < e with e = fg.
Let u = af . Since f < e, we must have af ∈ B, and thus u ∈ B. Since

g < e, we must ug ∈ B, so ae ∈ B, since ae = afg = (af)g = ug. This is a
contradiction, the condition ae 6∈ B.

Therefore e must be prime.

Definition B.3.4. The exportability of a semigroup S is an ordinal num-
ber that is the least upper bound of all exporters of exportable subsets of
S.

Diversion B.3.7. The least upper bound definition implies the following special cases.

• If there are no exporters, then exportability is 0.

• If exporters can be arbitrarily large, then exportability is ω (the smallest infinite
ordinal).

166 APPENDIX B. SEMIGROUP BASICS

• Otherwise, the exportability is a prime number.

Diversion B.3.8. If Fp is a finite field of size p, then its additive semigroup F +
p has

exportability p.
To see this, first consider B = {1, . . . , p − 1}. The set B is exportable because the

scalar multiple pa = 0 6∈ B, for any a ∈ B. The exporter of B is p, because if positive
integer e < p, then ea ∈ B for all a ∈ B. Therefore, the exportability of F + is at least p.

Consider any exportable subset B of F +. Let e be the exporter of B, and suppose
that a ∈ B but ea 6∈ B. Suppose that e > p. Then ea = (e − p)a, since addition is modulo
p. But e − p is a positive integer and less than e, contradicting the assumption that e is
the exporter of B. So e ≤ p.

Therefore, p is the exportability of F +
p .

Diversion B.3.9. The exportability of a semigroup is zero if only and only if all elements
are idempotents, meaning a2 = a, as show below.

If the exportability is 0, then there are no exporters and no exportable sets. In
particular, set B = {a} is not exportable for any a, so a2 ∈ B meaning a2 = a.

Conversely, if all a are idempotent, then a = a2 = a3 = . . . , so ae = a for all a. If is
any set B, then ae ∈ B, for all a ∈ B, so B is not exportable. There exists no supporters,
so 0 is an upper bound on the set of exporters, and exportability is zero.

Diversion B.3.10. To be revised.
Exportability seems to share some properties with cardinality. If S is a finite semigroup

of size s, then the exportability of S is at most s. If T is a subsemigroup of S with
exportability t, then S has exportability at least t. If S has an element of infinite order,
then S has exportability of ω.

Maybe also: if T is an image of S (under a surjective semigroup morphism), the S has
exportability at least that of T ?

Diversion B.3.11. Consider the additive cyclic group C+
n of size n, which is integers under

addition modulo n. Also allow for n = 0 for the empty semigroup. The exportability en

of C+
n for small n seems to be as indicated below:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
en 0 0 2 3 3 5 5 7 5 3 5 11 7 13 7 7 5 17

If these numbers are correct, the fact that the sequence above has not yet appeared in the
Online Encyclopedia of Integers Sequences (OEIS), suggests that the notion of exporta-
bility is not yet widely known. (If the notion is known, then it likely has a completely
different name.)

For all n, we have en ≤ n. For prime n, we have en = n, while it seems that e3m = 3
for all m, so the values of en seem to fluctuate between 3 and n, hitting both top and
bottom for arbitrarily large n.

Diversion B.3.12. Exportability may be most interesting when applied to medial mag-
mas, where it has some similar properties.

B.3. POWERS AND LOGARITHMS 167

Diversion B.3.13. A set B is non-exportable if and only if it is power-closed, meaning
closed under the powering operation.

Power-closed sets define the power topology on S by taking the topologically closed
sets to be the power-closed sets. This defines a topology because power-closed sets meet
the topological axioms for closed sets: {} and S are power-closed, the finite union of power-
closed sets is close, and the arbitrary intersection of power-closed sets is power-closed.

Typical topological questions can then be asked. For example, in the power topology,
the additive semigroup Q+

> is connected, but Q+
≥0 is disconnected.

Moreover, an arbitrary union of power-closed sets is also power-closed is also power-
closed. Therefore, the power-closed sets can form the open sets of another topology, the
open-power topology.

A set B is power-closed if and only if it is the union of subsemigroups. Therefore, in
the open-power topology, subsemigroups form a basis for the open sets.

B.3.3 Powering sets

Powering generalizes to powers of sets. Probably the most important gener-
alization is the following.

Definition B.3.5. A power Bn of a subset B of a multiplicative semigroup
to positive integer n is the set:

Bn = {b1b2 . . . bn : bi ∈ B} (B.3.4)

Diversion B.3.14. The set 2S of subsets of S forms a semigroup under multiplication of
sets, and Bn is the power of B in semigroup 2S .

Diversion B.3.15. In additive semigroups, we can write nB instead of Bn, if clear from
context.

Diversion B.3.16. We generally do not attempt to define Bn for value of n that are not
positive integers.

A narrower way to define a power of a set is sometimes useful to consider.

Definition B.3.6. An elemental power B[n] of a subset B of a semigroup
to positive integer n is the set:

B[n] = {bn : b ∈ B}. (B.3.5)

Diversion B.3.17. In an additive semigroup, write [n]B instead of B[n].

Diversion B.3.18. If necessary to avoid confusion with elemental powers, call Bn a gen-

erative or factorable power.

168 APPENDIX B. SEMIGROUP BASICS

The two types of powers of B are always related by

B[n] ⊆ Bn. (B.3.6)

If |B| = 1, then B[n] = Bn.

Diversion B.3.19. Some of the usual powering rules from standard arithmetic also apply
to set-powers, such as:

(Bm)n = Bmn,

BmBn = Bm+n,

(B[m])[n] = B[mn].

In commutative (or medial) semigroups, the two operations also commute as in

(Bm)[n] = (B[n])m.

Diversion B.3.20. A set B is exportable if B[e] * B for some positive integer e.

Diversion B.3.21. A set B has Be * B if and only if B is not a subsemigroup. If B is
not subsemigroup, then the least e such that Be * B is always 2. In other words, the idea
of exportability based on generative powering, has a more trivial result

It is also possible to defines powers in which the exponents or degrees are
sets of positive integers, as in:

BN = {b1 . . . bn : bi ∈ B, n ∈ N}, (B.3.7)

B[N] = {bn : b ∈ B, n ∈ N}. (B.3.8)

B.3.4 Powering arrays (cyclically)

The following notation, generalizing powering, might sometimes be conve-
nient:

[a0, . . . , am−1][e0,...,et−1] =
t−1∏

i=0

aei

i mod m. (B.3.9)

This is always defined in a semigroup if t, m > 0 and all ei > 0. Letting
a = [a0, . . . , am−1] and e = [e0, . . . , et−1], we can write this as ae, and call
it the cyclic power of a to the e, because the indices of the ai are treated
cyclically modulo m.

Diversion B.3.22. As an example of cyclic powering,

[a, b][1,2,1,1,2,1] = abbabaab.

B.3. POWERS AND LOGARITHMS 169

Diversion B.3.23. Cyclic powering is most useful when m = 2, for several reasons.
For example, 〈a, b〉 = {[a, b]e, [b, a]e : e ∈ P∗} (where e ranges over all arrays of positive

integers).

Diversion B.3.24. Cyclic powering obeys a calculus similar to the calculus for the usual
powering.

For example, [a, b]e[b, a]f = [a, b]g, where g is easily determine by concatenating the
arrays e and f except for possibly adding the last entry to e to the first of f if e has an
even length, as in

[a, b][1,1][b, a][1,1] = [a, b][1,1+1,1] = [a, b][1,2,1]

[a, b][1,2,1][b, a][1,2,1] = [a, b][1,2,1,1,2,1]

[a, b][1,2,1,1,2,1][b, a][1,2,1,1,2,1] = [a, b][1,2,1,1,2,1+1,2,1,1,2,1] = [a, b][1,2,1,1,2,2,2,1,1,2,1].

Recursive strategies for computing co-multiples of a and b, or for cross-multiplying a and
b, can be described using cyclic powers similar to those above.

Diversion B.3.25. We can extend the definition of cyclic powering to allow some zero
(or negative) entries in e in two different ways.

• If all the factors aei

i are well-defined then the definition can be used as is. We
usually only define b0 as b0 = bb−1 and define b−1 if b−1 is a co-mutual inverse of b
(see §B.7.4).

• If all ei > 0, then we can treat any ei = 0 as being absent from the product,
effectively being equivalent to 1 (even if 1 6∈ S). As long as one entry is nonzero,
then this is defined.

These two extensions of cyclic powering might not agree, in some cases. Consider [a, b][1,0].
The first extension gives ab0 and the second gives a, which might not be equal.

Diversion B.3.26. A more general notation is:

[a1, . . . , am]
[e1,...,et]
[j1,...,jt] =

t∏

i=1

aei

ji
.

Cyclic powering is a special case of this notation, with

[a1, . . . , am][e1,...,et] = [a1, . . . , am]
[e1,...,et]
[1,...,m,1,...,m,...]

where the subscripted array on the right cycles through [1, . . . , m], repeating as necessary.

B.3.5 Magma powering and products

To be revised.

170 APPENDIX B. SEMIGROUP BASICS

Occasionally, a generalization powering in a non-associative magma is
needed. In repeated multiplication is ambiguous, one must specify the order
of multiplications: in left powering multiply on the left first, which is
defined inductively by a1 = a and an+1 = (an)a; right powering is defined
by a1 = a and an+1 = a(an). Default to left powering, unless otherwise
noted.

In general, powering in a magma does not obey the familiar rules. How-
ever, in a medial magma, meaning a magma obeying the axiom:

(ab)(cd) = (ac)(bd), (B.3.10)

powering obeys the rule (am)n = amn, which is a special case of a more general
result about medial magmas: changing the order of products, defined below.

Definition B.3.7. In multiplicative magma M , define the left product:

∏

: Mn → M : [a1, . . . , an] 7→
n∏

i=1

ai (B.3.11)

inductively on n by the rule:

1∏

i=1

ai = a1 (B.3.12)

n+1∏

i=1

ai =

(
n∏

i=1

ai

)

an. (B.3.13)

Diversion B.3.27. The right product can be defined similarly, but then some notation
would be needed to distinguish the two products.

The left power, for example, is related to the left product by the rule

an =
n∏

i=1

a =
∏

[a, a, . . . , a
︸ ︷︷ ︸

n copies of a

]

It is well-known (and widely known?) that a medial magma, the order of
products can be swapped:

Lemma B.3.2. For any matrix of value ai,j in a medial magma,

m∏

i=1

n∏

j=1

ai,j =
n∏

j=1

m∏

i=1

ai,j. (B.3.14)

B.3. POWERS AND LOGARITHMS 171

Proof. Induction on pairs [m, n].
If 1 ∈ {m, n} and the inner product on one side becomes an identity

function, while the outer product on the other side vanishes. So both sides
become a single product, the same single product.

Otherwise, m − 1, n − 1 ≥ 1, and we assume by induction that the result
holds for pairs [m − 1, n], [m, n − 1] and [m − 1, n − 1]. Calculating,

m∏

i=1

n∏

j=1

ai,j =

m−1∏

i=1

n∏

j=1

ai,j

n∏

j=1

am,j

=

n∏

j=1

m−1∏

i=1

ai,j

n∏

j=1

am,j

=

n−1∏

j=1

m−1∏

i=1

ai,j

m−1∏

i=1

ai,n

n∏

j=1

am,j

=

n−1∏

j=1

m−1∏

i=1

ai,j

(
m−1∏

i=1

ai,n

)

n−1∏

j=1

am,j

 am,n

=

n−1∏

j=1

m−1∏

i=1

ai,j

n−1∏

j=1

am,j

((
m−1∏

i=1

ai,n

)

am,n

)

=

n−1∏

j=1

m−1∏

i=1

ai,j

n−1∏

j=1

am,j

m∏

i=1

ai,n

=

m−1∏

i=1

n−1∏

j=1

ai,j

n−1∏

j=1

am,j

m∏

i=1

ai,n

=

m∏

i=1

n−1∏

j=1

ai,j

m∏

i=1

ai,n

=

n−1∏

j=1

m∏

i=1

ai,j

m∏

i=1

ai,n

=
n∏

j=1

m∏

i=1

ai,j ,

where the equation between the two longest expressions uses the medial prop-
erty of the magma, the equations between expressions of different lengths
uses the definition of left product, and the remaining equations use inductive
swapping of order of products.

172 APPENDIX B. SEMIGROUP BASICS

Diversion B.3.28. Exportable subsets, exporters and exportability can be defined for
magmas, by using left powers. In medial magmas, exporters are prime, because the proof
really only involves the power-composition law.

B.3.6 Discrete logarithms

Logarithms, a kind of opposite of exponentiation, are sometimes useful in
semigroup algorithms.

Definition B.3.8. A discrete logarithm of d to base b (in a multiplicative
semigroup) is a positive integer n such that:

dn = b. (B.3.15)

The (smallest) discrete logarithm of d to b is defined as:

logb(d) = min{n : dn = b, n ∈ {1, 2, 3, . . .}}. (B.3.16)

Diversion B.3.29. When clear from context, we call logd(b) the discrete logarithm (drop-
ping the term smallest). If there are no discrete logarithms, then the definitions would
suggest logd(b) = ∞, but generally, we instead say that the discrete logarithm is undefined.

Diversion B.3.30. The discrete logarithm can be considered as partial function log :
S2 → P+ : [b, d] 7→ logb(d), which is only defined for the domain of pairs [b, d] with d ∈ 〈b〉,
which is only a subset of S2. The discrete logarithm maps these pairs into an additive
semigroup P+ of positive integers.

For each fixed b: the discrete logarithm defines a function logb : 〈b〉 → P+ : bn 7→ n. If
〈b〉 is infinite, then this function is an isomorphism. If 〈b〉 is finite, the discrete logarithm
can be used to induce a semigroup congruence on P+.

Diversion B.3.31. In additive semigroups, and more generally any non-multiplicative
semigroups, define discrete logarithms in the same way.

The discrete logarithm terminology and notation potentially clashes with additive
notation and terminology, although in the case of elliptic curve cryptography, this clashes
has seemed quite manageable.

If the clash somehow becomes too problematic, then, as a last resort, alternative
terminology could be used. In the additive setting, one could say (discrete) scalar division
instead of discrete logarithm, and perhaps write d/+b, where the subscript + serves to
distinguish proper division if there is a multiplication operation acting on the same set of
S+.

Diversion B.3.32. In a magma, discrete logarithms can be defined, or qualified, by se-
lecting the type of powering used, such as left powering.

B.3. POWERS AND LOGARITHMS 173

Diversion B.3.33. Some semigroups S, have a type of logarithm that is more general
than the discrete logarithm. For example, the semigroup R>0 positive real numbers under
multiplication, have the continuous logarithm, a function log : R2

> → R+. obeying
various rules, some shared with the discrete logarithm, such as logb(de) = logb(d)+logb(e).

The discrete logarithm, where defined, equals the the general logarithms. Conversely,
wherever the more general logarithm takes positive integer value, they the more general
logarithm equals the discrete logarithm.

B.3.6.1 Aside: logarithms of sets

To be revised.
This subsection digresses from division, by considering the generalization

discrete logarithms to subsets of semigroups.
Discrete logarithms of subsets may reveal something about the general

structure of a semigroup, even if they do not directly lead to division algo-
rithms.

First this section addresses various directions along which one can gener-
alize discrete logarithms to sets.

Matching sets This section generalizes the equation to be = d from an
equality to various possible relations between sets.

Let C and D be sets (where C = Be or C = B[e], in the intended appli-
cations). We consider four ways in which C and D be considered a match:

C = D, (B.3.17)

C ⊆ D, (B.3.18)

C ⊇ D, (B.3.19)

C ∩ D 6= ∅. (B.3.20)

We could potentially name these matching schemes, exacting, embedding,
covering, and meeting. When C = {c} and D = {d}, then these four
matching schemes are identical.

We could then name set-logarithm according to the type of matching
scheme.

As a convenience to discuss all four possibilities in parallel, such as when
defining the set-logarithm, we write C ∼ D, to mean that ∼ is to be replaced
later by one of these matching schemes.

For the most part, we default to the meeting scheme, so the set-logarithms
are determine by Be ∩ D 6= ∅.

174 APPENDIX B. SEMIGROUP BASICS

Logarithm sets and discrete logarithms of sets The logarithm-set
of D to the base B is written and defined as

logB(D) = {e : Be ∼ D}.

The logarithm-set is elemental or factorable depend on whether the power
means Be = B[e] or Be = B〈e〉. The logarithm-set is exacting, embedding,
covering or meeting depending on the meaning of ∼. We default to meeting.

Each e ∈ logB(D) can be called discrete logarithm of D to base B. A
positive integer e is a discrete logarithm of {d} to base {b} if and only if e
is a discrete logarithm of d to base b. Therefore, a generalization has been
achieved.

For convenience, write logB(d) = logB({d}) and logb(D) = log{b}(D).
Recall that 〈B〉 denotes the smallest subsemigroup of S containing B.

Then d ∈ 〈B〉 if and only log◦
B(d) 6= ∅.

The logarithm-set has the following super-additive property:

logB(dg) ⊇ log◦
B(d) + log◦

B(g),

since if e ∈ logB(d) and f ∈ logB(g), then d = b1 . . . be and g = be+1 . . . be+f

for some bi ∈ B, so dg = b1b2 . . . be+f . We also have bound

B ⊆ C =⇒ logB(d) ⊆ logC(d).

Canonical discrete logarithms A logarithm-set can contain many dis-
crete logarithms, but often one particular discrete logarithm is most inter-
esting and canonical, and perhaps deserves to be the called the discrete
logarithm.

Often, the most important discrete logarithm is the minimum-logarithm
written and defined:

logmin
B (D) = min(logB(D)), (B.3.21)

which is only defined if logB(D) 6= ∅. If we refer to the discrete logarithm,
we by default refer to the minimum-logarithm. Similarly, if context, such as
formula, implies that logB(D) is a positive integer rather than a set, then, by
default logB(D) is just an abbreviation for logmin

B (D), with the superscript
min being omitted and implicitly meant.

The infimum-logarithm logmin
B (D) is defined just like minimum-logarithm,

except that if the logarithm-set is empty (logB(D) = ∅), then we define

B.3. POWERS AND LOGARITHMS 175

loginf
B (D) = +∞. In this latter case, the infimum-logarithm is not truly a

discrete logarithm.
The supremum-logarithm is defined as logsup

B (D) = sup(logB(d)), with
the convention that sup(∅) = −∞ and sup(E) = +∞ if E is not bounded
above.

The super-additivity of the logarithm-set results in numerical bounds for
these operations:

loginf
B (dg) ≤ loginf

B (d) + loginf
B (g),

logsup
B (dg) ≥ logsup

B (d) + logsup
B (g).

Case study: the sup-log The supremum-logarithm is perhaps most in-
teresting when B = S and S has no identity element (so S is non-unital).
For brevity, we call supremum-logarithm to the base S the sup-log, or gen-
eration, of d ∈ S. The sup-log is never −∞.

Diversion B.3.34. If S is unital, then the supremum-logarithm to base S is always +∞,
because d = 1ed for all positive integers e.

If d = dp+1, for some positive integer p (which is to say that d is periodic
or has torsion, per Def. B.4.5), then the sup-log of d is necessarily ∞.

In associative key agreement, the key has sup-log at least 3, the deliveries
at least 2.

Diversion B.3.35. The notion of sup-log was first learned by the report author in reading
Distler’s work [Dis10] on nilpotent semigroups. This report uses different terminology, but
the same notion. The following interesting observations are probably also from Distler’s
work:

• An element d with sup-log e < ∞ can factored as elements d = d1 . . . de where each
di has sup-log 1.

• The elements with sup-log ≥ e form a subsemigroup, namely Se if e < ∞. Let S∞

indicates the subsemigroup of all elements with sup-log equal to ∞.

• If d has finite sup-log e, then logsup
Se (d) = 1. If d has sup-log ∞ and logsup

S∞(d) is
finite, then it seems that such recursive sup-logs might be useful to understanding
the place of d in S.

Case study: elemental logarithms and exportability To be revised.
Some of material originally was moved earlier.

The elemental minimum-logarithm logmin
B (D) is also the minimum of the

discrete logarithms logb(d) for b ∈ B and d ∈ D.

176 APPENDIX B. SEMIGROUP BASICS

The special case where D is the complement S − B of B says something
interesting about B.

The (elemental) exporter is the elemental, meeting, minimum-logarithm
of the complement S − B of B, to the base B.

To be completed.

B.4 Subsemigroups

Definition B.4.1. A subsemigroup of semigroup S (or a submagma of
a magma S) is any subset T ⊆ S closed under the binary operation of the
semigroup (or magma). When clear from context, write

T ≤ S

to mean that T is a subsemigroup of S.

Diversion B.4.1. Another way to characterize subsemigroup of S is a subset T that is
also a semigroup (where the binary operation on elements of T is the binary operation of
S).

Diversion B.4.2. Another way to characterize subsemigroups (in a multiplicative semi-
group) is with set-multiplication (§B.1.4). We have T ≤ S if and only if {ab : a, b ∈ T } =
T 2 ⊆ T ⊆ S (provided that the multiplication used for elements of T is the same as would
used in S).

Similarly, in an additive semigroups S+, we have T + ≤ S+ if and only if 2T + ⊆ T + ⊆
S+.

Diversion B.4.3. Every non-empty semigroup S (or magma) has at least two distinct
subsemigroups (or submagams): {} and S.

(In an empty semigroup, these two subsemigroups are the same.)

Diversion B.4.4. Forming subsemigroups is an important method to construct new semi-
groups form old semigroups. Several examples of such constructions are given in the
appendices.

Diversion B.4.5. Subsemigroups of groups are not necessarily subgroups. For example,
positive integers forms a subsemigroup of the group of integers, but positive integers do
not from a subgroup.

B.4.1 Generated sets

A special case of subsemigroups is common, general and basic enough to
mention here.

B.4. SUBSEMIGROUPS 177

Definition B.4.2. The set generated by a subset B ⊂ S of a multiplicative
semigroup is:

〈B〉 = {b1b2 . . . bn : bi ∈ B, n ∈ {1, 2, 3, . . . }}. (B.4.1)

For a finite set B = {b1, . . . , bm}, write 〈B〉 = 〈b1, . . . , bm〉.
Diversion B.4.6. In group theory, a different meaning of generated set is used, by al-
lowing inverses, and this could lead to confusing clashes of notation. This report uses the
notation above, but outside the report, the group theory notation may have precedence.
So, outside this report, an explanation of the exception distinction for semigroup-generated
and perhaps a notation such as 〈B〉× may be needed.

Diversion B.4.7. Set-powering (§B.3.3) can also be used to describe generated sets:

〈B〉 = B ∪ B2 ∪ B3 ∪ · · · =
⋃

n≥1

Bn (B.4.2)

Lemma B.4.1. A generated set is subsemigroup (or submagma):

〈B〉 ≤ S.

Proof. Suppose that a, c ∈ 〈B〉. Then a = b1b2 . . . bm and c = bm+1 . . . bm+n

for some positive integers m, n, and some elements bi ∈ B. Then ac =
b1b2 . . . bm+n ∈ 〈B〉. So, 〈B〉 is closed under multiplication.

Diversion B.4.8. The intersection of an arbitrary family of subsemigroups (or sub-
magma) of S is a subsemigroup (submagma) of S. So,

〈B〉 =
⋂

T :B⊆T ≤S

T. (B.4.3)

This formula is more theoretical than (B.4.1) or (B.4.2), because it runs over an index T
of subsemigroups which is potentially quite large. In some cases, it is an intersection over
uncountably many differentT .

By comparison, in the definition of 〈B〉, the index n runs over the countable set of
positive integers, and depends in no way on the elements of S that are outside of B.

For these reasons, we have taken the generated set as the definition of 〈B〉 rather than
the intersection of containing subsemigroups.

Diversion B.4.9. In practice, a subsemigroup T is most easily described T = 〈B〉. In
this case, B is called a set of generators for T , or a generator set for T .

Every subsemigroup has itself for a set of generators: T = 〈T 〉, but such a description
is not useful.

Using generator sets to describe subsemigroups is most useful when the generator sets
are small, such a finite, or at least much smaller than the subsemigroup itself.

Given a description of a (sub)semigroup, it may be difficult to find small generator
sets.

178 APPENDIX B. SEMIGROUP BASICS

Diversion B.4.10. A given subsemigroup potentially has many different generator sets,
so the generator set does not provide a unique method to describe to a subsemigroup.

Given two subsets B, C ⊆ S of a semigroup, it may be difficult to tell if 〈B〉 = 〈C〉.

Diversion B.4.11. Some semigroups S have minimal set G of generators for S. A minimal
set G of generators is such that 〈G〉 = S, but 〈H〉 6= S for all H ⊂ G.

Diversion B.4.12. For a simple example of a semigroup without a finite generator set,
let S+ = {[x, y]|x, y ∈ Z; 0 ≤ y ≤ x2; 0 ≤ x ≤ y2}, with vector addition, defined as usual:
[x, y] + [x′, y′] = [x + x′, y + y′].

In fact, this S+ seems to have a unique minimal generating set with elements [0, 0],
[1, 1], and [n, m] and [m, n] with n ≥ 1 and (n − 1)2 + 2 ≤ m ≤ n2.

B.4.2 The complete lattice of subsemigroups

The subsemigroups of S form a complete lattice.
Recall that a complete lattice is a partial order in which every subset has

a unique infimum (meet) and a unique supremum (join).
The unique infimum of a set of subsemigroups is their intersection. The

unique supremum of a set of subsemigroups is the set generated by the union
of the subsemigroups (so all products with factors in the union of the set of
subsemigroups).

The join-irreducible subsemigroups are those generated by a single el-
ement, as in 〈b〉 for b ∈ S, because these are not the join of different sub-
semigroups. The minimal non-empty semigroups of S are the subsemigroups
generated by idempotent elements.

Dually, a question of potential interest are the maximal proper subsemi-
group of S, and the meet-irreducible subsemigroups. Intuition from geometry
suggests that some meet-irreducible subsemigroups are defined by a single
equation.

B.4.3 Order, period, and torsion

Definition B.4.3. The order of an element a of a semigroup S is

ord(a) = |〈a〉| = #{a, a2, a3, . . . }, (B.4.4)

in other words, the cardinality of the smallest subsemigroup containing a.

Strictly speaking, if a has infinite order, then its order is ℵ0, the smallest
countable cardinal number. But the order can never be a larger infinite
cardinal, so writing ∞ for the order is usually clear enough.

B.4. SUBSEMIGROUPS 179

Diversion B.4.13. In some contexts, it is convenient or clearer to use other notations for
order, such as |a|, or ‖a‖ or ρ(a).

Diversion B.4.14. In non-multiplicative semigroups, order is defined by suitable trans-
lation of notations.

If an additive and multiplicative semigroup have overlapping sets, the we can refer
to the additive order and multiplicative order of elements. The term order alone
defaults to multiplicative order.

Notationally, write ord+(a) for the additive order, if needed to avoid confusion with
multiplicative order ord(a).

Diversion B.4.15. Order of element a can also be defined in a magma as ord(a) = |〈a〉|,
the cardinality of the submagma generated by a.

The order in a magma can be larger than the number of distinct (left) powers of a,
because magma multiplication is non-associative, meaning that iterated powers of a are
not the only elements generated by a.

Diversion B.4.16. Outside this report, the word order sometimes has other meanings.
If necessary, then this report’s meaning can be called generated order or generated

size, to avoid a clash with other meanings.

The following obvious result is useful (though the proof may be sub-
optimal).

Lemma B.4.2. If a in a multiplicative semigroup has finite order, then

〈a〉 = {a, a2, . . . , aord(a)},

and all entries of the array [a, a2, . . . , aord(a)] are distinct.

Proof. Let n = ord(a), and let A = {a, a2, . . . , an}. By definition, A ⊆ 〈a〉,
so A has at most n elements. If |A| = n, then A is as large as 〈a〉, so A = 〈a〉,
and we are done.

Otherwise, A has fewer than n elements, which we aim to show leads to
a contradiction. In this case, some two elements of the array [a1, a2, . . . , an]
are equal, say am = am+p for positive integers m, p with m + p ≤ n. Then,
for any non-negative integer q,

am+p+q = am+(q mod p),

by induction. (In more detail, let r = q mod p and let q = up + r for some
non-negative integer u. Then am+p+q = am+p+up+r = am+paup+r = amaup+r =
am+up+r. If u = 0, then this is am+r as desired. Otherwise, u ≥ 1, and by
induction, this is am+p+(u−1)p+r = am+r by induction on u.)

180 APPENDIX B. SEMIGROUP BASICS

Therefore,
〈a〉 ⊆ {a1, . . . , am+p−1}.

Hence ord(a) ≤ m + p − 1. But m + p − 1 < m + p ≤ n = ord(a), so we get
a contraction ord(a) < ord(a).

Diversion B.4.17. Clearly, all elements in a finite semigroup have finite order. The
converse can fail, but if all elements of S have finite order, then we could say that S is
element-locally finite.

(Another, stronger, meaning of locally finite is that every finite set generates a finite
subsemigroup.)

Finite order elements have powers that eventually repeat, meaning that
the sequence of powers eventually periodic, hence the following definition.

Definition B.4.4. A periodicity of a finite-order element a of a multiplica-
tive semigroup is a positive integer p such that

am = am+p (B.4.5)

for some positive integer m. The period per(a) of a it its smallest periodicity.

Diversion B.4.18. An integer is a periodicity if only and only if it is a positive multiple
of the period. The period is the greatest common divisor of all the periodicities.

Diversion B.4.19. Outside this reports, semigroup elements with period 1 are sometimes1

called aperiodic.

A very special case of finite order elements are those which appear in the
repeating sequence of their powers, as defined below.

Definition B.4.5. A torsion element is an element a such that a = ap+1

for some positive integer p.

Diversion B.4.20. Although the report’s term torsion aims to generalize the meaning
of torsion in the setting of groups and rings, it very likely conflicts with precedents in
semigroups theory (either different names for the same notion, or different meanings of
torsion, or both).

This report prefers the term torsion is over periodic, partly because periodic has
many other useful meanings, as periodic functions, but also because torsion is used more
often in group and ring theory.

The term cyclic would also be very logical, but it is occasionally used in group theory
to describe groups generated by a single element, including the infinite order group Z+,
which clashes with our intended notion of finite order.

1Somewhat confusingly.

B.4. SUBSEMIGROUPS 181

If a ∈ S belongs to a subsemigroup T such that T is also a finite group,
then a is a torsion element. The converse holds (which will be shown in the
section on inverses).

An alternative characterization of torsion elements is the following.

Lemma B.4.3. An element a is a torsion element if and only if ord(a) =
per(a) < ∞.

Proof. To be completed.

Diversion B.4.21. If a has finite-order, then we define the coma of a as its order minus
its period: ord(b) − per(b).

The coma c of a is the least non-negative integer such that ac+1 = ac+1+p for some
positive integer p.

An element is a torsion element if and only if its coma is zero.
Mnemonics for terms period and coma are the allusions to comets, and to punctua-

tion. Other names for coma include index, height, depth, tail-length, and so on.

Diversion B.4.22. The idempotency degree of a is least positive integer ω such that
aω is idempotent, if such an integer exists. If a has period p and coma c, then

ω = p

⌈
c + 1

p

⌉

= (c + p) − (c mod p).

For a given idempotency degree ω, it will be true that p|ω and c = ω − γ for a positive
integer γ ≤ p. All such p and γ and c can occur.

B.4.4 Aside: local and global properties

WRONG. NEEDS MAJOR RE-WORKING!
The next abstraction tries to formalize special types of properties, either

of semigroups, or of their elements, according to how the properties behave
under subsemigroups.

Definition B.4.6. A set C set of subsemigroups of a semigroup S is

• local in S if T ≤ U and T ∈ C implies U ∈ C for all U ≤ S, and

• global in S if T ≥ U and T ∈ C implies U ∈ C for all U ≤ S.

For example, the set of commutative subsemigroups is global in S, and
the set of subsemigroups containing specific element is local in S.

182 APPENDIX B. SEMIGROUP BASICS

Diversion B.4.23. The notions of local and global apply equally well to sets of submag-
mas of a magma, and to similar properties.

If set C is both local and global in S, then C is either empty or is the set
of all subsemigroups, because S and {} are subsemigroups.

Diversion B.4.24. Outside this report, the term local has many other meanings, de-
pending on the context.

The closest context may be in commutative algebra, where it refers to various related
properties, including having at most one maximal ideal, and to the formation rings of
fractions with denominators from a prime ideal.

B.4.4.1 Relatively local and global

A set C is local relative to a set D if:

T ≤ U, T ∈ C, U ∈ D =⇒ U ∈ C. (B.4.6)

So, in particular, a set C is local in S if and only if it is local relative to all
the subsemigroups of S.

Similarly, a set C is global relative to a set D if:

T ≥ U, T ∈ C, U ∈ D =⇒ U ∈ C. (B.4.7)

B.4.4.2 Element properties

An element property P is a class of pairs [S, a] where S is a semigroup,
and a is an element. For each [P, S, a], define a set C = CP,S,a = {T : T ≤
S, [T, a] ∈ P }, which is a set of subsemigroups of S.

An element property is local if C is local in S for all [S, a]. An element
property is global if C is global in S for all [S, a]. An element property is
intrinsic if it is both local and global.

Membership is an element property consisting of all pairs [S, a] such that
a ∈ S. Membership is local.

An element property P is local relative to element property Q if CP,S,a

is local relative to CQ,S,a for all [S, a]. An element property P is global
relative to element property Q if CP,S,a is global relative to CQ,S,a for all
[S, a]. An element property P is intrinsic relative to element property Q
if CP,S,a is both local relative to CQ,S,a and global relative to CQ,S,a.

An element property is relatively local if it is local relative to mem-
bership. An element property is relatively global if it is global relative to

B.4. SUBSEMIGROUPS 183

membership. An element property is relatively intrinsic if it is intrinsic
relative to membership.

Middle-invertibility, also known as regularity, is an element property con-
sisting of all pairs [S, b] such that b ∈ S and there exists q ∈ S such that
bqb = b. Middle-invertibility is relatively local, but is not relatively global.
For example, 2 is invertible in the rationals, but not in the integer subsemi-
group.

Identity is an element property consisting of pairs [S, e] such that e ∈ S
and ea = ae = e for all a ∈ S. Identity is relatively global, but is not
relatively local. For example, 0 is not a multiplicative identity in the integers,
even though it is an identity in the subsemigroup {0}.

Idempotency is an element property consisting of pairs [S, e] such that
e ∈ S and e2 = e. Idempotency is relatively intrinsic. For example, both
0 and 1 are idempotent in the rationals (under multiplication), and also in
every subsemigroup of the rationals (such as non-negative integers), and in
every semigroup containing the rationals (such as complex analytic functions,
which contains the rationals as constant functions).

Diversion B.4.25. A heuristic for a relatively local element property is that its logical
formula has no universal quantifiers (over a semigroup).

A heuristic for a relatively global property is that its logical formula has no existential
quantifiers (over a semigroup).

B.4.4.3 Semigroup properties

To be completed.

A semigroup property P is a class of semigroups S. For each [P, S],
define a set C = CP,S = {T : T ≤ S, T ∈ P }. A semigroup property is local
is C is local in S for all S. A semigroup property is global is C is global in
S for all S.

Commutativity is a semigroup property consisting of all semigroups S
such that ab = ba for all a, b ∈ S. Commutativity is global, but not local.
For example, real numbers under multiplication are commutative, but their
extension to quaternions is not.

For a local semigroup property example, let P consist of all semigroups
S in which there exists elements b, q ∈ S such that bqb = b. This property
is local but not global. For example, P includes semigroup Q of rationals
under multiplication, by setting [b, q] = [2, 1

2
], but P does not includes a

subsemigroup S of Q formed of the integers larger than one, since bqb > b

184 APPENDIX B. SEMIGROUP BASICS

for all integers b, q > 1.
Finiteness is global semigroup property, and infiniteness is a local semi-

group property. More generally, upper bounds on cardinality are global,
lower bounds local.

Being a finite group is a global semigroup property, but being a group is
not. For example, the semigroup of positive rationals under multiplication is
a group, but its subsemigroup of rationals larger than one is not a group.

B.4.4.4 Operator properties

To be completed.
An operator property P is a class of pairs [S, f] where S is a semigroup,

and f is any function of the form f : Sm → Sn. If T ≤ S, let fT : T m →
T n : [t1, . . . , tm] 7→ f(t1, . . . , tm) if f(T m)〈T n, otherwise f |T denotes an error
not equal to any function. For each, [P, S, f], define a set C = {T : T ≤
S, [T, fT] ∈ P }. An operator property is local is C is local for all [S, f], and
global if C is global for all [S, f].

B.4.4.5 Localization and globalization

To be completed.
The localization in S of a set of C of subsemigroups of S is the set of

C− = {T ≤ S : ∃U ∈ C, U ≤ T}. The localization is local.
The globalization in S of a set of C of subsemigroups of S is the set of

C+ = {T ≤ S : ∃U ∈ C, U ≥ T}. The globalization is global.
To do: define localization and globalization of properties. The possi-

ble aim are things like this: idempotency is the localization of the identity
element property.

B.5 Morphisms

Morphisms, functions preserving structure in a category of mathematical
object, are now quite central to the modern algebra.

Definition B.5.1. A morphism between semigroups (or magmas) S and
T is a function µ : S → T such that

µ(ab) = µ(a)µ(b) (B.5.1)

B.5. MORPHISMS 185

for all a, b ∈ S.

Each morphism has an image:

Definition B.5.2. The image of a morphism µ is the set µ(S) = {µ(a) :
a ∈ A}.

Lemma B.5.1. The image of morphism is a subsemigroup (submagma).

Proof. Observe µ(S) = µ(S2) = µ(S)µ(S), so µ(S) is closed under multipli-
cation, so µ(S) ≤ T .

B.5.1 Congruences

Morphisms will be shown (in the next section) to be closely related to the
notion of congruences and quotients (defined in this section).

Definition B.5.3. A congruence on a semigroup (or magma) S is an equiv-
alence relation ∼⊆ S2, such that

(a ∼ b) =⇒ ((ac ∼ bc)&(ca ∼ cb)) (B.5.2)

for all a, b, c ∈ S.

Write [a] for the equivalence class of a under congruence ∼.

Lemma B.5.2. The rule
[a][b] = [ab]

is well-defined, and associative if S is a semigroup.

Proof. The question of being well-defined means that [a][b] defines the same
equivalence class, no matter which representatives a and b of the equivalence
classes are chosen.

To answer this question of being well-defined, suppose that [a′] = [a] and
[b′] = [b], meaning a′ ∼ a and b′ ∼ b. Then

a′b′ ∼ a′b ∼ ab,

so [a′b′] = [ab]. If S is a semigroup, then

[a]([b][c]) = [a][bc] = [a(bc)] = [(ab)c] = [ab][c] = ([a][b])[c]

so associativity inherited directly.

186 APPENDIX B. SEMIGROUP BASICS

This leads to the definition:

Definition B.5.4. The quotient semigroup (or magma) S/ ∼ of semigroup
(or magma) S by congruence ∼ is the set of equivalence classes of ∼, with
multiplication of classes by multiplication of representatives.

The quotient semigroup is also called the congruence semigroup.

B.5.2 Natural morphisms and congruences

Each congruence defines a morphism:

Definition B.5.5. The natural morphism for a congruence ∼ on semi-
group (or magma) is the morphism to the quotient semigroup (or magma)

µ∼ : S → S/ ∼: a 7→ [a] (B.5.3)

where [a] is the equivalence class of a.

The natural morphism is surjective, and the image of the natural mor-
phism is the quotient semigroup.

Each morphism defines a congruence:

Definition B.5.6. The natural congruence for a morphism µ : S → T is
the relation defined

∼µ= {[a, b] : µ(a) = µ(b)}, (B.5.4)

so a ∼µ b if and only if µ(a) = µ(b).

The quotient semigroup for the natural congruence is isomorphic to the
image µ, under the isomorphism [a] 7→ µ(a).

Diversion B.5.1. The natural congruence of the natural morphism of a congruence is
the congruence itself, which could be written ∼µ∼

=∼ in slightly overloaded notation. The
natural morphism of the natural congruence of a morphism is the morphism is restricted
to the image, which could be written µ∼µ

= µ|µ(S) in slightly overloaded notation.

Diversion B.5.2. Unlike group theory or ring theory, there is no clear kernel of a mor-
phism. The natural congruence plays most of the role of a kernel.

B.5.3 Lattice of congruences

To be completed.
If ∼ and ≡ are congruence, then ∼ ∩ ≡ is a congruence.

B.5. MORPHISMS 187

The extreme congruences the identity relation (a ∼ b if and only a = b)
and the universal relation (a ∼ b for all a, b ∈ S).

In the identity relation, each class is a singleton set, so [a] = {a}. The
natural morphism a 7→ [a], for identity relation is an isomorphism, with
inverse [a] 7→ a.

In the universal relation, there is only one class, so [a] = S for all a ∈ S,
and the quotient group has only one element.

Diversion B.5.3. Even if S is empty, the quotient group under the universal relation has
one element.

B.5.4 Induced congruences

Definition B.5.7. The induced congruence of relation ρ on semigroup
(or magma) S is the smallest congruence ∼ρ such that ρ ⊆∼ρ.

The induced congruence always exists: just take the intersection of all
the congruences containing ρ. The universal congruence always contains ρ.

If clear from context, write S/ρ for S/ ∼ρ.

B.5.5 Mergers

Definition B.5.8. The merger semigroup of subset T ⊆ S is the quotient
semigroup of the congruence induced by the relation T 2.

In other words, the merger semigroup is the a semigroup derived from S
making all elements of subset T equivalent.

When clear from context, write the merger semigroup as S/T = S/ T 2.

B.5.6 Cosets

To be completed.

Definition B.5.9. A coset C of semigroup (or magma) S is a set C such
that there exist a ∈ S and a congruence ∼ for S such that

C = [a]. (B.5.5)

meaning that is an equivalence class of a congruence on S.

188 APPENDIX B. SEMIGROUP BASICS

B.5.7 Ideals

To be completed.

Semigroup theory often refers to a special type of subset of a semigroup.

Definition B.5.10. An ideal of semigroup (or magma) is a subset I such
that

SI, IS ⊆ I. (B.5.6)

In merger semigroup S/I, the set I is an equivalence class, so it is a coset,
and all other equivalence classes are singleton sets.

Diversion B.5.4. In S/I, the class I is an absorbing element (see later in the report). In
other words, I is the zero element of S/I.

Conversely, any set I that is a pre-image of 0 ∈ T in a morphism S → T is an ideal.

Diversion B.5.5. The term ideal is borrowed from ring theory, but not entirely consis-
tently.

For example, suppose that R is a ring, and I is a ring-theoretic ideal of the ring. Then
the quotient ring R/I can be define.

The inconsistency is that one generally has R×/I 6= (R/I)×. But (R/I)× is an image
of R×/I.

B.5.8 Normal subsets

To be revised.

Definition B.5.11. A normal set N of semigroup (or magma) S is a set
N such that there exist a morphism µ : StoT such that N = µ−1({1}).

Diversion B.5.6. The term normal subset aims to generalize the notion of a normal
subgroup from group theory.

If G is a group, and N is a normal subgroup of N . Then N is normal subset of G.

Diversion B.5.7. The whole set of S is the only subset that is normal and an ideal.

B.5.9 Miscellaneous features

Diversion B.5.8. The center Z of a semigroup S is the set of z such that zs = sz for
all s ∈ S. A semigroup is normally centered if the center is normal.

Diversion B.5.9. In the intersection of computability theory and algebra, there is a
following notion about monoids, which easily generalizes to semigroups.

B.6. IDEMPOTENTS 189

Let S and T be semigroups. Let R be a subset of S. We say that T can recognize R
if there is a semigroup morphism f : S → T such that R = f−1(f(R)). Every morphism-
pre-image in S is thus recognized.

A set recognized R is necessarily a union of congruent sets, since a congruent set is
simply a morphism-pre-image of singleton set.

A subset R of S is said to be recognizable if is recognized by a finite semigroup T .

Recognizable subsets of a finitely-generated free monoid are known as regular lan-

guages (this may be the Myhill–Nerode theorem).2

B.6 Idempotents

Some semigroups have special elements that act like 0 or 1 in standard arith-
metic.

Both 0 and 1 are examples of idempotents, which equal their squares. The
idempotents of a semigroup lead to a better understanding the semigroup’s
structure.

B.6.1 Identity elements

Some multiplicative semigroups have an element that generalizes the number
1 in standard arithmetic.

Definition B.6.1. An identity element of a semigroup (or magma) S is
an element e, such that ea = ae = e for all a ∈ S.

Diversion B.6.1. Identity elements are defined similarly for non-multiplicative semi-
groups, see §B.6.1.1.

Diversion B.6.2. When clear from context, we borrow the integer notation and write 1
for an identity element of a multiplicative semigroups S, if S has an identity element. If
we write 1 ∈ S, then we mean 1 is an identity element of S.

Lemma B.6.1. A semigroup has at most one identity element.

Proof. If 1 and e are identity elements of S, then 1 = 1e = e, so 1 = e.

Definition B.6.2. A unital semigroup, or monoid, is a semigroup with an
identity element.

2I have not personally verified this result.

190 APPENDIX B. SEMIGROUP BASICS

Diversion B.6.3. Each element t ∈ S, induces two functions s 7→ ts and s 7→ st in the
set SS of functions from S to itself. If both these are functions are the identity function,
then t is the identity element.

Diversion B.6.4. The identity element can also be called neutral element, perhaps
because multiplication by the neutral element seems to have no effect. In some settings,
this may avoid confusion with other meanings of identity (such as an equation).

In multiplicative semigroups, the identity element can also be called unity or one.
(The term unit should perhaps be avoided, since it is often used to designate invertible
elements.)

Diversion B.6.5. Multiplicative semigroups formed of square matrices often use I for
the identity element, instead of 1. This may be mainly to avoid confusion with another
meaning of 1: the usual identity matrix I has all diagonal entries equal 1 (and all off-
diagonal entries 0), where 1 is an element of another algebraic set, a semiring, and 1 is its
multiplicative identity.

B.6.1.1 Additive identity

In additive semigroups, the identity element may be written as 0, and called
zero. So, 0 + a = a + 0 = a for all a ∈ S. If 0 ∈ S+, then S+ is an additive
monoid.

Diversion B.6.6. If considering multiple semigroups with overlapping sets, then we can
write 0+ for additive identity element of S+, if necessary to distinguish from other mean-
ings of 0, such as those in §B.6.2. Alternatively, one can write o, or ⊕.

B.6.1.2 Sidentity elements

To be revised.
An element r of a semigroup can be called right sidentity if sr = s for

all s ∈ S. A left sidentity l satisfies ls = s for all s ∈ S.

Lemma B.6.2. If a semigroup S has a right sidentity r and a left sidentity
l, then it has an identity element 1 = l = r.

Proof. As sidentities, l = lr = r, so r = l. Let 1 = l = r, and 1 is both a left
sidentity and a right sidentity, so 1a = a = a1.

Diversion B.6.7. If S has no identity (1 6∈ S), then S can only have one sidentity on at
most one side (either left or right).

Diversion B.6.8. The set R of right sidentities of a semigroup S is closed under mul-
tiplication, and thus forms a subsemigroup. Multiplication in R is left multiplication:
ab = a for all a, b ∈ R.

B.6. IDEMPOTENTS 191

Conversely, in any semigroup whose multiplication is left multiplication, all elements
are right sidentities.

B.6.2 Absorbing elements

Some multiplicative semigroups have an element that generalizes the number
0 in standard arithmetic.

Definition B.6.3. An absorbing element of semigroup S, is an element o
such that oa = ao = o for all a ∈ S.

Diversion B.6.9. Absorbing elements can be defined similarly in non-multiplicative semi-
groups.

Diversion B.6.10. In a multiplicative semigroup S, an absorbing element is usually writ-
ten as 0, when clear from context. It is also called zero, when clear from context.

Lemma B.6.3. A semigroup can have at most one absorbing element.

Proof. If 0 and o are absorbing elements, then o = 0o = 0.

Lemma B.6.4. If element ∅ ∈ S is both an identity element and an absorb-
ing element, then |S| = 1.

Proof. Let a ∈ S. Then a = ∅a = ∅. So, S = {∅}.

Diversion B.6.11. Additive and multiplicative semigroups often have overlapping sets,
as in the case of integers, for example. In some of these cases, the additive identity is not
multiplicative absorbing.

The notation 0 fails in this case, because one gets 0 6= 0, where the left 0 means
additive identity and the right 0 means multiplicative absorbing element. If this clash
happens, then alternative notation is needed.

Perhaps most logical would be to write 0+ for the additive identity, in line with using
a superscript to indicate that binary operation notation in effect.

Perhaps more intuitive would be to write ∞ for the multiplicative absorbing element,
but this would mean writing 0∞ = ∞ must be tolerated.

Diversion B.6.12. For a somewhat natural example where 0 6= 0+, consider the set

S = {[n] : n ∈ {1, 2, 3, . . . , ∞}}

and define both addition and multiplication on S through the rules

[a] + [b] = [max(a, b)]

[a][b] = [a + b]

192 APPENDIX B. SEMIGROUP BASICS

with the convention that max(a, ∞) = max(∞, b) = ∞ and a+∞ = ∞+b = ∞. This may
be an instance of a tropical algebra. Both operations are associative and commutative,
and multiplication is also distributive over addition.

Then, [∞] is an absorbing element, multiplicatively (and additively), while [1] is an
identity element additively.

Clearer notation might be to write 0 = [1], and [n] = 0n, and 0∞ = ∞.

Diversion B.6.13. A fairly mild condition that implies 0 = 0+, is that multiplication is
right distributive over addition, and − is a post-subtracter. To see this:

0 = (0 + 0) − 0

= (00 + 00) − 0

= ((0 + 0)0) − 0

= 0 − 0

= (0+ + 0) − 0

= 0+.

Diversion B.6.14. If the set S from the note B.6.12 is extended to include [0] but keep
the same formulaic definition for addition and multiplication, then [0] becomes both the
additive identity and the multiplicative identity.

In this case, a second notational clash arises 1 = 0+.

B.6.2.1 Additive absorbing element

In an additive semigroup, an absorbing element can be written with the
symbol ∞, and be called infinity. So, generally, ∞ + a = a + ∞ = ∞ holds
for all s ∈ S.

Diversion B.6.15. It can sometimes help to think of ∞ in an additive semigroup as
negative infinity, instead of positive infinity. For example, exp(0) = 1 and exp(−∞) = 0,
making the exponential function a semigroup isomorphism exp : (R ∪ {−∞})+ → R×

≥0.

B.6.2.2 Side-absorbing elements

An element p ∈ S is left side-absorbing if pa = p for all a ∈ S. An element
q is right side-absorbing if aq = q for all a ∈ S. If p is left-side absorbing
and q is right side-absorbing, then p = pq = q, so 0 = p = q and 0 is an
absorbing element.

Diversion B.6.16. If S has no absorbing element (0 6∈ S), then S can have side-absorbing
elements on at most one side (either left or right).

If S has left multiplication ab = a for all a, b ∈ S, then all elements of S are both
left-side-absorbing and right-sidentities.

B.6. IDEMPOTENTS 193

The left-side-absorbing elements are closed under multiplication, forming a subsemi-
group, whose multiplication is left multiplication.

B.6.3 Comparison

If S is a multiplicative semigroup and o, i ∈ S, write o ⊂ i if

oi = o = io. (B.6.1)

If 0 is an absorbing element, and 1 is an identity element, then

0 ⊂ 1. (B.6.2)

Diversion B.6.17. A mnemonic for ⊂ is (B.6.2), with the roundness of the 0 on the left
of the symbol ⊂ and the straightness of 1 on the right of ⊂.

Diversion B.6.18. Another mnemonic is 0 < 1. We do not use < for ⊂, because it <
has too many other meanings.

When clear from context, then we may say that o is less than i.

Diversion B.6.19. We could also say that o absorbs i, or that o nullifies i, or that i
identifies o.

Diversion B.6.20. In a semigroup whose elements are sets and whose multiplication is
intersection of set, the notation ⊂ matches with one meaning of ⊂ as containment of sets.

Sometimes, ⊂ is used for strict containment, the same way that < is used for strict
comparison. Strict containment insists the two compared sets are not equal. This clashes
with the semigroup meaning of ⊂, which allows equal semigroup elements.

Diversion B.6.21. In additive semigroups, the notation ⊂ makes less sense, so we may
wish to avoid it.

The relation ⊂ is transitive and anti-symmetric:

• If o ⊂ e and e ⊂ i, then o ⊂ i. To see this, compute oi, as oi = (oe)i =
o(ei) = oe = o. A mirrored calculation shows io = o too.

• If o ⊂ i and i ⊂ o, then i = o. To see this, compute o = oi = i.

The relation ⊂ is multiplicative in the following sense:

• If o ⊂ i and e ⊂ i, then oe ⊂ i. To see this, compute (oe)i = o(ei) = oe.
The mirrored calculation shows ioe = oe.

194 APPENDIX B. SEMIGROUP BASICS

• If o ⊂ e and o ⊂ i, then o ⊂ ei. To see this, compute o(ei) = (oe)i =
oi = o. The mirrored calculation shows eio = ei.

The multiplicative property leads to the following two subsemigroups of S:

S⊂e = {o ∈ S : o ⊂ e}, (B.6.3)

Se⊂ = {i ∈ S : e ⊂ i}. (B.6.4)

These subsemigroups can be defined for each e. The subsemigroups may be
empty semigroups, or they may be the whole semigroup.

Diversion B.6.22. Yet other semigroups can defined from this. For any o, i ∈ S, let
So⊂i = So⊂ ∩ S⊂i = {e ∈ S : o ⊂ e ⊂ i}. If o 6⊂ i, the So⊂i = {} is empty (because ⊂ is
transitive).

Diversion B.6.23. A subset F of S can be called full if So⊂i ⊆ F for all o, i ∈ F .

B.6.4 Idempotents

Definition B.6.4. An idempotent in a multiplicative semigroup S, is an
element e such that

e2 = e. (B.6.5)

An identity element 1 is idempotent, and so is an absorbing element 0.
An element is idempotent if and only if it has order 1 (meaning that the

subsemigroup it generates has size 1).

Diversion B.6.24. If a semigroup S is a group, then there is exactly one idempotent
element: the identity element 1.

To see this, calculate e = e1 = e(ee−1) = (ee)e−1 = ee−1 = 1.

Diversion B.6.25. If a semigroup S has an identity element 1, and a (cancelling) post-
divider /, (meaning (ab)/b = a for all a, b, see later for more discussion), then there is
exactly one idempotent: the identity element 1.

To see this, calculate, e = (ee)/e = (1e)/e = 1.

Diversion B.6.26. In additive semigroups, an element e is idempotent if e + e = e.
In case of any confusion, we may call e additively idempotent. A logical alternative

idemscalant sounds too awkward.

Diversion B.6.27. In a ring R, the semigroup R+ is a group, so the only additively
idempotent element is the additive identity 0. The property of being additive idempotent
is not too interesting.

B.7. INVERSES 195

Moreover, the element 0 is also multiplicatively idempotent. So, all additively idem-
potent elements are also multiplicatively idempotent.

In a ring, idempotent is used to mean multiplicatively idempotent (idempotent in R×).

Diversion B.6.28. If R has two operations, + and ×, but is not quite a ring in that
semigroup R+ is not a group, then the two meanings of idempotent may yet cause con-
fusion, so the qualifiers additive or multiplicative may be necessary clarify which type of
idempotent is being considered.

If R is sufficiently ring-like, then multiplicative idempotents may more interesting and
important than additive idempotents, just like in a ring. In this case, the term idempotent
could be used to refer to multiplicative idempotent, unless qualified by the term additive.

Diversion B.6.29. Element e is idempotent if and only if e ⊂ e. In other words, the
relation ⊂ is reflective on idempotents.

The set E of idempotents in a semigroup S is partially ordered by the relation ⊂.

Diversion B.6.30. The alternative notations ≤ and ⊆ for ⊂ make more sense when
applied to idempotents, because of all the axioms for partial ordering are met.

B.7 Inverses

In semigroups, there are many types of inverse. Table B.2 summarizes some
of these types of inverse. An element is invertible if it has an inverse, but
there are as many types of invertibility as types of inverses.

Semigroups sometimes have non-invertible elements. Idempotents are
invertible under most definitions, and finite semigroups have at least idem-
potent, so finite semigroups have at least invertible element (under most
definitions of an inverse).

The amount of invertible elements, and the strength of their invertibility
is one how to measure close a semigroup is to group, and is a basic part of
the understanding of the structure of a semigroup.

In additive semigroups, especially those which overlap with a multiplica-
tive semigroup, the term inverse should be translated to a negation. An
invertible element element should be translated to a negate-able element,
but there is often little need for such a term.

For consistency, we will symbol q for an inverse of b.

196 APPENDIX B. SEMIGROUP BASICS

Type Condition
Middle (regular, default) bqb = b
Mutual bqb = b, qbq = q
Right bbq = b
Left qbb = b
Sidle bbq = qbb = b
Co-mutual bqb = b, qbq = q, bq = qb
Divisional (right) abqb = ab
Divisional (left) bqbc = bc
Wedge abqbc = abc
Power bqb = b, q = bn, n ∈ {1, 2, 3, . . .}
Post-divisional abq = a
Pre-divisional aqb = a
Idle (right) qbqb = qb
Idle (left) bqbq = bq
Inflatable b = pbqbr
Semi-unital (right) qb = 1
Semi-unital (left) bq = 1
Unital bq = qb = 1

Table B.2: Various types of inverses q of multiplicative semigroup element b

B.7. INVERSES 197

B.7.1 Middle inverses

In semigroup theory, the nearly standard meaning of inverse and invertibility
is the following.

Definition B.7.1. A middle inverse of b of a multiplicative semigroup is
an element q such that:

bqb = b. (B.7.1)

If b has a semigroup inverse, then we say that b is middle invertible.

Unless otherwise noted, the terms inverse and invertible, using without
modifiers, will default to middle inverse and middle invertible.

Diversion B.7.1. A middle invertible element is often called a regular element, after
terminology of von Neumann introduced in non-commutative algebra.

Outside this report, a middle inverse is sometimes called a pseudo-inverse, to
distinguish from stronger types of inverses.

Diversion B.7.2. Although the usage of the term regular is rather standard terminology
in parts of semigroup theory, this report declines to used the term regular.

The term regular is very overloaded in mathematics, with many unrelated meanings;
the general term regular does not generally imply invertibility; the everyday meanings of
regular as ordinary or typical seems inappropriate.

Diversion B.7.3. A regular semigroup is then a semigroup in which all elements are
middle invertible (also known as regular).

Diversion B.7.4. A b ∈ S with no semigroup inverse (an irregular element) can sometimes
have a divisional inverse. For example, consider the null semigroup S, such that ab = 0
for all a, b ∈ S. Then any element q ∈ S is a divisional inverse of b. If b 6= 0, then no
element q is a semigroup inverse of b.

Lemma B.7.1. If / is a mid-divider, then b is middle-invertible if and only
if there exists an idempotent e satisfying equations

(b/e)e = b,

(e/b)b = e.

In this case, q = e/b is a middle inverse of b.

198 APPENDIX B. SEMIGROUP BASICS

Proof. Suppose that q is a middle inverse. Let e = qb. Then

ee = (qb)(qb) = q(bqb) = qb = e,

(b/e)e = ((bqb)/e)e = ((be)/e)e = be = bqb = b,

(e/b)b = ((qb)/b)b = qb = e,

so e is idempotent, and satisfies the two hypothesized equations.
Conversely, suppose that e is the idempotent satisfying the two hypoth-

esized equations. Let q = e/b. Then

bqb = b((e/b)b) = be = ((b/e)e)e = (b/e)(ee) = (b/e)e = b,

so q is a middle inverse of b.

Diversion B.7.5. The lemma above would be stronger if it did not depend on the knowing
e, but found e via divider.

Elsewhere in this report, we show how to construct such an e using division, but we
use more than just a mid-divider. (We resort to both left and right division, and to a
post-divider.)

Diversion B.7.6. The note to be moved to section on Green’s relations.
The statement of the lemma above can be translated into the terminology of Green’s

relations, commonly used in semigroup theory, as follows.
An semigroup element is regular (middle-invertible) if and only if its L-class contains

an idempotent.

Diversion B.7.7. This note to be moved section on post-dividers.
Middle inversion can be used for partial post-division, relative to a restricted set of

inputs:

Lemma B.7.2. If b is an inverse of p, then / defined by

d/b = dp. (B.7.2)

is a post-divider relative to T = {(up, b) : u ∈ S}.

Proof. Put d = ab for (a, b) = (up, b) ∈ T . Then d/b = dp = (ab)p = ((up)b)p = u(pbp) =
up = a.

In arbitrary semigroups, the product of middle invertible elements might
not be invertible, but in some almost commutative semigroups it is, as shown
below.

Lemma B.7.3. If S is a medial semigroup (where (ab)(cd) = (ac)(bd) for all
a, b, c, d, see (B.3.10)), and q and p are middle inverses of b and d, then pq is
a middle inverse of bd.

B.7. INVERSES 199

Proof. Calculate:

(bd)(pq)(bd) = b(dp)(qb)d

= b(dq)(pb)d

= (bd)(qp)(bd)

= (bq)(dp)(bd)

= (bq)(db)(pd)

= b(qd)(bp)d

= b(qb)(dp)d

= (bqb)(dpd)

= bd,

so pq is a middle inverse of bd.

Similarly, the qp is also a middle inverse of bd.

B.7.2 Right inverses

In finite semigroups, right invertible elements are co-mutually invertible.

Lemma B.7.4. If 〈b〉 is finite, and b is right invertible, then b has a co-mutual
inverse.

Proof. Let q be a right inverse of b, so that bbq = b. Let be = be+p for positive
integers e and p, which must exist since b has finite order.

If e = 1, then b is a periodic element, so it has a co-mutual inverse bp−1.
Otherwise e = c + 1 for a positive integer c. Then bc+1qc = b by repeated

application of the rule bbq = b. Similarly bc+1+pqc = b1+p. But then b =
bc+1qc = bc+1+pqc = b1+p, so b is also a periodic element, and has co-mutual
inverse bp−1.

B.7.3 Mutual inverses

Definition B.7.2. A mutual inverse of b in a multiplicative semigroup is
an element q such that

bqb = b, qbq = q. (B.7.3)

Diversion B.7.8. In other words, q is mutual inverse of b if and only if q and b are middle
inverses of each other. (Hence this report’s term mutual.)

200 APPENDIX B. SEMIGROUP BASICS

Every middle invertible element has a mutual inverse:

Lemma B.7.5 (Well-known!). If q is a middle inverse of b, then p = qbq is
a mutual inverse of b.

Proof. To see this, just compute bpb and pbp:

bpb = b(qbq)b = (bqb)qb = bqb = b, (B.7.4)

pbp = (qbq)b(qbq) = q(bqb)qbq = q(b)qbq = q(bqb)q = qbq = p. (B.7.5)

Diversion B.7.9. In some branches of semigroup theory, the mutual inverse serves as the
default definition of the inverse.

From this report’s perspective, a middle (or weaker) inverse implies division, and
thereby deserves the name inverse.

Diversion B.7.10. A semigroup in which every element has a unique mutual inverse is
known as a inverse semigroup; see Petrich [Pet84].

Outside this report, in an inverse semigroup, the notation b−1 is sometimes used for
the unique mutual inverse of b. This report reserves this notation for co-mutual inverse.

B.7.4 Co-mutual inverses

Definition B.7.3. A co-mutual inverse of b of a multiplicative semigroup
is an element q such that

bqb = b qbq = q bq = qb. (B.7.6)

If b has a co-mutual inverse, then b is co-mutually invertible.

Diversion B.7.11. In other words, a co-mutual inverse q of b is a mutual inverse of b that
commutes with b.

Lemma B.7.6 (Well-known, Wagner, Preston, earlier?). Every b has at most
one co-mutual inverse.

B.7. INVERSES 201

Proof. Suppose p and q are both co-mutual inverses of b. Then

p = pbp = p(b)p = p(bqb)p

= pbqbp = (pb)(qb)p = (bp)(bq)p

= bpbqp = (bpb)qp = (b)qb

= bqp = (bq)p = (qb)p

= qbp = q(bp) = q(pb)

= qpb = qp(b) = qp(bqb)

= qpbqb = q(pb)(qb) = q(bp)(bq)

= qbpbq = q(bpb)q = q(b)q

= qbq = q,

where equations in the right column mark with parentheses the substitutions
based on three equations (bqb = b, qbq = q and bq = qb) ensured by b and q
being co-mutual inverses, and the corresponding 3 equations for b and p.

Diversion B.7.12. This result can be surprising to a semigroup novice (such as me).

Diversion B.7.13. The proof above might not be the best possible proof; perhaps the
Knuth–Bendix algorithm can be applied to obtain different proofs. The given proof takes
ten steps, but two steps can be considered double steps, so that 12 rewriting steps (via
co-mutual inversion) are taken (ignoring steps for associativity). The step counts can be
written:

b 7→2 bqb qbq 7→1 q qb 7→2 bq bq 7→1 qb,

bpb 7→2 p p 7→1 pbp pb 7→2 bp bp 7→1 pb.

The proof has a symmetry in p and q: swapping p and q them reverse the direction of the
proof, but also reversing the order of the terms in the products in the first and second half
of the proof.

Because of the uniqueness of a co-mutual inverse, write b−1 for the co-
mutual inverse. Write b−n for (b−1)n for each positive integer. Write b0 for
bb−1 = b−1b (though, b0 6= 1 is possible). The properties of the co-mutual
inverse imply that bxby = bx+y for any integers x and z (including zero and
negative integers).

Lemma B.7.7. Element b ∈ S is co-mutually invertible if and only if b ∈ G
where

• G is a subsemigroup of S and

202 APPENDIX B. SEMIGROUP BASICS

• G is a group.

Proof. Suppose that b is co-mutually invertible, with co-mutual inverse b−1.
Consider the subsemigroup 〈b, b−1〉 generated by b and its co-mutual inverse
b−1. Then 〈b, b−1〉 = {bn : n ∈ Z} in the notation above. The element b0

is the identity of the subsemigroup, and each element bn has an inverse b−n,
thus meeting the axioms of a group.

Suppose b that belongs to subsemigroup G and that G is a group. Being
a group, G has an identity element e such that eg = ge = g for all g ∈ G,
and an inverse q of b such that bq = qb = e. Then q is a co-mutual inverse of
b, since bqb = be = b and qbq = qe = q and bq = e = qb.

Diversion B.7.14. A semigroup in which every element has a co-mutual inverse is known
as an completely regular semigroup; see Petrich [Pet84].

Diversion B.7.15. To see that b0 6= 1 is possible, consider a semigroup S = 〈b, b−1, d, d−1〉,
where b and b−1 are co-mutual inverse, as are d and d−1, with no other relations. So, S is
the free semigroup product of Z with itself (which is larger than the free group product!).
Each element of S has a factorization gz1

1 . . . gzn
n for some positive integer n, for some

integers z1, . . . , zn, and gi ∈ {b, d} with gi 6= gi+1. The positive integer n can be called the
length of the element. Then d0b0 has length two, while b0 has length one, so d0b0 6= d0,
meaning that b0 6= 1. Indeed this semigroup is non-unital.

Diversion B.7.16. Let B = {a : aHb = a} be Green’s H-class of b.
Then, b is co-mutually invertible if and only if B2 = B. Also, b is co-mutually invertible

if and only if B2 ∩ B 6= ∅. Also, b is co-mutually invertible if and only if B is a group.
If b is co-mutually invertible, and b ∈ G for a group G ≤ S, then then G ≤ B. In

other words, the H-class B of b is the largest group containing b.
In other words, the set of the co-mutually invertible elements of a semigroup can be

partition into a set of disjoint groups.

B.7.5 Sidle inverses

Definition B.7.4. A sidle inverse q of element b is an element that is both
a left and a right inverse, meaning that bbq = b = qbb.

Lemma B.7.8. A sidle inverse q of b is a middle inverse of b, and q commutes
with b.

Proof. Calculate:

bqb = bq(bbq) = b(qbb)q = bbq = b,

B.7. INVERSES 203

so q is a middle inverse. Calculate

qb = q(bbq) = (qbb)q = bq,

so q and b commute.

A sidle inverse is not necessarily a co-mutual inverse. For example, if
b = 0, then all q are sidle inverses of b. But if b has a sidle inverse, then it
has a co-mutual inverse as shown below.

Lemma B.7.9. If q is a sidle inverse of b, then p = qbq is a co-mutual inverse
of b.

Proof. Lemma B.7.8 shows that q is a middle inverse. Lemma B.7.5 shows
that p = qbq is a mutual inverse.

To see that p commutes with b, use the fact from Lemma B.7.8 that q
commutes with b: so pb = (qbq)b = (qb)(qb) = (bq)(bq) = b(qbq) = bp.

Therefore, p is a co-mutual inverse of b.

B.7.6 Power inverses

A power inverse q of b is a middle inverse of b with q ∈ 〈b〉, meaning q = bn

for a positive integer n. Any such positive integer n is called an inversion
degree.

A power inverse q of b is actually co-mutual inverse of b. An element b
has a power inverse if and only if b is a torsion element.

Lemma B.7.10. If b is a torsion element with period p, then b is invertible
with a middle inverse:

q = b2p−1. (B.7.7)

If p > 1, then b2p−1 = bp−1.

Proof. The definition of semigroup inverse says that q is a semigroup inverse
of b provided that bqb = b. But

bqb = bb2p−1b

= b2p+1

= bpbp+1

= bpb

= bp+1

= b,

204 APPENDIX B. SEMIGROUP BASICS

as required.
If p > 1, then p − 1 ≥ 1, so bp−1 ∈ 〈b〉, and b2p−1 = bp−2bp+1 = bp−2b =

bp−1.

Diversion B.7.17. In the final sentence of the proof above, in the case of p = 2, the
factor bp−2 is not meant literally, as an element 1 (which may not exist in the semigroup),
but can simply be omitted from the expression.

Diversion B.7.18. Consequently the smallest inversion degree n of b is p−1 if the period
is p > 1.

If the period is p = 1, then the smallest inversion degree is n = 1. strictly speaking.
For the purpose of division-by-inversion, the effective inversion degree can be consid-

ered to be 0 in this case.

B.7.7 Divisional inverses

Definition B.7.5. A (right) divisional inverse of b in a multiplicative
semigroup S is an element q such that

abqb = ab (B.7.8)

for all a ∈ S.

Diversion B.7.19. A left division inverse q of b satisfies bqbc = bc for c.

Diversion B.7.20. In an additive semigroup, we can speak of subtractive negative q of b
if a + b + q + b = a + b for all a.

Lemma B.7.11. If q is a middle inverse of b, then q is a right divisional
inverse of b.

Proof. Computing, abqb = a(bqb) = a(b), so q is divisional right inverse.

Diversion B.7.21. A right divisional inverse q of b is also wedge inverse of b, because
abqbc = abc for all a, c.

But some wedge inverses are not divisional inverses. For example, in a 3-nilpotent
semigroup (where the product of three or more element is zero), every q is a wedge inverse
of b, but b has a right divisional inverse if and only if b is right side-absorbing (meaning
ab = 0 for all a).

Definition B.7.6. A post-divisional inverse q of b is an element such
that any of one of the following equivalent conditions holds:

• d/b = dq defines a post-divider (relative to T = S × {b}),

B.7. INVERSES 205

• abq = a for all a ∈ S,

• bq is a right identity element of S.

Diversion B.7.22. In associative key agreement, (recall that) post-division enables re-
covery of Alice’s exact secret a, not just an equivalent secret, which is more damaging
if Alice used a for some other purpose. Consequently, a post-divisional inverse has more
impact than a (weak) inverse.

Diversion B.7.23. An pre-divisional inverse of b is an element q such that d/b = dq
defines an pre-divider; equivalently, dqb = d for all d ∈ S, so that qb is right identity in S.

Diversion B.7.24. An post-divisional or pre-divisional inverse is also a divisional inverse.

Diversion B.7.25. If b has a post-divisional inverse q, then b is right cancellative: if
ab = cb, then a = abq = cbq = c. So, if b is not cancellative, b cannot have a post-divisional
inverse.

Diversion B.7.26. If q is a post-divisional inverse of b, then b is a (middle) inverse of q,
because qbq = q (by putting a = q).

Diversion B.7.27. If b ∈ S has both a post-divisional right inverse and S has a left
identity l, then S is unital (since l = lbq = bq is both a left and right identity).

B.7.8 Wedge inverses

To be completed. Copy from later sections.

B.7.9 Strident inverses?

Definition B.7.7. A strident semigroup is a pair (S, i), where S is a
semigroup, i ∈ S, and i is a right identity of S (meaning si = s for all i ∈ S).
We call i the stridentity.

Diversion B.7.28. The term strident is new, but the underlying notion is not entirely,
as discussed below: some axiomatic definitions of a group do take a two-sided identity as
axiomatic, but prove its the existence of a two-sided identity from other axioms, including
the existence of a one-sided inverse.

Diversion B.7.29. If the semigroup S in a strident semigroup (S, i) does not have a left
identity, then S may have many right identities. In a strident semigroup, one of the right
identities is especially selected as the stridentity, and is distinguished from the other right
identities.

If the semigroup S in a strident semigroup has a left identity element, then S is unital
(a monoid) and i = 1.

206 APPENDIX B. SEMIGROUP BASICS

Definition B.7.8. If (S, i) is a strident semigroup and b ∈ S, then q ∈ S is
strident inverse of b if bq = i.

Diversion B.7.30. A strident inverse of b is a post-divisional right inverse of b.

Diversion B.7.31. A post-divisional right inverse q is not necessarily a strident inverse.
If q is a post-divisional inverse of b, then bq is a right identity, but it might not be the
stridentity i.

Diversion B.7.32. A well-known (and somewhat surprising) theorem says that if (S, i)
is strident semigroup, and every b ∈ S has a strident inverse, then S is a group.

The following little lemma can help to establish this:

Lemma B.7.12. If (S, i) is a strident semigroup, b has strident inverse q and q has a

strident inverse, then q is a co-mutual inverse of b.

Proof. We need to prove the three co-mutual inverse equations bqb = b, qbq = q and
bq = qb.

From the strident semigroup definition, the proof uses the four equations

bi = b, qi = q, bq = i, qu = i,

where u is a strident inverse of q. (Aside: this proof is a little more general the lemma’s
claim, because it only requires these four equations, and does not require i to be a right
identity for the whole of S.)

To show that b is a middle inverse of q, compute qbq = qi = q.
To show that q and b commute, compute qb = qbi = qbqu = qiu = qu = i = bq.
To show that q is a middle inverse of b, compute bqb = bi = b, using the previous fact

that qb = i.

This also shows ib = b = bi. If every b is strident invertible, we then can see that i is
a full identity (both left and right), and the co-mutual inverse b−1 is the required group
inverse.

B.7.10 Inflatable elements, inflators, and volume?

An element b of a semigroup S is inflatable if there exists p, q, r ∈ S such
that:

b = pbqbr. (B.7.9)

The triple [p, q, r] is called an inflator of b. An inflator has a role similar to
an inverse, except that it is not a single element.

If b has a middle inverse q (with b = bqb), then b is inflatable, by putting
p = bq and r = qb, because then pbqbr = (bq)b(q)b(qb) = (bqb)q(bqb) = bqb =
b. There might exist inflatable b with no middle inverse.

B.8. DIVISION 207

The terminology is motivated by the fact that if an inflatable b appears
in the factorization of another semigroup element a, then there also exists
factorizations of a with arbitrarily many factors b.

This suggests considering factorization of a = b1b2 . . . bv into as many
non-inflatable bi as possible, if there are any such factorizations. If there is a
finite maximum v, then perhaps it should be called the volume of a, if clear
from context (such as if no other meanings of volume are applicable in S).

B.8 Division

This section discusses what it means to divide in a semigroup.

Diversion B.8.1. Strategies on how to divide (in various semigroups) are discussed in
Chapter 5.

B.8.1 Dividers

Division is defined by means of a divider:

Definition B.8.1. In a multiplicative semigroup (or magma) S, a (right)
divider is binary operator

/ : S2 → S : [d, b] 7→ d/b

such that
((ab)/b)b = ab, (B.8.1)

for all a, b ∈ S.

Diversion B.8.2. Definition B.8.1 is not entirely standard, but is an abstraction of the
one of the properties of division in standard rational arithmetic.

Diversion B.8.3. Stricter, and laxer, definitions of division are discussed later in this
section, §B.8. While Definition B.8.1 is most relevant to this report, other definitions may
be more relevant outside this report.

Diversion B.8.4. Some terminology may help discussion.
The term right divider is mainly necessary to distinguish from left dividers, defined

in §B.8.5. Whenever clear, call / a divider, and presume that divider means /.
The input to the divider is the pair [d, b]. If input [d, b] = [ab, b] for some a, b, then it

is relevant or divisible input, and [a, b] is the seed, otherwise [d, b] is an irrelevant or
indivisible input. The output d/b does not matter for an irrelevant input [d, b], and can
modified to an arbitrary value, while still being a divider.

208 APPENDIX B. SEMIGROUP BASICS

Diversion B.8.5. Many readers may be best off devising their own division algorithms
to implement a divider /, perhaps perusing the strategies listed in Chapter 5.

The remainder of this section, §B.8, handles general properties of division, including
more stringent definitions for division, and obvious minor generalizations.

B.8.2 Existence of dividers

Lemma B.8.1. In each semigroup (or magma), a divider exists.

Proof. If Sd,b = {a ∈ S : d = ab} is non-empty, then let d/b be any element
of Sd,b. Otherwise, let d/b be any value in S.

For any a, b, we have a ∈ Sab,b, so Sab,b is non-empty, and therefore
(ab)/b ∈ Sab,b. Say (ab)/b = a′. Then a′ ∈ Sab,b, so a′b = ab.

Diversion B.8.6. A contradiction to Lemma B.8.1 would seem to be division by zero,
which is traditionally characterized as impossible in standard arithmetic.

A resolution to the seeming contradiction is that tradition (sometimes tacitly) uses a
definition of division that is stricter than Definition B.8.1. For more on this, see §B.8.14.

Diversion B.8.7. The proof above is not constructive: it is merely existential. It can
lead to a constructive algorithm: trial multiplication discussed in §5.1.

Diversion B.8.8. Logicians will recognize that the proof resorts to the Axiom of Choice,
and may be able to confirm whether the Axiom of Choice is required, in the sense that
the conclusion of the lemma implies the Axiom of Choice.

B.8.3 Alternative notations

Occasionally, we may need to consider more than one divider in a single
multiplicative semigroup. In this case, we may use alternative symbols, such
as one of

÷ ⊘ ∅ ∅ % $ ∫ /′

with some appropriate explanation. So, for example, ÷ is a divider if and
only if ((ab) ÷ b)b = ab, for all a, b ∈ S.

In other cases, we may consider modifying a divider /, starting with a
given binary operation /, modifying it, but then using the same symbol /,
with a convention similar to common computer programming practice where
a variable is re-assigned a related value, as in x = x + 1.

Diversion B.8.9. Another notation for division is :, but this report uses : so often formulas
for sets and functions that this would be too confusing to use for division.

B.8. DIVISION 209

B.8.4 Subtraction

In additive semigroups, §B.1.3, notation and terminology is different, so the
terminology and notation for division is adjusted accordingly as

• division becomes subtraction,

• a divider becomes a subtracter, and

• a/b becomes a − b (or a ⊖ b in S⊕).

The main condition for a subtracter is therefore:

((a + b) − b) + b = a + b (B.8.2)

The abstract notions of subtraction and division are identical: the only dif-
ference is notation. The remaining abstract considerations about division of
this section (§B.8) apply equally well to subtraction, with only a suitable
notational adjustment.

Diversion B.8.10. In specific semigroups, such as standard arithmetic, division and sub-
traction refer to distinct, specific operations, so distinct considerations apply.

B.8.5 Left dividers

Semigroups can be non-commutative, so swapping left and right leads to a
definition of a left divider.

Definition B.8.2. A left divider in a semigroup S (or magma), is a binary
operator \ : S2 → S : [a, b] 7→ a\b such that

ba = b(b\(ba)). (B.8.3)

for all a, b ∈ S.

Diversion B.8.11. The notation for \ for a left divider is rarely used in standard arith-
metic. It may be used in the quasi-group theory.

The notation / for right dividers, by comparison, is more commonly used, often in
standard integer arithmetic, and in some programming languages.

Diversion B.8.12. This report focuses right dividers when possible.
For general semigroups, when considering only one divider at time, the symmetry

obtained by reversing the order of multiplication operands, converts left dividers to right
dividers, so that restricting attention to right dividers is mostly without loss of generality.

For specific semigroups, the order of multiplication is fixed, so left and right dividers
must be considered separately.

210 APPENDIX B. SEMIGROUP BASICS

Diversion B.8.13. In a commutative semigroup (meaning ab = ba for all a, b ∈ S), then
we can define left dividers via right dividers simply by swapping the order of inputs:
b\d = d/b.

Diversion B.8.14. In general, despite constructions for left divider like the one noted
above, it does not seem possible to construct left dividers from right dividers (or con-
versely). For example, semigroups can be constructed (see §??) from block ciphers, with
one direction of division corresponding to decryption, which is easy, and the other direction
of division corresponding to cryptanalysis, which is hard. (See §5.1.)

B.8.6 Notational dividers

Sometimes, a binary operator / fails to meet Definition B.8.1, yet is still
relevant.

Definition B.8.3. A notational divider in a multiplicative semigroup S
(or magma) is binary operator with the same notation as used for a divider,
typically,

/ : S2 → S : [a, b] 7→ a/b. (B.8.4)

Formally, a notational divider is just a binary operation. Other divider
symbols similar, such as ÷ or ⊘, can be used for notational dividers. Nota-
tional subtracters and left dividers can also be considered.

Diversion B.8.15. The adjective notational here has expanded the previous meaning
of divider, which is an exception to the best practice of adjective narrowing meanings.

In cases of confusion, a notational divider / meeting Definition B.8.1 can be called a
true divider, or a full divider, if there is doubt whether it is just a notational divider.

B.8.6.1 Candidate dividers

Perhaps the most common case of a notational divider is a candidate divider:
an operator which we will prove to be divider. Until the proof is complete,
we only know that / is a notational divider. This report uses the convention
often.

B.8.6.2 Faulty dividers

In some cases, a notational divider is not a really divider, which we formalize
in this section.

Definition B.8.4. A faulty divider in semigroup S (or magma) is a nota-
tional divider / that is not a (true) divider.

B.8. DIVISION 211

However, in some cases, a faulty divider has as much impact as a divider,
and there is little value in focusing on its faultiness.

B.8.6.3 Divider-set and divisible-set

Measuring the successfulness of a notational divider can be done through the
following definition.

Definition B.8.5. The divider-set of a notational divider / is the set

{[a, b] : ((ab)/b)b = ab}. (B.8.5)

A notational divider / is a (true) divider, per Definition B.8.1 precisely if
its divider-set is S2. Otherwise (if the divider-set is not S2), the notational
divider / is a faulty divider.

Diversion B.8.16. In some cases, we may focus on proving that the divider-set of /
has certain properties, such as containing a particular subset, and ignore the rest of the
divider-set. This means ignoring the question of whether / is faulty of not.

Diversion B.8.17. Elements of the divider-set do not represent inputs to /, but rather
seeds to generate the relevant inputs to /, the pairs [a, b] that generate input pairs [ab, b]
to / over which successful division is defined.

Diversion B.8.18. The divisible-set is

{[d, b] : (d/b)b = b}, (B.8.6)

which is a subset of the inputs to /. If R is the divider-set of / and L is the divisible-set
of /, then

L = {[ab, b] : [a, b] ∈ R} = λ(R),

R = {[a, b] : [ab, b] ∈ L} = ρ(L)

so the divider-set and divisible-sets are closed related.
(Despite the similar notations above, the sets above are related via different construc-

tions: L is related from R by applying transformation [a, b] 7→ [ab, b] to each element of the
set R, while R is defined as a subset of S2 by restriction under the predicate [ab, b] ∈ L.)

If / is not faulty, then its divisible-set is {[ab, b] : a, b ∈ S} = λ(S2). A divider / can
have a divisible-set that is not S2, even if it is not faulty. If the divisible-set of / is S2,
then / is a divider because λ(S2) ⊂ S2 (and furthermore / is a pre-divider as in §B.8.10.)

B.8.6.4 Side-dividers

In some cases, a special class of potentially faulty, notational dividers has an
impact near to a full divider.

212 APPENDIX B. SEMIGROUP BASICS

Definition B.8.6. A side-divider on semigroup S (or magma) is a nota-
tional divider / such that

(((ab)/b)b)c = (ab)c (B.8.7)

for all a, b, c ∈ S.

Every divider is a side-divider, but some side-dividers are not dividers
(they are faulty).

Diversion B.8.19. Write s |= t to mean that su = tu for all u ∈ S. A side-divider is
characterized by ((ab)/b)b |= ab.

B.8.7 Unary dividers

To be revised.

Definition B.8.7. A unary multiplier and unary divider for an element
b in semigroup S (or magma) are the functions

×b : S → S : a 7→ ab, (B.8.8)

/b : S → S : a 7→ a/b, (B.8.9)

where / is a divider in S.

Diversion B.8.20. In applications to key agreement, the value of b is sometimes fixed, so
considering /b – instead of the more general binary operator / – is sufficiently important.

The set SS of functions on a set S is a semigroup under function compo-
sition. The unary divider is a middle inverse of the unary multiplier:

×b /b×b = ×b. (B.8.10)

Similarly, if / is a post-divider, then /b×b = 1S, where 1S : S → S : s 7→ s.
If / is a pre-divider, then ×b/b = 1S.

Conversely, / is divider if and only if /b is a middle inverse of ×b for all b.
Dividing by b is difficult if and only if ×b is a pre-image-resistant

function, also known as one-way function.

B.8.8 Feasible dividers

This report focuses on semigroups with efficient, or at least practical, multi-
plication algorithms.

B.8. DIVISION 213

Algorithm for division are important, but they need only be feasible, not
necessarily efficient. In other words, even plausible division has an impact
on security.

To be revised.
Security of associative key agreement depends on the feasibility, or effi-

ciency, implementing of a (relative) divider: a division algorithm. This
section formalizes these notions of efficiency, somewhat following the usual
formalisms in cryptology.

Division algorithms in Chapter 5 are generally not at a level of detail
discussed here, because they are described in terms large abstract classes of
semigroups. The kind of details discussed in the section are left to the reader
to the determine.

Definition B.8.8. The deterministic division problem in S (relative to
a set T ⊆ S2) is the task of efficiently implementing a mid-divider (relative
to T).

In other words, the division problem is to provide a deterministic di-
vision algorithm. The relevant inputs are (d, b) for (d, b) = (ab, b) with
(a, b) ∈ T . The output is d/b, which satisfies (d/b)b = d for all relevant
inputs.

A deterministic division algorithm / is rated by two things:

• the extent of T ,

• the computational cost of /.

The difficulty of the deterministic division problem is rated according to
rating of (known) deterministic division problems.

In practice, we need to consider security against probabilistic algorithms,
which do not necessarily provide the same outputs for given inputs. Be-
cause probabilities are involved, we can also consider the inputs to have a
probability distribution.

Definition B.8.9. A division algorithm in S is a probabilistic algorithm,
written / : S2 → S : (d, b) → d/b.

The success rate of S relative to a probability distribution3 (a, b) over S2

is the probability:
Pr

(a,b),$
[(d/b)b = b | d = ab] (B.8.11)

3Random variable, in other words.

214 APPENDIX B. SEMIGROUP BASICS

where the probability is defined over the random choices of / and the random
variable (a, b).

The division problem in S is the task of implementing a a division
algorithm /.

The division difficulty of S against a probability distribution (a, b) is
rated by the computational cost and the success of (known) division algo-
rithms.

Diversion B.8.21. In theory, a probabilistic algorithm can be de-randomized by pre-
selecting a fixed random set of choices (e.g. coin flips) that it uses. Finding an upper
bound on the success rate of all such possible de-randomizations, would provide an upper
bound on the success rate of probabilistic algorithms. In practice, probabilistic algorithms
are sometimes easier to analyze.

Diversion B.8.22. Regarding the representation of semigroup inputs and outputs of the
divider, we consider the epigram representation sufficient.

B.8.9 Post-dividers

Some dividers / obey a condition much stricter than Definition B.8.1.

Definition B.8.10. A post-divider on a semigroup S (or magma) is a
notational divider /

(ab)/b = a, (B.8.12)

for all (a, b) ∈ S.

Diversion B.8.23. The term post in post-divider refers to the fact that division is applied
after multiplication in (B.8.12).

Alternative names for post-divider include cancelling divider and retracting di-

vider.

Diversion B.8.24. Consider two post-dividers / and ÷.
On relevant inputs of the form [d, b] = [ab, b], the post-divider outputs are equal,

because d/b = a = d ÷ b.
On irrelevant inputs of the form [d, b] 6= [ab, b for all a, then it is sometimes possible

for d/b 6= d ÷ b.

B.8.9.1 One post-divider means dividers are post-dividers

Every post-divider is a mid-divider:

Lemma B.8.2. If / is a post-divider (relative to set T ⊆ S2, then / is a
mid-divider (relative to the same set T).

B.8. DIVISION 215

Proof. Multiply both sides of the post-division equation (ab)/b = a by b, to
get the division equation ((ab)/b)b = ab.

In semigroups where cancellation fails, a post-divider fails to exist: if
d = a′b = ab with a′ 6= a, then d/b can only take one of the values a or a′. If
d/b = a, then (a′b)/b = d/b = a 6= a′, so / fails to be a post-divider.

Therefore, the converse of the previous lemma, which would be that every
mid-divider is a post-divider, can fail. The following lemma essentially shows
that the failure of this converse can only happen if a post-divider fails to exist.

Lemma B.8.3. If an post-divider exists, then every mid-divider is a post-
divider.

Proof. Suppose that ÷ is a post-divider, and that / is any (other) divider.
For all a, b, we have

(ab)/b = (((ab)/b)b) ÷ b

= (ab) ÷ b

= a

where the first and third equations are due to ÷ being a post-divider, and
second is due to / be a divider. Hence, (ab)/b = a for all a, b, making / a
post-divider.

From an algorithmic perspective, this lemmas means no extra effort needs
to be expended to implement a post-divider, because if a post-divider exists,
then all dividers are post-dividers.

Despite the lack of extra cost, post-division is sometimes significant for
its greater impact on associative key agreement.

Diversion B.8.25. If a post-divider exists, then cancellation can be applied to show that
a side-divider is a post-divider.

B.8.9.2 Partial post-dividers

To be completed.

A divider in which (ab)/b = a, only for [a, b] ∈ T (S2, it a partial
post-divider relative to T .

Some results about post-divider carry through to partial post-dividers.

216 APPENDIX B. SEMIGROUP BASICS

B.8.9.3 Post-divider in a finite semigroup

Having a post-divider is a very stringent and limiting condition on finite
semigroups.

Lemma B.8.4. If / is a post-divider in a finite semigroup, then

d/b = db|S|−1 (B.8.13)

for all d, b ∈ S.

Proof. Consider the elements dbi over the non-negative integers i, letting
db0 = d, by convention. The set

d〈b〉 = {d, db, db2, db3, . . . } ⊆ S

is finite, even though there are infinitely many i. So, not all dbi are distinct.
Let m be the minimum non-negative integer such that

dbm = dbm+p

for some positive integer p. Suppose that m ≥ 1. Dividing both sides by b
gives

dbm−1 = (dbm)/b = (dbm+p)/b = db(m−1)+p.

Since m − 1 < m, this would contradict m being the minimum such non-
negative integer. Therefore m = 0, so

d = dbp

for a positive integer p. Now divide both sides by b, to get

d/b = (dbp)/b = (dbp−1b)/b = dbp−1.

Let u be an positive integer. Then

d/b = dbup−1,

by induction on u, the case u = 1 being established above, the inductive step
being from db(u+1)p−1 = dbpbup−1 = dbup−1.

Now, let p be the least positive integer such d = dbp.
Let e ∈ S with e 6∈ d〈b〉. By the same reasoning above, there exists a

least positive integer q such that e = ebq.

B.8. DIVISION 217

Consider the function S → Se : a 7→ ae. It is injective because / is a
post-divider (if ae = a′e, then a = (ae)/e = (a′e)/e = a′). The sets and S
and Se are finite. If Se were smaller than S, the function a 7→ ae could not
be injective. There S = Se and d ∈ Se, so d = fe for some f ∈ S.

But then dbq = febq = fe = d. Since p is the smallest such positive
integer, we have p ≤ q.

Swapping d and e, shows that q ≤ p. Therefore p = q.
The set d〈b〉 and e〈b〉 are disjoint, because if dbi = ebj , for 0 ≤ i, j ≤ p−1,

then e = ebp = ebjbp−j = dbibp−j = dbp+i−j ∈ d〈b〉, a contradiction to the
supposition that e 6∈ d〈b〉.

Next, partition finite set S into subsets of the form above d〈b〉 each with
size p, by repeatedly taking elements not in previous subsets. There will be
a finite number of such subsets, say u, and we will have |S| = up.

So, in a finite semigroup with a post-divider, there is a exactly one divider
/ (it is peremptory, pursued further in this report). Furthermore, division
can be implemented using power inversion.

Diversion B.8.26. The formula d/b = dbn−1 is not necessarily practical. For example,

n = |S| might be unknown, or n just too large (such as n > 22128). Or, high powers of b
might need representations (epigrams) so large that multiplication becomes impractical.

Diversion B.8.27. A post-divider seems to imply a more theoretical a specialized struc-
ture to a semigroup. It is necessarily a subsemigroup of the direct product of a left
semigroup and a group (to be proven in section about constructing extension semigroups).
In the finite case, it is whole the direct product (proven in the section on peremptory
semigroups).

B.8.10 Pre-dividers

Definition B.8.11. A divider / is a pre-divider relative to T ⊆ S2, if

(d/b)b = d, (B.8.14)

for all (d, b) ∈ T .

Diversion B.8.28. The term pre in pre-divider refers to the division being performed
before the multiplication in (d/b)b.

Other reasonable terms for a pre-divider / are a fractional divider, preventive di-
vider, and sectioning divider.

Diversion B.8.29. If / is a pre-divider, then its divisible-set is S2.

218 APPENDIX B. SEMIGROUP BASICS

Diversion B.8.30. Generally, in terms of the divider’s inputs d and b, verification for
pre-dividers and (middle) dividers use the same equation:

(d/b)b = d.

The (middle) divider criteria differs in how d is chosen.

Essentially, the middle division problem is a promise problem [Kob98] version4

version of the pre-division problem in which it is promised that the input d has the form
d = ab for some a.

A more formal comparison is provided below §B.8.10.1.

B.8.10.1 Comparison of pre-dividers and mid-dividers

On one hand, mid-divider and pre-divider are equivalent in the sense below.

Lemma B.8.5. If / is an pre-divider relative to T , then / is a mid-divider
relative to T ′ = {(a, b) : (ab, b) ∈ T}.

Proof. If (a, b) ∈ T ′, then let (d, b) = (ab, b) ∈ T . It follows that (ab/b)b =
(d/b)b = d = ab, so / is a mid-divider.

Lemma B.8.6. If / is a mid-divider relative to T , then / is an pre-divider
relative to T ′ = {(ab, b) : (a, b) ∈ T}.

Proof. If (d, b) ∈ T ′, then (d, b) = (ab, b) for some (a, b) ∈ T . Then (d/b)b =
(ab/b)b = ab = d.

Lemma B.8.7. If there exists at least one pre-divider in S, then every mid-
divider is an pre-divider.

Proof. Let ∅ be a pre-divider and let / a mid-divider. Then

(a/b)b = (((a∅b)b)/b)b

= (a∅b)b

= a

so (a/b)b = a, meaning that / is a pre-divider.

4I do not know how widely the term promise problem is used, but premise might
be more neutral that promise, connotationally.

B.8. DIVISION 219

This lemma means that a mid-divider is pre-divider, if a pre-divider exists.
(A similar result holds for post-dividers). No extra effort is required to find
an pre-divider: if a pre-divider exists and mid-divider, then the mid-divider
is already a pre-divider.

On the other hand, pre-dividers and mid-dividers are not equivalent, in
the senses below.

Lemma B.8.8. If / is an pre-divider relative to set T and (d, b) ∈ T , then
d = ab for some a.

Proof. Put a = d/b. By the pre-divider property, ab = (d/b)b = d.

Therefore, if at least one pair (d, b) ∈ T has the property that d 6= ab for
all a (in words, d is not left-divisible by a), then no / can be an pre-dividers
relative to a set T . In other words, a single instance of non-divisibility can
cause non-existence of an pre-divider.

The existence of mid-dividers is much different from pre-dividers. Mid-
dividers always exist, but a pre-divider exists only if every element is divisible
(on the right) by every other element.

B.8.10.2 Left dividers from pre-dividers

A weak form of commutativity can be used to construct left dividers from a
pre-divider.

Lemma B.8.9. If / is a pre-divider, and if d/d commutes with b for all
d, b ∈ S, then b\d = ((d/d)/b)d is a left divider.

Proof. Let d = ba and compute:

b(b\(ba)) = b(b\d)

= b(((d/d)/b)d)

= b(((d/d)/b)(ba))

= b(((d/d)/b)b)a

= (b(d/d))a

= ((d/d)b)a

= (d/d)(ba)

= (d/d)d

= d

= ba

220 APPENDIX B. SEMIGROUP BASICS

so that \ meets the definition of a left mid-divider.

B.8.10.3 Comparison of pre-dividers to post-dividers

This section compares pre-dividers to post-dividers.

Lemma B.8.10. In a finite semigroup,

• every post-divider is a pre-divider, and

• every pre-divider is a post-divider.

Proof. If a divider / is a post-divider (pre-divider), then function a 7→ ab is
injective (surjective).

In a finite set, a function is injective if only if it is surjective.

If a 7→ ab is surjective, there exists an pre-divider, say ∅. So, if / is a post-
divider, then there exists an pre-divider. Similarly, if there is an pre-divider,
then there exists a post-divider.

Now suppose that / is a post-divider and ∅ is an pre-divider. Then
a/b = ((a∅b)b)/b = a∅b, so the two dividers are identical binary operations.

Therefore, the post-divider equals the pre-divider, thus it is also a pre-
divider. Similarly, the pre-divider is also a post-divider.

Lemma B.8.11. In a commutative semigroup, every pre-divider is a post-
divider.

Proof. Let / be a right pre-divider. Then \ defined (b\d) = d/b is a left pre-
divider (§B.8.5), essentially because the semigroup is commutative (b(b\d) =
(d/b)b = d.)

Lemma 6.2.3 (special case of Green’s 1951 theorem that an H-class is
either a subgroup or disjoint from its square), says that a semigroup that
has both a left pre-divider and a right pre-divider is a group. In a group,
cancellation holds, so a post-divider exists, and every divider is a post-divider.

Recall that e is called idempotent if ee = e.

Lemma B.8.12. In a semigroup with at least one idempotent, every pre-
divider is a post-divider.

B.8. DIVISION 221

Proof. Let / be a pre-divider, let e ∈ S be an idempotent, and let q = e(e/b).
Then qbq = q, because

qbq = (e(e/b))bq

= e((e/b)b)q

= eeq

= eq

= ee(e/b)

= e(e/b)

= q.

Use this property of q to compute:

(ab)/b = (((ab)/b)/q)q

= (((ab)/b)/q)(qbq)

= ((((ab)/b)/q)q)(bq)

= (((ab)/b)(bq)

= ((ab)/b)b)q

= (ab)q

= a(bq)

= ((a/q)q)(bq)

= (a/q)(q(bq))

= (a/q)q

= a

which proves that (ab)/a = a, so / is a post-divider.

Diversion B.8.31. This proof is adapted from similar proofs in group theory, but likely
unnecessarily long.

Diversion B.8.32. Every non-empty finite semigroup has an idempotent, so this proves
again that every pre-divider in a finite semigroup is a post-divider.

(To see that non-empty finite semigroup has an idempotent, let b ∈ S, note there
exists positive integers h, p with bh = bh+p, and the e = bhp is idempotent.)

A partial converse is the following.

Lemma B.8.13. If semigroup has a divider / that is both a pre-divider and
a post-divider, then b/b is idempotent for all b ∈ S.

222 APPENDIX B. SEMIGROUP BASICS

Proof. Calculating directly

(b/b)(b/b) = (((b/b)(b/b))b)/b

= ((b/b)((b/b)b))/b

= ((b/b)b)/b

= (b/b),

where the first equation is due to post-division, the second due to associativ-
ity, the third due to pre-division, while the fourth can be deduced from either
pre-division (inside the parentheses) or post-division (outside the parenthe-
ses).

Diversion B.8.33. The calculation in the proof above might become clearer writing e =
b/b, noting that eb = (b/b)b = b, and then writing ee = ((ee)b)/b = (e(eb))/b = (eb)/b = e.

Diversion B.8.34. In non-empty semigroups, existence of an idempotent element is
equivalent to the condition that every pre-divider is a post-divider.

Diversion B.8.35. Baer–Levi semigroups are known to have pre-dividers but no idem-
potents, as reviewed below.

Recall that NN is the semigroup functions f : N → N under composition. The Baer–
Levi semigroup S over an infinite space N , is a subsemigroup of NN , consisting of injective
functions f such that N − f(N) is an infinite set.

To show that each f ∈ S is not idempotent, consider that f(N) 6= N , since N − f(N)
is infinite. Since f is injective, we can apply f to both sides of inequality to get another
strict inclusion f(f(N)) 6= f(N), which means ff 6= f (so f is not idempotent).

To see that the Baer–Levi semigroup S has a pre-divider (if N is countable), reason
as follows. For each a ∈ S, define a bijective function a′ : N → N − a(N), which exists
since N − a(N) is an infinite countable set. Define a divider / by the rule

(a/b)(n) =

{

a(m) if n = b(m) for some m,

a′(n) if n 6= b(m) for all m.

It just remains to show that a/b ∈ S, and (a/b)b = a.
Firstly, (a/b)(n) is uniquely defined for all n, because either n ∈ b(N) or not, and if

a ∈ b(N) then injectivity of b means that there exists exactly one m such n = b(m).
To prove injectivity of a/b, suppose (a/b)(n) = (a/b)(n′). Injectivity means to show

that n = n′. Since a(N) and a′(N) are disjoint, both n and n′ must fall into the same
case of the definition of a/b.

• In the first case, (a/b)(n) = a(m) and (a/b)(n′) = a(m′) for some m, m′ ∈ b(N).
Since a is injective, we get m = m′, which implies n = b(m) = b(m′) = m′, as
desired.

B.8. DIVISION 223

• In the second case, (a/b)(n) = a′(n) and (a/b)(n′) = a′(n′), which means that
a′(n) = a′(n′). But a′ is bijective, so n = n′.

To prove that N − (a/b)(N) is infinite, note that N − (a/b)(N) contains the set
a′(b(N)), which is infinite because b and a′ are injective.

The latter two paragraphs show that a/b belongs to the Baer–Levi semigroup S.
To show that (a/b)b = a, evaluate at any m ∈ N , so ((a/b)b)(m) = (a/b)(b(m)) =

a(m).
This pre-divider is not unique. For example, it can vary with the choice of a′, and a′

need not be bijective, injective suffices.
This pre-divider is not a post-divider, because of Lemma B.8.13 and the fact that the

semigroup has no idempotent.

Diversion B.8.36. An alternative description of the Baer–Levi semigroups for the set
N = {0, 1, 2, . . .} of natural numbers can also be described as the set of function of the
form n 7→ p(2n) where p is a permutation of the natural numbers.

Writing N ! ⊆ NN for the set of permutations of N , and 2N : n 7→ 2n with 2N ∈ NN ,
then the Baer–Levi semigroups is (N !)2N .

Using the previous definition of a′, define pa ∈ NN by

pa(n) =

{

a(n/2) if n even

a′((n − 1)/2) if n odd

Then a = pa2N .
This suggests find pa/b from pa and pb.
To be completed.

Diversion B.8.37. Many natural semigroups are commutative, finite, or have an idempo-
tent. Arguably, it follows that, it is quite natural for a pre-divider to also be a post-divider.

The converse implication fails in many natural semigroups. For example, consider the
positive integers under multiplication. Standard integer division is a post-divider, but it
is not a pre-divider, because there are no fractions among the integers.

Diversion B.8.38. If b ∈ bS for some b ∈ S, then every pre-divider is a post-divider,
because if b = bc, then c is idempotent, with the lemma above applies. To see that c is
idempotent, calculate cc = ((c/b)b)c = (c/b)(bc) = (c/b)b = c. Formalizing this:

Lemma B.8.14. If S is a semigroup with an pre-divider /, and there exists c ∈ S such

that the function ρc : a 7→ ac has a fixed-point, then / is a post-divider.

Consequently, any semigroup which has a right multiplication meeting the hypotheses
of a fixed-point theorem has the property that an pre-divider is a post-divider.

For example, Brouwer’s fixed-point theorem applies if S is also a compact, convex
set such that at least one right multiplication is continuous. This can be generalized
using Lefshetz fixed-point theorem, a special case of which is if S has the topology of a
CW complex, with a non-zero Euler characteristic, and at least one right multiplication
operation is continuous in this topology.

224 APPENDIX B. SEMIGROUP BASICS

Diversion B.8.39. Yet another observation that may help resolve the comparison of pre-
dividers and post-dividers is the following.

Lemma B.8.15. If a semigroup S has a pre-divider / and there is a maximal subset of

the form bS, then / is a post-divider.

Proof. Suppose that bS is maximal among subsets of that form. (This means that, for all
a ∈ S, if bS ⊆ aS, then bS = aS.)

Since / is a pre-divider, (b/b)b = b, which means that bS = (b/b)bS ⊆ (b/b)S, so
bS = (b/b)S.

Let e = (b/b)(b/b). We claim that e is idempotent.
Firstly, note that e = (b/b)(b/b) ∈ (b/b)S = bS. Therefore, e = bs for some s ∈ S,

consequently

ee = ebs = (b/b)(b/b)bs = (b/b)((b/b)b)s = (b/b)(b)(s) = ((b/b)b)s = bs = e.

By Lemma B.8.12, we are done.

Diversion B.8.40. For any b ∈ S, write 1b = b/b. Then bS ⊆ 1bS ⊆ 11b
S ⊆ 111b

S ⊆
The proof of the previous lemma also show that if S has no idempotent, then that sequence
of sets is strictly increasing.

Diversion B.8.41. If S is a semigroup with a pre-divider but no idempotents, then the
relation a < b defined by a ∈ bS is a strict partial order.

Diversion B.8.42. The resolution is to be completed.

B.8.10.4 Aside: quasi-groups

To be revised.
A quasi-group S is a magma with a left and right pre-divider.
The previous results show that if S both a quasi-group and a semigroup,

then it is a group.

B.8.11 Aside: divisibility

Divisibility of integers can be generalized to any semigroup (or magma):

Definition B.8.12. For b, d in a multiplicative semigroup S (or magma),
say b right-divides d, and d is right-divisible by b, write

b|d (B.8.15)

precisely if there exists a such that d = ab.

B.8. DIVISION 225

The relation of divisibility is transitive in semigroups:

Lemma B.8.16. In a multiplicative semigroup, if b|d and d|f , then b|f .

Proof. There exists a such that d = ab, and there exists e such that f = ed.
Therefore f = e(ab) = (ea)b, so there exists o = ea such that f = ob,
meaning b|f .

Diversion B.8.43. Divisibility can be considered a function S2 → {0, 1}, where 1 means
true, or right-divisible, and 0 means false.

Definition B.8.12 is existential, referring to the existence of a such that
d = ab.

This reports emphasizes constructions over existence. So, right divisibility
can also be characterized somewhat more constructively by using a right
divider operator.

Lemma B.8.17. In a semigroup (or magma), b|d if and only if

(d/b)b = d,

for any divider /.

Proof. If b|d, then d = ab for some a, so (d/b)b = ((ab)/b)b = ab = d.
If (d/b)b = d, then d = ab for a = (d/b), so b|d.

Diversion B.8.44. The choice of divider / does not matter in this characterization divis-
ibility: any divider can be used.

Diversion B.8.45. The lemma above may be interpreted as a reductive algorithm to
computes the Boolean divisibility function using a divider function, as in (b|d) = (d/b)b ⊜ d
(where x ⊜ y is 1 if x = y and 0 otherwise).

Left divisibility can also be defined, and is characterized by left division,
so that b left-divides e if (e\b)b = b.

B.8.11.1 Aside: division set

Tentative.

Definition B.8.13. The division-set of d over b is defined,

d//b = {a : ab = d}, (B.8.16)

as an operator // : S2 → 2S.

226 APPENDIX B. SEMIGROUP BASICS

An operator / on semigroup S is a divider if and only if

(ab)/b ∈ (ab)//b

for all a, b ∈ S. In particular, given a division-set operator //, a divider can
be constructed by setting d/b to be a random element of d//b.

A post-divider / exists if and only if:

|d//b| ≤ 1

for all d, b ∈ S. A pre-divider / exists if and only if:

|d//b| ≥ 1

for all d, b ∈ S.
If the set d//b is small, and an algorithm can compute d//b quickly, then

the impact of // on key agreement is similar to the impact of a post-divider,
because Alice’s key a ∈ d//b. If Alice re-uses a outside of a single key
agreement session, an attacker with run trial search on the set d//b for a,
reducing the security effective security of a. (The use of a in a single key
agreement session is already compromised by any divider /.)

More generally, consider the set 2S (of subsets of S) as a semigroup, under
multiplication of sets. Then define an operator // on 2S as follows:

D//B = {a : aB ⊆ D}. (B.8.17)

The division-set operator on S can be re-defined in terms of this 2S operator:

d//b = {d}//{b}. (B.8.18)

The operator // on 2S is a divider for 2S. It is maximal in the sense that if
/ is any other divider on 2S, then

(AB)/B ⊆ (AB)//B. (B.8.19)

B.8.12 Aside: Green’s relations

Green noticed that five definitions of mutual divisibility between semigroup
elements lead to equivalence relations useful for analyzing the structure of

B.8. DIVISION 227

semigroups. For multiplicative integers, the mutual divisibility equivalence
classes are the sets:

{0}, {1, −1}, {2, −2}, {3, −3}, . . .

where, for example, 3 is equivalent to −3, because they divide each other
exactly.

Green defined five equivalence relations defined the relations using set op-
erations including set-multiplication, but some of the relations can be stated
using the divider notation, as used this report.

Definition B.8.14. Define aLb precisely if a = b or if both

a|b, (B.8.20)

b|a. (B.8.21)

Diversion B.8.46. Green’s choice of the letter L, as in left, is a mirror image in interpre-
tation of this report’s terminology of this being mutual right divisibility. In a|b meaning
a = xb, the value b is on the right, but the value x is on the left. For consistency, with
this report other notations, such as right divider /, this has been called right divisibility.

Lemma B.8.18. In a multiplicative semigroup, the relation L is an equiva-
lence relation.

Proof. To prove that relation L is an equivalence relation means to prove

aLa, (B.8.22)

aLb =⇒ bLa, (B.8.23)

aLb, bLc =⇒ aLc, (B.8.24)

in other words, to prove that L is reflexive, symmetric and transitive.
By definition, aLa, since aLb if a = b, so L is reflexive.
If aLb, then either a = b, so b = a so bLa, or a|b and b|a, which means

that bLa, since this system of two conditions is symmetric in the variables a
and b. Hence L is symmetric.

If aLb and bLc, and a = b or b = c, then aLc by substitution. Otherwise
a 6= b and b 6= c, so the four divisibility conditions hold. In particular, a|b
and b|c, so a|c, because divisibility is transitive in semigroups. Similarly, c|b
and b|a, so c|a. Therefore aLc.

Diversion B.8.47. An equivalence class of L is called an L-class. The L-class of a is
often written as La.

228 APPENDIX B. SEMIGROUP BASICS

Diversion B.8.48. Reversing left and right divisibility gives Green’s R-relation. Com-
bining both these relations, L and R, gives the H-relation. So, aHb precisely if a = b or
if

(a/b)b = b,

(b/a)a = a,

a(a\b) = b,

b(b\a) = a.

Diversion B.8.49. Green also defined two other relations, the D and J relations, which
are not discussed in this report.

B.8.13 Co-multiples and co-divisors

TO BE RE-WRITTEN!

B.8.13.1 Co-multiples

Definition B.8.15. The (right) co-multiples set of a set T ⊆ S is

T // = {d : (d/b)b = d, ∀b ∈ T}. (B.8.25)

Equivalently:

T // =
⋂

b∈S

Sb

= {d : b|d, ∀b ∈ T}.

The set T \\ of left co-multiples is defined similarly:

T \\ = {d : b(b\d) = d, ∀b ∈ T}.

In constructions of some algorithms, such as matrix divisions, it suffices to
have an algorithm that computes one co-multiple.

Definition B.8.16. A co-multiple operator is an operator 2S → S : T 7→
T /, such that T / ∈ T // whenever T // 6= {}.

Diversion B.8.50. Some example co-multiple operators:

• If 0 ∈ S, then T / = 0 for all T defines a co-multiple operator.

• If / is a pre-divider, then any operator T 7→ T / is a co-multiple operator.

• If S is commutative, then for finite T , there exists a co-multiple operator with
{b1, . . . , bn}/ = b1b2 . . . bn.

• Given an existing co-multiple operator T 7→ T /, a second T 7→ T ′ may be defined
as T ′ = aT / for any a ∈ S.

B.8. DIVISION 229

B.8.13.2 Ore semigroups

To be completed, or corrected.

Definition B.8.17. A (right) Ore semigroup is one which T // is non-empty
for every finite non-empty subset.

B.8.13.3 Cross-multipliers

Given a, b ∈ S and an co-multiple operator T 7→ T /, a cross-multiplier
from a to b can be defined as:

a ∗/ b = {a, b}//b (B.8.26)

Diversion B.8.51. The action of co-multiple operator ·/ on two element subsets can be
recovered from the cross-multiplier: {a, b}/ = (a ∗/ b)b.

The cross-multiplier has the characterizing property that

(a ∗/ b)b = (b ∗/ a)a,

which can be useful in matrix division to cancel variables, whenever there
exists x, y with xb = ya. This property also provides an equivalent charac-
terization of cross-multipliers.

A cross-multiplier ∗/ is strict if a 6= b implies that a ∗/ b 6= b ∗/ a.

Diversion B.8.52.

Diversion B.8.53. Consider the problem of constructing a left double-base-tester (§3.4.3.3)
τ in an associative scheme. The input is [e, b, b′] and the output is [d, f, f ′] such that
f = d ∧b d and f ′ = d ∧′

b f ′.
To that end, let [d, f, f ′] = [(b′ ∗/ b)b, (b′ ∗/ b)e, (b ∗/ b′)e], where ∗/ is a strict cross-

multiplier. If f 6= f ′, then this provides a double-base-tester.
To be completed.

The Diffie–Hellman semigroup is commutative, so the a ∗/ b = a defines a strict cross-
multiplier. But, this fails to yield a double-base-tester because f = f ′ above.

B.8.13.4 Co-divisors

Definition B.8.18. The right co-divisors set of a set T ⊆ S is

T// = {b : (d/b)b = d, ∀d ∈ T}. (B.8.27)

230 APPENDIX B. SEMIGROUP BASICS

B.8.14 Aside: division by zero

The traditional view that division by zero is impossible can be rephrased
as the impossibility of post-division by zero or pre-division by zero, made
precise below.

Lemma B.8.19. If semigroup S has absorbing element 0, and / is a post-
divider or a pre-divider, then S = {0}.

Proof. Consider any a ∈ S. Let b = 0.
If / is a post-divider and a ∈ S, then

a = (ab)/b

= (a0)/0

= (0)/0

= (00)/0

= (0b)/b

= 0.

If / is a pre-divider , then a = (a/b)b = (a/b)0 = 0.
In either case, a = 0 for all a ∈ S, meaning S = {0}.

In other words, if 0 ∈ S, then a divider / is a not post-divider or a
pre-divider. But a divider, in the weak sense of middle division, still exists,
as always, despite the existence of 0. So, middle division does not forbid
division by zero. Furthermore, division by zero can take any value:

Lemma B.8.20. Suppose that semigroup S has absorbing element 0, and
that e, z ∈ S. There exists a divider / such that such z/0 = e.

Proof. Let ÷ be a divider for S, which we know exists. Define / by

d/b =

e if [d, b] = [z, 0],

d ÷ b if [d, b] 6= [z, 0].
(B.8.28)

Consider any a, b ∈ S. We aim to prove that ((ab)/b)b = ab. Write d = ab.
If [d, b] 6= [z, 0], then ((ab)/b)b = (d/b)b = (d ÷ b)b = ((ab) ÷ b)b = ab, as

required.
If [d, b] = [z, 0], then ((ab)/b)b = (z/0)0 = e0 = 0 = a0 = ab.

Diversion B.8.54. Perhaps, for some special semirings and for some stricter definitions
of division (such as those distributive over addition), the intuitive idea that 1/0 = ∞, in
the sense that ∞ is an additively absorbing element, might hold.

B.8. DIVISION 231

B.8.15 Aside: traditional division examples

Examples of the various dividers under traditional arithmetic may help illus-
trate this report’s notions of division.

• Positive rational numbers under standard multiplication have a stan-
dard divider / that is both post-divider and pre-divider.

• Positive integers under standard multiplication have a post-divider /,
but have no pre-divider. (For example, no integer result for the division
4/3 meets the pre-divider rule that (4/3)3 = 3.)

• Non-negative integers (natural numbers) under standard multiplication
have a divider / but have no pre-divider or post-divider, because 0 is
included.

B.8.16 Peremptory dividers

A special case is a semigroup with a unique divider.

Definition B.8.19. A peremptory divider in a semigroup S is a divider
such that there are no other dividers in S.

A peremptory semigroup is a semigroup with only one divider.

Diversion B.8.55. A left semigroup L (where ab = a for all a, b ∈ L) is peremptory,
because d/b = (db)/b = ((db)/b)b = d, for any divider / and any d, b ∈ L.

Diversion B.8.56. Any group G is a peremptory, because d/b = ((db−1b)/b)(bb−1) =
((db−1)b)b−1 = db−1, for any d, b ∈ G and any divider G. (The inverse element b−1 is
uniquely defined in a group, so the division d/b = db−1 is uniquely defined.

Diversion B.8.57. Non-zero rationals under multiplication is a group from elementary
arithmetic, and therefore a peremptory semigroup.

Diversion B.8.58. Positive reals under multiplication is a group used often in applied
mathematics with its peremptory divider is read per, as in kilometers per hour (km/h).

Lemma B.8.21. A divider / is peremptory if and only if / is both a post-
divider and a pre-divider.

Proof. Suppose that / is both a pre-divider and a post-divider (so (ab)/b = a
and (a/b)b = a for all a, b). Suppose that ÷ is a divider (so ((ab) ÷ b)b = ab

232 APPENDIX B. SEMIGROUP BASICS

for all a, b). Then

a ÷ b = ((a ÷ b)b)/b

= ((((a/b)b) ÷ b)b)/b

= ((a/b)b)/b

= a/b

for all a, b: so, ÷ = /. All dividers are /, so / is the only divider, so / is
peremptory.

Suppose that / is peremptory. Consider any a′, b′ ∈ S. Define an operator
÷ by the rule:

d ÷ b =

a′ if [d, b] = [a′b′, b′]

d/b if [d, b] 6= [a′b′, b′]

Then ÷ is a divider, because:

((ab) ÷ b)b =

a′b if [ab, b] = [a′b′, b′]

((ab)/b)b if [ab, b] 6= [a′b′, b′]

=

ab if [ab, b] = [a′b′, b′]

ab if [ab, b] 6= [a′b′, b′]

= ab.

But / is peremptory, so / = ÷ and therefore (a′b′)/b′ = (a′b′) ÷ b′ = a′. This
holds for any a′, b′ ∈ S, so / is a post-divider.

Next, let f : S → S be any function, and define a binary operator ÷ by
the rule:

d ÷ b =

d/b if (d/b)b = d

f(d/b) if (d/b)b 6= d

Now ÷ is a divider, because

((ab) ÷ b)b =

((ab)/b)b if ((ab)/b)b = ab

(f((ab)/b))b if ((ab)/b)b 6= ab

= ((ab)/b))b

= ab.

Because / is peremptory, / = ÷. Suppose (d/b)b 6= d, then choose f : S → S
such that f(d/b) 6= d/b, which is possible if |S| ≥ 2. Then d ÷ b = f(d/b) 6=

B.8. DIVISION 233

d/b, giving / 6= ÷, a contradiction. Since this holds for all d, b, we conclude
that / is a pre-divider.

If |S| ≤ 1, then any divider, including /, is a pre-divider.
Therefore, if / is peremptory, it is both a post-divider and pre-divider.

Lemma B.8.22. Let S be peremptory. For a, b ∈ S,

a1b = a(b/b) = a,

writing 1b = b/b, call this the element ridentity of b.

Proof. Compute

a(b/b) = (a(b/b)b)/b

= (ab)/b

= a.

Peremptory semigroups are closed under direct products of semigroups.

Lemma B.8.23. If S and T are peremptory, then so is S × T .

Proof. Recall that S × T = {[s, t] : s ∈ S, t ∈ T} with multiplication rule
[s, t][u, v] = [su, tv].

Define a divider in S × T by

[d, e]/[b, c] = [d/b, e/c]

where the dividers / inside the brackets are the unique dividers of S and T .
The operator / in S ×T is both a pre-divider and a post-divider, because

in each coordinate it is both a pre-divider and post-divider:

([a1, a2][b1, b2])/[b1,2] = [(a1b1)/b1, (a2b2)/b2] = [a1, a2]

([a1, a2]/[b1, b2])[b1,2] = [(a1/b1)b1, (a2/b2)b2] = [a1, a2],

and therefore it / is peremptory in S×T , so S×T is a peremptory semigroup.

In particular, if L is a left semigroup and G is a group, then L × G is
peremptory semigroup. A converse of this is true, up to an isomorphism
(efficient relative to division and multiplication).

234 APPENDIX B. SEMIGROUP BASICS

Lemma B.8.24 (Rees?). A peremptory semigroup S is isomorphic to L×G
where L is a left semigroup and G is group.

An isomorphism can be given by

m : S → L × G : a 7→ [(a/a), (g/g)a] = [1a, 1ga],

where g is some fixed element of S, and L = {a/a : a ∈ S} and G = {(g/g)a :
a ∈ S} are subsemigroups of S, with L being a left semigroup, and G being
a group.

Proof. Sets L and G are subsemigroups of S because, being closed under
multiplication, as shown next. For 1a, 1b ∈ L, we have 1a1b = 1a ∈ L. For
1ga and 1gb in G, we have that (1ga)(1gb) = (1gc) ∈ G, for c = a(g/g)b, so
G is also closed in S.

Map m is a semigroup morphism, because it is multiplicative, as com-
puted below:

m(a)m(b) = [1a, 1ga][1b, 1gb]

= [1a1b, 1ga1gb]

= [1a, 1gab]

= [(1a(ab))/(ab), 1gab]

= [(((a/a)a)b)/(ab), 1gab]

= [(ab)/(ab), 1gab]

= m(ab)

Map m is injective, since its input is determined by its output, as shown
next. If m(a) = [b, c], then a = bc, because bc = 1a1ga = 1a = (a/a)a = a.

Map m is surjective, because any h ∈ G can be put in the form h =
[1b, 1gc] ∈ L × G, for some b, c ∈ S, and then for a = 1bc, we have

m(a) = [1a, 1ga]

= [a/a, 1g(1bc)]

= [(1bc)/a, (1g1b)c]

= [((1b1b)c)/a, 1gc]

= [(1b(1bc))/a, 1gc]

= [(1ba)/a, 1gc]

= [1b, 1gc]

= h.

B.8. DIVISION 235

Map m is an isomorphism because it is a bijective morphism.
Semigroup L is a left semigroup, because that 1a1b = 1b for all 1a, 1b ∈ L.
Semigroup G has an identity element, namely 1g = 1g1g ∈ G. For any

1ga, we have 1g(1ga) = (1g1g)a = a and (1ga)1g = 1g(a1g) = 1ga.
Semigroup G has a group inverse operation defined

h−1 = 1g/h

for all h ∈ G. To see that this defines an inverse compute as follows:

h−1h = (1g/h)h = 1g

hh−1 = h(1g/h) = (h(1g/h)h)/h = (h1g)/h = h/h

and then note that h = 1gk for some k, so h = 1gh, mean h/h = (1gh)/h =
1g.

Diversion B.8.59. More abstractly, we can let L be the set of distinct subsets aS, and
set G be the set of functions defined by right multiplication in S.

Diversion B.8.60. In a peremptory semigroup, every element b has a co-mutual inverse
q = (b/b)/b.

In a finite peremptory semigroup, every element b has torsion, meaning b = bp+1 for
some positive integer p called the period. If the entirety of S can be implemented by
a quantum computer, then Shor’s period-finding algorithm might apply to find p, and
therefore its co-mutual inverse q = b2p−1, and therefore, division by b.

In other words, a finite peremptory semigroup is likely insecure for key agreement.

B.8.17 Co-associativity

To be revised.
Dividers are generally not commutative or associative. Nevertheless, nice

dividers are co-associative with multiplication in the sense of the next lemma.

Lemma B.8.25. If / is both a pre-divider and post-divider, then

a/(b/c) = (ac)/b, (B.8.29)

(a/b)/c = a/(cb), (B.8.30)

(ab)/c = a(b/c). (B.8.31)

Proof. Computing directly:

a/(b/c) = ((a/(b/c))b)/b

= ((a/(b/c))(b/c)c)/b

= (ac)/b,

236 APPENDIX B. SEMIGROUP BASICS

and

(a/b)/c = ((a/b)/c)(cb))/(cb)

= ((a/b)b)/(cb)

= a/(cb),

and

(ab)/c = (a((b/c)c))/c

= ((a(b/c))c)/c

= a(b/c),

using associativity of multiplication and the pre-divider and post-divider
rules.

Diversion B.8.61. The lemma holds even if / is only a post-divider, provided that we
restrict all the inputs to / to be relevant inputs, meaning each division d/b has the form
d = eb for some e.

• Suppose b = ec and a = ue. Then a/(b/c) = (ue)/((ec)/c) = (ue)/e = u = (ub)/b =
(uec)/b = (ac)/b.

• Suppose a = ecb. Then (a/b)/c = ((ecb)/b)/c = (ec)/c = e = (e(cb))/(cb) = a/(cb).

• Suppose b = ec. Then (ab)/c = (aec)/c = ae = a((ec)/c) = a(b/c).

Diversion B.8.62. Co-associativity also include the equation a/(b/c) = a(c/b), since
both sides are (ac)/b.

The associativity and co-associativity rules from the lemma cover all but one expres-
sions of the form a ◦1 (b ◦2 c) and (a ◦1 b) ◦2 c for ◦1, ◦2 ∈ {×, /}. Each co-associativity
matches pairs of these, sometimes swapping the order of two adjacent variables.

The missing expression from the co-associativity rules is (a/b)c. It can be shown that
this expression is closely related to the wedge operator. In some cases, we can also relate
it to the left divider, via the rule (a/b)c = a(b\c).

Diversion B.8.63. If / is only a mid-divider, not a post-divider, then the co-associativity
can fail. For example, in a null semigroup, ab = 0 for all a, b and allowing any binary
operation / is a mid-divider, because ((ab)/b)b = 0 = ab. The co-associativity rules can
fail, because / can be arbitrary.

Diversion B.8.64. Co-associativity can be viewed as arithmetic rules for somewhat sim-
plifying complicated expressions involving multiplication and division. For example sim-
plifications, upon encountering two adjacent divisions, one division can be replaced by
a multiplication, thereby reducing the number of divisions in the expression. Similarly,
factors in the numerator of division can be pulled out, leaving only the rightmost factor.

B.8. DIVISION 237

Diversion B.8.65. A co-associative divider / is a binary operation on a semigroup such
that

ab = ((ab)/b)b, (B.8.32)

a/(bc) = (a/c)/b, (B.8.33)

a(b/c) = (ab)/c = a/(c/b), (B.8.34)

for all a, b, c ∈ S. Lemma B.8.25 can then be re-stated to say: if / is both a pre-divider
and post-divider, then it is co-associative. (The converse is likely false.)

If a co-associative divider exists, then the semigroup can be said to be co-associatively

divisible.

Diversion B.8.66. Non-negative (or positive) integers under multiplication is not a co-
associatively divisible semigroup. Let a, b > 1. Then ab = ((ab)/b)b = (((ab)1)/b)b =
ab(1/b)b. This implies (1/b)b = 1, which would be possible over the rationals, but not in
the non-negative (or positive) integers.

Diversion B.8.67. A commonly defined operation on non-negative integers, generally
known as the quotient, defines d/b for b > 0, to be the smallest integer q such that
(1 + q)b > d. Extend this operator to b = 0, by defining d/0 = 0. (Within positive
integers, a different operator /, defined as the least integer such that (d/b)b ≥ d, is a
divider, though this operator is not used widely.)

Then / is a mid-divider and it is partially co-associative, in that it obeys the rule
a/(bc) = (a/c)/b. (As noted previously, no divider for integers can be co-associative.
Moreover, the standard quotient / does not obey any of three equalities a(b/c) = (ab)/c =
a/(c/b) = a(b/c).)

This suggests that the equality a/(bc) = (a/c)/b is easier to meet, or at least special,
or more natural, than full co-associativity. Inspecting the equality more carefully reveals
that the functions /b for b ∈ S are closed under composition, and form a semigroup, say
/S, and that the map S → /S : b 7→ /b is a semigroup morphism. This property of /
may thus deserve a name, perhaps closed. A semigroup with a closed divider is divisibly

closed. So the non-negative (or positive) integers are divisibly closed.

B.8.18 Wide social dividers?

This subsection looks at recovering multiplication from division.

Suppose that S is a set and / : S2 → S is a binary operator, which is
initial assumed only to be a notational divider, meaning merely that it uses
the notation /. (At this point, we have not said that S is a multiplicative
semigroup, so an actual divider would be undefined.)

For each b ∈ S, let 1b = b/b and let b′ = 1/b . Define a multiplication op-
erator on S by letting ab = a/b′. We call this multiplication the denominal

238 APPENDIX B. SEMIGROUP BASICS

multiplication derived from /. (We also call 1b = b/b the denominal iden-
tity of b, and b′ the denominal inverse of b.) This makes S into a magma
(not yet a semigroup, because multiplication might not be associative).

Operator / is a wide divider if / is a divider for the denominal mul-
tiplication derived from /. Equivalently, expanding all the definitions, an
operator / is a wide divider on S if and only if

((a/((b/b)/b))/b)/((b/b)/b) = a/((b/b)/b) (B.8.35)

for a, b ∈ S.
If the denominal multiplication derived from / is an associative operation,

then we say that / is a social divider.

Diversion B.8.68. If multiplicative semigroup S has a peremptory divider, meaning only
one divider, then / is a post-divider and pre-divider. Multiplication in S is necessarily
denominal, with ab = a/((b/b)/b) for all a, b ∈ S. In other words, there exists a unique
multiplication operation × such that / is peremptory divider for ×.

Other multiplication operations such as null multiplication (ab = 0 for all a, b) may
have / as a divider, but it will not be peremptory for the semigroup.

B.9 Wedge operators

To compute a wedge in a semigroup means the following definition.

Definition B.9.1. A wedge operator is a function

∧ : S3 → S : [d, b, e] 7→ d ∧b e (B.9.1)

such that
(ab) ∧b (bc) = abc (B.9.2)

for all a, b, c ∈ S.

Diversion B.9.1. The cryptographic significance of computing a wedge is given in §3.1.4:
computing a wedge in semigroup amounts to a watcher breaking the seclusion security of
key agreement scheme associated with the semigroup.

Diversion B.9.2. In the semigroup of even positive integers under multiplication,

48 ∧8 80 = 480,

for example, where [a, b, c] = [6, 8, 10] in the notation above.

Diversion B.9.3. Some cryptography implementers might appreciate that Montgomery’s
modular multiplication a wedge operator.

B.9. WEDGE OPERATORS 239

B.9.1 Notational justification

The name and notation for the wedge operator is not at all standard, so
warrants some justification.

• The subscript b to the symbol ∧ helps distinguish from other meanings
of the symbol ∧.

• The wedge operator has close connections to division, and the symbol
∧ suggest a consolidation of the right / and left \ divider symbols.

• The term to drive a wedge often means to thwart what would other-
wise be agreement.

B.9.2 Terminology and uniqueness

To be revised.

Diversion B.9.4. For discussion purposes, name the variables involved as follows.

• The problem is to compute abc from [ab, b, bc].

• The input to the wedge problem or operator is the array [d, b, e].

– The left input is d.

– The middle input is b.

– The right input is e.

• The seed is [a, b, c].

• An instance of the wedge problem is the input [d, b, e] = [ab, b, bc] derived from a
seed [a, b, c].

• A valid input has the form [d, b, e] = [ab, b, bc] for some (seed) [a, b, c].

• An invalid input has form [d, b, e] 6= [ab, b, bc] for all seeds [a, b, c].

• An output for a given input [d, b, e] to the wedge operator is d ∧b e.

• A relevant output is an output from a valid input.

• A irrelevant output is an output from an invalid input.

• A correct output d ∧b e is a relevant output for an instance [d, b, e] from a seed
[a, b, c] such that d ∧b e = abc.

• A solution is a correct output.

Diversion B.9.5. An instance of [ab, b, bc] of the wedge problem may have multiple dif-
ferent seeds (if the semigroup does not have the cancellation property).

240 APPENDIX B. SEMIGROUP BASICS

Lemma B.9.1. Each instance [ab, b, bc] of the wedge problem has a unique
solution abc.

Proof. For each seed [a, b, c], there is a unique solution abc, so the only case
to handle is if two different seeds, say [a, b, c] and [a′, b′, c′] lead to the same
instance of the wedge problem.

Two such seeds have [ab, b, bc] = [a′b′, b′, b′c′]. But

abc = (a′b′)c = a′(b′c) = a′(b′)c = a′(b)c = a′(bc) = a′(b′c′) = a′b′c′, (B.9.3)

using associativity, and equations ab = a′b′, b = b′ and bc = b′c′.

Diversion B.9.6. The wedge problem can be defined for any magma (set with a binary
operation), not just semigroups. The lemma above uses associativity, so does not establish
uniqueness of solutions in non-semigroups.

Because of the unique solution of the wedge problem, we can usually
safely speak of the wedge operator, tacitly ignoring irrelevant outputs.

B.9.3 Incomplete wedges

To be revised.

Definition B.9.2. A wedge operator is a ternary (three input) operator
on a semigroup S, written

∧ : S3 → S : [d, b, e] 7→ d ∧b e. (B.9.4)

A wedge operator is correct for seed-set T ⊂ S3 if

ab ∧b bc = abc (B.9.5)

for all seeds [a, b, c] ∈ T .

So, the wedge operator provides the solution ab∧bbc to the wedge problem
[ab, b, bc] instance.

Diversion B.9.7. We also say that ∧ is a wedge operator relative to seed-set T to mean
that it is correct for set T .

B.10. ASIDE: POLARIZABLE FUNCTIONS? 241

B.9.4 Binary wedge

An important special type of incomplete wedge operator involves a fixed
value of b.

In the context of associative key agreement, the middle input to the wedge
problem is often a fixed value b. In this case, we can view ∧b as a binary
operation:

∧b : S2 → S : (d, e) 7→ d ∧b e. (B.9.6)

B.9.5 Wedge algorithms

To be revised.

Definition B.9.3. A wedge problem solver (for seed-set T ⊂ S3) is an
algorithm to implement a wedge operator (correct for T).

B.9.6 Probabilistic wedges

To be revised.

Diversion B.9.8. We may wish to consider probabilistic wedge problem solvers. These
algorithms receive inputs drawn from a probability distribution on the set T . The algo-
rithm itself may make further probabilistic choices (formally, via random tape or other
source of randomness). The resulting output of the wedge problem solver may be viewed
as a random variable. We then the speak of the success rate as the probability of the
equation (B.9.5).

Strategies to compute wedges are discussed in Chapter 4.

B.10 Aside: Polarizable functions?

To be completed!
This section defines a generalization of polynomial functions.
Polynomial functions are of basic importance in algebra. The hope in

generalizing polynomials is that the basic importance generalizes usefully to
wider settings.

Polynomials are defined by using both addition and multiplication. But
polynomials also obey some functional equations that only involve addition
(no multiplication or even subtraction). These functional equations in some
cases are strong enough to characterize polynomial functions.

242 APPENDIX B. SEMIGROUP BASICS

This motivates the generalization: polarizable functions are those that
obey the same additive functional equations. These generalizations can be
defined for functions between commutative semigroups. We use additive
notation for the commutative semigroups, to draw out the similarity to poly-
nomials functions.

Diversion B.10.1. The term polarizable is chosen here for its similarity to the terms
polynomial and polarization, some related notions.

There may already exist different terminology for polarizable functions: the notion
behind it is well-known.

The term polarizable is not related to the notion of polarized semigroups.

B.10.1 Free commutative semigroups

For any set X, let [X]+ indicate the commutative additive semigroup freely
generated by elements of the form [x] with x ∈ X, which are formal copies
of the elements of X. Let [X]+0 be the same, with an identity element 0.

For s ∈ [X]+, we write |s| (or #(x) or #x) for the number of terms, so

|[x1] + · · · + [xn]| = n, (B.10.1)

and call this the length of s. The length function is actually a semigroup
morphism from [X]+ to P+ = {1, 2, 3, . . .}+ (the positive integers under
addition). For 0 ∈ [X]+0 , let |0| = 0.

For positive integer n, write

n[x] = [x] + [x] + · · · + [x]
︸ ︷︷ ︸

n copies of [x]

=
n∑

i=1

[x] (B.10.2)

as is usual in additive semigroups. In [X]+0 , we also have we have 0[x] = 0. In
[X]+, term of the form 0[x] can appears in a sum, unless all terms have that
form. Terms for the form 0[x] are simply omitted from the sum. If all terms
have this form, then the sum is not defined in [X]+. Equivalently, consider
everything to happen [X]+0 , but then carefully track whether or not 0 results.

For b ∈ {0, 1}, define the b-exploratory function,

εb : [X]+ → [[X]+0]+ :

(
n∑

i=1

[xi]

)

7→
∑

b1,...,bn∈{0,1}∑
bi≡b mod 2

[
n∑

i=1

bi[xi]

]

. (B.10.3)

Also, let ε(s) = ε0(s) + ε1(s).

B.10. ASIDE: POLARIZABLE FUNCTIONS? 243

Diversion B.10.2. For example:

ε0([2] + [2] + [3]) = [0] + [[2, 2]] + [[2, 3]] + [[2, 3]],

ε1([2] + [2] + [3]) = [[2]] + [[2]] + [[3]] + [[2] + [2] + [3]],

where the 0 in inside the [0] of the first term in the first equation is the additive identity
of [X]+0 .

Diversion B.10.3. Function ε1 has image in the subsemigroup [[X]+]+ ([[X]+0]+, but
ε0([x]) = [0], so zeros are necessary on the right.

Diversion B.10.4. Length grows exponentially under the exploratory function: |εb(x)| =
2|x|−1.

Diversion B.10.5. The term exploratory is chosen to here for similarity to terms ex-

ponential, parity, and polarization.

For any function f : X → Y , define an induced function [f] : [X]+ →
[Y]+ by:

[f]([x1] + · · · + [xn]) = [f(x1)] + · · · + [f(xn)]. (B.10.4)

Diversion B.10.6. If clear from context, one can write [f] as f . Clarification from context
is sometimes needed. For example, in [[X]+]+, care is needed in how many layers of
brackets to pass through.

B.10.2 Summation maps

Now let X = S+, a commutative additive semigroup. Define the summation
function σ : [S+]+ → S+ by

σ([a1] + · · · + [an]) = a1 + a2 + · · · + an. (B.10.5)

The summation function σ is a semigroup morphism. Extend the domain of
σ to the [S+]+ be defining σ(0) = 0. If 0 6∈ S+, then the extended σ is taken
to have range S+

0 .

Diversion B.10.7. If the set S+ also has a multiplication operation, for example, if S is
a ring, then we can also define a function π similarly by π([a1] + · · · + [an]) = a1a2 . . . an.

For any z ∈ S+, define the translation functions tz : S+ → S+ : a 7→
a + z. Extend the domain of the each translation function to S+

0 by setting
tz(0) = z.

244 APPENDIX B. SEMIGROUP BASICS

B.10.3 Polarity functions

Again, let S+ and T + be additive commutative semigroups.

Definition B.10.1. If f is a function f : S+ → T +, then define the polarity
function of f as a function {0, 1} × [S+]+ × S+ → T +, written [b, x, z] 7→
fb,x(z), and defined by

fb,x(z) = σ([f]([tz]([σ](εb(x))))). (B.10.6)

Equivalently,

fb,[x1]+···+[xn](z) =
∑

b1,...,bn∈{0,1}∑
bi≡b mod 2

f
(

z +
∑

bixi

)

, (B.10.7)

using the usual conventions that 1x = x and terms 0x vanish from the sum.

Diversion B.10.8. For example, f1,[x](z) = f(x + z) and f0,[x](z) = f(z), while:

f0,[x]+[y](z) = f(z) + f(x + y + z),

f1,[x]+[y](z) = f(x + z) + f(y + z).

Diversion B.10.9. If 0 ∈ T , then extend the polarity function to a larger domain {0, 1}×
[S+]+0 × S+ if 0 ∈ T , by letting f0,0(z) = f(z) and f1,0(z) = 0.

B.10.4 Recursions for polarity functions?

Polarity functions obey some recursions

fb,[0]+x(z) = f0,x(z) + f1,x(z), (B.10.8)

and

fb,x+y(z) = (f0,x)b,y(z) + (f1,x)1−b,y(z), (B.10.9)

and

fb,[u]+[v]+x(z)+fb,[0]+x(z) = f1−b,[u+v]+x(z)+fb,[u]+x(z)+fb,[v]+x(z). (B.10.10)

Recursions like this are useful for proving properties by induction.

B.10. ASIDE: POLARIZABLE FUNCTIONS? 245

B.10.5 Polarizable functions

Definition B.10.2. Let d be an integer. A function f : S+ → T + is d-
polarizable if

f1,x(z) = f0,x(z) (B.10.11)

for all x ∈ [S+]+ with |x| > d and for all z ∈ S+. Say that d is a degree of
polarizability of f .

Diversion B.10.10. A constant function f : S+ → T + is 0-polarizable.

(For f(s) = c and |x| > 0, we have fb,x(z) = 2|x|−1c.)

Conversely, a 0-polarizable function f : S+ → T + is constant.

(For any x, z ∈ S+, we have f(z) = f0([x], z) = f1([x], z) = f(x + z) = f(z + x) =
f1([z], x) = f0([z], x) = f(x).)

Diversion B.10.11. The identity function f : S+ → S+ : z 7→ z is 1-polarizable.

(For any x ∈ [S+]+ with |x| > 1, we have fb,x(z) = 2|x|−2(2z + σ(x)).)

Diversion B.10.12. If we extend the domains of the polarity function to [S+]+0 × S+,
which, recall, requires that 0 ∈ T , then we get an extended notion for polarizable functions.

The only difference this extension makes for the set of d-polarizable functions is for
integer d < 0, because then x with |x| = 0 becomes relevant. But |x| = 0, means x = 0.
So, if d < 0 and f is d-polarizable in the extended sense, then f(z) = 0 for all z ∈ S. In
the non-extended sense, d-polarizable for d < 0 means that same as 0-polarizable.

We will generally assume that d ≥ 0, in which case, this distinction is not important.

Diversion B.10.13. If functions p and q are d-polarizable, then so is function p + q.
Consequently, d-polarizable functions of degree d form a additive semigroup. (This is also
true for d = −1.)

Diversion B.10.14. Let S+ = {0, 1, 2, 3, . . .}+. The function f : S+ → S+ defined
f(n) = 2n is not polarizable.

(For example, we have f0,m[1](0) + f1,m[1](0) =
∑

bi
2
∑

bi =
∑

k≥0

(
m
k

)
2k = 3m, which

is odd, so the two integer terms cannot be equal.)

Diversion B.10.15. If 0 ∈ S+ and there also exists an element b ∈ S+ such that all non-
empty sums of b are nonzero, so b, b + b, b + b + b, · · · 6= 0, then the function f : S+ → S+

defined:

f(a) =

{

b if a = 0

0 if a 6= 0
(B.10.12)

is not d-polarizable for any d, because f1,n[b](0) = 0 6= b = f0,n[b](0).

246 APPENDIX B. SEMIGROUP BASICS

B.10.6 Differential polarity function?

Again, let S+ and T + be a commutative additive semigroups. Fix a subtrac-
tion operator − for T .

Definition B.10.3. The differential polarity function of function f :
S+ → T + is a function [S+]+ × S+ → T + written [x, z] 7→ fx(z),

fx(z) = f|x| mod 2, x (z) − f|x|+1 mod 2, x (z). (B.10.13)

Diversion B.10.16. Let R be the ring of real numbers, and let S+ = R+ be its addi-
tive semigroup. Let R× be the subset of nonzero numbers, viewed as a multiplicative
semigroup. Let f : R → R be a function that d times differentiable at 0. Then the dth

derivative of f at z can be defined using the differential polarity function as

f (d)(z) = lim
x→0

fx(z)

π(x)
,

where the limit runs over x ∈ [R×]+ with |x| = d, and the limit x → 0 refers to all terms
approaching 0. (Recall π(x) is the product of the entries in the multiset.)

B.11 Aside: productive semigroups?

Recall that in, a (multiplicative) semigroup S, multiplication is a binary
operation having two inputs, and the result is called the product. Associa-
tivity implies any sequence of values can be multiplied together, which can
be viewed as a multiple-input function, product.

Diversion B.11.1. For non-associative binary operations, multiple-input products can be
defined, but the inputs must be arranged into a binary tree structure, not just a sequence
structure.

In commutative semigroups, the multiple inputs to a product can be arranged into a
multi-set.

Sometimes, semigroup multiplication can be generalized to allow for prod-
ucts of infinitely many elements, in a way formally defined below.

Diversion B.11.2. Such infinite-input products are not always uniquely determined by
the semigroup multiplication, so must be considered an extra structure on the semigroup.

Given any multiplicative semigroup S, we form a semigroup Fac(S) of
(formal) factorizations, whose elements are equivalence classes of func-
tions f : T → S, where T is a total order. Two functions f : T → S and
g : U → S are considered equivalent if there exists an isomorphism h : T → U

B.11. ASIDE: PRODUCTIVE SEMIGROUPS? 247

such that f(t) = g(h(t)) for all t ∈ T . We write [f] for the equivalence class
of a function.

Recall that two total orders, say T and U , can be combined to form new
total order T ⊳ U , consisting of disjoint copies of T and U , with all elements
of T less than those of U .

Formal factorizations multiply as follows:

[f][g] = [h]

h : T ⊳ U : v 7→ h(v) =

f(v) if v ∈ T,

g(v) if v ∈ U.

A solitary factorization [f] is a factorization f : T → S such that |T | = 1.
A finite factorization f : T → S is such that T is finite. A factorization is
empty if T if T is empty, and otherwise it is non-empty. A factorization
is binary if |T | = 2.

A general product on the semigroup S is a semigroup morphism:

∏

: F → S (B.11.1)

where F is a subsemigroup of Fac(S) such that F contains all the solitary
factorization, and for each solitary factorizations obeys:

∏

([f]) = f(t),

where t is the sole elements of T in f : T → S.
The semigroup’s original multiplication is directly recoverable from gen-

eral products as defined over a binary factorization, since
∏

[0 7→ a, 1 7→ b] =
ab.

As per usual conventions, when applying the morphism
∏

, we often write

∏

([f]) =
∏

t∈T

f(t).

The subsemigroup F is called the product scope of the general product
∏

. For set of all T (up to isomorphism), is call the index type of the general
product. A product(ion) semigroup is a semigroup equipped together
with a specific general product.

Every semigroup S has general product where the product scope con-
sists of all non-empty, finite factorizations, which is the minimum product

248 APPENDIX B. SEMIGROUP BASICS

scope, which is the non-empty, finite index type. Every product scope con-
tains this minimum product scope. The value of

∏
on the minimum product

scope is uniquely determined. (The empty factorization can be included in
the product scope if and only if the semigroups has a 1.)

Diversion B.11.3. Some additional ideas that need to be corrected, or completed.
Product semigroups might form a category, with morphisms preserving the structure

(such that not all semigroup morphism preserve the general product.)
General products can also be defined for formal factorizations too, but one particular

general product is most natural. Consider a factorization of factorizations, which we can
write as

[f] = [f : t 7→ [ft : Tt → S]],

where t ∈ T for some total order T , and {Tt}t∈T is a family of other total orders. The
natural general product is then

∏

[f] =

[
⊎

t∈T

Tt → S : u 7→ ft(u)

]

,

where
⊎

t∈T Tt is the ordered union of the family Ttt∈T of total orders, and each u in the
ordered is mapped to ft(u) where t is such that u ∈ Tt, for the copy of Tt inside the
ordered union.

Consistency of a general product on the semigroup and the natural general product of
the formal factorizations can be called super-associativity, which looks something like:

∏
(
∏

t∈T

[ft]

)

=
∏[

t 7→
∏

([ft])
]

.

On the left side of the equation, the inner product is the natural general product of
factorization. The three product in the equation are the general product whose super-
associativity is in question. Either:

• super-associativity can be proven to hold for any general product, or

• else super-associativity can fail for some general products, and thereby used to de-
fine an extra condition, and we can speak super-associative product semigroups.

We can also ask whether a super-associative general product meets a further closure
property. If its index type I is closed under infinite ordered unions, meaning that

⊎

t∈T Tt ∈
I if T, Tt ∈ I for all t ∈ T , then we say that the general product is recursively super-

associative.

For an additive semigroup S+, we re-name factorization as series, we
re-name a products as a sum, or a summation, we write the morphism

∏

as
∑

. From series to sum.
Examples of product semigroups:

B.11. ASIDE: PRODUCTIVE SEMIGROUPS? 249

• Let S be any well-ordered set and define multiplication on S to be the
minimum. The a natural general product defines the product of any
non-empty factorization f : T → S as the minimum element of the
non-empty set f(T).

• Let S be a multiplicative semigroup with a zero. Define a general
product by setting the product of all infinite factorizations to be zero.

• Let S be a multiplicative semigroup with both a zero and a one. Define
a general product the product of a empty factorization to be one, the
product of a factorization f : T → S to be zero if 1f = {t : f(t) 6= 1} is
an infinite set, and otherwise

∏
[f] =

∏
[f ′] where f ′ : Tf → S : t 7→ f(t)

is the restriction of f to the domain 1f .

• Let S+ = (R+
+)∞ be the semigroup of positive real numbers under

addition, with the point extension by an absorbing element, written
infinity ∞. We recall the natural ordering of the real numbers and
place ∞ to right of all reals. Define a general summation whose scope
is the smallest subsemigroup of series containing series of the form
[f : P → S], where P is the set of the positive integers. The infinite
sum

∑
[f] =

∑

i∈P f(i) is the least element S+ greater than or equal
to all partial sums,

∑

i∈P,i≤n f(i). Any other infinite series is sum of
P-types series and finite series, so is defined accordingly.

Diversion B.11.4. This general product is super-associative, but not recursively
super-associative, because it its index type does not include P ⊳ P ⊳ P ⊳ . . . , also
known as ω2 to those familiar with ordinal numbers, whereas this total order must
appear in recursively super-associative index type containing P.

• Let S+ = (R+
≥0)∞. (A point extension of the same semigroup, with the

addition of identity element 0). For any non-empty series [f : T → S],
define the sum

∑
[f] as the least element greater than or equal to all

sums of finite sub-series of f , meaning all [g : U → S : u 7→ f(u)]
where U is a finite subset of T . Let

∑
[] = 0, since 0 is the least element

greater than or equal to all members of the empty set.

Diversion B.11.5. It is natural ask about the relevance of infinite products to cryptog-
raphy, despite this chapter aiming for the basic theory of semigroups. One possibility is
that a product semigroup (or summation semigroup), can be used to build yet other infi-
nite semigroups, which in turn might have useful subsemigroups or images. For example,
there is little doubt that infinite series, such as the Weierstrass and Jacobi functions, were
instrumental in the development of elliptic curve theory.

250 APPENDIX B. SEMIGROUP BASICS

B.12 Semirings and realms

Multiplicative semigroups sometimes arise from rings, which are equipped
with two binary operations. The extra operations can enable constructions
of new semigroups (such as via matrices) new division algorithms (such as
long division, which uses subtraction).

This section examines some definitions and facts generalizing the setting
of ring theory.

Diversion B.12.1. A large part of semigroup theory is motivated by ring theory, because
each ring has a multiplicative semigroup. So, despite the name semigroup theory is more
a generalization of ring theory, than of group theory.

Diversion B.12.2. Ring theory is more widely taught than semigroup theory, perhaps
because its greater applicability to natural problems. Ring theory is perhaps deeper, since
the extra operations and axioms allows more sophisticated theorems.

Ring theory is such a rich area that it is usually divided into three large topics:
field theory, commutative algebra, and non-commutative algebra, which can be studied
somewhat separately.

It would be impossible and inappropriate to review all of ring theory in
this section, so the discussion will be confined to reviewing some notations,
and definitions, axioms, that generalize those of ring theory. For full ring
theory, the reader should consult several standard textbooks, such as Lang’s
Algebra (or surveys like Hutchins [Hut81] for lists of specific examples).

B.12.1 Realms

Definition B.12.1. A realm is a set with two binary operations.

A realm’s operations default to addition (written +) and multiplication
(written silently), and the realm and its underlying are indicated as R.

Otherwise, notation of the form R+,∗ indicates a realm with set R, and
binary operations + and ∗.

Diversion B.12.3. A realm could also be called a bi-magma.

Diversion B.12.4. In some general theory of universal algebra, a realm is an algebra with
signature [2, 2].

Diversion B.12.5. In this report, the focus is on realms with addition and associative
multiplication, meeting some further axioms, whereby the addition operation helps either
to provide new secure semigroups, or to devise new attacks.

B.12. SEMIRINGS AND REALMS 251

In a few cases, the focus will be on the additive semigroup.

If R is a realm, with addition and multiplication as binary operators, then
R+ can indicate its additive magma and R× or R can indicated its magma, if
clear from context. (If the relevant operation is associative, then the relevant
magma is a semigroup, hence the interest in considering these in this report.)

B.12.2 Subsets of realms

The definition of realm, though abstract, enables the identification of notable
subsets, generalizing some of notable subsets from ring theory (include the
prime spectrum topology of rings). To avoid confusion with existing termi-
nology, the generalized definition below uses a distinct geographic jargon.

Definition B.12.2. A subrealm is a subset closed under both operations.
A submagma is a subset closed under one of the operations.
A country is a subrealm whose complement is a subrealm.
A province is subrealm whose complement is a submagma.
A region is an intersection of provinces.
A bastion is a union of finitely many provinces.
A cloister is an intersection of bastions.
A territory is a submagma whose complement is a submagma under the

other the operation.
An idyl is a subrealm whose combination with its complement under one

operation remains confined to the subrealm.

Diversion B.12.6. For example, positive elements in an ordered ring also form a province.
An ideal of a ring is an idyl. A prime ideal of a ring is both a province and idyl.

Assuming the default operations of addition and multiplication, the sets
of above can be further qualified with the following definitions.

Definition B.12.3. A additive set is closed under addition.
A multiplicative set is closed under multiplication.
Two equi-operative sets are closed under the same operation.
A co-additive set has an additive complement.
A co-multiplicative set has an multiplicative complement.
Two co-operative sets whose complements are equi-operative.

Diversion B.12.7. For example, a set is a prime ideal of a ring if and only if it is both
co-multiplicative provinces and an idyl.

252 APPENDIX B. SEMIGROUP BASICS

Finally, using these subsets suggests ideas similar to the dimension theory
of rings.

Definition B.12.4. A stratification is a maximal chain of co-operative
provinces.

The distension of a realm is one less than the maximum cardinality of
a stratification.

Diversion B.12.8. A chain above has the usual meaning, a set totally ordered under set
inclusion.

The next jargon is occasionally useful:

Definition B.12.5. An element of a realm is any element of its set.

A member of a realm is any element or operator of a realm.

B.12.3 Function between realms

The most general function of interest between realms is the following.

Definition B.12.6. A chart from a first realm to a second realm is a func-
tion from the members of the first realm to members of second realm, sending
elements to elements, and operators to operators.

Charts can be nearly arbitrary, but the following type of charts define the
morphisms of a category.

Definition B.12.7. A map is a chart that preserves the action of the oper-
ators.

For example, if m : R → S [⊕,⊗] is a map, then

m(a + b) = m(a)m(+)m(b),

m(ab) = m(a)m(×)m(b).

The equations are between before chart application and after chart applica-
tion, for all inputs the to the operators.

Diversion B.12.9. Consider the realm Z⊔,⊓, integers with minimum and maximum op-
erators. The map m : n 7→ −n and m(⊔) = ⊓ and m(⊓) = ⊔ is an isomorphism of the
realm (taking the category-theoretic meaning of isomorphism).

B.12. SEMIRINGS AND REALMS 253

B.12.3.1 Conservative realms, congruences, and valuators

Definition B.12.8. An relative realm is a realm equipped with a binary
relation (on its elements)

The more interesting relative realms are the following:

Definition B.12.9. A conservative realm where the operators conserve
the binary relation.

The most important case of a conservative realm is when the relation is
an equivalence relation.

Definition B.12.10. A congruence on a realm is an equivalence relation
on the elements of realm that makes it into a conservative realm.

Diversion B.12.10. Any map m : R → S of realms defines a congruence ∼ on S by the
rule a ∼ b if and only if m(a) = m(b).

The congruence equivalence classes also from a realm, the congruence realm, as dis-
cussed later in the next Appendix.

Definition B.12.11. An ordered realm is a relative realm where the rela-
tion is a partial ordering.

Assume by default that the binary relation is written as ≤.

So, in a conservative ordered realm (with default notations), whenever,
a ≤ b and c ≤ d, it will also be true that:

a + b ≤ c + d,

ab ≤ cd.

Non-negative real numbers form a conservative ordered realm.

For relative realms, another class of chart has some significance, with
equations in the map definition, replaced by order relations.

Definition B.12.12. A valuator is a chart from a realm to a relative realm,
where each operator obeys the relations (either before chart application, or
after chart application).

A map is a valuator when the relation is the equality relation.

One valuator from the realm of complex numbers to the ordered realm
of real numbers is the standard absolute value function (magnitude) z 7→ |z|

254 APPENDIX B. SEMIGROUP BASICS

on elements (and identity on operators), because

|a + b| ≤ |a| + |b|
|a||b| ≤ |ab|.

The latter relation of the example could also be written |ab| ≤ |a||b|.

B.12.3.2 Types of realm elements

To be corrected and revised.
In commutative algebra, some elements of rings can be classified as in-

tegral or transcendental (or negative-like). In the more lenient category of
realms, the following weakenings of these properties can be given.

Definition B.12.13. An additively (or multiplicatively) internal ele-
ment a has subrealm 〈a〉 finitely generated as an additive (or multiplicative)
submagma.

A transcategorical element a, relative to a subcategory C of realms, is
such that for any realm B in C, and any b ∈ B, there is a map 〈a〉 → B :
a 7→ b.

A negligible element a has a ∈ 〈〈a〉 − {a}〉.
Diversion B.12.11. The set of internal rational numbers is the set of integers. The set
of negligible rational numbers is {r : r ∈ Q, r < 0} ∪ { 1

n : n ∈ Z, n > 1}. The set of
non-negligible internal rational numbers is the set of non-negative integers {0, 1, 2, 3, . . .}.

Diversion B.12.12. The number
√

2 is non-negligible and internal. The number 1/
√

2
is negligible and non-internal.

Diversion B.12.13. The additively internal elements of a semiring form a subsemiring.

Diversion B.12.14. If a subcategory C of realms contains at least one realm with at
least one additively (or multiplicatively) non-internal elements, then no additively (or
multiplicatively) internal element is transcategorical element relative to C.

Diversion B.12.15. The transcendental number π is transcategorical relative to the sub-
category of semirings. Relative to larger categories with non-associative or non-distributive
operations, π is not transcategorical.

B.12.4 Semirings

The special class of realms defined below, includes rings, and enables con-
struction of semigroups using matrices.

B.12. SEMIRINGS AND REALMS 255

Definition B.12.14. A semiring is realm with medial addition, associative
multiplication, and multiplication distributive over addition (both left and
right).

So, in semiring R, for a, b, c, d the following equations hold:

(a + b) + (c + d) = (a + c) + (b + d),

a(bc) = (ab)c,

a(b + c) = (ab) + (ac),

(a + b)c = (ac) + (bc).

Of course, a ring is semiring:

Definition B.12.15. A ring is a semiring R such that its additive magma
R+ is a commutative (abelian) group.

Diversion B.12.16. The semiring condition of having medial addition is redundant, given
the ring’s condition that R+ is a commutative group.

B.12.5 Nearrings

Various sources use the term nearring for our realms, where the addition
is commutative, and multiplication is left-distributive, or right-distributive
over addition.

Nearrings arise more easily than semirings, usually by way of endomor-
phisms, but less easily yield yet other semirings.

B.12.6 Why addition is often commutative

This section explores the notion that left and right distributivity are nearly
enough to imply medial addition. To that end, we drop the condition of
medial addition from a semigroup, as follows.

Definition B.12.16. A quasi-ring is defined just like a semiring, except
that addition need not be medial.

Diversion B.12.17. As is shown later in this report, there exist quasi-rings with associa-
tive non-commutative addition, and therefore non-medial addition.

Therefore stronger conditions are needed to imply medial addition (let alone commu-
tative addition).

256 APPENDIX B. SEMIGROUP BASICS

Lemma B.12.1. If R is a quasi-ring such that R× is a group, and R+ is a
semigroup with a pre-subtracter −, then R is a semiring.

Proof. Consider any a, b, c, d ∈ R. Choose any z ∈ R. Let

y = d/z,

w = b/z,

x = y\c,

e = a − wx,

using the pre-dividers / and \ available in any group. Then

a + b + c + d = (a − wx) + wx + (b/z)z + y(y\c) + (d/z)z

= (a − wx) + wx + wz + yx + yz

= (a − wx) + (w + y)(x + z)

= (a − wx) + wx + yx + wz + yz

= (a − wx) + wx + y(y\c) + (b/z)z + (d/z)z

= a + c + b + d.

Diversion B.12.18. The result above can perhaps be strengthened by weakening the
condition that R× is a group, because the proof uses only three division d/z and b/z and
y\c.

It suffices that for one z (for each choice of a, b, c, d) to exist in S such that these three
divisions are correct.

Lemma B.12.2. If R is quasi-ring, with R+ a semigroup having both left
and right post-subtraction, and R× has a left identity, then R is a semiring,
and furthermore, R+ is a commutative.

Proof. Let − be a right post-subtracter, ⊟ a left post-subtracter, and 1 a left

B.12. SEMIRINGS AND REALMS 257

multiplicative identity. Let a, b be any elements of S. Compute as follows:

b + a = a ⊟ (a + (b + a))

= a ⊟ (((a + (b + a)) + b) − b)

= a ⊟ ((((a + b) + a) + b) − b)

= a ⊟ (((a + b) + (a + b)) − b)

= a ⊟ (((1(a + b)) + (1(a + b))) − b)

= a ⊟ (((1 + 1)(a + b)) − b)

= a ⊟ ((((1 + 1)a) + ((1 + 1)b))) − b)

= a ⊟ ((((1a) + (1a)) + ((1b) + (1b))) − b)

= a ⊟ (((a + a) + (b + b)) − b)

= a ⊟ ((((a + a) + b) + b) − b)

= a ⊟ ((a + a) + b)

= a ⊟ (a + (a + b))

= a + b.

So, R+ is commutative. Commutative and associative implies medial.

Appendix C

Semigroup examples: some
sketches

This chapter sketches constructions of some semigroups, for the purpose of
concretely illustrating examples of semigroups affected by the division and
wedge algorithms described earlier in this report.

Each semigroup implied by this chapter is very likely at least one of:

• insecure, or

• impractical, or

• incorrect, or

• old and well-known.

The reader is cautioned is to consider each semigroup sketched here as
insecure – until strong evidence suggests otherwise. No such evidence is
implied by this report.

C.1 Semigroups with almost arbitrary multi-

plication

The four binary operations of any key agreement can be embedded into the
multiplication of a semigroup, as shown §2.20.

Even totally arbitrary binary operations can be embedded into a semi-
group. One approach for this is similar to that used in §2.20, which is fill

258

C.1. SEMIGROUPS WITH ALMOST ARBITRARY MULTIPLICATION259

in the rest of the semigroup multiplication table with zeros, resulting in a
3-nilpotent semigroup – which is well-known method, see Distler [Dis10], for
example. Another approach is to fill up the semigroup freely with sequences,
subject to the congruence implied by the given binary operation.

C.1.1 Quick review: Disjoint unions of sets

This section makes use of a formality called a disjoint union of sets, which
we review:

Definition C.1.1. A disjoint union A ⊎ B of given sets A and B, is any
set which is a union of disjoint subsets that are copies of A and B.

For a specific formal example, let A ⊎ B = {(t, u)|t ∈ {1, 2}; t = 1 =⇒
u ∈ A; t = 2 =⇒ u ∈ B}.

By convention, because of the existence A ⊎ B, we can safely assume
that A and B are disjoint, without worrying about the formally making the
distinct copies.

We can form a disjoint union A1 ⊎ . . . An of several sets, whose elements
are formally (i, ai) with ai ∈ Ai. The disjoint union also allows us to add an
arbitrary formal symbol.

C.1.2 Embedding in a 3-nilpotent semigroup

Definition C.1.2. The semigroup closure S〈m〉 of binary operation m :
L × R → M consists of the set (L ∪ R) ⊎ M ⊎ {0} with a multiplication
operation

st =

m(s, t) if (s, t) ∈ L × R;

0 if (s, t) 6∈ L × R.
(C.1.1)

Diversion C.1.1. We can also denote the binary operation of S of 〈m〉 if necessary to
distinguish from other forms of multiplication.

Lemma C.1.1. The semigroup closure S〈m〉 is a semigroup.

Proof. It suffices to prove multiplication defined in (C.1.1) is associative.
We claim that a(bc) = (ab)c = 0 for all a, b, c, which will prove that S〈m〉

is a semigroup.
Consider a(bc).
If (b, c) 6∈ L×R, then bc = 0 6∈ R. Therefore (a, bc) 6∈ L×R, so a(bc) = 0.

260 APPENDIX C. SEMIGROUP SKETCHES

If (b, c) ∈ L × R, then bc = m(b, c) ∈ M . Then bc 6∈ R, since the bc
belongs to the copy of M which is made to be disjoint from the copy of R.
Therefore (a, bc) 6∈ (L, R), so a(bc) = 0.

The argument for (ab)c is similar.

Diversion C.1.2. As a concrete example from cryptography, both the block cipher AES
and message authentication code HMAC can be viewed as binary operators L × R → M :
with the left domain L being keys (fixed-length bit strings), the right domain R being
message (fixed-length for AES, or variable-length for HMAC, bit strings), and the range
being ciphertexts or tags (fixed-length bit strings). Therefore, semigroup closures S〈AES〉

and S〈HMAC〉 can be formed.

Diversion C.1.3. If m in S〈m〉, has M ⊆ L ∪ R, then Slanglem〉 has a disjoint copy M ′ of
M is used, which has M ′ * L ∪R. Consequently, S〈m〉 can have associative multiplication
even if m the multiplication of a non-associative magma.

Diversion C.1.4. If a semigroup S is some arbitrary semigroup, with binary operation
×, then S is not generally the same, or even isomorphic, is to the semigroup closure S〈×〉.

Diversion C.1.5. Semigroups with the property that the product of any three elements
is a constant (which may be re-labelled 0) are called 3-nilpotent.

In this sense, the semigroup closure S〈m〉 is formally degenerate, and not very inter-
esting.

Diversion C.1.6. It can be shown that any 3-nilpotent semigroup can be constructed in
the same manner as above.

The semigroup S〈m〉, being 3-nilpotent, has an easy wedge problem (§??.)

C.1.3 Embedding into a non-nilpotent semigroup

To be completed.

See §4.5.

C.2 Semigroups from hard homogeneous space

To be clarified.

Couveignes [Cou06] described an idea called a hard homogeneous space
(HHS).

C.2. SEMIGROUPS FROM HARD HOMOGENEOUS SPACE 261

A HHS is a special case of a permutation group, where various op-
erations must be implemented by an algorithms, and some operations (or
problems) should be infeasible to implement by algorithms.

Couveignes shows how to define a key exchange scheme from any given
hard homogeneous scheme. Under the report’s terminology, the key exchange
scheme of Couveignes can be easily transformed into an asynchronous key
agreement scheme. (Precisely, it requires that the value h0 is fixed.)

Consequently, a hard homogeneous space can be lead to an associative
key agreement, since the previous observation in this report show that any
asynchronous key agreement scheme is effectively associative.

For completeness, a direction reduction of a hard homogeneous space
(G, H) to a semigroup S is now given, using the notation of Couveignes and
this report.

Let S = {0} ⊎ H ⊎ G. As usual, let 0s = s0 = 0 for all s ∈ S. Let
h1h2 = 0 for all hi ∈ H . For g1, g2, define the product g1g2 in S to be same
as the product in G. Let hg = gh = g.h for g ∈ G and h ∈ H , where the dot
in g.h signifies the group action.

It is a good exercise to verify the associativity of S.

Diversion C.2.1. The semigroup S constructed above is commutative.

Couveignes requires efficient some algorithms for his Problems 1–5. Al-
gorithms for these problems almost imply that S is what we call a practical
semigroup. What might missing is monography, since Couveignes says “We
assume that elements in G and H are represented by strings in a non neces-
sarily unique way.” This seems to be a slight mistake, since it implies that
the agreement will fail if the two parties in the key exchange cannot arrive
at the same string representation of the value K.

Couveignes defines his Problem 6, named “Vectorization”, computing
g ∈ G such g.h1 = h2 for given h1, h2. The vectorization problem is an in-
stance of post-division in S. Using our standard notation, put b = h1 and
d = h2 and g = d/b. This should be expected, because Couveignes describes
the vectorization problem as generalization the discrete logarithm problem,
while division (in a semigroup) also generalizes the discrete logarithm prob-
lem.

Couveignes writes δ(h2, h1) for the solution of the vectorization problem.
By the observation above, this amounts to δ(h2, h1) = h2/h1 in the semigroup
S, using post-division.

262 APPENDIX C. SEMIGROUP SKETCHES

Diversion C.2.2. The notation δ(h2, h1) for the solution of the vectorization problem
matches Hamilton’s original definition of a vector as a difference (a delta) between two
points in the space.

If we had used additive notation for our semigroup, then it would have been written
h2 − h1.

Couveignes defines his Problem 7, named “Parallelization”, which amounts
to computing, with three inputs h1, h2, h3 ∈ H yielding a fourth value h4 ∈ H .
The success condition is expressed using δ, but translate to a division oper-
ation, it can be written h2/h1 = h4/h3. It can be shown that h4 = h2 ∧h1 h3,
so the parallelization is an instance of the wedge problem. Couveignes also
remarks the parallelization can be solved by vectorization: which this report
has observed as division is usable to solve the wedge problem.

Hard homogeneous spaces are a simple abstraction, much like semigroups.
Couveignes not only identifies the abstract value of generalizing Diffie–Hellman
key agreement, but gives concrete examples of potential hard homogeneous
spaces, using elliptic curves and isogenies. Subsequent work generalized these
examples.

It seems clear (to me) that semigroups are far more general than hard
homogeneous spaces, but it is not yet clear (to me) whether semigroups
outside those that can be constructed from hard homogeneous can also satisfy
basic security.

Diversion C.2.3. I would argue that semigroups, with only one operation and only one
axiom, are simpler abstraction than the abstraction of hard homogeneous spaces.

Semigroups also seem to more widely generalize Diffie–Hellman key agreement. The
semigroup S constructed from a hard homogeneous space is commutative, but a general
semigroup need be commutative to be used in associative key agreement. Indeed, associa-
tive key agreement covers all asynchronous key agreement schemes.

C.3 Semigroups from orderings

Though the term semigroup suggests a modest generalization of groups,
semigroups generalize more diverse objects such as certain kinds of partial
orderings (called semilattices).

C.3.1 Semilattices

A semilattice a set L with a partial order relation ≤ in which every pair
of elements a, b has a infimum (greatest lower bound), say a ⊔ b = inf{a, b},

C.3. SEMIGROUPS FROM ORDERINGS 263

meaning that c ≤ a, b if and only if c ≤ a ⊔ b.

The infimum binary operation is associative, so a semilattice forms a
semigroup. If no confusion arises, then we will write ab for a ⊔ b.

Diversion C.3.1. A semilattice is sometimes called lower semilattice, with an up-

per semilattice being a partially ordered set with unique pairwise supremums. Then
a semilattice means either an upper or lower semilattice, usually defaulting to a lower
semilattice.

Any upper semilattice can be converted to a lower semilattice by reversal of the order
relation.

Diversion C.3.2. The notation a ∨ b is a more common notation than a ⊔ b for infimum
operation in a semilattice. The name meet is a more common name. The name meet-

lattice is often used for lower semilattice.

Similarly, the term join is more common than supremum, and the notation a ∧ b is
more common than a ⊓ b.

Unfortunately, the more common notation for join conflicts with this report’s notation
for wedge. To minimize the confusion, the alternative notation a ⊓ b is used in this report.
For symmetry of notation, the notation a ⊔ b is used as notation for the meet.

Diversion C.3.3. A lattice (order) is a partially ordered set that is both a lower semilat-
tice and an upper semilattice, meaning pairwise infimums and supremums exist.

The semigroup of a semilattice is commutative and idempotent. (Conse-
quently, division is easy.)

Conversely, any semigroup that is both commutative and idempotent
defines a semilattice by the relation a ≤ b if and only if a = ab. This is a
well-known theorem of (Clifford, Preston, Liapin, or earlier?) [?].

For any semigroup S, the subset of idempotent elements is often written
E(S). The set E(S) of idempotents may be partially ordered by a relation
≤ defined by e ≤ f if and only e = ef = fe.

Diversion C.3.4. There is also notion called a residuated semilattice, in which some
operators / and \ are considered part of the axiomatic structure. If these operators meet
the definitions of right and left dividers used in this report, then at least some consistency
would be achieved.

C.3.2 Orderly semigroups

In the notation of the previous section, a total ordering, also known as linear
ordering, is a partial ordering with the extra property that a ⊔ b ∈ {a, b} for
all a, b. Consequently, a total ordering is a semilattice.

264 APPENDIX C. SEMIGROUP SKETCHES

An orderly semigroup is the semigroup associated with total ordering,
as described in the previous section. So,

ab = a ⊔ b = min(a, b) (C.3.1)

Again, we generally use notation ⊔ only when needed to avoid confusion with
other multiplication operations.

Diversion C.3.5. We make a distinction between orderly semigroup and ordered semi-
group, further below.

An orderly semigroup has the property that ab ∈ {a, b}, which we call
the idoperant property.

Any semigroup that is both commutative and idoperant is an orderly
semigroup. As noted in the previous section, the ordering can be recovered
from the semigroup multiplication by the rule:

(a ≤ b) ⇐⇒ (a = ab), (C.3.2)

Suppose a ≤ b and b ≤ c. Then a = ab = abc = ac, so a ≤ c.

Diversion C.3.6. In an orderly semigroup, the minimum element, if any, acts like 0, while
the maximum element, if any, acts like 1 (serving as the multiplicative identity).

Diversion C.3.7. An idoperant semigroup is obviously idempotent: a2 = aa ∈ {a, a} =
{a}, so a2 = a for all a ∈ S. Therefore, division is easy in any idoperant group.

Diversion C.3.8. For the semigroup {0, 1} of non-negative idempotent integers under
standard multiplication, the multiplication operation is identical the minimization opera-
tion.

Diversion C.3.9. For each non-negative integer n, there is only one semigroup isomor-
phism class of finite orderly semigroups of cardinality n. Perhaps the most natural labelling
of elements of such a finite orderly semigroups is a subset { a

n−1 |0 ≤ a ≤ n − 1} of the
rational numbers.

For infinite cardinalities, there are many orderly semigroup classes.

Diversion C.3.10. An ordered semigroup is traditionally considered a semigroup that
has consistency with a linear (total) ordering. However, the linear ordering can be made
into its own semigroup: an orderly semigroup.

In this case, we can require the notation ⊔ to disambiguate confusion with the multi-
plication of the ordered semigroup. The consistency between the orderly semigroup and
ordered semigroup can then be expressed using the distributive law:

ab ⊔ ac = a(b ⊔ c) (C.3.3)

ac ⊔ bc = (a ⊔ b)c (C.3.4)

C.4. SMALL SEMIGROUPS 265

Essentially, this is to say that we have a semiring, which is discussed much later in the
report. In order words, a an ordered multiplicative semigroup is essentially a semiring
whose additive semigroup is an orderly semigroup (equivalently, addition is commutative
and idoperant).

Diversion C.3.11. In an ordered semigroup, there is a conflict in notation between the
0 and 1: the notation in the ordered semigroup might not match the notation in the
associated orderly semigroup.

C.4 Small semigroups

This section discusses some of the smallest semigroups.

C.4.1 Empty semigroup

There is only one semigroup of cardinality 0, namely an empty semigroup.
We could write this semigroup ∅, with the usual notation for its underlying
set.

In many case, the notation will be clearer if write this semigroup as 0,
provided context avoids any confusion with an element 0 within a semigroup.
(This will be because, semigroups can be grouped combined with associative
operations, in which case semigroup 0 usually acts just like 0 in a multiplica-
tive semigroup.)

The empty semigroup has an important role in category theory as the
initial object. For any semigroup S, there exists a unique morphism m :
0 → S.

C.4.2 Unit semigroup

All semigroups of cardinality 1 are isomorphic – they share the same struc-
ture.

When dealing with isomorphism classes of semigroups, we simply write 1
for this semigroup class.

As a representative semigroup in the semigroup class 1, we can choose
an underlying set {1}, with multiplication 1 · 1 = 1. This matches the usual
convention of writing 1 for identity element of multiplication. To belabor the

266 APPENDIX C. SEMIGROUP SKETCHES

obvious, we can write out the multiplication table of the unit semigroup.

· 1
1 1

(C.4.1)

Diversion C.4.1. Usually, the context making clear whether 1 means a semigroup class,
its semigroup representative, or some elements 1 of a semigroup.

The naive notation above would imply 1 = {1}, which in turn, implies that 1 =
{{1}} = {{{. . . }}}, so that 1 would not be well-founded as a set. So, strictly this is a
notational convention.

The unit semigroup has an important role in category theory as the
terminal object. For any semigroup S, there exists a unique morphism
m : S → 1.

C.4.3 Semigroups of size 2

See the Wikipedia page.

To be completed.

C.4.4 Semigroups of size 3

See the Wikipedia page.

To be completed.

C.4.5 Abundance of small semigroups

For general information on the numbers of finite semigroups, see:

http://oeis.org/wiki/Index_to_OEIS:_Section_Se#semigroups.

For example, there are 1,627,672 isomorphism classes (structures) of semi-
groups of size 7. By comparison, there is only 1 group isomorphism class of
size 7.

Diversion C.4.2. If we ignore isomorphisms, instead just count (labeled) semigroup op-
erations on the set {1, 2, 3, 4, 5, 6, 7}, there are 840 = 7!/6 groups, and 7,743,056,064 semi-
groups, which is a nearly 10 million times as many. There are on average, about 4700
semigroups per isomorphism class (of size 7), which is a little less than the 7! = 5040
possible re-labellings of each semigroup of size 7.

http://oeis.org/wiki/Index_to_OEIS:_Section_Se#semigroups

C.5. SEMIGROUPS FROM SETS 267

The abundance suggests that semigroups can have rather arbitrary struc-
ture. Perhaps most of these are 3-nilpotent, or 4-nilpotent. For large semi-
groups, such as semigroups of size near 2256, there are very many possible
semigroups (and semigroup structures).

C.5 Semigroups from sets

Given an arbitrary set X, we can form semigroups in various ways.

C.5.1 Zero semigroups

Let X be any non-empty set, and let 0 ∈ X (re-labeling some element of X
as 0). Define a semigroup S whose set is X, with multiplication xy = 0 for
all x, y ∈ X. Multiplication is associative because (st)u = 0 = s(tu).

This is called the zero semigroup on set X. We can write this as 0X .

C.5.2 Left and right semigroups

Let X be any set. The left semigroup on X is the semigroup S = L(X)
whose underlying set is X and whose multiplication is defined by st = s for
all s, t ∈ X.

In words, the multiplication equals the left input.

The converse semigroup is the right semigroup. We focus on the left
semigroup, with the discussion of the right semigroup being the mirror image.

The left semigroup is associative, because (st)u = s = s(tu).

C.5.3 Boolean semigroups

The Boolean semigroup on a set X is the set of B(X) of all subsets of X
with multiplication defined as set-intersection.

Equivalently, the Boolean semigroup B(X) can be defined as the set
of boolean-valued functions on X. Point-wise multiplication is used. For
example, (0110)(0011) = (0010).

Boolean semigroups are idempotent semigroups. An element b is idempo-
tent if b2 = b. A semigroup is idempotent if all its elements are idempotent.

268 APPENDIX C. SEMIGROUP SKETCHES

C.5.4 Semigroups of words

Given a non-empty set X, the word semigroup on X is the the set W (X)
of non-empty sequence [x1, . . . , xn], with semigroup multiplication definition
by simple concatenation of sequences:

[x1, . . . , xm][y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn]. (C.5.1)

Elements of X are called symbols and elements of W (X) are called words.

Diversion C.5.1. We also call W (X) the free semigroup on set X .

If |X| > 1, then W (X) is a non-commutative semigroup.
Let W (X)1 be the extension of W (X) which allows the empty word [],

so that W (X)1 becomes a monoid with identity []. If clear from context, we
write [] as 1. We call W (X)1 the word monoid or free monoid of X.

If |X| = 1, then W (X) is isomorphic to P+ (positive integers under
addition). If |X| = 0, then W (X) is the empty semigroup 0.

Diversion C.5.2. When the symbols in X are easily distinguishable from variables names,
then the notation for words can be simplified by omitting the square brackets and commas.
For example, if X = {0, 1}, then the symbols are numbers, which are not confused with
letters using variables names. In this case, can we identity 0 = [0] and 1 = [1]. Then
[0, 1, 1] = [0][1][1] = 011.

Diversion C.5.3. The word monoid W (X)1 is sometimes written using the Kleene star
notation X∗.

Diversion C.5.4. Every semigroup S is an image of a word semigroup, namely W (S),
with the morphism:

[s1, . . . , sn] 7→ s1 . . . sn. (C.5.2)

In other words, word semigroups have a universal property: there is a surjective morphism
from some word semigroup to any given semigroup.

C.5.5 Semigroup of functions

This section elaborates on §C.8.7.1.
Let S = XX be the set of functions from X to itself. Then S a semigroup

under function composition, which means that, if f, g ∈ S, then fg is the
function defined by

(fg)(x) = f(g(x)) (C.5.3)

for all x ∈ X.

C.5. SEMIGROUPS FROM SETS 269

We call this function (or transformation) semigroup of X.

Note that XX may have subsemigroups.

Indeed, every semigroup S is isomorphic to a subsemigroup of a semigroup
XX , where X = {1}∪S. Note X is a semigroup consisting of S and an extra
element 1, disjoint from S such that 1x = x1 = 1 for all s ∈ X. Map s ∈ S
to the function ls ∈ XX defined by ls(x) = sx. Then lslt = lst, and ls = lt if
and only if s = t.

In other words, function (transformation) semigroups have a universal
property: there is injective morphism from any given semigroup into some
function semigroup.

In fact, we already saw a similar embedding of S into SS, which was used
to translate between mid-dividers in S and semigroup inverses in SS. The
embedding from S and SS might be injective if S is not a monoid.

If X is finite, there seem be two possible ways to representing elements
in XX .

• If X is finite, then the listing representation uses a fixed enumeration
(x1, . . . , xn) and the representation of f is just (f(x1), . . . , f(xn)), or
alternatively ((x1, f(x1), . . . , (xn, f(xn))).

• If elements of X have finite representations, then f could be represented
by some program, the programmatic representation. If X is infinite,
then only represents a proper subset of X can be so represented (be-
cause XX is uncountable, and the set of programs if countable.

Note that the listing representation can be viewed a special case of the pro-
grammatic representation, with the program consisting of looking up f(xi)
in the list.

Note that programmatic representation of functions is non-unique. For
the purposes of key agreement, a unique representation is needed. Generally,
listing representations are unique if X (once X sorted).

If X is a finite field of size q, then unique representations via polynomials
of a degree at most q−1, can be used as unique programmatic representations.

Multiplying two functions f and g given in listing representation is quite
fast if X is sortable, and could take about |X| log(|X|) steps. Multiplying
functions in programmatic form is nearly free, since it can be define as the
concatenation of the programs. However putting these representations into
a unique form may require X steps.

270 APPENDIX C. SEMIGROUP SKETCHES

If we describe programs with a set of symbols Y , then the description
above may be viewed as an image of a subsemigroups of the word semigroup
W (Y).

Every f ∈ XX has a semigroup inverse g (which, recall, means that
fgf = f). A semigroup inverse g may be found in 2|X| as follows. Run
through xi ∈ X in order, from x1, . . . , xn. Compute yi = f(xi). If g(yi) has
not yet been defined previously, then define g(yi) = xi. After reaching xn,
then run a second loop through xi, as follows. If g(xi) has not been defined
previously, then define to be some arbitrary element of X.

Recall that a semigroup inverse implies a solution to the wedge problem
and the (middle) division problem. So, for XX to be secure, we need that
|X| to be large enough to make the algorithm above infeasible.

Unfortunately, making |X| infeasibly large generally makes the key agree-
ment infeasible for the users, because they must also take |X| steps to mul-
tiply (into a unique representation form).

If Alice and Charlie use a programmatic representations, with a maximum
program length, then they are really using only a subset of XX . In this case,
they would still want X to be large.

C.5.6 Semigroups of relations

Let X be a set. Let Rel(X) be the set of relations on X. A relation r is
merely a subset of X ×X. We define composition of r, s ∈ Rel(X) as follows:

rs = {[x, z] : [x, y] ∈ r, [y, z] ∈ s, for some y ∈ X}. (C.5.4)

Relation composition is associative.
The transpose of r ∈ Rel(X) is defined as rt = {[y, x] : [x, y] ∈ r}. The

complement of r ∈ Rel(X) is defined as rc = X2 − r = {[x, y] : x, y ∈
X, [x, y] 6∈ r}.

Semigroup Rel(X) has a subsemigroup anti-isomorphic to XX . Suppose
f ∈ XX , let rf be its graph:

rf = {[x, f(x)] : x ∈ X}. (C.5.5)

Then rfg = rgrf , and rf = rg if and only f = g. Transposing each function
graph, as lf = rt

f = {[f(x), x] : x ∈ X}, gives a subsemigroup of Rel(X)
isomorphic to XX .

Diversion C.5.5. Any directed graph with vertex set X defines a relation on X .

C.6. SEMIGROUPS: SMALLER FROM LARGER 271

Diversion C.5.6. The semigroup of relations can also form a semiring, with addition
given by taking the union, as described in §C.15.2. In fact, the semiring of relations better
describes the structure. The semiring of relations can also be described as a semiring of
matrices with boolean entries.

C.6 Semigroups: smaller from larger

Many interesting semigroups are most easily defined by referring to some
larger semigroup. This section briefly describes constructions.

C.6.1 Subsemigroups

See §B.4 for definitions of subsemigroups. Essentially, a subsemigroup T of
S is a subset T ⊆ S closed under the binary operation of S. Write T ≤ S to
indicate that T is a subsemigroup of S (except when the notation ≤ applied
to subsets of T has some other, more important meaning).

C.6.1.1 Green’s subsemigroup

Green’s equivalence relations can be defined for any semigroup S. There are
various relations, including Green’s H-relation, defined as follows:

a ∼H b ⇐⇒ (a ∪ Sa = b ∪ Sb)&(a ∪ aS = b ∪ bS) (C.6.1)

Green’s theorem states each equivalence class H for the relation ∼H satisfies
one of:

H2 ∩ H = ∅

H2 = H

In the latter case, H is a subsemigroup of S. Furthermore, H is actually a
group (to be verified).

C.6.1.2 Subsemigroup of invertible elements in a medial semi-
group

In a medial semigroup S (where, recall, abcd = acbd for all a, b, c, d ∈ S),
the middle invertible elements are closed under multiplication, so they form
a subsemigroup.

272 APPENDIX C. SEMIGROUP SKETCHES

C.6.1.3 Subsemigroup of cancellative elements

Recall that b is right-cancellative if (ab)/b = a for all a (for any divider
/), or equivalently, ab = eb implies that a = e, for all a, e.

Right-cancellative elements form a subsemigroup. To see this, suppose
that b, d are right-cancellative and abd = ebd. Then ab = eb because d
is right-cancellative, so a = e, because b is cancellative – hence bd is can-
cellative. (To see this from the divider definition, compute (abd)/(bd) =
(((abd)/(bd))b)/b = ((((abd)/(bd))bd)/d)/b = ((abd)/d)/b = (ab)/b = a.)

C.6.1.4 Subsemigroup of fixed elements

See §B.6.3 for the definition of the subsemigroups S⊂e and S⊃e which can be
defined for each e ∈ S.

C.6.1.5 Subsemigroup of multiples

The set of multiples of b is the set Sb = {ab : a ∈ S}. Equivalently,
Sb = {d : b|d}, using divisibility to characterize being a multiple. The set Sb
of multiples of b is a subsemigroup of S (so Sb ≤ S). To see this, note that
(ab)(eb) = (abe) ∈ Sb.

Diversion C.6.1. The set Sb is also a right ideal of S, not just a subsemigroup, because
S(Sb) ⊆ Sb.

C.6.1.6 Subsemigroups of non-divisors

For d ∈ S, define the set of non-divisors of d to be set Nd = {b : b ∤ d}.
Equivalently, Nd = {b : ab 6= d, ∀a ∈ S} = {b : d 6∈ Sb}. The set of non-
divisors is Nd is a subsemigroup. To see this, suppose that b ∈ Nd. Then
alb 6= d for all a, l. Therefore, lb ∈ Nd.

Diversion C.6.2. The set Nd is also a right ideal of S, not just a subsemigroup, because
S(Nd) ⊆ Nd.

C.6.1.7 Subsemigroup of non-nullifiables?

If 0 ∈ S, and s ∈ S, then we say that s is zero-divisor if there exists a t ∈ S
with 0 6= t and 0 ∈ {st, ts}. If s is not a zero divisor, then we say that s is
non-nullifiable. Let N be the set of non-nullifiable elements.

C.6. SEMIGROUPS: SMALLER FROM LARGER 273

Diversion C.6.3. If 0 ∈ S and |S| > 1, then the element 0 is a zero divisor, so 0 6∈ S.
If |S| = 1, then 0 ∈ S but element 0 is not zero divisor (because there are no nonzero
elements to multiply against), so 0 is non-nullifiable and N = S.

Lemma C.6.1. Then N is a subsemigroup of S

Proof. For s, t ∈ N , it is necessary to prove that st ∈ N .

Suppose otherwise, so that st 6∈ N . Suppose that u ∈ S and u 6= 0. Then
tu 6= 0 because t ∈ N . Therefore, s(tu) 6= 0, because s ∈ N and (tu) 6= 0.
Therefore (st)u 6= 0. Similarly, u(st) 6= 0. This holds for all u 6= 0, so
st ∈ N .

If N = S\{0}, then we might call S an non-nullifiable semigroup. In
this case S(0) = 1 ⊳ N .

C.6.1.8 Nominalization of a subset?

Let S be a semigroup, and let U be a subset. A subsemigroup can be defined
as:

SU = {s ∈ S : sU ⊆ Us}, (C.6.2)

which we call the left nominalization of U . (Right nominalization can be
defined similarly.)

To set that this is a subsemigroup, suppose s, t ∈ SU . Then (st)U =
s(tU) ⊆ s(Ut) = (sU)t ⊆ (Us)t = U(st).

Diversion C.6.4. The nominalization is similar to the normalization of a subgroup in a
group, hence the name.

C.6.2 Image semigroups and congruences

Image semigroups, or equivalently, congruence semigroups can be practical
for associative key agreement if:

• the base (original) semigroup is efficient,

• test equivalence s ∼ t is efficient, and

• finding the a unique representative of each congruence class is efficient.

274 APPENDIX C. SEMIGROUP SKETCHES

C.6.2.1 Semigroup image of an arbitrary magma

To be revised!

Recall that a magma is a set with binary operation. Every semigroup is
a magma. But an arbitrary binary operation is not required to be associative,
so a magma is not necessarily a semigroup.

As with semigroups, we default to multiplicative notation for magmas.

Magmas form a category, with morphisms being functions that respect
the magma multiplication. For each magma M , there exists a semigroup S,
unique up to isomorphism, and a morphism f : M → S, with the following
(universal) property. For any semigroup T and any morphism g : M → T ,
there exists a unique morphism h : S → T such that g = h ◦ f . We call this
S the semigroup image of M .

One way the to show the existence of S above is through the use of a
congruence on M : a congruence is an equivalence relation ∼ on M such
that a ∼ c implies ab ∼ cb and ba ∼ bc. Any intersection of any (infinite)
family of congruences is a congruence. Each congruence ∼ defines a quotient
magma M/ ∼ on the equivalence classes. The semigroup image is M/ ∼
where ∼ is the intersection of all congruence magmas whose quotient magma
is a semigroup.

The semigroup image, as described above, is generally not at all practical,
because it may be quite difficult to determine equivalency of the equivalence
class representations.

C.6.2.2 Mediality (internal commutation)

We can define a relation ρ on S called mediality (or internal commuta-
tion), by saying (abcd)ρ(acbd) for all a, b, c, d ∈ S (not necessarily distinct).
Then T = S/ ∼ρ will be medial (or internally commutative), meaning
abcd = acbd for all a, b, c, d ∈ T . It there exists a multiplicative identity
1 ∈ T , and T is medial (internally commutative), then T is commutative
(put a = d = 1).

Diversion C.6.5. The congruence semigroup above is a generalization of the derived
group G/[G, G] in group theory.

Diversion C.6.6. I learned the term medial from the Wikipedia page about a medial
magma. The term internally commutative is what I previously used before learning of
the term medial.

C.7. SEMIGROUP FROM PRESENTATIONS 275

According to Wikipedia, there are many other terms, even including entropic, for the
very same idea.

Mediality (internal commutativity) of a semigroup is equivalent to the to
the ability of switching of the order of production (or summation in additive
groups):

m∏

i=1

n∏

j=1

ai,j =
n∏

j=1

m∏

i=1

ai,j. (C.6.3)

To see this: put m = n = 2 and [a1,1, a1,2, a2,1, a2,2] = [a, b, c, d] to deduce
mediality from commutative production; expand both sides of the products
using internal commutative (mediality) to re-order the internal factors, while
the keeping the external factors a1,1 and am,n the same on both sides.

C.6.2.3 Merged subsets

For any subset T ⊆ S, the merger semigroup S/T , defined in §B.5.5, renders
all elements of T equivalent.

Diversion C.6.7. As an example, let S = P+
0 , the semigroup of non-negative integers un-

der addition, and T = {2, 3}. Then S/T has three elements with representatives {0, 1, 2},
and addition table:

+ 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

(C.6.4)

because if 2 ∼ 3, then 3 = 2 + 1 ∼ 3 + 1 = 4, so 2 ∼ 3 ∼ 4 ∼ 5 ∼ . . . and this infinite class
is represented by 2.

C.6.3 Converse (reversal) semigroups

If S is a semigroup, with multiplicative notation. Let S ′ be converse defined
as follows, with binary operation ∗. Semigroup S ′ shares the same underlying
set of S. Then s ∗ t = ts.

C.7 Semigroup from presentations

The group theory notion of a presentations generalizes to the setting of semi-
groups.

276 APPENDIX C. SEMIGROUP SKETCHES

A semigroup presentation has the form

〈a, b, c, . . . |d = e, f = g, . . . 〉 = W+(a, b, c, . . .)/ ∼{(d,e),(f,g),... }, (C.7.1)

meaning that is the semigroup of words in alphabet {a, b, c, . . . } under the
minimal congruence such that d = e, f = g, where each of d, e, f, g, . . . , is
word in the alphabet {a, b, c, . . . }.

All semigroups have a presentation, although the presentation may re-
quire infinitely many generators and relations.

C.8 Extending a semigroup

If S and T are semigroups with S ⊆ T , then T is said to be an extension of S.
If clear from context, if T is also said to be extension of S, if S ⊆ T ′ ∼= T ,
or, equivalent, that T has a subsemigroup isomorphic to S. For practical
reasons, we focus on such extensions where the necessary isomorphisms are
efficient (in both directions), such as minor notational changes.

To avoid confusion, we may refer to the subsemigroups S as base semi-
group, or given semigroups, or original semigroup, to distinguish it from
the constructed the extension semigroup T .

Diversion C.8.1. A more precise meaning of an extension, at least in the category theory
setting, is a semigroup T together with injective semigroup morphisms f : S → T , which
makes clearer which the copy of S in T is used to define the extension.

The constructions here are a little more practical than this, and simply describe T
and implicitly describe how the Si are embedded into the T constructed.

Diversion C.8.2. To consider two different extensions T and U of S formally equivalent,
means to ask for an isomorphism h : T → U such that the action h on the copies of S in
each of T and U is the identity function.

C.8.1 Solitary extensions

A solitary extension of S is a semigroup T such that T = S ∪ t for some
t 6∈ S.

Two solitary extensions are special: if t the identity in T , and if t is
absorbing in T . When S uses multiplicative notation, write S0 for the solitary
extension with t = 0 absorbing, and write S1 for the solitary extension with
t = 1 the identity element. Call S0 the extension by zero (or extension by

C.8. EXTENDING A SEMIGROUP 277

an absorbing element). Call S1 the extension by one (or an extension
by an identity element).

Diversion C.8.3. The standard notation in semigroup theory S1 and S0. This report uses
subscripts in place of superscripts instead for a few reasons. One is to avoid inconsistency
with the notation for Cartesian powers. Another is that this report saves the superscript
position to indicate the binary operation (unless it is unwritten).

For additive semigroup S+, a different notation will be used: S+
0 for an

extension by an identity element, and S∞ for

Diversion C.8.4. Extension by an absorbing element and by an identity element are each
special cases of the order union (see §C.9.1.2). For example,

S0 = 1 ⊳ S, (C.8.1)

S1 = S ⊳ 1. (C.8.2)

Diversion C.8.5. If S already has an absorbing element, say o, then S0 has a new ab-
sorbing element 0, with 0 6= o, and 0o = 0 = o0, so the old absorbing element is no longer
absorbing in the extension. (We could say that 0 usurps the role of absorbing element
from o.

Similarly, if S already has an identity i, then i is no longer an identity element in S1.

Diversion C.8.6. A notational conflict naturally arises when extending by an absorbing
or identity element. For example, if S already has an identity element, then it would
have been natural to label the identity of S as 1. To avoid conflict with the new identity
element in S1, we can write 1S for the old identity of S.

Diversion C.8.7. If we start from an arbitrary semigroup S, then (S0)1 and (S1)0 are
isomorphic. In other words, the two types of extensions essentially commute. So, iterations
extensions of S by zero or one, all that matters up to isomorphism is the number of
extensions by each type, zero or one. This suggest we can write S0a1b to indicate a general
iteration of such extensions.

Assuming that existence of an identity element or of an absorbing element
in a semigroup often greatly simplifies their analysis. Indeed, semigroups
with an identity element are called monoids, and have a simpler theory.
For example, any medial monoid is commutative, whereas there exists non-
commutative medial semigroups. Extensions by zero or one can thus be seen
as a small price to pay for brining the semigroup into a nicer class of algebraic
structures.

When a semigroup already has an identity element (or an absorbing el-
ement), added a new identity element (or a new absorbing element) often
seems unnecessarily seems redundant, at least if one’s aim is just to simplify

278 APPENDIX C. SEMIGROUP SKETCHES

an analysis. In this case, we can conditionally extend S. Let S(0) = S if
0 ∈ S, and let S(0) = S0 if 0 6 S. In other words, S(0) is guaranteed to have a
zero, but does not create a new zero unless needed.

Diversion C.8.8. In some semigroups, there exists solitary extension which are interme-
diate in nature between zero and one.

Suppose that S partitioned into disjoint sets O and I such that OI ⊆ I, and OO ⊂ O
and II ⊆ I. Equivalently, O is an ideal of S, and S/O has no zero-divisors, so O is kind of
like a prime ideal. Equivalently, S is an ordered union S = O ⊳ I, as defined in §C.9.1.2.

Add a new element e = eO,I to S such that

eo = o = oe

ie = e = ei

for all o ∈ O and i ∈ I. Because I ∪ e ∼= I0 and O ∪ e ∼= O1, the new element e acts like
both types of solitary extensions (by zero and by one). The resulting semigroup can be
written as Se. In terms of ordered unions, we have Se = O ⊳ {e} ⊳ I.

Another type of generic solitary extension is a shadow extension. For
each u ∈ S, define a solitary extension Sy, the shadow extension at u,
such that:

yy = uu

ay = au

ya = ua

for all a ∈ S. In other words, whenever y appears in any multiplication
operation it gets immediately replaced by u as an input to the multiplication
operation, so that y does whatever u does, as if a shadow.

Diversion C.8.9. Another way to view the shadow extension is as a subgroup of a Carte-
sian product semigroup S × {0, ǫ}∗, see §C.9.1.4, where ∗ is defined on {0, ǫ} to mean
b ∗ c = 0 for all b, c ∈ {0, ǫ}. In other words, {0, ǫ}∗ is a zero or null semigroup of size
two, with 0 as the zero. Equivalently, 0 is an absorbing element, and ǫ is nilpotent with
ǫ2 = 0.

The subsemigroup is T = {[s, 0] : s ∈ S} ∪ {u, ǫ}. Elements [s, 0] in T act as a copy
of S, since [a, 0][b, 0] = [ab, 0 ∗ 0] = [ab, 0], while [u, ǫ] acts as the shadow of [u, 0], since
[a, 0][u, ǫ] = [au, 0 ∗ ǫ] = [au, 0] = [au, 0 ∗ 0] = [a, 0][u, 0], and, similarly, [u, ǫ][u, ǫ] =
[uu, ǫ ∗ ǫ] = [uu, 0] = [uu, 0 ∗ 0] = [u, 0][u, 0].

C.8.2 The semigroup of subsets

Subsets of S can be multiplied. The resulting semigroup can be written 2S.

C.8. EXTENDING A SEMIGROUP 279

Diversion C.8.10. The copy of S inside 2S consists of singleton subsets, so the copy of
a is {a}.

Diversion C.8.11. The empty step {} is an absorbing element of 2S.
Semigroup 2S has an identity element if and only if S does, in which case, the singleton

set {1} is the identity of 2S .

Diversion C.8.12. The set T = 2S
6={} = 2S

#>0 of non-empty subsets is a subsemigroup of

2S. If 0 ∈ S (is absorbing in S), then {0} is absorbing in T . The subset S is an absorbing
element of T if and only if S is a group.

Diversion C.8.13. When S is infinite, one can consider the subsemigroup 2S
#<∞ consist-

ing only of finite subsets of S.

Diversion C.8.14. The semigroup 2S can be made into a semiring, by defining addition
as the union operation. With this view, 2S is the multiplicative semigroup of a more
general construction, a semigroup semiring B[S], discussed elsewhere in this report.

Diversion C.8.15. It is also possible to consider finite multisets (sets with repeated
elements). In this case, we may view this as the multiplicative semigroup semiring N[S].

C.8.3 Stickel semigroups?

The Stickel key exchange protocol can be translated into an extension of a
given a semigroup S.

To be completed.
Let L and R be two commutative subsemigroups of S. Typical examples

of L and R are L = 〈l〉 and R = 〈r〉 for some l, r ∈ S, where preferably
lr 6= rl.

Form a set T = {0} ⊎ S ⊎ (L × R), with elements written 0, or [s] for
s ∈ S, or [u, v] for u ∈ L and v ∈ R. A generic element of T is written as
an un-bracketed variable, such as t. The set T is larger than S in the sense
that T contains a copy of S as a strict subset.

Define multiplication on T by:

0t = t0 = 0, (C.8.3)

[s][u] = 0, (C.8.4)

[s][u, v] = [u, v][s] = [usv], (C.8.5)

[u, v][w, x] = [uw, vx] (C.8.6)

Lemma C.8.1. T is a semigroup.

280 APPENDIX C. SEMIGROUP SKETCHES

Proof. The aim is to prove associativity, a(bc) = (ab)c for all a, b, c ∈ T .
Multiplication in T is commutative, so one of the following cases analysis

has been simplified.

• If 0 ∈ {a, b, c}, then a(bc) = (ab)c = 0.

• If two of a, b, c belong to S, then a(bc) = (ab)c = 0.

• If b ∈ S with b = [s] and a, c ∈ L × R with a = [u, v] and c = [w, x],
then a(bc) = [u, v][wsx] = [uwsxv] = [wusvx] = [usv][w, x] = (ab)c.

• If a ∈ S with a = [s] and b, c ∈ L × R with b = [u, v] and c = [w, x],
then a(bc) = [s][uw, vx] = [uwsvx] = [wusvx] = [usv][w, x] = (ab)c.

• If c ∈ S and a, b ∈ L × R, then apply the argument above with a and
c swapped, with a(bc) = (cb)a = c(ba) = (ab)c.

• If a, b, c ∈ L × R, then associativity follows the associativity of the
Cartesian product of semigroups L and R.

C.8.4 Action extensions?

A semigroup S acts on itself by left multiplication. This creates a morphism
from S into the semigroup of functions SS. A semigroup S also acts on
T = S(1) faithfully, meaning that semigroup T T contains S as an isomorphic
copy.

So T T is a natural extension of S, though not necessarily practical.
The semigroup T T has two copies of S, one, λS from left multiplication,

one, ρS, from right multiplication. These semigroups pairwise commute with
each other. The smallest semigroup contains both these copies of S is there-
fore λSρS, and is a natural extension of S.

The functions in T T can also be viewed as relations on T . The set of
relations on T forms a semiring. If R is the smallest semiring containing the
copy of S, then the semigroup R× is a natural extension of S.

Relations can also be described as Boolean matrices, using standard ma-
trix multiplication with infinitary Boolean sums.

Diversion C.8.16. In some cases, the Boolean matrices can be replaced with matrices
over some other semiring instead of the Boolean semiring.

C.8. EXTENDING A SEMIGROUP 281

C.8.5 Semigroups of ratios?

To be completed.

C.8.5.1 Free ratios

In this section, we consider semigroups intermediate in nature between two
notions: free semigroups and free groups.

Let X be any set. Begin with free semigroup F generated by X2, whose
elements have the form [a, b][c, d] . . . [e, f], for a, b, . . . , f ∈ X. We will then
consider various congruences on F . The congruence class of [a, b] will be
written [a : b]. The congruences are generated by relations that make the
pairs multiply as though they were like ratios. An element [a : b] will be
called a ratio over S, with the type of ratio depending of course on the
congruence ∼.

A first relation is middle cancellation:

[a : b][b : c] = [a : c]. (C.8.7)

A second relation is right identity:

[a : b][c : c] = [a : b]. (C.8.8)

The congruence generated by the middle cancellation and right identity re-
lations defines a right ratio, [a : b].

Diversion C.8.17. As a congruence class, the right ratio [a : b] is larger than the middle
ratio [a : b].

The semigroup of right ratios might have the following structure: a Carte-
sian of a left semigroup on X (with xy = x for all x, y ∈ X, and a subsemi-
group of the free group generated by X, where the subsemigroup is defined
as product that strictly alternate between generator and an inverse of a gen-
erator. Right ratio [a : b] maps to [a, ab−1]. The product [a : b][c : d] . . . [y : z]
maps to [a, ab−1cd−1 . . . yz−1]. Conversely, [a, bc−1 . . . yz−1] can be converted
to a product of right ratios as [a : a][b : c] . . . [y : z]. The semigroup of
right ratios has a monography: each product can be written as [a0 : a0][a1 :
a2] . . . [a2n−1 : a2n] where ai 6= ai+1 for 0 < i < 2n.

The semigroup generated by right ratios is peremptory: it has a single
divider /, this is is both a pre-divider and post-divider, given by

d[b1 : b2] . . . [b2m−1 : b2m] = d[b2m : b2m−1] . . . [b2 : b1]., (C.8.9)

282 APPENDIX C. SEMIGROUP SKETCHES

for any d.
A third relation is middle identity:

[a : b][c : c][d : e] = [a : b][d : e]. (C.8.10)

The congruence generated by the middle cancellation and middle identity
defines a the middle ratio [a : b].

Diversion C.8.18. Right identity implies middle identity. Consequently, the congruence
for middle ratios is finer, the congruence class for middle ratio [a : b] is contained with the
congruence for the right ratio [a : b].

The semigroup generated by middle ratios might have a similar structure
to the semigroup of right ratios. Indeed, perhaps it just a Cartesian with the
semigroup of right ratios with the a right semigroup on X, mapping product
of middle ratios [a : b] . . . [y : z] to the pair [[a : b] . . . [y : z], z] whose first
term is a product of right ratios.

Diversion C.8.19. Yet another weaker type of cancellation is mirror cancellation:

[a : b][c : c][b : a] = [a : a] (C.8.11)

Mirror cancellation is implied by middle identity and middle cancellation. The mirror
ratio [a : b] is the congruence class of [a, b] for the congruence generated by the middle
cancellation and mirror cancellation.

The congruence generated middle and mirror cancellation is therefore finer the con-
gruence for middle ratios. For example, if a 6= b, then mirror ratio [a : b] congruence class
is just a singleton set {[a, b]}.

Despite these rather fine congruences classes, the semigroup of mirror ratios is close
to having quite good inverses. Given b = [c : d] . . . [y : z], let q = [z : y] . . . [d : c]. Then
bq = [c : c] and qb = [z : z]. Also, b and q are mutual inverses.

C.8.5.2 Multiplicative ratios

Now we take X = S, a semigroup, and try to relate the multiplication in S in
a meaningful to the various semigroups of ratios from the previous sections
(which treat X as arbitrary set).

We do this imposing the further relations that

[ab : b] = [ac : c] (C.8.12)

for all a, b, c and extending the congruence used for ratios, as necessary. The
purpose is to make the map

a 7→ [ac : c]

C.8. EXTENDING A SEMIGROUP 283

well-defined, and also a semigroup morphism. To that is as semigroup mor-
phism, compute [ac : c][bc : c] = [abc : bc][bc : c] = [abc : c], using the the
middle cancellation law in the second equation.

To be completed.

C.8.5.3 Group of fractions (Grothendieck)

If S is any semigroup, it is natural to generate its group of fractions as
follows, following an idea of Grothendieck.

We start with free sum S⊞S ′ of the semigroup S, where S ′ is the converse
S ′ (with element s′ with s ∈ S, and multiplication switching left and right,
so s′t′ = (ts)′). We then a make a solitary extension by one. (For example,
this 1 can be represented by the empty sequence if a sequence representation
of the free sum is used.)

Then form a congruence ∼ on (S⊞S ′)1 generated by relations of the form
ss′ = 1 = s′s s ∈ S. The result is a group. Writing s′′ = s for s ∈ S, then
have (ab . . . c)−1 = c′ . . . b′a′ for a, b, . . . , c ∈ S ∪ S ′.

To make S/S practical for associative key agreement, there needs to be a
monography (a way to find a canonical representation). This depends very
much on S.

Diversion C.8.20. If S is commutative, then its Grothendieck group is commutative.
For example, we can prove that ab = ba for a = [s, t′] and b = [t], as follows [s, t′][u] =
[s, t′, u] = [s, u, u′, t′, u] = [su, u′t′, u] = [us, t′u′, u] = [u, s, t′, u′, u] = [u, s, t′] = [u][s, t′].

Consequently, if S is commutative, every element of the group of fractions in can
represented in one of the forms 1 = [], or [s] or [t′] or [s, t′], where s ∈ S and t′ is in the
converse (reversal) of S.

So, if S is commutative, then S/S is quite close to have a a unique canonical form for
each element.

Diversion C.8.21. The semigroups of multiplication ratios of the previous section map
into the group of fractions, by sending each ratio [a : b] to ab′ in the group of fractions.

The group of fractions can perhaps be equivalently describing by imposing some further
relations on the ratios, such as the relation [a : ca] = [b : ba] for all a, b, c.

C.8.6 Rees matrix semigroups

Recall the definition of a Rees matrix semigroup.

Definition C.8.1. Let S be a semigroup. Let I, J be non-empty sets. Let
m : J × I → S be any (binary) function, which we call the matrix. The

284 APPENDIX C. SEMIGROUP SKETCHES

Rees matrix semigroup Reem(S) has underlying set I ×S ×J = {[i, s, j] :
i ∈ I, s ∈ S, j ∈ J} and semigroup multiplication operation:

[i, s, j][k, t, l] = [i, sm(j, k)t, l]. (C.8.13)

We call S the base semigroup of Reem(S), and call the I the left index
set and J the right index set of Reem(S).

Rees proved that every completely simple semigroup was a Rees matrix
semigroup whose base semigroup was a group.

Division in the Rees matrix semigroup is discussed in §5.10; wedges
in §4.7.

C.8.6.1 Generalization to Munn algebras?

To be completed.
Rees semigroups generalize to Munn algebra, also called Rees algebra.

Rees semigroups are subsemigroups of the multiplicative semigroup of a
Munn algebra.

A Munn algebra M are defined as the set of matrices of a fixed rectangular
shape, with entries in some base ring. Addition is usual matrix addition. To
define multiplication in M , pick a fixed matrix P in M , and then define M-
multiplication A ∗ B via the equation A ∗ B = AP tB, using standard matrix
multiplication and P t means matrix transpose.

The Rees semigroup corresponds to a subset of M for a special base
ring. The base ring is a semigroup semiring R[S]. The subset of M are
the elementary matrices, where at most one matrix entry is nonzero, and
the nonzero entry belongs to S (assuming R has an element 1). Finally,
the matrix P can have many nonzero entries, but they all belong to S (the
copy of S inside R[S]). The Rees semigroup multiplication is then the Munn
algebra multiplication.

Note that P is often called the sandwich matrix in a Munn algebra,
presumably because it sandwiched between the two other matrices. This is
somewhat related to the wedge operation, as explained below.

Consider the larger semiring of all matrices of arbitrary shape. Defining
addition and multiplication as usual, when the matrix shapes are compatible.
When the matrix arguments are shapes incompatible for addition of multi-
plication, define the result to be some error value, such as ∞, or an empty
matrix. Then the Munn product is a sandwich product (A, C) 7→ AP C.

C.8. EXTENDING A SEMIGROUP 285

The sandwich product is similar to the wedge product as though P were the
inverse matrix of B.

C.8.7 Semigroups of special functions on a semigroup

In the following constructions, we begin with a single base semigroup S, and
construct another semigroup, which is usually larger.

C.8.7.1 Semigroup of transformations

Let S be a semigroup. (Or, more generally, let S be any set.)
The semigroup SS consists of all functions from S to itself. Its multipli-

cation is standard functions composition. This means that h = fg is defined
by h(s) = f(g(s)) for all s ∈ S.

It is easy to see that SS is a semigroup. In some sense, S is on the
archetypal semigroups, after integer arithmetic.

Diversion C.8.22. The semigroup SS is unital (a monoid), multiplicative identity 1 being
the function 1(s) = s for all s ∈ S.

Diversion C.8.23. The semigroup SS does not depend directly on the multiplication in
S. It only depends on the underlying set of S.

For further discussion, in the context of more general sets, see §C.5.5.

C.8.7.2 Semigroup of endomorphisms

Let S be a semigroup. Form its semigroup of endomorphisms as follows.

Diversion C.8.24. Endomorphisms sometimes form semiring, not just a semigroup, as
described in §C.17.2.

Let E(S) be the set of semigroup morphisms h : S → S. (A morphism
from S to itself is an endomorphism of S.) Multiplication in E(S) is just
function composition.

Lemma C.8.2. E(S) is a semigroup.

Proof. Endomorphisms are closed under function composition because (gh)(st) =
g(h(st)) = g(h(s)h(t)) = g(h(s))g(h(t)) = (gh)(s)(gh)(t). Multiplication
of endomorphisms is associative because function composition is associa-
tive.

286 APPENDIX C. SEMIGROUP SKETCHES

Diversion C.8.25. E(S) is a subsemigroup of SS .

Diversion C.8.26. Semigroup E(S) is also a monoid: its multiplicative identity is the
identity function 1 : s 7→ s.

Diversion C.8.27. Later we will that is S is commutative, and written additively, then
E(S) can be made into a semiring.

If S is unital multiplicative identity 1, then we define subset E1(S) of
unital endomorphisms to be all endomorphism satisfying h(1) = 1. Unital
endormorphisms are closed under multiplication, so E1(S) is a subsemigroup
of E(S).

Diversion C.8.28. If S is unital, and u, v ∈ S satisfy vu = 1, then the function h = hu,v :
s 7→ usv is an endomorphism, since h(st) = ustv = us1tv = usvutv = h(s)h(t).

Diversion C.8.29. The endomorphism construct generalizes. Consider any category C
and any object X in the category. Then Mor(X, X) is the set of morphisms from X to
itself, so it is the set endomorphisms of X . By the definition a category, the morphism
can be multiplied associatively, and the endomorphisms of a single object are closed under
multiplication. Hence End(X) = Mor(X, X) is a semigroup, for any object in any category.

C.8.7.3 Semigroup of affine functions on a semigroup

Let S be a unital semigroup (a monoid). The semigroup A(S) of right-affine
functions on S is defined as follows.

Let A(S) be the subset of semigroup SS consisting of all right-affine
functions, satisfying the rule:

f(ab)f(1) = f(a)f(b) (C.8.14)

for all a, b ∈ S.

Lemma C.8.3. A(S) is a semigroup.

Proof. It is a subset of SS, so it suffices to prove that right-affine functions
are closed under composition. If f and g are affine, then

f(g(ab))f(g(1)) = f(g(ab)g(1))f(1) = f(g(a)g(b))f(1) = f(g(a))f(g(b)).
(C.8.15)

Diversion C.8.30. An element c ∈ S is central if cs = sc for all s ∈ S, in other words
if it commutes with all of S. The function tc : s 7→ sc is right-affine.

C.9. COMBINING SEMIGROUPS 287

Diversion C.8.31. A unital endomorphism is right-affine, so E1(S) ⊆ A(S).

Diversion C.8.32. A right-affine function f is unital if f(1) = 1. A unital right affine
function is an endomorphism.

Diversion C.8.33. If we use additive notation for S, then endomorphism can be thought
as multiplicative, and affine functions can be thought as linear (multiplication plus an
translation).

C.8.7.4 Semigroups of metamorphic functions?

Probably wrong.

Let S be semigroup. Let F = SS be semigroup of endofunctions on
S. The semigroup E of endomorphisms of S is a subset of F . The left
nominalization M = FE = {m : S → S : mE ⊂ Em} (see §C.6.1.8) is a
subsemigroup of F , which we call the set of metamorphic or monoform
functions of S.

Diversion C.8.34. The term metamorphic refers to the following. Let me = µ(e)m,
for some function µ. Then µ is almost anti-endomorphism of E, since, for e, f ∈ E, and
µ(ef)m = mef = (me)f = µ(f)me = µ(f)me = µ(f)µ(e)m. This suggest µ(ef) =
µ(f)µ(e), unless right multiplication by m does not cancel.

For example, suppose S = P+. For positive integer n, there is an endo-
morphism en : p 7→ np, and these are all endomorphisms.

For positive integers, consider the function ma,d : p 7→ apd. Then ma,d is
metamorphic (monoform) because, ma,den = endma,d, for all n.

Diversion C.8.35. Functions ma,d are usually called monomials, which weakly justifies
the name monoform.

C.9 Combining semigroups

Some semigroups are built from smaller semigroups. In particular, some-
times the smaller semigroups remain as subsemigroups of the constructed
semigroup: this section discusses such constructions.

C.9.1 Combining two semigroups

Let S and T be semigroups.

288 APPENDIX C. SEMIGROUP SKETCHES

We general assume that S and T are disjoint as sets. If not, then we work
with disjoint copies of S and T , if needed.

C.9.1.1 Free sum of semigroups

The free sum S⊞T of semigroups S and T is the semigroup whose underlying
set of elements are finite non-empty ordered sequences whose entries belong
the disjoint union S ⊎ T , with the restriction that entries alternate between
(the copies) S and T . Multiplication consists of concatenating sequences,
except that if that results in consecutive sequence entries from the same base
semigroup (either both in S or both in T), then the two entries by one entry,
being product in the base semigroup. More formally,

[u1, . . . , um][v1, . . . , vn]

=

[u1, . . . , um, v1, . . . , vn] if [um, v1] 6∈ (S × S) ∪ (T × T),

[u1, . . . , umv1, . . . , vn] if [um, v1] ∈ (S × S) ∪ (T × T),
(C.9.1)

where the notation S × S and T × T refers the standard Cartesian products
of sets.

Diversion C.9.1. To clarify, S ⊞ S 6= S, because the copies of S used are considered
disjoint adjacent entries from different copies do not coalesce into their product.

Diversion C.9.2. An alternative notation might be clearer. For this, use addition nota-
tion for the base semigroups S+ and T + (but allow otherwise arbitrary semigroups). Then

we write the free sum as 〈xS+

, yS+〉 (instead of S+
⊞ T +), using multiplicative notation,

with the understanding that xaxb = xa+b and ycyd = yc+d, but with formal powers of x
and y not interacting other than by multiplication.

An example element is like xaybxc, where a normal form is used, to make the formal
bases alternate between x and y. The formal exponents in the example have a, c ∈ S+

and b ∈ T +. In this case, xaybxc is the alternative notation for [a, b, c].

Diversion C.9.3. The free sum S ⊞ T contains a copy of S and a copy of T , in the form
one-element sequences. Therefore, S ⊞ T may be viewed as an extension of both S and T
(and S and T may be viewed as subgroup of S and T). More precisely, there exists natural
semigroup morphisms nS : S → S ⊞ T : s 7→ (s), and nT . These semigroup morphisms
are injective.

Diversion C.9.4. An alternative definition S ⊞ T is as a congruence semigroup.

Start with the free semigroup F +(S ⊎ T) generated by the set S ⊎ T , which is the set
of all sequences with entries in set S ⊎t, with multiplication being sequence concatenation.

C.9. COMBINING SEMIGROUPS 289

Then define a congruence ∼ on F +(S ⊎ T) such that adjacent sequence entries from
the same base semigroup (the copy of S or the copy of T) are to be multiplied into a single
sequence entry.

In this case, S ⊞ T = F +(S ⊎ T)/ ∼=. The alternating sequences are the canonical
representatives of the congruence classes (and serve a practical monogram).

Diversion C.9.5. The free sum is actually categorical co-product, in the sense of category
theory. Specifically, if U is any semigroup and both f : S → U and g : S → U are
semigroup morphisms, then there is a unique semigroup morphism h : S ⊞ T → U , such
that f = hnS and g = hnT . (To be verified.)

Diversion C.9.6. If we modify the definition by allowing the copies S and T to intersect,
then we might lose the ability to find a canonical normal form with alternating entries
from S and T .

In category theory, this would be an attempt at what is known as the fibered co-

product or pushout or the amalgamated sum.

To be completed.

Diversion C.9.7. Other possible names for the free sum are compositum (which I
borrow from field theory), free product, and ordered product (for its parallel to ordered
union).

Diversion C.9.8. The free sum is associative, up to semigroup morphisms: S⊞(T ⊞U) ∼=
(S ⊞ T) ⊞ U . (With suitable opening of nested sequences, then this can be considered an
equality, not just an isomorphism.)

Diversion C.9.9. The empty semigroup class 0 obey S⊞0 = 0⊞S = S for any semigroup
class S.

Diversion C.9.10. The free sum is commutative: S ⊞ T = T ⊞ S.

The alternative notational form of free sum has 〈xS+

, yT +〉 = 〈yT +

, xS+〉, so could be

considered commutative too. However, we also have 〈xS+

, yT +〉 6= 〈xT +

, yS+〉 because of
the notational change (in otherwise isomorphic semigroups).

Diversion C.9.11. It is possible to have a semigroup such that S ∼= S ⊞ 1, where 1
is the unit semigroup (of one element). In this case, the elements can be most natural
represented as sequences of positive integers such that no adjacent entries are equal. To
multiply, concatenate except that adjacent repeated entries are replaced by a single copy.
Essentially, this S is generated by infinitely many idempotents, as freely as possible.

If S and T are monographic, then so is S⊞T : just apply the monographies
of S and T to each entry.

Efficiency of multiplication in S ⊞ T is the minimum of efficiency of mul-
tiplication in S and T , plus also the cost of accommodating of potentially

290 APPENDIX C. SEMIGROUP SKETCHES

long sequences.

C.9.1.2 Ordered union of semigroups

The ordered union S ⊳U of semigroups S and T is semigroup whose under-
lying set is their disjoint union of sets U = S ⊎ T . Multiplication in S ⊳ T is
to be the multiplication in S and T , if both inputs belong to the same copy
of a semigroup, and otherwise the output is the same as whichever the input
belongs to S. That is:

uv =

uv if u, v ∈ S,

uv if u, v ∈ T,

u if u ∈ S, v ∈ T,

v if u ∈ T, v ∈ S.

(C.9.2)

Associativity follows from the following general observation. To compute
u1 . . . un as follows. If all ui ∈ T , then compute in T , where associativity
holds (so the parentheses can be placed anywhere in the product). If at least
ui ∈ S, then ignore all uj ∈ T , and keep only those uk ∈ S, say uk1 . . . ukm

.
Then compute in S, where associativity hods (so the parentheses can be
placed anywhere in the full product).

Diversion C.9.12. In any subsemigroup, a relation ⊂ can be defined such that o < i if
oi = io = o, see §B.6.3 for details.

In S ⊳ T , we have s ⊂ t for all s ∈ S and t ∈ T . Hence the term ordered union.

Diversion C.9.13. There are natural morphisms S → S ⊳ T and T → S ⊳ T .

Diversion C.9.14. The ordered union operation respects the isomorphism class of semi-
groups.

Diversion C.9.15. On semigroup isomorphism classes, it is associative. Semigroup classes
form a semigroup under zero-one merger. On semigroup classes, the empty semigroup 0
obeys the rule 0 ⊳ S = S ⊳ 0 = S.

So, semigroup classes form a unital semigroup (a monoid) under the ordered union
operation.

Diversion C.9.16. An ordered union of orderly semigroups is orderly. Hence orderly
semigroup classes form a subsemigroup of the semigroup of semigroup class under the
ordered union operation.

Diversion C.9.17. There are likely already different names for the ordered union.

C.9. COMBINING SEMIGROUPS 291

Diversion C.9.18. The ordered union S ⊳ T is an image of the free sum S ⊞ T , through
a natural morphism [u1, . . . , um] 7→ u1 . . . um.

If S and T have monographies (unique canonical element representations),
then so does S ⊳ T . Similarly, efficiency of multiplication is the minimum of
the efficiencies in S and T .

C.9.1.3 Disjunction of semigroups

Let S and T be disjoint semigroups, form a disjunction S ⊎0 T , a semigroup
whose underlying set is the disjoint union S ⊎ {0} ⊎ T (a copy of each S and
T , plus a formal zero element, distinct from any zero elements already in S
or T). Product within the copy S use multiplication in S, those within T
use multiplication from T , an all products evaluate to 0 (in the term {0} of
the disjoint union).

The disjunction D = S ⊎0 T may also be defined as a congruence semi-
group, taking an image of the free sum U = S ⊞ T (defined in §C.9.1.1) as
follows. Let I be the subset of U consisting of all sequence of length two or
more. This is a semigroup ideal (see §B.5.7), and thus defines a congruence
∼I . Then the disjunction D = S ⊎0 T is isomorphic to U/ ∼I= U/I. The
elements of I represent the formal 0 of S ⊎0 T .

Diversion C.9.19. If one or both of S and T already have a zero element, then a reduced

disjunction S ⊎ T can be defined, just the same as S ⊎0 T , except that there is no new
formal zero, and instead the zero is re-used.

Actually S ⊎0 T = S0 ⊎ T , where S0 is the extension of S by the zero element.

C.9.1.4 Cartesian products of semigroups

Let S and T be semigroups. Let S × T be the semigroup whose set is the
Cartesian product consisting of pairs [s, t] and whose multiplication is defined
as [s, t][s′, t′] = [ss′, tt′].

Diversion C.9.20. The same terminology Cartesian product and the same notation
S × T will be used for both sets and semigroups. Usually this overlap should result in no
confusion, because the meaning overlap considerably: after forgetting the multiplication
the two notions become the same. If confusion nonetheless results from this overlap of
meanings, then clarification can be added.

Diversion C.9.21. In some cases, a semigroup U might be isomorphic to S × T , but
evaluating one or both directions of the isomorphism might be difficult.

292 APPENDIX C. SEMIGROUP SKETCHES

For example, let p and q be distinct large primes, and take S = Zp and T = Zq and
U = Zpq (where Zm is the semigroup {0, 1, . . . , m − 1} under multiplication modulo m).
Given U = Zm, finding p and q amounts to the integer factorization problem, which can
be difficult (without a quantum computer).

Most of this section discusses the case where the structure of S × T is evident (not
hidden difficult by a difficult isomorphism).

Multiplication in S × T has cost which the sum of its cost in S and T .
(So, efficiency is the inverse sum of inversed efficiencies, which is usually at
least half the minimum of the two based efficiencies.)

Monography in S × T is achieve through monography in each of S and T
individually.

Diversion C.9.22. If semigroup T contains an element e that is idempotent, meaning
e2 = e, then S × T contains a copy of S as subsemigroup, namely the set S × e = {[s, e] :
s ∈ S}.

Diversion C.9.23. The Cartesian product S × T is an image of a subsemigroup of the
free sum S ⊞ T .

Let I be the subset of S ⊞ T consisting of sequence of length two or greater. Then I
is a subsemigroup. Define a semigroup morphism h : I → S × T by the rule

[u1, . . . , um] 7→ [us1
us2

. . . , ut1
ut2

. . .] (C.9.3)

for si and ti such that s1 < s2 < . . . and t1 < t2 < . . . and usi
∈ S and uti

∈ T and
{s1, s2, . . . , t1, t2, . . . } = {1, 2, . . . , m}.

Diversion C.9.24. If S+ and T + are additive semigroups, then an alternative description
of Cartesian product S+ × T + is to use the notation of formal powers, so that all elements
have of the xsyt, for s ∈ S+ and t ∈ T +. Multiplication is then (xayb)(xcyd) = xa+cyb+d,
which may be described as saying that formal powers of x and y commute with each other.

Diversion C.9.25. The Cartesian product is commutative up to isomorphism, with the
obvious isomorphism T × S → S × T : [t, s] 7→ [s, t].

The Cartesian product is associative under the convention the sequence get un-nested
with [s, [t, u]] = [s, t, u] = [[s, t], u]. Without this convention, the Cartesian product is
associative up to isomorphism, with isomorphism [s, [t, u]] 7→ [[s, t], u].

For the empty semigroup, we have 0 × S = 0. For the unit semigroup 1, we have
1 × S ∼= S ∼= S × 1.

Diversion C.9.26. If K and L are associative key agreement schemes, and SK and SL

their associated semigroups, then SK×L is essentially the semigroup associated with a
key agreement scheme K × L, in which Alice and Charlie use K and L in parallel and
independently, using ordered pairs of secrets, deliveries and keys.

C.9. COMBINING SEMIGROUPS 293

Diversion C.9.27. The Cartesian product of additive semigroups S+ and T + is perhaps
more naturally written as ⊕.

C.9.1.5 Non-commutative tensor products of semigroups

A non-commutative tensor product of semigroups can be defined is a
few ways, equivalent except for notation (up to efficient isomorphism).

A major practicality issue with non-commutative tensor product can
arise: finding a monography (a practical unique representation of elements)
might be difficult.

Diversion C.9.28. The definitions with additive notation do not follow a common tradi-
tion of using additive notation only for commutative operations.

The first additive notation for the tensor product uses subscripted vari-
ables. Let S and T be semigroups with multiplicative notation. Let 〈xSyT 〉+

the (additive) semigroup generated by elements written as formal products
xayb with a ∈ S and b ∈ T . The generators obey the following two relations:

xayb + xayc = xaybc (C.9.4)

xayc + xbyc = xabyc. (C.9.5)

If we view the formal symbols xa as a formal logarithm of a to the base a,
as though xa = logx(a), then relations above may be viewed as instances of
the distributive law (of multiplication over addition). For example:

xayb + xayc = xa(yb + yc) = xa(logy(b) + logy(c)) = xa logy(bc) = xaybc,

where only the first and last expression strictly belong to the tensor prod-
uct. (The intermediate expression may be well-define in a richer algebraic
structure.)

Diversion C.9.29. The subscripted notation of formal logarithms has advantage of being
analogous to the superscripted notation for formal powers, which was used for semigroups
in the free sum (co-product) and the Cartesian product. (Formal power notation is also
used widely in mainstream algebra, such as in polynomial rings and power series rings.)

A second additive notation can be defined, and is to be used when taking
the tensor product of additive semigroups. We write this, (S+

⊠ T +)+. It
is generated by elements that are formal products a ⊠ b with a ∈ S+ and

294 APPENDIX C. SEMIGROUP SKETCHES

b ∈ T +, obeying the relations:

a ⊠ b + a ⊠ c = a ⊠ (b + c), (C.9.6)

a ⊠ c + b ⊠ c = (a + b) ⊠ c. (C.9.7)

Diversion C.9.30. The similarity between the two notations is that xayb can be re-
written written as a ⊠ b, and adjusting the binary operator notations for S and T as
needed.

Other more compact additive notations can be used, if clear from context.
Instead of a ⊗ b, one might write [a][b] or even ab.

Diversion C.9.31. There may be universal properties of the tensor product of semi-
groups.

Function b : S+ × T + → U+ is a bimorphic function of semigroups if b(s + s′, t) =
b(s, t) + b(s′, t) and b(s, t + t′) = b(s, t) + b(s, t′) for all s, s′ ∈ S and t, t′ ∈ T .

Then there is a natural morphism (S+
⊠ T + → U+ that sends column s⊠ to b(s, t),

and extends to formal sums arrays additively.
Also, there is a natural bimorphism S+ ×T + → (S+

⊠T +) : [s, t] 7→ s⊗t. The natural
morphism and bimorphisms can be put into a commutative diagram with b, and may well
be the case that the natural morphism is unique.

To be completed.

A multiplication notation for the non-commutative tensor products uses
two-dimensional arrays. Given multiplicative semigroups, let

(
S
T

)

be the

semigroup defined as the following (congruence) semigroup.
The elements can be represented 2-row arrays, with the first row with

entries in S and the second row with entries in T , but certain arrays are con-
sidered equivalent, by a series of steps called column splitting, or its oppo-
site column joining. A single column

(
ac
b

)

may be split into two columns
(

a
b

)

and
(

c
b

)

with this two columns replacing the original column. Splitting

is also allowed in the second row:
(

a
bd

)

7→
(

a
b

)(
a
d

)

. For example, a typical
column-splitting looks like:

(

s1 . . . sis
′
i . . . sn

t1 . . . ti . . . tn

)

∼
(

s1 . . . si s′
i . . . sn

t1 . . . ti ti . . . tn

)

.

So, the relation ∼ can relate any two arrays A and B reachable by arbitrary
sequence of column splittings, with each individual splitting occurring either
in the first or second row, and each individual splitting occurring in either
direction, splitting towards A or towards B.

C.9. COMBINING SEMIGROUPS 295

Multiplication simply concatenation of the arrays, side-by-side. So, mul-
tiplication looks like this:

(

s1 . . . sm

t1 . . . tm

)(

s′
1 . . . s′

n

t′
1 . . . t′

n

)

=

(

s1 . . . sn s′
1 . . . s′

n

t1 . . . tm t′
1 . . . t′

n.

)

Diversion C.9.32. The non-commutative tensor product is associative, up to isomor-
phism. The empty semigroup 0 is absorbing, and the unit semigroups is the identity. The
non-commutative tensor product is commutative up to isomorphism: S ⊠ T = T ⊠ S.

The non-commutative tensor product seems to be distributive over the free-sum: S ⊠

(T ⊞U) = (S ⊠T)⊞ (S ⊠U), because it seems the 2-row matrix form, taking the top row
with entries in S and the bottom row with entries in T or U .

C.9.1.6 Commutative tensor product of semigroups

The commutative tensor product of semigroups is the commutative image of
the non-commutative tensor product.

We can use notation ⊗ to distinguish the commutative tensor product
from the non-commutative tensor product (which uses ⊠).

Diversion C.9.33. The tensor product of vector spaces (or modules) is a standard defini-
tion from linear algebra. A vector space V includes an additive semigroup structure, which
we could write as V +. A vector space also has an extra scalar multiplication structure
beyond this semigroup structure.

The vector space tensor product and commutative tensor product of semigroups are
consistent enough to share the same notation, without much confusion.

If U and V are vector spaces (over the same field), then the vector space tensor
product U ⊗ V has additive semigroup (U ⊗ V)+ = (U+ ⊗ V +)+, which the semigroup
tensor product of their additive semigroups.

The commutative tensor product can also suffer from the same practical-
ity issues as the non-commutative tensor product: no easy monography.

In some cases, the semigroups S and T themselves have a special monog-
raphy. For example, consider the case of vector spaces, in which monography
would be via coordinates as coefficients in a certain basis. This representation
can be carried over to commutative tensor product as a matrix representa-
tion.

Diversion C.9.34. The commutative tensor product might be distributed over the Carte-
sian product of commutative semigroups.

296 APPENDIX C. SEMIGROUP SKETCHES

C.9.2 Combining large families of semigroups

A family of semigroups, is a function f from a set, called the index set and
often written I, to a set of semigroups. We usually omit the function name
f and just write the family as {Si}i∈I , where Si is a semigroup. (Formally,
it would be Si = f(i).)

This section deals with constructions that turn a family of semigroups
into a semigroup.

Diversion C.9.35. One may naturally ask of what cryptographic practicality is it to
consider the generality of infinite families? In this regard, the underlying structure of
more constructible subsemigroups may be related to such infinite families.

For example, the positive integers under multiplication, certainly a practical semi-
group, is a subsemigroup of a Cartesian product of an infinitely family of semigroups
(one semigroup for each prime), each a copy of the additive semigroup N+ = {0, 1, 2, . . .}
of non-negative integers. The isomorphism involves factorization, so 40 = 23 × 5 7→
[3, 0, 1, 0, 0, . . .].

C.9.2.1 Free sums of arbitrary families

The free sum of an arbitrary family of semigroups has virtually the same
definition as the free sum of two semigroups.

Take non-empty sequences with entries in the disjoint union of the family
of semigroups as sets. Two adjacent sequences in the same semigroup can
be replaced by one entry, their product. Each sequence has shortest length
representation such no two adjacent entries belong to the same copy of a
semigroup in the family.

Multiplication of sequences uses concatenation. When the factors are in
shortest length form, either their concatenation is in shortest length form
too, or the rightmost of the left factor and the leftmost entry of the right
factor belong to the same copy of a semigroup in the family. In this case,
the two entries can be combined into one entry using the required semigroup
operation, so that the length of the concatenated is reduced by one, and the
sequence will be the shortest length representative.

C.9.2.2 Cartesian products of large families

The Cartesian product of an arbitrarily family of semigroups is the fol-
lowing semigroup. Suppose (Si)i∈I is any family of semigroups for some
arbitrary index set I, possibly infinite. The product semigroup

⊗

i∈I Si has

C.9. COMBINING SEMIGROUPS 297

elements which are functions s : I → ⋃

i∈I Si, with property that s(i) ∈ Si.
Multiplication is the usual rule (st)(i) = s(i)t(i).

The Cartesian power SI is a Cartesian semigroup in which each Si

is an isomorphic copy of a given semigroup S. Elements of the Cartesian
power are simply functions σ : I → S. Multiplication of these functions is
point-wise S-multiplication, so στ : I → S : i 7→ σ(i)τ(i).

Diversion C.9.36. When I = S, another associative binary operation can be defined on
the set SI of functions I → S: function composition (see §C.5.5) – whose associativity is
unrelated to that of S, since is function composition is associative for any set.

These two operations on SS , when S is a semigroup, taken together, form a nearring,
as explained in §C.17.1.

C.9.2.3 Direct products of semigroups

If each Si is a unital semigroup (a monoid), then we can form a special
subsemigroup of

⊗

i∈I Si, written
⊕

i∈I Si, and known as the direct product,
as follows. Let 1i be the identity element of Si. For any s ∈ ∏

i∈I Si, define
the support U(s) = {i ∈ I : s(i) 6= 1i}. Then let

⊕

i∈I

Si =

{

s ∈
∏

i∈I

Si : |U(s)| < ∞
}

, (C.9.8)

in other words, the elements of finite support.

For example, consider the semigroup P∗ of positive integers under mul-
tiplication. Let N+ = P+

0 be the semigroup of non-negative integers under
addition, which is a monoid with identity 0. For each i ∈ P, let N+

i be copy
of N+. Then

P∗ ∼=
⊕

i∈P

N+
i , (C.9.9)

with the isomorphism using the prime factorization exponents.

C.9.2.4 Orderly unions of large families

Let {Si}i∈O be a family of semigroups, indexed by the elements of an orderly
semigroup O (§C.3.2). Then the orderly union is a semigroup

⊎

i∈S

Si (C.9.10)

298 APPENDIX C. SEMIGROUP SKETCHES

with elements represented by pairs [i, s] with i ∈ O and for si ∈ Si and
multiplication rule:

[i, si][j, sj] =

[ij, sij] if i 6= j,

[ij, sisj] if i = j.
(C.9.11)

The orderly union generalized the ordered union. An ordered union is an
orderly union where the index semigroup is O = {0, 1} (the integers zero and
one under multiplication). More generally, the ordered union is an associative
operation up to isomorphism, being isomorphic to an orderly union with finite
index set.

If O orderly semigroups, and each Si in a family indexed by O is isomor-
phic to given semigroup S, then we call

⊎

i∈O Si the lexicographic product
O ⋊ S. Its operation can be written:

[i, s][j, t] =

[i, s] if ij = i 6= j,

[i, st] if ij = i = j,

[j, t] if ij = j 6= i.

(C.9.12)

If each of the Si is an orderly semigroup, then their orderly union
⊎

i∈O Si is
an orderly semigroup too. Therefore, if O and S are orderly, then so is their
lexicographic product. The lexicographic product is associative on orderly
semigroup classes (up to isomorphism).

The lexicographic product can also be generalized, in several interesting
ways, to larger orderly families of orderly semigroups. However, orderly
semigroups are idempotent, which makes division easy, which makes them
not very useful for associative key agreement. So, we do not look further into
these constructions.

C.10 Semigroups from semiautomata

A semiautomaton is a function t : X × Y → X, representing a device that
maintains an internal state x ∈ X which gets updated in response to an
external input y ∈ Y .

For each fixed external input y, define a function ty ∈ XX mapping states
to states, by defining ty(x) = t(x, y).

C.11. SEMIGROUPS FROM COMBINATORIAL GRAPHS 299

The semigroup XX of all transformations from X to X has a subsemi-
group generated as 〈ty〉y∈Y called the transition semigroup of the semiau-
tomaton t. (A transition monoid, defined as 〈1X , ty〉y∈Y can also be define,
where 1X ∈ XX is the identity function with 1X(x) = x for all x ∈ X.)

Diversion C.10.1. In cryptography, we can think of Y as space of keys, and then t is a set
of keyed functions from the state space X to itself. Some symmetric-key primitives fit this
model including block ciphers, and the compression functions of chained hash functions.

Diversion C.10.2. Some theory in the area characterizes a semiautomaton according to
the algebraic structure of its transition semigroups (or monoid).

C.11 Semigroups from combinatorial graphs

There are several ways to combine two graphs. Some of these are commuta-
tive, forming a semigroup of graphs. Some of these graph operations can be
found on Wikipedia:

[https://en.wikipedia.org/wiki/Graph_operations]

For example, the Cartesian graph product, written G�H corresponds
to the Kronecker sum of the adjacency graphs. If the graphs are labelled,
then division is just Kronecker subtraction, which is easy.

If the graphs are un-labelled, or randomly re-labelled, then division might
be a little more difficult.

To be completed.

C.12 Semigroups from combinatorial games

Recall that a (combinatorial) game is an ordered pair of sets of (combina-
torial) games. Strictly, this is a recursive definition, but can be well-founded,
since we can start with the game 0 = [∅,∅], for example, and then form
other games.

In game x = [L, R], write xL for a typical element of L and xR for a
typical member of R. These elements are called options of x, with xL being
a left option, and xR a right option . Write x = {xL|xR}, and thus write
0 = {|}.

The positions in a game x are itself, and all the positions of its options
(if any).

https://en.wikipedia.org/wiki/Graph_operations

300 APPENDIX C. SEMIGROUP SKETCHES

Games must be well-founded, so that there is no sequence of options
nested infinitely deep. Also the positions form the vertices of a direct acyclic
graph, with edges marking the option relationship.

Diversion C.12.1. There also exists a theory of loopy games in which the directed
graph of positions has cycles.

Two games x and y can be added using the rule:

x + y = {xL + y, x + yL|xR + y, x + yR}. (C.12.1)

Diversion C.12.2. Intuitively, the game x + y represents the player playing both games
x and y simultaneously, but with the rule that the player can only play one option from
the two given games.

Diversion C.12.3. There are other ways to add games. (See Conway’s book On Numbers

and Games, and earlier papers such as that of C. A. B. Smith.)

Addition of games is commutative and associative, both of which can be
proven by induction (using well-foundedness of games).

The game 0 = {|} is the additive identity of addition, which can be proven
by induction.

A game can be be represented in a computer by a tree, but this is generally
inefficient. For example, it can require an number of nodes that is exponential
in the number of moves remaining the in game.

Instead, it is often more efficient to represent a game by a directed acyclic
graph (with multiple edges allowed) and edges painted blue (for left) and red
(for right). The binary tree representation can be viewed as a special case of
this representation. But a directed acyclic graph representation would allow
all the leaves of the tree to be represented by a single vertex, a sink. For
many games, the graph representation requires less storage than the binary
tree representation, and permits more efficient addition.

This more efficient representation has the downside of not being immedi-
ately monographic. (Maybe their is an efficient monography algorithm?)

There is a general theory for determining the outcome (the winner) of
various types of combinatorial games, under the rule of last play to move
wins. Under this outcome rule, many different games become equivalent.
This equivalence is a congruence in the semigroup of games. Therefore,
equivalence classes of games form another semigroup. The equivalence classes
can be quite large. In fact, all games in which the first players are equivalent
to the game 0 = {|}.

C.13. SEMIGROUPS FROM TOPOLOGY? 301

The opposite rule, first player unable to move wins, is much more com-
plicated. The equivalence classes are much smaller.

The left and right graphs of a sum of game are the Cartesian products
the left and right graphs of the games.

So, if the graphs are labelled, then division (game subtraction) should be
easy.

Some games have an infinite number of positions, and thus they cannot be
represented on a computer by the methods above. Nonetheless, a rich theory
on the equivalence classes of games includes some interesting semigroups.

• The ordinal numbers, under various operations:

– Cantor addition and multiplication (which pre-dates combinato-
rial game theory and considers ordinal as isomorphism classes of
well-ordered sets),

– Normal addition and multiplication (which is a special case of
surreal numbers defined below),

– Nimber addition and multiplication (which extends the Sprague–
Grundy theorem),

• The surreal numbers, explained in Conway’s book On Numbers and

Games, for example. These form semigroups under addition and mul-
tiplication.

Although is impossible to represent all transfinite ordinals on a computer,
since they are uncountable in cardinality, certain countable collections of
these objects can be represented with a finite amount of information.

For example, the ordinal numbers up to ωωω..
.

can be represented in
Cantor normal form, which in turn can be represented to a binary tree.

C.13 Semigroups from topology?

To be completed.

Oriented knots can be joined by the so-called connected sum. This forms
a semigroup on the knot isomorphism classes.

302 APPENDIX C. SEMIGROUP SKETCHES

C.14 Semirings with given addition or multi-

plication

This section considers some constructions of a semiring R such that either
R+ or R× is isomorphic to a given semigroup S.

Diversion C.14.1. The constructions in the section require rather modest conditions on
the given semigroup, but choose the remaining semigroup operation specifically, simplis-
ticly, and arguably artificially.

Equivalently, the constructions in this section show that specific, special (simplistic)
semigroups (null and left semigroups) are distributive over, or under, almost any other
semigroup.

Diversion C.14.2. The semiring constructions in this section are not directly useful as
methods to directly construct new semigroups, because they build semirings from semi-
groups. It is possible, though, the the semirings built could then, in turn, to build yet
other semigroups.

As stated elsewhere, many of the most natural semigroups are most easily constructed
as the additive or multiplicative semigroup of a semiring. In most case, these semirings
are not the constructions in this section.

C.14.1 Left addition, any multiplication

Lemma C.14.1. Let S be a multiplicative semigroup. Define an addition
on S as left addition: a + b = a for all a, b ∈ S. Then S is a semiring.

Proof. Associativity multiplication is because S is a semigroup, Additions
is associative, since every sum equals the leftmost term. Left and right
distribution follow by the calculations

a(b + c) = ab = ab + ac,

(a + b)c = ac = ac + bc.

Diversion C.14.3. This semiring has non-commutative addition, which is atypical for
a natural semiring. It is well-known that rather mild condition on a semiring imply
commutative addition.

Diversion C.14.4. A similar semiring can be constructed using right addition.

C.14. SEMIRINGS WITH GIVEN ADDITION OR MULTIPLICATION303

C.14.2 Left multiplication, any idempotent addition

Lemma C.14.2. Suppose that S+ is an additive semigroup, and that S+ is
idempotent (meaning s + s = s for all s ∈ S.) Define multiplication in S as
left multiplication: ab = a for all a, b. Then S is a semiring.

Proof. Associativity of addition is S+ is a given semigroup. Multiplication is
associative, because every product equals the leftmost factor. Left and right
distribution follow by the calculations,

a(b + c) = a = a + a = ab + ac,

(a + b)c = a + b = ac + bc.

Diversion C.14.5. Conversely, if a semiring R has left multiplication, then it is the
result of the construction above. So, addition is idempotent, because a+a = (ab)+(ac) =
a(b + c) = a.

Diversion C.14.6. Some idempotent semigroups are not commutative, and the resulting
semirings have non-commutative addition.

Diversion C.14.7. The semiring in which a + b = ab = a, both operations being the left
operator, is a semiring with both operation (addition and multiplication) non-commutative
if the underlying set has at least two elements.

C.14.3 Null addition, any multiplication with a zero

Lemma C.14.3. Suppose that S× is a multiplicative semigroup with an
absorbing element 0. Define addition on S as null addition by the rule a+b =
0 for all a, b. Then S is a semiring.

Proof. Multiplication in S are associative, because S is a (multiplicative)
semigroup. Addition is associative (since it is a null semigroup, all sums
equalling zero). To establish distribution, notice that a(b + c) = a0 = 0 =
(ab) + (ac), and similarly for right distribution.

Diversion C.14.8. Conversely, if a semiring R has null addition, then it arises from the
construction above. Write ∞ for additively absorbing element ∞. Then a∞ = a(b + c) =
(ab) + (ac) = ∞, so ∞ is multiplicatively absorbing. Then we can re-write 0 = ∞.

304 APPENDIX C. SEMIGROUP SKETCHES

C.14.4 Null multiplication, any addition with an idem-
potent

Lemma C.14.4. Let S+ be an additive semigroup with at least one idem-
potent element o (meaning o + o = o). Define multiplication on S as null
multiplication by the rule ab = o for all a, b. Then S is a semiring.

Proof. Addition is associative because S is a semigroup. Multiplication is
associative because all products equal o. Distribution holds because a(b+c) =
o = o + o = (ab) + (ac), and similarly for right distribution.

Diversion C.14.9. Conversely, if a semiring R has null multiplication, then it arises from
the construction above. Let o = ab for any a, b ∈ R. Then o+o = (ab)+(ab) = a(b+b) = o,
so o is idempotent.

C.15 Semirings from sets

This section considers some semirings that can be derived from an arbitrary
set.

C.15.1 Boolean semiring

Let S be any set. The boolean semiring R = B(S) consists of all subsets of
B. Addition is the union. Multiplication is the intersection.

Diversion C.15.1. There is another definition of boolean algebras in which addition is
defined differently, as the symmetric difference of sets. So A+B means (A−B)cup(A−
B).

This Boolean algebra forms a ring, in which subtraction is possible (and the same as
addition), with addition forming an abelian group.

This semiring B(S) has a zero and a one, as follows. The zero is the
empty set, and the one is S.

Both addition and multiplication in B(S) are idempotent: s+s = s∪s = s
and ss = s ∩ s = s.

The semiring B(S) can be given an additional structure from a comple-
ment operation, a unary operation. This is defined by ac = {s ∈ S : s 6∈ a}.
The complement satisfies (ac)c = a. It also satisfies ac 6= a.

The complement operation in B(S) essentially swaps the roles of addition
and multiplication. So (a + b)c = acbc and (ab)c = ac + bc. This shows that

C.15. SEMIRINGS FROM SETS 305

addition in B(S) is distributive over multiplication. In other words, B(S) is
bi-distributive.

Diversion C.15.2. Boolean semirings, can also be equipped some extra structure: full
infinitary summation and products: arbitrarily many inputs can be added, or multiplied.
The order of the inputs does not matter.

If |S| = 1, then B(S) has just two elements, 0 and 1. This semiring is
fundamental that we call the basic or fundamental Boolean semiring, or
the bit semiring, which we write as B. Its operation tables are thus:

+ 0 1
0 0 1
1 1 1

,
× 0 1
0 0 0
1 0 1

. (C.15.1)

Viewing 0 and 1 is integers, the addition is the maximum (or supremum)
operation, while multiplication is the infimum (or minimum) operation.

Diversion C.15.3. The general Boolean semiring B(S) is the actually the Cartesian
power of the bit semiring B with the set S, which we write as BS . Recall that the
Cartesian power is the set all functions f : S → B, with the usual point-wise addition and
multiplication of functions, so (fg)(x) = (f(x))(g(x)).

C.15.2 Semiring of relations

Let X be an arbitrary set. We can form a semiring R = Rel(X) of relations
on S. A relation is simply of a subset of X2 = {[x, y] : x, y ∈ S}, consisting of
all ordered pairs with element in X (the Cartesian product of X with itself).

Diversion C.15.4. The relation semiring Rel(X) and the Boolean semiring B(X2) share
the same underlying set, and the same addition operation. The multiplication operations
are different.

Addition in Rel(X) is the union operation:

r + s = {[x, y] : [x, y] ∈ r, s}. (C.15.2)

Addition, being an instance of the union operation, is associative r+(s+t) =
(r + s) + t, commutative (r + s = s + r) and idempotent (r + r = r).

Multiplication in Rel(X) is (relational) composition, defined as fol-
lows:

rs = {[x, z] : ∃z, [x, z] ∈ r, [z, y] ∈ s}. (C.15.3)

306 APPENDIX C. SEMIGROUP SKETCHES

Multiplication of relations is associative, but generally non-commutative.
Multiplication is both left and right distributive over additions: r(s+t) =

(rs) + (rt) and (r + s)t = rt + st, so Rel(X) is a semiring.
Notationally, we can following traditional practices in algebra, placing

higher precedence on multiplication, writing rs + rt instead of (rs) + (rt),
thus saving on parentheses.

C.15.2.1 Further structure on relations

Two special elements, of the semiring of relations can be defined.

Diversion C.15.5. A special designated elements can also be considered as a nullary
operation, which makes for a more consistent description in universal algebra of sets being
equipped with multiple operators, some binary (such as multiplication), some unary (such
as transpose, see further below), and some nullary (such as identity, defined next).

First there is an element 0, which is the empty set. It satisfies the usual
properties of a zero in a ring:

0 + r = r + 0 = 0, (C.15.4)

0r = r0 = 0. (C.15.5)

In other words, 0 is both an additive identity element, and a multiplicatively
absorbing element. In B(X2), the empty set is also the semiring 0.

Similarly, one can define an element 1, as follows:

1 = {[x, x] : x ∈ S}. (C.15.6)

So, 1 is the identity relation, or diagonal relation. Element 1 is a multiplica-
tive identity:

1r = r1 = r. (C.15.7)

Thinking of Rel(X) as Boolean matrices, notice that 1 has Boolean ones
on its main diagonal, and Boolean zeros off its main diagonal, just like the
identity matrix I of linear algebra.

The semiring 1 of Rel(X) is not the semiring 1 of B(X2).
Two unary operations on relations can be considered. These enhance the

semiring structure, resulting in a more intricate structure.
The first unary operation is the transpose, or reversal operation, and

is defined as follows:
rt = {[y, x] : [x, y] ∈ r} (C.15.8)

C.15. SEMIRINGS FROM SETS 307

The transpose operation is an involution:

(rt)t = r. (C.15.9)

So, the transpose is its own inverse, and the transpose is bijective.
Transpose interacts with addition and multiplication as follows:

(r + s)t = st + rt, (C.15.10)

(rs)t = strt. (C.15.11)

Because of reversal of the order of r and s on the right hand side of these equa-
tions, the transpose operation provides be considered as anti-automorphism.

The second unary operation is the complement, defined:

rc = {[x, y] : x, y ∈ X; [x, y] 6∈ r}. (C.15.12)

The complement is also an involution:

(rc)c = r, (C.15.13)

so it is bijective (on relations).
The complement commutes with the transpose operation in the sense

that (rc)t = (rt)c. We can safely write rct or rtc, for the complement of the
transpose.

The complement interacts with the addition operation just the same that
the union operation interacts with complement. In particular, the comple-
ment can be used to recover the boolean semiring structure B(X2), because
the intersection operation is the complement of the union of complements.

The complement interact with multiplication (composition) in Rel(X)
quite differently than it interacts with multiplication (intersection) in B(X2).
For example, 0c 6= 1, in Rel(X) (whereas 0c = 1 in B(x2)).

In Rel(X), the element 0c is an absorbing element for addition, (just as
it is B(S2)), and is almost an absorbing element for multiplication. (But
there can be at most one absorbing element for multiplication, and this is 0.
Nonetheless, for many elements r, we will have 0cr = 0c = 0cr.)

C.15.2.2 Relation types using semiring equations

It is common to define certain types of relations, such as reflexive, transi-
tive, symmetric, and several other. Many of these types of relations can
be define using semiring notation for Rel(X). A relation r is:

308 APPENDIX C. SEMIGROUP SKETCHES

• reflexive if 1 + r = r,

• transitive if r + rr = r,

• symmetric if rt = r,

• an equivalence if reflexive, transitive and symmetric,

• anti-symmetric if rc + rct = 1c,

• a partial ordering if reflexive, transitive and anti-symmetric

• total if r + rc = 0c,

• a total ordering if a partial ordering and total,

• left-surjective if 1 + rrt = rrt, (or equivalently, if r0c = 0c),

• left-injective if 1 + rtr = 1,

• a function (graph) if left-surjective and left-injective,

• a permutation if rrt = 1, or equivalently, if rrt = 1, or equivalently,
if both r and rt are functions.

To be completed.
Characterize well-orderings.
Apply these semirings equation to more usual applications of special types

of relations.

C.15.2.3 Relations as bit-valued matrices

Consider the full matrix semiring MS(B) whose index set is S, and whose
base ring is the bit semiring B, where we place no restrictions on the row or
column contents.

Matrix multiplication is well-defined because B allows infinitary sums.
Matrix addition and multiplication obey the semiring axioms, for similar
reasons.

The semiring Rel(S) is isomorphic to the semiring MS(B). A relation r
correspond to the matrix with entry 1 in each position (x, y) ∈ r, and 0 in
all other matrix positions.

C.16. A FREE SEMIRING WITH ONE GENERATOR??? 309

C.15.2.4 Alternative notation for complement and transpose

When dealing the many variable, using letter notation for complement and
transpose might lead to too much clutter. One reasonable alternative nota-
tion is to write ā or a− for the complement, and d′ for the transpose.

C.16 A free semiring with one generator???

This section attempts to begin to describe a practical representation of a
semiring S, with non-commutative addition, that is free over one generator.

As usual, if g is the generator, being free over g, means that for any
other semiring T , and any element h ∈ T , there exists exactly one semiring
morphism m : S → T such that m(g) = h.

We try represent each element of S by a positive integer representatives.
That is to say, each element of S is an equivalence class of positive inte-
gers. As done elsewhere in this report, we indicate an equivalence class by
surrounding the positive integer in square brackets.

Many of the equivalence classes for small integers have only one member,
but for large positive integers m 6= n, it sometimes will occur that [m] = [n].
This report does not yet offer a practical algorithm to determine if [m] = [n]
when m 6= n. So, it this description of S is not yet fully practical.

Addition (of representatives) is defined by the rule:

[a] + [b] =
[

(2a − 1)2⌊log2 b⌋ + b
]

. (C.16.1)

This operation is non-commutative and associative, even if the equivalence
classes are defined to have one element each. We will arrange that addition
is well-defined on equivalence classes.

Diversion C.16.1. The general size of [c] = [a] + [b] can be approximated as c ≈ 2ab.

Diversion C.16.2. The arithmetic for addition can be translated into a simpler rule on
bit strings. Write a and b in standard binary notation. Drop the leading one-valued bits,
getting two bit strings α and β (possibly empty). Form the bit string α0β by concatenation
(with a 0-bit inserted). Then convert back to an integer by pre-pending a 1-bit.

Every positive integer has a decomposition into a sum of Mersenne inte-
gers, like this:

[n] = [2n1 − 1] + · · · + [2nt − 1]. (C.16.2)

310 APPENDIX C. SEMIGROUP SKETCHES

For example, [45] = [1]+[7]+[3]. Now we define a multiplication of Mersenne
numbers, via the rule:

[M][N] = [MN + M + N] (C.16.3)

which only applies if M = Mm = 2m − 1 and N = Mn = 2n − 1 for some
positive integers m and n. In this case, [M][N] = [Mm][Mn] = [Mm+n] =
[2m+n − 1].

General multiplication is now conducted by using decomposition together
with the distributive law. For example, using left distribution first:

[45][2] = ([1] + [7] + [3])([1] + [1])

= (([1] + [7] + [3])[1]) + (([1] + [7] + [3])[1])

= ([1][1] + [7][1] + [3][1]) + ([1][1] + [7][1] + [3][1])

= ([M1][M1] + [M3][M1] + [M2][M1]) + . . .

= ([M2] + [M4] + [M3]) + ([M2] + [M4] + [M3])

= . . .

= [454075]

(C.16.4)

But we also have [45][2] = [220635] by using right distribution first, as in:

[45][2] = ([1] + [7] + [3])([1] + [1])

= ([1]([1] + [1])) + ([7]([1] + [1])) + ([3]([1] + [1]))

= [M2] + [M2] + [M4] + [M4] + [M3] + [M3]

= . . .

= [220635].

(C.16.5)

This example allows us to deduce that [220635] = [454075].

C.16.1 Operation tables

This subsection gives some examples of arithmetic in the semiring. Repre-
sentations [n] are not necessarily unique.

C.16. A FREE SEMIRING WITH ONE GENERATOR??? 311

The tens’ table is given by:

+ [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[1] [2] [4] [5] [8] [9] [10] [11] [16] [17] [18]
[2] [4] [8] [9] [16] [17] [18] [19] [32] [33] [34]
[3] [6] [12] [13] [24] [25] [26] [27] [48] [49] [50]
[4] [8] [16] [17] [32] [33] [34] [35] [64] [65] [66]
[5] [10] [20] [21] [40] [41] [42] [43] [80] [81] [82]
[6] [12] [24] [25] [48] [49] [50] [51] [96] [97] [98]
[7] [14] [28] [29] [56] [57] [58] [59] [112] [113] [114]
[8] [16] [32] [33] [64] [65] [66] [67] [128] [129] [130]
[9] [18] [36] [37] [72] [73] [74] [75] [144] [145] [146]

[10] [20] [40] [41] [80] [81] [82] [83] [160] [161] [162]

A multiplication table was generated as

× [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[1] [3] [13] [7] [53] [27] [29] [15] [213] [107] [109]
[2] [13] [213] [59] [3413] [875] [941] [247] [54613] [13739] [13997]
[3] [7] [59] [15] [475] [119] [123] [31] [3803] [951] [955]
[4] [53] [3413] [475] [218453] [28011] [30125] [3959] [13981013] [1758635] [1791661]
[5] [27] [859] [119] [27355] [3511] [3771] [495] [874203] [110007] [112059]
[6] [29] [949] [123] [30421] [3819] [3949] [503] [973653] [121771] [122285]
[7] [15] [247] [31] [3959] [495] [503] [63] [63351] [7919] [7927]
[8] [213] [54613] [3803] [13981013] [896363] [964013] [63351] [3579139413] [225105323] [229332653]
[9] [107] [13659] [951] [1747675] [112055] [120507] [7919] [223696603] [14069175] [14333371]

[10] [109] [13749] [955] [1750741] [112363] [120685] [7927] [223796053] [14080939] [14343597]

But this table is a little misleading because it suggests that [2][5] 6= [5][2],
which is false.

Diversion C.16.3. Actually, I think that this semiring has commutative multiplication.

J code for all these computation:

plus=:]+(((((*<:)+:)~2x&^)<.)2&^.)

plus"0 table 1+i.10

intify=:(#;.1)@:(0&,)@:}.@:#:

mult=:[:plus/_1+2x^,@(+/)&intify

mult"0 table 1+i.10

This code makes no effort to determine if two positive integers are equivalent.
Essentially, it simply finds one representation for the output of an operation
given representations of the input operations.

312 APPENDIX C. SEMIGROUP SKETCHES

C.16.2 Ineffectiveness of representation

The discussion above provides no efficient rule to determine if [m] = [n]
for arbitrary integers, though perhaps the reader might devise such a rule.
Consequently, the additive and multiplicative semigroups involved in this
semiring lack, as yet, the monography property: finding a unique a represen-
tation is not yet described (in this report). So these semigroup are not (yet)
useful for associative key agreement.

C.16.3 Representation as quasi-polynomials

If we let M = [1], then we see that every element of the semiring can be
written in the form Ma + M b + · · · + Md for one or more positive integers
a, b, c, . . . , but that these representations are not unique. In other words,
these are quasi-polynomials in one variable, where by quasi-polynomial, we
mean non-commutative addition.

As an example of some non-uniqueness, it is fairly easy to show that that
if a + d = b + c and b, c ≥ 3, then, it generally holds that:

Ma + M b + M c + Md = Ma + M c + M b + Md, (C.16.6)

which is a special case of internal commutation (of addition). To see this,
let (e, f, g, h) = 1

2
(a + b − i, c + d − i, c − d + i, b − a + i) for some (perhaps

negative) integer i such that all four integer sums with i are even positive
integers. (To do: show i exists. I think we can take i = 2 or i = b − a + 2
or i = b − a + 3.) Then expand (Me + Mf)(Mg + Mh) twice, first by
left distribution, and second by right distribution, which gives both sides
of the desired equation. For example the first term in both expansions is
Me+g = M ((a+b−i)+(c−d+i))/2 = M (2a+(b+c)−(a+d))/2 = Ma.

C.16. A FREE SEMIRING WITH ONE GENERATOR??? 313

C.16.4 Weighted lexicographic representation

Finite, (non-empty) sequences of positive integers, can be ordered by total
weight, and then lexicographically, like this:

1

< 11 < 2

< 111 < 12 < 21 < 3

< 1111 < 112 < 121 < 13 < 211 < 22 < 31 < 4

< 11111 < 1112 < . . .

Diversion C.16.4. For brevity, the sequences are shown as concatenation of digits, with-
out any separators, but when greater clarity to handle larger integers is needed, the se-
quences should be enclosed in the parentheses, with commas separating sequence elements,
so 11 above, should be (1, 1).

Enumerating sequences gives a correspondence:

1 7→ 1

11 7→ 2

2 7→ 3

111 7→ 4

12 7→ 5

. . .

Diversion C.16.5. A simple procedure can convert between these sequences and the
binary representation of indices. For example, consider sequence 12, or (1, 2) in full.
Subtract one from each entry, giving (0, 1). Replace each entries by an all-ones bit string
of that length, giving (, 1) (whose first entry is the empty bit string). Next replace each
comma (sequence separator) with a single bit of value 0, giving 01. Finally, prepend a
leading one-valued bit, to get 101, which is five.

A positive integer n represented by a sequence (n1, . . . , nt) obeys a simple
relationship in the semiring:

[n] = [1]n1 + [1]n2 + · · · + [1]nt. (C.16.7)

C.16.5 Polynomial images

Every semiring element [n] ∈ Q (for a positive integer n) can be represented
a sum of powers of M = [1]. We can thus define a semiring morphism

314 APPENDIX C. SEMIGROUP SKETCHES

h : Q → P[x] that sends M to x, where, as usual P[x] means the semiring
of polynomials with positive integer coefficients. Now P[x] has commutative
addition.

It follows that each equivalence class of Q maps to a single polynomial.
So, the only question in determining an equivalence is which ordering of the
individual powers are equivalent.

C.17 Semirings of functions on a semigroup?

In this section, we build some nearrings and semirings from an arbitrary
semigroup S.

Diversion C.17.1. As usual, call S the base semigroup when necessary to distinguish
S from the additive and multiplicative semigroups of the nearring or semiring under con-
struction.

For notational convenience, we will assume that base semigroup, so write
it as S+.

Diversion C.17.2. Additive notation here is not meant to imply commutativity: we allow
S+ to be non-commutative.

C.17.1 Nearring of semigroup functions

Let F = SS be the set of functions from S to itself. We will make F into a
nearring by defining as addition and multiplication, as follows.

σ + τ : s 7→ σ(s) + τ(s), (C.17.1)

στ : s 7→ σ(τ(s)), (C.17.2)

for any σ, τ ∈ F . In other words,

• addition in F is point-wise addition, making F + the Cartesian power
semigroup (S+)S (see §C.9.2.2).

• multiplication in F is function composition, making F × a subsemigroup
of the function composition semigroup SS (see §C.5.5).

Since F + and F × are semigroups, the associativity of addition and multi-
plication is established. For F to be a nearring, we also need at least one
distributive law.

C.17. SEMIRINGS OF FUNCTIONS ON A SEMIGROUP? 315

Lemma C.17.1. Set F = SS, with addition and multiplication defined
above, is a right nearring.

Proof. Verifying right distribution is rather immediate:

((σ + τ)υ)(s) = (σ + τ)(υ(s))

= σ(υ(s)) + τ(υ(s))

= (συ + τυ)(s).

C.17.2 Semiring of endomorphisms

Let E = End(S+) = Mor(S+, S+) be the set of endomorphisms, which is
the set of functions σ : S → S, such that σ(s + t) = σ(s) + σ(t). Clearly, E
is a subset of the nearring F from the previous section.

The semiring S+ is said to be medial if a + b + c + d = a + c + b + d for
all a, b, c, d ∈ S.

Lemma C.17.2. If S is medial, then the E = End(S) is a subsemiring of
nearring F .

Proof. We must first show that E is closed under both addition and multi-
plication. First we show that σ + τ ∈ E if σ, τ ∈ E:

(σ + τ)(s + t) = σ(s + t) + τ(s + t)

= σ(s) + σ(t) + τ(s) + τ(t)

= σ(s) + σ(t) + τ(s) + τ(t)

= σ(s) + τ(s) + σ(t) + τ(t)

= (σ + τ)(s) + (σ + τ)(t).

This argument required S+ to be medial.
Closure under multiplication is simpler, and does not require S+ to be

medial. Expressly, (στ)(s + t) = σ(τ(s + t)) = σ(τ(s) + τ(t)) = σ(τ(s)) +
σ(τ(t)) = (στ)(s) + (στ)(t).

Right distributivity and associativity of addition and multiplication are
inherited in E from F .

To verify the left distributive law in E:

σ(τ + υ) = στ + συ,

316 APPENDIX C. SEMIGROUP SKETCHES

by evaluating at the function at arbitrary element of S+:

(σ(τ + υ))(s) = σ((τ + υ)(s))

= σ(τ(s) + υ(s))

= σ(τ(s)) + σ(υ(s))

= (στ)(s) + (συ)(s)

= (στ + συ)(s).

This holds for all s, so the functions are equal. The only step above relying
any of σ, τ , υ being the endomorphism was the step σ(τ(s)+υ(s)) = σ(τ(s))+
σ(υ(s)), which uses only the fact that σ is an endomorphism.

Diversion C.17.3. More generally, replace the condition that S+ is medial by the condi-
tion that it has an medial T + subsemigroup. Then, let ET be the subset of E consisting
of functions σ such that whose image σ(S) ⊇ T .

Then ET is a semiring.
When S+ is medial, we can put T = S, and get back E as E = ES .

Diversion C.17.4. More generally, suppose that S+ is an arbitrary additive-notation
semigroup, not necessarily medial.

Then E is closed under multiplication. Let
∑

E denote the set of sums of all elements
of E. Then

∑
E is closed under addition, and also multiplication, so it forms the sub-

nearring of F . It is actually the nearring closure 〈E〉 of E.
The functions in 〈E〉 might deserve (and already have) a name (the term summor-

phism would somewhat descriptive but quite awkward).
Nearring

∑
E = 〈E〉 is not usually a semiring, because it usually lacks left distribu-

tivity.

C.18 Semilattice semirings??

If R is a semiring in which in addition is commutative and idempotent, then
R can be called a semilattice semiring because R+ is a semilattice: as
noted in §C.3.1. The fact that additive semigroup S+ is commutative and
idempotent means that it defines a semilattice, a partial ordering, defined
by:

a ≤ b ⇐⇒ a = a + b. (C.18.1)

It is a semilattice in the sense that a + b = inf{a, b}.
The partial ordering ≤ (the semilattice) is consistent with multiplication

in the semiring S in the sense the multiplicative by a constant is monotonic,
as shown next.

C.18. SEMILATTICE SEMIRINGS?? 317

Lemma C.18.1. If S a left nearring with S+ idempotent and commutative,
then b ≤ c implies ab ≤ ac for all a, b, c ∈ S.

Proof. If b ≤ c, then b = b + c. Multiply both sides on the left by a to get
ab = a(b + c). By left distributivity, a(b + c) = ab + ac. So, ab = ab + ac,
which means ab ≤ ac.

The converse holds any semilattice ≤ on a multiplicative semigroup S,
such that left multiplication in monotonic, defines a left nearring, by similar
arguments.

Diversion C.18.1. Not every partially ordered semigroup forms a semilattice semiring.
If the partial order lacks pairwise infimums (and pairwise supremums), then it is does not
define a semilattice.

To be completed.

Diversion C.18.2. The tropical algebras are semilattice semiring.

Diversion C.18.3. Multiplication in a semilattice semiring can be non-commutative.

For example, let S be the free semigroup of words over the alphabet {0, 1}, where
multiplication in S is word concatenation. This is non-commutative: (00)1 6= 1(00).

Define an ordering ≤ on S, by embedding S into set of P the positive integer by
prepending a 1 to the word, and then interpreting the prepended string as the binary
representation of a positive integer. Equivalently, the ordering can be defined by comparing
a word length first, and comparing words lexicographically.

Left and right multiplication in S are each monotonic with respect to this ordering.
To see this, notice that multiplication in S is additive over word length, so preserves
all comparison based on word length. For tied word lengths, comparison is done by
lexicographically, but the common factor does not disrupt the ordering of the shorter
words, whether it is a prefix or suffix.

Indeed, this semilattice semiring is totally ordered. So, totally ordered semigroups can
be non-commutative.

Yet another description of this semigroup S is to represent each element as [a] for
some positive integer, and define multiplication by concatenating binary representation
after removal the leading bit, and then replacing the leading bit.

In the J programming language, multiplication in S, under this representation, may
be implemented by the verb m=:(1(#.@,),"1&}.&#:)"0.

C.18.1 Lattice semirings

A partial ordered set P is a lattice if every pair a, b ∈ P of elements has a
unique greatest lower bound a + b and a unique least upper bound ab.

318 APPENDIX C. SEMIGROUP SKETCHES

For example, if P is totally ordered, then it is a lattice. The set of subsets
of a set, ordered by inclusion is a lattice.

C.18.2 Total orders

Let T be a total order. Let Z be a subset of T . Define a semiring from (T, Z)
as follows. Let the underlying set be T .

Let ab = max(a, b) for all a, b. Let

a + b =

min(a, b) if max(a, b) ∈ Z

max(a, b) if max(a, b) 6∈ Z
(C.18.2)

Clearly, addition and multiplication are commutative.

Diversion C.18.4. This type of semiring generalizes the notion of adding zeros and in-
finities to an existing semiring, as described in §??.

To be completed.

C.18.3 Incidence algebras?

An incidence algebra T is a semiring that combines a semiring R with
locally finite partially ordered set P , consisting of functions from nonempty
closed intervals of P to R.

To be completed.

C.19 The standard semiring of positive inte-

gers

Perhaps the most fundamental and natural semiring is the semiring of posi-
tive integers P = {1, 2, 3, . . .} under standard addition and multiplication.

Diversion C.19.1. For practicality, we need a monography for positive integers: and
there are several different representation systems.

C.19.1 Positive integers under multiplication

Integer multiplication is associative, and positive integers are closed under
multiplication. So the positive integers form a semigroup P× under standard
integer multiplication.

C.19. THE STANDARD SEMIRING OF POSITIVE INTEGERS 319

A familiar part of multiplication table is:

× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

(C.19.1)

Diversion C.19.2. This semigroup is also:

• unital, since it has an element 1 such that 1a = a1 = a, for all a;

• commutative: ab = ba for all a, b;

• cancellative: ab = ac implies b = c, for all a, b, c.

Diversion C.19.3. A unital semigroup is also called a monoid.

Algorithms for multiplication are well-known and standard.

See §?? for division in this semigroup P×.

C.19.2 Positive integers under addition

The positive integers are closed under standard integer addition, which is
associative. This forms a semigroup P+. As usual, we write the semigroup
operation with the symbol +. This helps avoid confusion with semigroup P×.

320 APPENDIX C. SEMIGROUP SKETCHES

It has partial table:

+ 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13
4 5 6 7 8 9 10 11 12 13 14
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16
7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18
9 10 11 12 13 14 15 16 17 18 19

10 11 12 13 14 15 16 17 18 19 20

(C.19.2)

Diversion C.19.4. Semigroup P+ is commutative and cancellative, but it is not a monoid
(because here we have excluded non-positive integer 0, which would have been the identity
element of the additive operation).

Diversion C.19.5. A simple way to recover multiplicative notation for P+, is to write
the elements as powers of some formal variable, say x. The underlying set is then
{x1, x2, x3, . . . }. Multiplication looks like xaxb = xa+b, which is just addition in the
exponents.

This set does not include a multiplicative identity 1 (because st 6= s for all s, t). It
also does not include a zero element 0 (because st 6= s for all s, t).

It is also possible to embed P+ inside P×, as a subsemigroup (subsemigroups are dis-
cussed more generally in §C.6.1), by replacing formal variable x for some positive integer.
For example, if x = 10, then we represent P+ by the set {10, 100, 1000, . . .}, the powers
of ten (excluding one), under multiplication (or, with x = 2, a computer-friendlier set
{2, 4, 8, 16, . . .}).

See §?? for a discussion of division (re-named as subtraction, of course!)
in P+.

C.19.3 Distributing over integer multiplication

This subsection describes some unusual operations on positive integers that
are distributive over standard multiplication.

C.19.3.1 Factorialization of an existing positive integer semigroup

Let ∗ be any associative operation on the positive integers. In this section,
we derive from ∗ a second associative operation ∗!, called its factorializa-

C.19. THE STANDARD SEMIRING OF POSITIVE INTEGERS 321

tion. The derivation uses prime factorizations and indexing, which we briefly
review.

It is well-known that there an infinitely many primes. So, index the primes
by increasing size with positive integers, as in p1 < p2 < p3 < p4 < For
example, p4 = 7. Efficiently finding pi from i, or vice versa, is possible for
small enough i.

Every positive integer has a prime factorization, unique up to ordering of
the factors:

a =
∏

i

pai

i . (C.19.3)

Each ai is a non-negative integer, and at most finitely many of the ai are
positive. All the indices i in pi are positive.

Now let ∗ be any associative operation defined on P. We define a new
associative operation ∗!, called the factorialization of ∗, as follows.

Definition C.19.1. The factorialization of associative operation ∗ is the
operator defined by

(
∏

i

pai

i

)

∗!

∏

j

p
bj

j

 =
∏

i,j

paibi

i∗j . (C.19.4)

We leave it for the reader to verify that ∗! is associative.

In addition to being associative, operator ∗! is distributive over standard
multiplication, which we can write as × ր ∗!. In particular, ∗! can be used
to form a new semiring over the positive integers, which we may as P∗!

×.

Diversion C.19.6. The positive integers have a distributive chain of associative binary
operations: ⊔ ր + ր × ր ∗!. Perhaps future work will find cryptographic application of
the curious fact.

322 APPENDIX C. SEMIGROUP SKETCHES

C.19.3.2 Factorialized addition

For example, we can take ∗ = +, and get factorialized addition, whose ten
by ten table looks like:

+! 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 3 5 9 7 15 11 27 25 21
3 1 5 7 25 11 35 13 125 49 55
4 1 9 25 81 49 225 121 729 625 441
5 1 7 11 49 13 77 17 343 121 91
6 1 15 35 225 77 525 143 3375 1225 1155
7 1 11 13 121 17 143 19 1331 169 187
8 1 27 125 729 343 3375 1331 19683 15625 9261
9 1 25 49 625 121 1225 169 15625 2401 3025

10 1 21 55 441 91 1155 187 9261 3025 1911

(C.19.5)

Of course, implementing +! is quite inefficient, since it requires factoriza-
tion and conversions between i and pi. Perhaps, it becomes efficient with a
a quantum computer.

For division in P+!, see §5.6.3.

C.19.3.3 Recursive factorialization

A unique operator ⊥ on the positive integers has the property it is its own
factorialization: ⊥!=⊥. Its ten by ten table looks like:

⊥ 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 4 2 4 2 8 4 4
3 1 2 3 4 3 6 7 8 9 6
4 1 4 4 16 4 16 4 64 16 16
5 1 2 3 4 5 6 7 8 9 10
6 1 4 6 16 6 24 14 64 36 24
7 1 2 7 4 7 14 53 8 49 14
8 1 8 8 64 8 64 8 512 64 64
9 1 4 9 16 9 36 49 64 81 36

10 1 4 6 16 10 24 14 64 36 40

(C.19.6)

Diversion C.19.7. The fact that 2a ⊥ 2c = 2ac is reminiscent of Diffie–Hellman key
agreement, although that is not at all how one would use P⊥ in associative key agreement.

C.19. THE STANDARD SEMIRING OF POSITIVE INTEGERS 323

Diversion C.19.8. An implementation of ⊥, written in the J programming language is:

o=:*/@,@($:&.(>:@(_1&p:))"0/&q:) (C.19.7)

This recursive code is excessively slow due to some J programming bug1.

As with the previous semigroup P+! , the semigroup P⊥ has a more natural
representation in which multiplication does not require prime factorization
and indexing.

In the alternative representation, we represent integers by rooted free
trees. At the root, there is one branch per each prime (counted with mul-
tiplicity) in the factorization of the positive integer. For example, 20 corre-
spond to a tree with a root vertex, three vertices at height 1, and then two
more vertices at height 2 and 3, which can be seen formulaicly by

20 = (2)(2)(5) = p1p1p3 = p1p1pp2 = p1p1ppp1
= ppppp

, (C.19.8)

where in the final formula, we omit all the indices of 1, and each p corresponds
to a non-root vertex of the tree, with levels be directed downwards (instead
of upwards in the usual convention), by levels of subscripting.

In this tree-representation, one can multiply recursively, without referring
to any primes or number-theory. Given two trees t and u, recursively multiply
their branches (if any) in pairs. Then assemble all the results products as
the branches of the new tree.

Diversion C.19.9. When some branches repeat, we use a yet more compact representa-
tion of the trees. We record each branch once, and record its multiplicity as a positive
integer. The multiplicities correspond to the exponents in the prime-power factorization.

This representation requires caution to make sure that all the branches represent gen-
uinely distinct free trees, which can be non-obvious. In this compact representation, we
can sometimes multiply more quickly, by apply recursion only to the distinct branches,
and then using standard integer multiplication to find resulting multiplicities. However, we
must then take an extra step of identifying because some of the products of the branches
may end up the same. For these repeats we should gather the matching branches to-
gether by adding up their multiplicities. (In some contexts, we can tolerate ambiguous
representation of trees.)

The compact notation can also be written by a system of subscripting. The empty
string represents 1. Otherwise, write the multiplicities (as standard integers), but write
the index of the prime as subscript, represented recursively. In decimal, end multi-digit
integers with a period, to avoid confusion, with the left digits being considered as multi-
plicities. For example, consider the standard notation integer 235 − 2 (the b value from

1Possibly using verbs of too low rank

324 APPENDIX C. SEMIGROUP SKETCHES

the highest quality known abc triple). In the notation just described, its compact repre-
sentation can be given as:

10.1111111

(C.19.9)

because, in standard notation, 235 − 2 = 310109 = p10
2 p1

29 = p10
p1

1

p1
p1

10

= p10
p1

1

p1
p1

p1
1

p1
5

= . . . and

so on. But the tree 235 has its compact notation in the form

521
(C.19.10)

because 235 = p5
9 = p5

p2
2

= p5
p2

p1
1

. When convenient, some notation the single-vertex tree,

which corresponds to 1 in P⊥, can be used, namely 0 which helps in doing some recursions.
For example 1 = 10, so 1 ⊥ 11 = 10 ⊥ 11 = 10⊥1 = 10 = 1. So, now the general tree
multiplication pattern begins:

aibj . . . ck ⊥ dlem . . . fn = (ad)i⊥l(ae)i⊥m . . . (cf)k⊥n. (C.19.11)

But, if we want a monography (canonical representation), we must identify isomorphic
branches, indicated in the subscripts. If all the subscripts were distinct, except the first
and last, then we could get a final answer of:

aibj . . . ck ⊥ dlem . . . fn = (ae)i⊥m . . . (ad + cf)k⊥n. (C.19.12)

Now let us compute (235 − 2) ⊥ (235), in the free tree representation, using the compact
notation.

10.1111111

⊥ 521
= 50.1⊥21

511111
⊥21

= 50.20⊥1
521111

⊥1

= 50.20
521111⊥0

= 50.25211

= 50.2522

(C.19.13)

which, as promised, uses standard integer multiplication, and recursion, but does require
prime factorization or indexing. The last step involved replacing 211 by 22, by gather
common isomorphic free trees (i.e. primes in P⊥). Converting back to positive integers
(where conversion require prime indexing, but no factorization), we get answer 5502275.

See §??, for division in P⊥.

C.20 Semirings from semirings

C.20.1 Subsemirings

Let S be a semiring. A subset T ⊆ S is a subsemiring if T is closed under
addition and multiplication. (Equivalently: T + and T × are subsemigroups
of S+ and S×.)

C.20. SEMIRINGS FROM SEMIRINGS 325

Diversion C.20.1. The intersection of any family of subsemirings is a subsemiring (mak-
ing the set of subsemirings into a complete (lower) semilattice).

If some property P of semirings has the property that if it holds a semiring S, then
it holds for all subsemirings of T of S, then we say that P is an inheritable property.
For any inheritable property P , a semiring S has a unique smallest subsemiring T with
property P . (To be useful, the inheritable property P should exclude very small semirings,
such as the empty semiring, otherwise the smallest T may be too small to be useful.)

C.20.1.1 Subsemirings generated by a subset

Let G be any subset of S. There exists a smallest subsemiring 〈G〉 that
contains G. So, 〈G〉 = {g1 ◦2 g2 · · · ◦n gn : n ∈ P, gi ∈ G, ◦i ∈ {+, ×}}. This
is subsemiring generated by G.

The notation 〈G〉S can be used if there is any confusion about which
semiring is being used.

The notation 〈G〉+ can be used to to indicate the subsemigroup of the
additive semigroup S+ of S, so 〈G〉 = {g1 + · · · + gn : gi ∈ G}. If G
has a single element then with G = {g}, then we also write Pg = 〈G〉+ =
{g, g + g, g + g + g, . . . {. Similarly, notations 〈G〉× = {g1 . . . gn : gi ∈ G} and
gP = 〈{g}〉× = {g, g2, g3, . . . }.

C.20.1.2 Subsemiring fixed by an element

Let R be a semiring, let e ∈ R. The subsemigroup of R× fixed by e, namely
{s : es = s = se} is also closed under addition, because e(s + t) = es + et =
s + t, and so on. So it defines a subsemiring.

If e is idempotent, then this subsemiring is eSe. In the subsemiring eSe,
the element e is a multiplicative identity.

C.20.2 Solitary extensions of semirings

Recall from §C.8.1 that a solitary extension semigroup S has just one extra
element. Examples include S0, S1, and shadow extension.

Similar solitary extension of a semiring R can be defined.

C.20.2.1 Extension by zero

Let R0 be the semiring R with one extra element 0 added.

Diversion C.20.2. If R already has an element labelled 0, then re-label it as 0R to
distinguish it as the old zero. Then 0R ∈ R and 0 6 R.

326 APPENDIX C. SEMIGROUP SKETCHES

In the additive semigroup R+
0 , the new 0 is an identity element: 0 + r =

r = r + 0 for all r ∈ R0. In the multiplicative semigroup R×
0 , the new 0 is an

absorbing element: r0 = 0 = 0r for all r ∈ R0.

Diversion C.20.3. In more detail, the underlying set of R0 is R ⊎ {0}. Addition R0 is
defined

r + s =

r + s if r 6= 0 6= s,

s if r = 0,

r if s = 0.

(C.20.1)

Multiplication in R0 is defined:

rs =

rs if r 6= 0 6= s,

0 if r = 0,

0 if s = 0.

(C.20.2)

If R already has an element 0 that is both an additively identity element
and an multiplicatively absorbing element, then it is often redundant a new
0. Let R(0) be R if R has such a 0, and otherwise, let it be R(0) = R0. In
other words, R(0) extends by zero only if necessary.

C.20.2.2 Extension by infinity

Given a semiring R, let R∞ be the semiring with underlying set R ⊎ {∞},
meaning the disjoint union, so that ∞ is some arbitrary element which is not
an element of R. Define addition and multiplication as follows.

r + s =

r + s if ∞ 6 in{r, s},

∞ if ∞ ∈ {r, s},
(C.20.3)

and

rs =

rs if ∞ 6∈ {r, s},

∞ if ∞ ∈ {r, s}.
(C.20.4)

In other words, to form R∞ we extend both the additive semigroup R+

and the multiplicative semigroup by an absorbing element, using the same
element, written ∞.

Diversion C.20.4. Semirings extension by zero and by infinity are not isomorphic, unless
they have one element. Equivalently, if Q and R are semirings, then either Q0 6∼= R∞, or
both Q and R are the empty semiring (with no elements).

To see this, note that the unique additively absorbing element of Q0 is a multiplicative
identity. The unique additively absorbing element of R∞ is multiplicatively absorbing. If

C.20. SEMIRINGS FROM SEMIRINGS 327

Q0
∼= R∞, then the unique additively absorbing element is both a multiplicative identity

element and a multiplicative absorbing element. An absorbing identity element is neces-
sarily the only element. So, if Q0

∼= R∞ must consist of a single element. Being a solitary
extension of Q and of R, means that both Q and R must have no elements.

Diversion C.20.5. This previous note suggests that the solitary extensions by zero and
by infinity can be iterated. Using n extensions, and starting from a non-empty semiring,
one can get 2n distinct extensions by such iterations (one extension for each sequence
of zeros and infinities). (Starting from the empty semiring, there are 2n−1 extensions,
because the choice of first extension does not matter.)

C.20.2.3 Shadow extensions

Recall that a shadow extension of a semigroup means to add a second copy
of one element of the semigroup, called a shadow, such that any products in-
volving the new shadow element equal the product with the shadow replaced
by the original element it shadows.

Shadow extensions can be defined similarly for semirings.

C.20.3 Semiring of polynomials

Given a semiring R (with commutative addition) we can form the semiring
R[x] of univariate polynomials in an indeterminate variables.

Univariate polynomials are a standard and well-studied type of object in
algebra. We review the formalities only for completeness.

C.20.3.1 A formalism for univariate polynomials

A polynomial f is a formal sum f =
∑d

i=0 fix
i where fi ∈ R, and d is a

non-negative integer. The element fi are called the coefficients of f and d is
called the formal degree.

If R has an element zero 0, then we consider equivalence classes of formal
sums. If fd = 0, then we regard

∑d
i=0 fix

i =
∑d−1

i=0 fixi. We then extend this
equivalence by transitivity. The effective degree of f is the largest i such that
fi 6= 0, if such an fi exists; the effective degree −1 if all fi = 0.

Polynomial addition obeys the rule:

(
d∑

i=0

fix
i

)

+

e∑

j=0

gjx
j

 =
max(d,e)
∑

k=0

hkxk

328 APPENDIX C. SEMIGROUP SKETCHES

where

hk =

fk + gk if k ≤ min(d, e),

fk if k > e,

gk if k > d.

It is a simple exercise to show that the addition is well-defined under the
equivalence of dropping leading zero coefficients.

If addition in R is commutative, then polynomial multiplication obey the
usual convolution rule

(
d∑

i=0

fix
i

)

e∑

j=0

gjx
j

 =
d+e∑

k=0

min(k,d)
∑

i=max(0,k−e)

figk−i

xk.

Again, it is a simple exercise to show that multiplication is well-defined under
the equivalence of dropping leading zero coefficients.

Diversion C.20.6. If R has an element 1, then it is customary to write xi for 1xi.

Diversion C.20.7. We consider R to be subsemiring of R[x], as follow. Formally, we use

a semiring morphism that maps r to the formal sum rx0 =
∑d

i=0 fix
i where d = 0 and

f0 = r. This semigroup morphism is injective, even under the equivalency classes obtained
by dropping leading zero coefficients. This is called the standard embedding.

Diversion C.20.8. The variable x in R[x] is a formal variable. One can also use other
variables names, when convenient. For example, one can define R[t] and so on. Of course
R[x] and R[t] are isomorphic as semiring, with the isomorphism merely being substitution
of the formal variables.

Diversion C.20.9. It may be also possible to define polynomials over a base semiring
with non-commutative addition. (To be completed.)

C.20.3.2 Bivariate polynomials

Of course R[x] is itself a semiring. It is common, therefore, to form yet an-
other semiring of polynomials with coefficients in R[x]. For example, one can
form the semiring (R[x])[y]. This becomes a ring of bivariate polynomials,
which we abbreviate to R[x, y].

Of course, R[x, y] and R[x, y] are isomorphic as semirings.

C.20.3.3 Multivariate polynomials

Similarly, we can form multi-variate polynomials for arbitrarily many vari-
ables. In this case, we often write R[x1, . . . , xn].

C.20. SEMIRINGS FROM SEMIRINGS 329

If we are sufficiently careful, we can also consider semirings polynomials
over an infinite set of variables, although each polynomial will only have
only finitely many terms as formal sum. For example, R[x1, x2, . . .] can be
described as the union

⋃

n≥1 R[x1, . . . , xn], with the convention that these
semirings are nested (chained) under inclusion by the standard embedding.

C.20.3.4 Non-commutative polynomials

It is also possible to define bivariate (and multivariate) polynomials in which
the indeterminate variables do not commute with each other, although they
do commute with coefficients from the base ring.

For example, bivariate polynomials in non-commuting indeterminates x
and y with coefficients that commute with variables can be represented as fi-
nite formal sums of the

∑

i riwi where each ri ∈ R, and wi ∈ {1, x, y, x2, xy, yx, y2, x3, x2y, xyx, xy2, . .
meaning that wi is essentially a word in the alphabet {x, y}.

Diversion C.20.10. A notation R〈x, y〉 can indicate this.

We can further consider polynomials in which the indeterminate variables
do not commute with coefficients of the base semiring R. In this case, it is
simplest to consider R which have a multiplicative identity 1, because they
we easily an indeterminate variable x with the polynomial 1x1. In this case,
a univariate polynomial with an indeterminate x would be a finite formal
sum of the form

∑

i ri,0xri,1x . . . ri,di−1xri,di
, where either ri,j ∈ R, and di is a

non-negative integer.

However, in this form, we would have a further task of deciding when
two formal sums are equivalent. Surely, any sensible polynomial arithmetic
would imply that ax(b + c) + cxd = axb + axd + cxd = axb + (a + c)xd.
So, the task of determining equivalence and canonical forms of formal sums
might be non-trivial, or might not be even be well-defined.

Diversion C.20.11. The notation 〈R, x〉 is suggestive for this type of univariate ring.

Diversion C.20.12. If the base semiring R lacks a multiplicative identity, then the terms
of formal sums allow some of the coefficients to be absent.

330 APPENDIX C. SEMIGROUP SKETCHES

C.20.4 Semiring of matrices

C.20.4.1 Square matrices

Given a semiring R with internally commutative (medial) addition and a
positive integer n, we can form a semiring S = Mn(R) of n × n square
matrices with entries in R.

Specifically, writing aij ∈ R for the (i, j) entry of a matrix a ∈ Mn(R),
then addition and multiplication are defined by:

(a + b)ij = aij + bij ,

(ab)ik =
n∑

j=1

aijbjk.

Addition in Mn(R) is associative since it is associative in R. (Addition in
Mn(R) is commutative if it is in R.)

Multiplication in Mn(R) is distributive over addition, if it distributive
over addition in R.

Multiplication in Mn(R) is associative because

(a(bc))im =
n∑

j=1

n∑

k=1

aij(bjkckm) =
n∑

k=1

n∑

j=1

(aijbjk)ckm = ((ab)c)im.

Diversion C.20.13. The proof above of multiplicative associativity of Mn(R) uses as-
sociativity of multiplication in R, both left and right distributivity in R, and internal
commutativity (mediality) of addition in R.

Diversion C.20.14. The base semiring R can have non-commutative multiplication.

If R has an additive identity 0, then so does Mn(R), the matrix with all
entries valued 0.

If R also has a multiplicative identity 1, then so does Mn(R): it is the
usual matrix of all 0 entries except for entries of 1 on the diagonal serves as
a multiplicative identity for R.

If R has additive inverses (negations), so that R is a ring, then so does
Mn(R), and Mn(R) is also a ring.

Existence of all multiplicative inverses of nonzero elements of R are not
generally enough to ensure their existence in Mn(R) (unless n = 1).

Multiplication in R requires at most n3 multiplication in R and n3 ad-
ditions in R. For some R, more efficient multiplication algorithms may be
available.

C.20. SEMIRINGS FROM SEMIRINGS 331

For division in Mn(R), see §5.16.

C.20.4.2 Rectangular matrices

To be completed.
Addition and multiplication of rectangular matrices is sometimes possible,

provide that the operands have matching shapes.
The operand matrices in addition a + b must have identical shapes, so a

and b have the same number of rows and the same number of columns; the
result a + b also has the same shape. The operand matrices in multiplication
ab must agree in shape such that the number of columns of a equals the
number of rows of b; the result ab has the same number of rows as a and the
same number of columns as b.

One attempt to construct a semiring of rectangular matrices works as
follows. Add a formal error element, a non-matrix, written as 0, which is
the result of any operation where operands do not have matching shapes as
matrices. We call this semiring M∗(R).

Diversion C.20.15. The semiring Mn(R) is a subsemiring of M∗(R) for all positive in-
tegers n.

Diversion C.20.16. These semigroups are images of the semigroup closure of §??: in
which the congruence identifies all copies of a given matrix.

Diversion C.20.17. If 0 ∈ R, an all zeros matrix 0n in Mn(R) is a zero of Mn(R), but it
is not a zero of M∗(R) (since 0n0 = 0 6= 0n.

To do: division of rectangular matrices uses the same principles as for
square matrices (linear algebra).

C.20.4.3 Infinitary matrices

The definitions above assume that a matrix is an array with finitely many
entries. But there are ways to allow form a similar semiring of arrays with
infinitely many entries.

We consider square matrices, but some of these results generalized to
non-square rectangular matrix.

Suppose that I is an arbitrary infinite set, and that R is a semiring. An
infinitary square matrix m is a function m : I × I → R. (We may also
write RI×I for the set of matrices.) We generally write mi,j instead of m(i, j).

332 APPENDIX C. SEMIGROUP SKETCHES

Addition of square matrices is as usual, point-wise as functions, so

(a + b)i,j = ai,j + bi,j ,

which is the straightforward generalization of finite matrix addition. We
would like to generalize finite matrix multiplication to infinitary matrices,
but we encounter a problem: the sum

(ab)i,k =
∑

j

ai,jbj,k

can have infinitely terms, and therefore is not defined for every semiring R,
in addition is only a binary operation (which cannot be iterated infinitely
often). There are some ways to resolve this.

Summable matrix entries If semiring R has commutative summation
over sets of type I, then matrices with index set I can be defined.

Diversion C.20.18. Perhaps the most important example is the semiring of relations,
which can be viewed a matrices with entries in bit semiring B, which admits arbitrary
summation.

Diversion C.20.19. For another example, let R be the semiring of positive real num-
bers, together with +∞. It has arbitrary summation. Therefore, infinitary matrices with
positive real entries (including +∞) form a semiring.

Column-finite matrices Suppose that the base semiring R has an ele-
ment 0. A matrix a has is column-finite if, for each j, there at most finitely
many value i such that ai,j 6= 0. In other words, each column of the ma-
trix has finite support (the support being the set of matrix position with a
nonzero entry).

Column-finite matrices are closed under matrix addition. Also, the usual
matrix multiplication for column-finite matrices is well-defined, and results
in another column-finite matrix. So, column-finite matrices thus form a
semiring.

Diversion C.20.20. When R is a field, column-finite matrices naturally represent linear
operators from an infinite vector space RI .

Row-finite matrices similarly form a semiring. Matrices that are both
row-finite and column-finite also form a semiring.

C.20. SEMIRINGS FROM SEMIRINGS 333

Well-supported matrices??? Let R be a semiring with a 0. Recall that
the support of a function f : S → R is {s ∈ S : f(s) 6= 0}. Each column
and row of a matrix can be viewed as a rectangular matrix, and thus as a
function, so it has a support.

Suppose that index set I is equipped with a total ordering. For example,
I could be real numbers.

A matrix a ∈ RI×I is well-supported if the support of each column
is a well-ordered subset of I, and the support of each row is an anti-well-
ordered subset of I. Matrix multiplication of well-supported matrices is
defined because the support of the function nonzero terms in the sum j 7→
ai,jbj,k is the intersection of a column and row support. It is thus well-ordering
in both directions, and thus finite. Therefore the sum is defined.

C.20.4.4 Matrices with non-commutative addition???

To be completed.
The previous definitions of matrices assume that the base semiring R has

commutative addition. Commutative addition ensures the associativity of
matrix multiplication, and also the distributivity of matrix multiplication
over matrix addition.

Actually, commutative addition is not necessary to achieve these goals.
For example, for finite matrices, the slightly weaker property of internal
commutativity (that a + b + c + d = a + c + b + d for all a, b, c, d ∈ R) seems
to suffice.

More generally, a matrix a has rank one if there exist two functions
α, α′ : I → R such that ai,j = αiα

′
j . Rank one matrices are closed under

multiplication, and their multiplication is associative.
The distributive might not necessarily hold, however.
To be completed.

C.20.4.5 Natural matrix representations of a semigroup

The section generalizes part of the representation theory of groups to semi-
groups: specifically the representation of group elements by permutation
matrices.

Recall that we write B for the Boolean semiring, which has two elements
0 and 1. Element 0 is the additive identity and a multiplicative absorbing el-
ement. Element 1 is the multiplicative identity, and an additive idempotent.

334 APPENDIX C. SEMIGROUP SKETCHES

(In other words, 0 is false, 1 is true, additive is Boolean OR, and multiplica-
tive is Boolean AND.) Recall that B is a summation semiring, meaning that
we can (convergently) sum any infinitely series B.

Let S be any semigroup, with multiplicative notation. Recall that we
write S(1) for the semigroup by adding, only if necessary, a multiplicative
identity element 1. If S is already unital (a monoid), the S = S(1).

Form a semiring R = MS(1)
(B). Recall that matrix multiplication is well-

defined, even for infinite S, because B is a summation semiring. Define a
semigroup morphism, the left natural representation, as follows:

λ : S → R : s 7→ [a = sb]a,b, (C.20.5)

meaning that λ(s) is a matrix whose entry in position [a, b] is

λ(s)a,b =

1 if a = sb,

0 if a 6= sb.
(C.20.6)

By λ being a semigroup, morphism we claim that

λ(s)λ(t) = λ(st). (C.20.7)

Proof to be added.

Diversion C.20.21. To be clear, the notation above implicitly means that a morphism
λ is from S into R×.

Actually, this is a morphism even if we replace the indices S(1) by S.
Using indices S(1) ensures the that morphism is injective.

Similarly, a right natural matrix representation has ρ(s)a,b = [as =
b].

Actually, the base semiring B can be replaced by any semiring other B
with 0 is a zero element and 1 any multiplicative idempotent, but we may
need to restrict the semiring MS(1)

(B) to column-finite or row-finite matrices.
To be completed.

We can also generalize slightly, allowing multi-valued representations such
that nonzero matrix entries belong to a multiplicative subset.

C.20.4.6 Kronecker matrix operations

Kronecker multiplication and addition of integers is also.
To do: (division is easy).

C.20. SEMIRINGS FROM SEMIRINGS 335

C.20.5 Semigroup semiring

Let R be semiring and G be a semigroup. The semigroup semiring S =
R[G] is well-known construction, which we review below

Diversion C.20.22. We assume that R has commutative addition (but not necessarily
commutative multiplication).

The most general case of R[G] is rather technical, so we handle some
simpler cases separately.

C.20.5.1 Finite semigroup semiring

If G is finite, then we can let the underlying set of S be RG: functions from
G to R.

Define addition in S as point-wise addition in R and multiplication as
convolution, so

(s + t)(g) = s(g) + t(g), (C.20.8)

(st)(g) =
∑

fh=g

s(f)t(h). (C.20.9)

(C.20.10)

We consider elements of s ∈ S = R[G] as finite formal sums
∑

g∈G s(g)[g].

C.20.5.2 Semigroup semiring with zero

Suppose that base semiring R has an element 0, which is its additive identity.

For f ∈ RG, let the support of f be the set S(f) = {g ∈ G|f(g) 6= 0}.

Let R[G] = {f ∈ RG : |S(f)| < ∞}. In words, R[G] consists of all
functions from G to R with finite support.

We define addition as function-wise and note that a sum of two finite
support functions has a finite support. We define multiplication in R[G] by
convolution, limited to sums over nonzero evaluations. By finite support,
these sums are finite. They are therefore defined.

As above, we think of elements of R[G] as finite formal sums.

Diversion C.20.23. If G is finite, then this definition matches the previous exactly, be-
cause R[G] = RG. So, these definitions are consistent wherever they overlap.

336 APPENDIX C. SEMIGROUP SKETCHES

C.20.5.3 General semigroup semirings

The previous definitions do not cover the situation in which G is infinite and
R lacks a zero. With care, a definition of the semigroup semigroup R[G] is
possible here, and generalizes the previous two definitions.

Elements of R[G] consist of equivalence classes of charts. A chart is pair
of the form (F, f), where F is a finite subset of G and f ∈ RF is a function
from F to R. Charts (E, e) and (F, f) are equivalent if e and f agree on
E ∩ F and f is 0-valued on F − E and e is 0-valued on E − F , where 0 is
the additive identity of R, if it exists. Of course, if R has no 0, then this
formalism implicitly requires E = F , and therefore e = f , so each equivalence
class has only one chart.

Diversion C.20.24. To recover the previous definition in which R has a zero 0, represent
a function f with finite support S(f) by a chart (S(f), f)

Addition of charts is obtained by (E, e) + (F, f) = (E ∪ F, h), where

h(g) =

e(g) + f(g) if g ∈ E ∩ F

e(g) if g ∈ E − F

f(g) if g ∈ F − E

(C.20.11)

It is a simple exercise to show the addition of charts respects the equivalence
of charts.

Multiplication of charts (E, e)(F, f) = (D, d) is done as follows.

D = {gh : g ∈ E, h ∈ F}
d(k) =

∑

g∈E
h∈F
gh=k

e(h)f(h)

It is another exercise to show that multiplication of charts respects the equiv-
alence of charts.

We again write elements in s ∈ R[G] as formal sums, with chart (F, f)
being written as

∑

g∈F

f(g)[g] (C.20.12)

With this notation, addition and multiplication act agreeably with the formal
sums.

C.20. SEMIRINGS FROM SEMIRINGS 337

C.20.5.4 Semigroup semirings with non-commutative addition???

To be verified. Probably incorrect.

Let S be a semigroup, and R a semiring, possibly with non-commutative
addition.

We try to form a small semigroup semiring R[S] as follows.

First, form the free semiring FR×S which generated by the set R ×S. For
consistency with previous notation (that for semigroup semirings), write the
pairs in R × S as r[s], with r ∈ R and s ∈ S.

Diversion C.20.25. The semiring FR×S has non-commutative addition, by definition.

The semiring FR×S treats both S and R as sets, entirely ignoring their binary opera-
tions.

Next, define a semiring congruence ∼ on FR×S generated by relation of
the form:

r1[s] + r2[s] = (r1 + r2)[s], (C.20.13)

(r1[s1])(r2[s2]) = (r1r2)[s1s2]. (C.20.14)

We then let R[S] = FR×S/ ∼. Every element in R[S] can be expressed as an
(ordered) sum of elements of the form r[s].

To be completed.

The large semigroup semiring R[S]+ starts from the free semiring
FR⊎S, with elements in the copy of S written as [s], and the copy of R
written as (r). The the congruence is generated by relations:

(r1) + (r2) = (r1 + r2), (C.20.15)

(r1)(r2) = (r1r2), (C.20.16)

[s1][s2] = [s1s2] (C.20.17)

Because elements of R operate just like their copy in R[S]+, we can usually
drop the parentheses in the notation.

Every element in R[S]+ can be expressed as an (ordered) sum of ordered
products, where each ordered product alternates with factors from (copies
of) R and S.

To be completed.

338 APPENDIX C. SEMIGROUP SKETCHES

C.20.5.5 Recovering the semirings of polynomials and matrices

Let N+ = {0, 1, 2, . . .} be the semigroup of non-negative integers under stan-
dard addition. The semigroup semiring R[N+] is isomorphic to the ring of
univariate polynomials R[x], mapping r[n] to rxn.

Let n be a positive integer. Let Mn be the semiring with underlying set
{0} ∪ {1, 2, . . . , n}2 with multiplication rule

(i, j)(k, m) =

0 if j 6= k,

(i, m) if j = k.

The semigroup semiring R[Mn] is very similar to the matrix semiring Mn(R).
To be completed.

C.20.5.6 Yet another formalism

We can view R[G] as the smallest semiring generated by formal pairs r[g]
with r ∈ G and g ∈ G, which also multiply as r[g]s[h] = rs[gh], and add as
r[g] + s[g] = (r + s)[g].

Diversion C.20.26. This suggest yet another way to view R[G]. Take R× × G, the
direct product of semigroups. Form the semigroup semiring S = P+[R∗ × G], using the
constructions above. Then define a congruence ∼ on S such that [r + s, g] = [r, g] + [s, g].

C.20.5.7 Various other considerations

Note that (R[G])[H] is isomorphic to R[G × H].
Note that if G is a monoid, then it is customary to identify r with r[1],

and to view R[G] as an extension of R.
Multiplication of elements in R[G], when represented in the sparse form

by (C.20.12) depends on the number of terms.
Division in R[G] can vary considerably in difficulty. If a and b are rela-

tively sparse compare to the size of G, then ab will also be sparse (its support
will be smaller than G). In this case a can be recovered fairly efficiently.

C.20.5.8 Non-commutative variants

We can also form a semiring R〈G〉 by not allowing the elements of R to
commute with those of G.

To be completed.

C.20. SEMIRINGS FROM SEMIRINGS 339

C.20.5.9 Summation semigroup semirings

To be completed.
If R is a summation ring, meaning that R+ allows some kind of infinite

sums, then it may make sense to allow infinite formal sums, forming a larger
set R[[G]].

In particular, if R = B is the single-bit boolean semiring, then a semiring
B[[G]] with arbitrary formal sums can be formed. More precisely, we can
define B[[G]] to the semiring whose underlying set is the power set BG of
semigroup G, the set of all subsets of G. Addition in B[[G]] is the union
operation. Multiplication is the multiplication of sets.

A subset of h of G is an element of B[[G]]. Subset h is a subsemigroup if
h2 ⊆ h. Using semiring operations, this can be written h = h + h2.

If g is arbitrary element of B[[G]], the subsemigroup 〈g〉 of G that it
generates can be expressed using arithmetic in B[[G]] by the formula:

〈g〉 = g + g2 + g3 + . . . (C.20.18)

where the summation is allowed in B[[G]] because (arbitrarily) infinite sum-
mation is allowed in B.

C.20.5.10 Twinning a key agreement scheme

The next discussion should probably be placed elsewhere in the report.

Cash, Kiltz and Shoup [CKS08] (CKS) defined the twin Diffie–Hellman
non-interactive key exchange (NIKE). As already discussed, in §A.3, any
NIKE implies an asynchronous key agreement scheme. Any asynchronous
key agreement scheme implies an associative key agreement, and hence a
semigroup.

This section describes a generalization of CKS of twinning Diffie–Hellman
key agreement to a wider class of key agreement schemes. One of the security
improvements provided by this generalized twinning procedure, can stated
in terms of finding a semigroup with a decision-aided wedge problem of an
established difficulty (equal to the difficulty of the wedge problem in some
established semigroup).

The twinning construction Given an associative key agreement scheme
K associated with a semigroup S, the twinned variant K ′ is an associative

340 APPENDIX C. SEMIGROUP SKETCHES

key agreement whose associated key agreement scheme is Z[S], the multi-
plicative semigroup of the semigroup algebra of S over the ring of integers
Z.

Diversion C.20.27. Recall that in the standard notion of a semigroup algebra, such as
Z[S], the elements formal linear combinations

∑n
i=1 ai[si], where the coefficients ai belong

to the ring, in this case Z, and generators [si] corresponds to elements si ∈ S. (Formally,
the free module (or, abelian group for ring Z) over the set S.) Each has a unique form such
that n ≥ 0, ai 6= 0 and all si are distinct, which can be obtained from the general form
by summing the coefficients of the terms sharing the same semigroup element. (Writing
the copies of elements of S in Z[S] inside square brackets is somewhat optional but avoids
confusion when elements of S are themselves written as integers.) Multiplication is given

(
m∑

i=1

ai[si]

)

n∑

j=1

bj[tj]

 =

m∑

i=1

n∑

j=1

aibj [sitj].

The twinned associative key agreement K ′ also specifies how the base
point b′ and secrets a′ and c′ are to be selected. The deliveries d′ and e′ and
keys f ′ and g′ are computed according the multiplication of K ′.

Diversion C.20.28. We use the usual standard variable letters for key agreement K ′,
except that mark them with prime tick, to distinguish them from the similar variables in
K.

In K ′, the base point is b′ = [b], where b is the base point of S. In K ′,
Alice chooses secret as follows:

a′ = [a1] + [a2], (C.20.19)

where a1 and a2 are independent random variables in S, each variable being
identical in distribution to Alice’s secret in associative key agreement scheme
K.

Diversion C.20.29. The fact that Alice’s secret a in K has been copied twice into a′

may justify why this can be called twinning.

Similarly, Charlie’s secret c′ in K ′ is chosen as c′ = [c1] + [c2], where c1

and c2 are independent copies of Charlie’s random variables c for his secret
in K.

The rest of a key agreement session in K ′ follows from the definition of
semigroups Z[S]. Expressly, Alice’s delivery is

d′ = a′b′ = ([a1] + [a2])[b] = [a1b] + [a2b] = [d1] + [d2],

C.20. SEMIRINGS FROM SEMIRINGS 341

where d1 and d2 would be Alice’s deliveries if she had participated into two
sessions of K. Charlie’s delivery e′ = [e1] + [e2] is compute similarly. Alice’s
key is then

f ′ = a′e′ = [a1e1] + [a1e2] + [a2e1] + [a2e2]. (C.20.20)

Monography in Z[S] is possible if: S has monography, and also the mono-
grams of S can be sorted. Expressly, first collect coefficients of common
terms, sum the coefficients, compute monograms for all semigroup element
in the sum. Sort the sum. (In twinned key agreement K, all sums have at
most 4 terms, generally much less than in a general element of Z[S], so the
cost of monography in K ′ is only a little more than four times the cost in
K.)

Security benefit of twinning? Cash, Kiltz, and Shoup introduced twin-
ning in order to improve security: in the case of Diffie–Hellman key agree-
ment, they prove that decision-aided wedge problem for the twinned key
agreement scheme is equivalent to the wedge problem for the base key agree-
ment scheme.

This section sketches a possible generalization of their proof.
The generalization aims to cover a wide class of base semigroups, but

not all. First, we require that the base semigroup S is the multiplicative
semigroup of a semiring.

Diversion C.20.30. Recall that a semiring is a pair semigroups, one additive and one mul-
tiplicative, sharing the same underlying, and obeying an additional axiom(s) connecting
the two semigroups: the distributive axioms: a(b+c) = ab+ac (left) and (a+b)c = ac+bc
(right).

Let S ′ be the multiplicative semigroup of the semigroup algebra Z[S].
Suppose that V ′ is an algorithm that solves the aided wedge problem in

S ′, at least for when all inputs match those expected twinned key agreement
scheme K ′.

Diversion C.20.31. For simplicity of notation, we consider special elements like d =
[d1]+[d2], but these are technically indistinguishable from [d2]+[d1]. To avoid such parsing
difficulties, one can consider elements like d = 2[d1]+3[d2], where the coefficients uniquely
determine the decomposition (assuming monography in S). This only adds clutter to the
notation, so this trick is omitted from the exposition.

We aim to construct an algorithm V that solves the wedge problem in S,

342 APPENDIX C. SEMIGROUP SKETCHES

using algorithm V ′ as a subroutine. In other words, we aim to the wedge in
S to the decision-aided wedge in S ′ = Z[S].

The job of V is to compute d ∧b e. To this end, V lets

d1 = d

d2 = a2b + td

for random a2, t ∈ S. We call t and a2 the trapdoor values.

Next, V calls its subroutine V ′. Specifically, V asks V ′ to compute the
wedge

([d1] + [d2]) ∧[b] [e].

Because V ′ solves the decision-aided wedge problem, it expects a decision-
oracle. Therefore, V must answer the oracle queries for V ′.

If V is able to answer the oracle queries from V ′ correctly, then V ′ will
return an answer [f1] + [f2] to the wedge problem ([d1] + [d2]) ∧[b] [e] =.

Now V can answer f1, this being the correct value for d ∧b e.

It only remains to show that V can correctly answer the oracle queries
from V ′. Recall that an oracle query from V ′ is a request for the boolean
value of the equation:

[

([d′
1] + [d′

2]) ∧[b] [e′] = [f ′
1] + [f ′

2]
]

.

Now, V uses its trapdoor values to answer (hopefully correctly) the query
with boolean value:

[(a2e′ + tf ′
1) = f ′

2] . (C.20.21)

It is straightforward to verify one direction of implication between these
boolean values of the oracle query responses. The other direction may require
some cancellation or non-lossiness in one or both of the operations of the
semiring S.

To be verified and completed.

C.20.6 Semiring of additive subsemigroups?

Let S be a semiring, with additive semigroup written S+ (as usual). Let
A = Add(S) be the set of subsemigroups of S+.

C.20. SEMIRINGS FROM SEMIRINGS 343

We try to make A into a semiring by defining operations addition and
multiplication as follows:

a + b = 〈a ∪ b〉+,

ab = 〈{st : s ∈ a, t ∈ b}〉+,

where (recall) 〈G〉+ means the smallest subsemigroup of additive semigroup
S+, such that the subsemigroup contains G.

Lemma C.20.1. The construction A = Add(S) is a semiring.

Proof. Both operations use additive enclosure operator 〈·〉+ as their final step
so they both result in subsemigroups of S+.

Additive associativity holds because a+(b+c) = 〈a∪b∪c〉+ = (a+b)+c.
(To elaborate, elements in b+c have the form t1 +t2 + · · ·+tn where ti ∈ b∪c,
while elements in a+(b+c) have form s1 +s2 + · · ·+sm, where si ∈ a∪(b+c).
Each term si in can be replace by a sum like t1 + · · · + tn, expanding the
whole into a sum all of whose terms belong to a ∪ b ∪ c.)

Multiplicative associativity holds because a(bc) = 〈{stu : s ∈ a, t ∈
b, u ∈ c}〉+ = (ab)c. (To elaborate, elements in elements in bc have the
form t1u1 + · · · + tnun where si ∈ b and ui ∈ c. Elements of a(bc) have
the form s1v1 + · · · + smvm where si ∈ a and vi ∈ bc. Each factor vi can be
replaced by factor of the form t1u1 + · · ·+ tnun, so that the term sivi becomes
si(t1u1 + · · · + tnun) = sit1un + · · · + sitnun.)

Left distributivity holds because

a(b + c) = 〈{st : s ∈ a, t ∈ b + c}〉+

= 〈{s(t1 + . . . tn) : s ∈ a, ti ∈ b ∪ c}〉+

= 〈{st1 + · · · + stn : s ∈ a, ti ∈ b ∪ c}〉+

= 〈{st : s ∈ a, t ∈ b ∪ c}〉+

= 〈{st : s ∈ a, t ∈ b} ∪ {st : s ∈ a, t ∈ c}〉+

= 〈{st : s ∈ a, t ∈ b}〉+ + 〈{st : s ∈ a, t ∈ c}〉+

= ab + ac,

and right distributivity holds similarly.

The empty set belongs to A, and is an additive identity and a multiplica-
tive zero, so we write 0 for the empty set.

344 APPENDIX C. SEMIGROUP SKETCHES

Element a ∈ A is finitely generated (or just finite if clear from context)
if a = 〈G〉+ for a finite set G. The finitely generated elements of A form a
subsemiring of A.

Finitely generated elements of A have a potentially epigraphy (represen-
tation), the finite generating set. However, finding a monography, a unique
representation might be more difficult. So, practicality of this semiring is not
a given.

Diversion C.20.32. Another formalism for A = Add(S) is to use to the two semirings
B[[S×]] and B[[S+]]. An operation (adding or multiplying) in A is done by first applying
the operation in B[[S×]], and second applying the function 〈·〉+ : g 7→ g + g2 + g3 + . . . in
B[[S+]].

To be confirmed: semiring Add(S) can be seen as congruence semiring, with morphism
〈·〉+ : B[[S×]] → Add(S). The lemma above can be viewed as claiming that this function
is a semiring morphism.

The finitely generated elements of Add(S) are then just the images under this mor-
phism of the usual semigroup semigroup B[S×] consisting only of formal finite sums. The
epigraphy of using finite generating sets to represent these elements is simply to use the
elements in B[S×] in the pre-image of the morphism. Making this into a monography
requires determining a unique pre-image.

If e ⊆ S is a subsemiring of S, then e ∈ A and e2 ⊆ e. Conversely, if
e ∈ A and e2 ⊆ e, then e is a subsemiring of S.

If e2 = e, then e can be called a surjective subsemiring. If e is a
subsemiring with a multiplicative identity (such as the multiplicative identity
of S, or some other element), then e2 = e. (Question: can e2 = e with e
lacking a multiplicative identity?)

Recall that the subset of A of elements fixed by e under multiplication
forms a subsemiring. If e is surjective subsemiring, then the set of these
elements is eAe. These elements of A can be called the relative ideals of e
in A. The semiring of these relative ideals has a zero 0 and a multiplicative
identity e.

If e is fixed (so clear from context) write e = 1, when looking at the
semiring E = eAe.

It is not uncommon in algebra to consider class groups, with a construc-
tion similar to the above. Let S be a field, let e be a subsemiring (usually
whose field of fractions is S). Form semiring E = eAe, and then ask if
all elements are finitely generated, ask if all invertible, and so on. Often
looks at the subsemigroup P of E× consisting of principal ideals, those
that p = 〈{g}〉+, those generated a single element set. (Principals ideals

C.20. SEMIRINGS FROM SEMIRINGS 345

are closed under multiplication, but not addition.) Then one can form the
quotient semigroup E×/P .

Practicality (especially monography) of such constructions is generally
not easy.

C.20.7 Hahn series

To be completed.
Suppose that G is a strictly ordered semigroup, and that R is semiring.
We extend the R[G], as follows. Instead of only functions with finite

support, we instead allows charts with well-ordered support.
To be completed.

C.20.8 Semiring of resultants (???)

Diversion C.20.33. This section is highly speculative, it is likely to be wrong.
It is supported only by lots of guesswork on part, with a only few machine-aided

calculations.

Let R be a unital commutative ring. We try to define a semiring S =
Resx,y(R), which we dub the resultant semiring (or curve semiring).

The elements S are equivalence classes of bimonic polynomials: polyno-
mials b(x, y) ∈ R[x, y] such that b(x, y) or −b(x, y) monic2 in variable x, and
similarly for y. For example, y − x is bimonic because −(y − x) = x − y is
monic in x, and (y − x) is monic in y.

The equivalence classes are {b(x, y), −b(x, y)}, which we write as [b(x, y)].
Addition and multiplication in S are given by the laws:

[a(x, y)] + [b(x, y)] = [a(x, y)b(x, y)] , (C.20.22)

[a(x, y)][b(x, y)] = [Rest a(x, t)b(t, y)] , (C.20.23)

where Rest indicates forming the resultant with respect to variable t.
I do not have a proof that this forms a semiring.

C.20.8.1 A definition for the resultant

We now review one possible definition of the resultant as it is used in the
multiplication definition for S.

2A polynomial is monic in a variable x if its highest degree term in x has coefficient 1.

346 APPENDIX C. SEMIGROUP SKETCHES

Given any ring of bivariate polynomials R[u, v] (now in arbitrary variables
u and v, and any ring R, not necessarily the ring R this section started with),
define the Bezout differential as a function:

∆u,v : R[u, v] → R[u, v] : g(u, v) 7→ g(u, v) − g(v, u)

u − v
.

To see that ∆u,v is well-defined, notice is R-linear and sends

∆u,v : uivj 7→ ±
(

umax(i,j)−1vmin(i,j) + umax(i,j)−2vmin(i,j)+1 + · · · + umin(i,j)vmax(i,j)−1
)

,

which is a bivariate polynomial.
Working in the same ring R[u, v], for any positive integers i, j, define

R-linear truncation operators:

τu,i,v,j : R[u, v] → R[u, v] : umvn 7→

umvn if m < i, n < j,

0 if (m, n) 6∈ [0, i − 1] × [0, j − 1].

Hence, τu,i,v,jg(u, v) = g(u, v)|xi=0,yj=0. The operator τu,i,v,j can considered
be projection from R[u, v] down to a subset with maximum degree in u of
i − 1 and v-degree of at most j − 1.

Let M be a square matrix with entries R[u, v]. Define a (Bezout) trun-
cation matrix operator by

(Tu,vM)i,j = τu,i,v,jMi,j,

where we index rows and columns with positive integers (so, starting from 1
not 0.)

For any non-negative matrix, let Jm be the m × m square matrix with all
entries valued at one. If d is a scalar, then Jmd is the m × m square matrix
with all entries valued d.

Given [a], [b] ∈ S, define the composition degree as

m(a, b) = max(degy(a(x, y)), degx(b(x, y)))

When a, b are clear from context, we abbreviate m(a, b) to m.
A formula for the product in S is:

[a][b] =

1

(uv)(
m+1

2)
det Tu,vJm∆u,va(x, u)b(v, y)

 .

(If m = 0, then we use the convention that the determinant of a 0×0 matrix
is 1.)

My hope is that this expression is a useful step towards determining the
associativity of the multiplication in S.

C.21. SEMIGROUPS (AND SEMIRINGS) FROM CATEGORIES 347

C.20.8.2 Morphism to the ring of relations

Consider the semiring T of relations on R.
Then it seems that there is a semiring morphism:

h : S → T : [a(x, y)] 7→ {(x, y)|a(x, y) = 0}.

In some sense, the set of planar affine algebraic curves on R defines a subset
of the relations on R. The claimed morphism above shows that such algebraic
curve relations form a subsemiring h(S) of the semiring T of relations.

C.20.8.3 Examples in the resultant semiring

To be completed.
Let

0 = [1]

1 = [y − x]

n = [y + x]

t = [y − x2]

It is generally true that [y − f(x)][y − g(x)] = [y − g(f(x))].

C.21 Semigroups (and semirings) from cate-

gories

C.21.1 Category algebra

Given any category C and any semiring R, one can form the category algebra
R[C], which is a semiring as follows.

Elements of R[C] are formal sums of zero or more terms. Each term has
the form r[f] where f is a morphism between two objects in the category.

Terms with a common f add, so that r[f] + s[f] = (r + s)[f]. Otherwise
they do not add. In other words, R[C] is a free R-module generated by the
morphisms of C.

Terms multiply as r[f]s[g] = (rs)[fg] if the morphism fg is defined. If
morphism fg is not defined in the category, then the terms multiply to 0
(the empty sum).

348 APPENDIX C. SEMIGROUP SKETCHES

If the C is a finite category with one morphism between objects then R[C]
is effectively a matrix semiring.

If C is the category obtained from the relation partially ordered set, then
R[C] is called an incidence algebra. An incidence algebra is a subalgebra of a
matrix algebra. This leads one to think that the matrix division algorithms
can be used for division in an incidence algebra.

If C is a finite concrete category, with a finite number of objects, each
of which is a structure with an underlying finite set, and the morphisms
are faithfully represented by functions between the underlying sets, then the
category algebra can be embedded into a matrix as follows. A block matrix
form is used. The blocks are indexed by pairs of objects, the morphism set.
Each block is a rectangular (or square) matrix, indexed by elements of the
underlying of the two objects indexing the block. Each block matrix is a sum
of term matrices of the same shape, with one term matrix per term of the
category algebra sum. A term matrix has all entries of 0 except where the
morphism of the term maps one object to another, where the term matrix
entry is the semiring value of the term coefficient.

C.21.2 Product and co-product semigroups

Many important categories have an operation on objects called the prod-
uct. If the products of objects exists, then the product is associative on the
isomorphism classes of the objects. So, in categories where products exist,
the set of isomorphism classes under the product forms a semigroup. This
semigroup is commutative.

For example, in sets, the category product is the Cartesian product. In
groups and rings, the category product is the direct product (similar to the
Cartesian product).

Similarly, some categories also have a co-product. When defined it is also
an associative operation, forming a commutative semigroup on the isomor-
phism classes.

For example, in sets, the co-product is the disjoint union. In groups, the
co-product is the free product. In rings, the co-product is the tensor product.

Sometimes, the product is distributive over the co-product. For example,
this holds on the category of sets. In this case, the isomorphism classes form
a semiring (see below). In the category of sets, the isomorphism classes are
called cardinalities, and represent the sizes of the sets.

C.22. SEMIRINGS FROM RINGS 349

In yet other categories, the co-product is distributive over the product.
For example in rings and modules. In this case, the isomorphism also a form
a semiring.

To be completed.

C.21.3 Category completions

Given a category C, one can form a semigroup S as follows. The set S is the
set of morphisms in C, together with one additional object, distinct from all
C-morphisms, which we will call 0.

Multiplication in S is defined to be morphism composition, except that
0 behaves like a zero should, so 0s = s0 = 0 for all s.

In the other direction, any semigroup can be used to create a category, by
turning semigroup elements into morphisms. There can be many ways to do
this. For example, we can form a category with one object. Take semigroup
S. Recall that we can embed S into a monoid M , such as M = S1 (the
extension by a new unit) or the M = S(1) (the conditional addition by a unit).
Now define a category C with one object O, and morphisms Mor(O, O) = M ,
where morphism composition is defined as the multiplication in M .

C.22 Semirings from rings

Rings provide the most interesting examples of semirings.
The theory of rings is very extensive. We only list a few examples that

might be interesting.

C.22.1 Weyl algebra

The Weyl algebra is non-commutative Z〈x, d〉/(dx − xd − 1). In a sense, d
acts like the operator of differentiating a function by x, sending f(x) to f ′(x);
and x acts like the operator of multiplying a function by x, sending f(x) to
xf(x).

The Weyl algebra might be interesting in that it has no finite matrix
representations. Therefore, matrix division might not be useful to divide in
the Weyl algebra.

Furthermore, the Weyl algebra is non-commutative, and lacks a pre-
divider. Consider a ring of square matrices with entries in the Weyl algebra.

350 APPENDIX C. SEMIGROUP SKETCHES

Division in this ring might be difficult: or, at least, I have no clue how to
divide in that ring. Perhaps additive decomposition is easy enough, however.

C.22.2 Integer-valued polynomials

Already briefly discussed. These are integer combinations of binomial func-
tions. They are interesting for being a non-Noetherian ring. As such, they
lack some of the finiteness properties of Noetherian ring without being too
complicated.

This algebra is a sub-algebra of a Noetherian polynomial algebra so divi-
sion is no harder in it. But ideal arithmetic might perhaps be more difficult.

C.22.3 Semiring of (fractional) ideals

To be completed.

Let R be a ring. Let I(R) be the set of ideals of R. Ideals can be added
and multiplied, and ideal multiplication is distributive over ideal addition.
Therefore, S = I(R) is a semiring.

If R is a polynomial ring, then Grobner bases can be used to find unique
representation for each ideal in I(R). For other rings, it might be difficult to
find unique representations: in which case they would be difficult to use for
associative key agreement.

If R is a polynomial ring, then division can be done using the ideal quo-
tient operation. Effective algorithms are known for computing ideal quotients
[CLO91, §4.4].

If R is an integral domain, then the set I(R) can be extended a larger set
F (R) of fractional ideals. Let K be the field of fractions of R. Note that K
is an R-module. The set of R-modules can be added and multiplied to form
a semiring. The fractional ideals form a subsemiring of the R-submodules
of K. It is those submodules F such that there is an element x ∈ K, with
kF ⊆ R.

The multiplicative semigroup F (R)∗ has a subsemigroup P of principal
ideals Rx for x ∈ K. Typically, one can use P to define a congruence ∼ on
F (R)∗ and get a class semigroup C(R).

A class semigroup is a group if R is a Dedekind domain.

Elliptic curve groups are actually class semigroups for a suitably chosen
ring R.

C.23. SEMIRINGS FROM CALCULUS 351

C.23 Semirings from calculus

Let R be the set of continuous real-valued functions define unit square [0, 1]×
[0, 1]. Define a product by:

(f ∗ g)(x, y) =
∫ 1

0
f(x, t)g(t, y)dt. (C.23.1)

Define addition in the usual way. This sometimes known as the Fredholme
product.

The Fredholme problem is find f given g and f ∗ g. This is an example
of an integral equation.

Note Fourier analysis can be applied to convert the Fredholme product
into an product of infinite dimensional matrices.

This semiring is R is infinite, and in fact, uncountably infinite. For a
cryptographic application, we would need to restrict to a finite or at least
countably subset of R.

Appendix D

Trial search review: some
basics

This appendix reviews trial search as it applies to key agreement, as men-
tioned in §3.2.8.

Consequently, trial search is thus applicable to semigroup division.
Trial search is even more general, being applicable, for example, for gen-

eral password or key search (given the output of a known deterministic func-
tion evaluated at a secret).

Some of the terminology used in this appendix may not be the standard
terminology.

D.1 Trial search strategies

This section describes trial search in general terms, allowing for considerable
variation.

A typical user of trial search is Betsy. When Bugsy is trying to imple-
ment a watcher to attack a key agreement scheme, he might try to use trial
search. In this case, Bugsy outsources the implementation of trial search to
Betsy.

D.1.1 Inputs to trial search

The primary inputs to trial search are:

• A function h.

352

D.1. TRIAL SEARCH STRATEGIES 353

• A random variable a.

The function h and random variable a is assumed to efficient. So, h can
be implemented efficiently, and a can be sampled efficiently. Generally, the
random variable can be sampled independently. In some cases, the trial
search may also know a lot about the probability distribution of a, which
is more than the mere ability to sample a. The random variable is to take
values in the domain of h. So, h(a) is another random variable.

When attacking key agreement, trial search could take h defined as h(a) =
k1(a, b), where b is a known base element. When attacking probabilistic key
agreement, trial search could take a as the same random variable used by
Alice to generate her value of a. In practice, Alice likely uses known software
and hardware to generate a. The trial searcher can can obtain a copy of
Alice’s software and hardware, and may therefore be able to replicate Alice’s
random variable identically.

D.1.2 Target of trial search

Trial search has a target:

• A value d, or its equivalent.

The value d is promised to be an independent sample of the random variable
d = h(a).

Trial search, by definition, uses the target d (or δ) in only one way: to
test the correctness of trials, trying to find a value a′ such that h(a′) = d.

An equivalent to d here means a function δ, such that δ(d′) = 1 if d′ = d,
and δ(d′) = 0 if d′ 6= d. The function δ might not enough to determine d.
For simplicity, we will assume that the target d is available.

When attacking key agreement, the target could be set to Alice’s delivery
d. (Trial search can also be applied to Charlie’s delivery e, with a suitable
change to the trial search inputs.)

D.1.3 Iterations of trial search

Trial search iterates through some number n of trials.

• Each trial generates a value a′ in the domain of the function h.

354 APPENDIX D. TRIAL SEARCH

Trial search allows total freedom the selection the value a′ to test in each
trial, so long as the as the selection depends only on the primary inputs h
and a. If the selections of a′, depend on the target, then it is not trial search,
but some other attack.

Different methods to select trial values a′ are just different variants (or
strategies) for trial search.

Trial search may have some resources, such as a source of randomness
(other than just random variable a), to generate trial values a′.

Formally, we may view trial search as a function:

[h, a] 7→ [a′
1, . . . , a′

n]. (D.1.1)

The search list [a′
1, . . . , a′

n] is obtained from the primary inputs.

D.1.4 Success of trial search

Trial search succeeds as soon h(a′) = d, for one of the trial values a′. In this
case, we say that a′ is a discovery. So, trial search succeeds once it finds a
discovery.

Diversion D.1.1. Trial search is a type of second pre-image attack against h: finding
a′ such that a′ = k1(a).

The converse is not true. Not all second pre-image attacks are trial searches. More
sophisticated second pre-image attacks are given the value d = h(a), and find a discovery
a′ such that h(a′) = d, using some process that inverts the function h.

So, trial search is second pre-image attack in which the image is withheld from the
attacker.

Diversion D.1.2. The fairy tale Rumpelstiltskin perhaps illustrates trial search. A
princess must guess an imp’s name using trial search in three days. The imp promises to
tell the princess whether or not her guesses are correct.

The princess finds trial search to be ineffective, so she uses a more sophisticated pre-
image attack, trying to get more information from the imp than the imp intended. Luckily
for the princess, the imp foolishly re-uses his own secret name in another protocol, a weak
protocol that leaks his name. The princess uses a zero-day exploit to capture his name
from this weak protocol.

The imp had expected trial search to fail, with fairly good reason. The fairly tale thus
has a lesson that more sophisticated pre-image attacks can be much more effective than
trial search.

D.1. TRIAL SEARCH STRATEGIES 355

D.1.5 Impact on asynchronous key agreement

If Bugsy has recorded Charlie’s delivery e, and Betsy has provided him a
potential discovery a′ against Alice’s delivery d = h(a′) = k1(a

′, b), then
Bugsy can compute a key f ′, which will equal (Alice and) Charlie’s key g, as
follows:

f ′ = k3(a
′, e)

= k3(a
′, k2(b, c))

= k4(k1(a
′, b), c)

= k4(d
′, c)

= k4(d, c)

= g

(D.1.2)

Diversion D.1.3. This attack does not require Bugsy to observe Alice’s delivery d.

Instead, the attack uses the event that f ′ = g = f as an equivalent to d. Bugsy
computes f ′ as above, and then tests whether it is consistent with the way Alice or
Charlie used their key.

If Alice or Charlie uses f = g to encrypt or authenticate a message, then Bugsy can
test each f ′ by decrypting the ciphertext, or verifying the authentication. Bugsy can run
such tests on off-line.

If Bugsy observes d, then testing if h(a′) = k1(a′, b) = d might be easier than trying
f ′ as decryption or verification key.

D.1.6 Trial multiplication for division

Trial search can apply to try to implement (weak) division in a (multiplica-
tive) semigroup S, meaning to compute an operator / such that ((ab)/b)b =
ab for all a, b ∈ S. For some versions of the trial search, the divider will be
faulty, and will fail.

To compute d/b from d and b, do the following. Begin a trial search
with the primary inputs h and a as follows. Let h be the function defined
h(e) = eb, for the given fixed b ∈ S. Let a be some S-valued random variable
a. If S is finite or countable, assume that a has nonzero probability on every
S.

Trial search then seeks value a′ such that h(a′) = d, where d is the target.
As soon as a discovery is made, meaning h(a′) = a′b = d, then output a′ as
the value of d/b.

356 APPENDIX D. TRIAL SEARCH

If no discovery is made in the n trials, then output some arbitrary value,
such as d itself, for the value of d/b. If n is chosen to be infinite, then trial
search might never halt.

If d = ab and trial search makes a discovery, then ab = d = h(a′) = a′b.
So ((ab)/b))b = (d/b)b = a′b = ab, as required for a (weak) divider.

Because the trial search success involves a multiplication, then it makes
sense to relabel trial search in this setting as trial multiplication.

Diversion D.1.4. The term trial multiplication as a division algorithm is large con-
sistent with the term trial division as a factorization algorithm. Indeed, a trial division
algorithm can be regarded as a kind of trial search.

D.2 Metrics for trial search

Trial search can use a large variety of methods to choose trial values a′. In
this section, we define some metrics for comparing variant strategies of trial
search.

Diversion D.2.1. We prefer to use standardized units of bits, by taking base-two log-
arithms of the number of trials, and base-two logarithms of the inverse probability of
success.

D.2.1 Runtime and workload

If the trial searcher Betsy has the resources to make at most n = 2w trials:
then we say that Betsy has workload of w bits. For convenience, we may
use looser terminology for certain ranges of w.

• If Betsy’s workload is 0, we say that Betsy is attempting instant
search (or surmisal).

• If Betsy’s workload is 4, way say that Betsy is attempting limited
search.

• If Betsy’s workload is around 20, we say that Betsy is attempting ef-
ficient search

• If Betsy’s workload is around 64, then we say that Betsy is attempting
feasible search.

• If Betsy’s workload is around 128, then we say that Betsy is attempting
extensive search.

D.2. METRICS FOR TRIAL SEARCH 357

Diversion D.2.2. In some cases, the function h itself, or some other method that Betsy
might use to test trials might be costly. For example, each trial-test requires an iterated
hash function.

In this case, we may want to add an appropriate adjustment to the workload (and
re-name the previous workload to guessload).

Diversion D.2.3. In addition to low workload, instant and limited search might have
extra benefits for Betsy.

Each trial requires a test, and in some case, the test requires an on-line interaction
with one of the parties under attack. These parties might sensibly choose to limit the
number of tests.

D.2.2 Success rate and entrophy

Betsy’s success rate is the probability of Betsy of making a discovery.

Diversion D.2.4. When calculating probabilities (including those used in averages) in
the success of trial search, we define the probabilities over the internal choices made by
Betsy and also the external choices made in sampling of the target d.

Consequently, the probabilities (and averages) refer to the outcome game before the
target and before the trials have been selected.

It is often convenient to translate success rate into the same units as used
for workload: bits. So, if Betsy has success rate 2−h, then we say that Betsy
has entrophy1 of h bits.

Diversion D.2.5. The term entrophy is non-standard, but has the mnemonic connec-
tions to entropy and success rate (trophy).

D.2.3 Eternal search

In eternal search, Betsy keeps searching until she makes a discovery. In
this case, we can rate Betsy according to the average number of trials until a
discovery is made. Again, we take the base two logarithm to get a workload
in bits.

This metric might sound like a sensible way to handle multiple different
workloads simultaneously. This viewpoint is misleading.

The average workload can include rare events where Betsy’s makes a
totally infeasible amount of trials. This average can severely underrate Betsy.
For example, there may be a rare event of probability 2−128, in which Betsy

1Not entropy, but related, as discussed later.

358 APPENDIX D. TRIAL SEARCH

uses 22048 trials. Averaging means that this event contributes 22048−128 = 21920

to the average number of trials, of a workload of at least 1920 bits.
The number 1920 bits seems very secure. But what if the rest of time,

with probability 1−2−128, Betsy only needs 210 trials? Her average workload
is about 1930, but Betsy’s basically has efficient trial search with success rate
1 − 2−128.

Diversion D.2.6. One might infer a general principle that it is unwise to average the
adversary’s costs in cryptography.

Diversion D.2.7. Perhaps, some alternative to conventional average (the arithmetic
mean) will resolve this, and will cost eternal search more sensibly.

Diversion D.2.8. Betsy might not be fully aware of her workload (her resources). For
example, she may start her search, and think that she is conducting eternal search.

Workload does not refer Betsy’s state-of-mind. Workload refers to her resources and
capabilities. Even if Betsy thinks she is doing eternal search, she likely only has the budget
to feasible search, and not being able to afford the energy to run longer searches.

So, if Betsy sets her algorithm to run forever, as though it were eternal search, but
realistically only has resources for doing a 250 trials, then we can consider her workload
to be 50 bits.

D.3 Imitative search

In imitative search, Betsy uses trial search where each trial a′ is chosen:

• randomly,

• independently (of other trials),

• with a probability distribution identical to the given random variable
a in the primary input to the trial search.

Diversion D.3.1. In key agreement, a trial search attack could include Alice’s probability
distribution for her variable a as one of the inputs (supplied to Betsy). In imitative search,
Betsy merely uses Alice’s distribution as an oracle to generate trials.

One can argue that this formalism is realistic, since Alice’s algorithms and processes
for selecting her value a should not be assumed to be secret. For example, Betsy might
obtain a copy of Alice’s computing device. So, generally, it is not unreasonable to assume
that that Betsy can deduce and replicate the probability distribution of a.

Nonetheless, it may (arguably) be difficult for Betsy generate trials independently in
the vast quantities of high-workload trial search. In this case, imitative search would no
longer be realistic.

D.3. IMITATIVE SEARCH 359

Arguably, Alice might choose a strong password, and incorporate a strong password
into the selection of a. In this case, Betsy would not have the password, but would have to
some random variable that models a typical strong user password, and then incorporate
password random variable into the system that Alice uses.

Imitative search is so simple that we can consider how it fares when
combined with eternal search.

Lemma D.3.1. If Betsy uses imitative eternal search, then Betsy’s average
number of trials (averaged over the choices of both Alice and Betsy) equals
the number of target values that have nonzero probability d = h(a), in other
words, the Hartley entropy H0(d).

Proof. Let p(d) be the probability that d = h(a). Let Betsy’s trials be
a1, a2, . . . , and write di = k1(ai). Since Betsy imitatively chooses each ai with
exactly the same probability probability as a, the probability that di = d is
p(d), and the probability that di 6= d is (1 − p(d)).

The event that Betsy takes t trials to make a discovery is the event that
d1, . . . , dt−1 6= d and dt = d. The probability of taking t trials is thus

(1 − p(d))t−1p(d).

The average number of trials that Betsy needs

∞∑

t=1

t(1 − p(d))t−1p(d)

This infinite sum equals 1
p(d)

, when p(d) 6= 0.

We also seek the average over the choice of target d. This means we
should sum over all d, such that p(d) 6= 0, weighted by the probability. So
the average number of trials is:

∑

d:p(d)6=0

p(d)
1

p(d)
=

∑

d:p(d)6=0

1

which is the number of deliveries with nonzero probability.

Diversion D.3.2. Per earlier discussion, average number of trials eternal search some-
times overrates security. Nonetheless, the lemma can serve as a caution to Alice on the
necessity of adequate Hartley entropy.

360 APPENDIX D. TRIAL SEARCH

Diversion D.3.3. It should be clear within the proof that the number of trials needed in
eternal search depends on the target d. Some targets could be more likely than others,
and eternal search will require fewer trials for these more likely targets.

The average number of trials refers to average over all targets. It is not conditioned
on the targets. It rates the effectiveness of imitative eternal search before target selection.

Another special case of interest is instant search.

Lemma D.3.2. If Betsy uses imitative instant search (workload of 0 bits),
then Betsy’s entrophy (logarithm of success rate) is the Renyi entropy of
order two (of the probability distribution of Alice’s deliveries).

Proof. Label the possible target be d1, d2, . . . , and let their probabilities be
p1, p2, . . . (respectively).

Betsy chooses a′ with the same probability distribution random variable
a, and gets a candidate delivery d′ = k1(a

′), with the same probability dis-
tribution as the target d. The probability of that d′ = di, is pi.

Betsy chooses her trials a′ independently of the value a that was used to
generate the target. The probability that both d = di and d′ = di therefore
is p2

i , because independent probabilities multiply . Summing over all i, gives
a probability

∞∑

i=1

p2
i ,

that Betsy d = d′. Betsy’s entrophy is the negative of the base two logarithm
of this probability,

H2(p) = − log2

∞∑

i=1

p2
i ,

which is also known as the Renyi entropy of order 2.

The more general result is:

Lemma D.3.3. If Betsy uses imitative search workload of w bits, then
Betsy’s entrophy is:

− log2

∞∑

i=1

pi

(

1 − (1 − pi)
⌊2w⌋

)

.

Proof. Betsy takes at most t trials where t = ⌊2w⌋.
With notation as in the previous proofs, the probability that every one

of t of Betsy’s trials fails, meaning d′ 6= di, is (1 − pi)
t.

D.4. OPTIMAL SEARCH 361

Diversion D.3.4. The entrophy values in the two lemmas before to this last lemma he
are related in Renyi entropies. Presumably, the more general third lemma can be stated
as relation between entrophy and Renyi entropy.

Imitative search, though generally simple, is not an optimal search.
For example, it makes no effort to avoid repeated trial values a′. It makes

no effort to avoid repeated values of d′ = h(a′). It uses random variable a
merely as an oracle to be sampled, without examining whether some values
are more likely than others.

D.4 Optimal search

In optimal search, Betsy uses a pre-search phase that studies both h and the
random variable a, to determine the following information, or its equivalent.

The target d is a sample another random variable d = h(a). Each target
value of d has a probability, which we write as p(d).

There exists a sequence distinct target values [d1, d2, . . .] such that the
probabilities pi = p(di) obey:

p1 ≥ p2 ≥ p3 ≥ . . . (D.4.1)
∑

i≥

pi = 1. (D.4.2)

(Actually, this assume that random variable d = h(a) is a discrete random
variable, not a continuous random variable.)

Betsy also determines a sequence of values [a1, a2, . . .] such that di =
h(ai). Betsy’s search consists of the trial values a1, a2, . . . , up to however
many attempts her workload permits, or forever if Betsy will try eternal
search.

We call this strategy optimal search because it maximizes Betsy’s suc-
cess rate for a given number of trials, and it also minimize the average number
of trials in an eternal search.

In referring to optimal search, we presume that that Betsy has no cost in
the pre-search phase. In the real world, the pre-search phase might have a
huge cost. For example, if a is a nearly uniform random variable with high
entropy, and h is a pre-image resistant function, then even finding a1 could
be very costly. In this case, optimal search seems not to be any better than
imitative search.

362 APPENDIX D. TRIAL SEARCH

Nonetheless, if h and a make optimal search infeasible, not counting pre-
search phase, then other types of trial search would be infeasible too.

When Betsy uses the optimal search strategy, her entrophy is determined
the delivery’s probability distribution. It is a parameter sometimes called2

working entropy, defined as

Ww(p) = − log2

⌊2w⌋
∑

i=1

pi (D.4.3)

for a workload of w bits. (Reminder: pi ≥ pi+1.)

Working entropy at a workload of 0 bits is just the min-entropy W0(p) =
H∞(p) = − log2 p1. Min-entropy is also the Renyi entropy of order infinity.

Usually setting the min-entropy to be 128 bits is more than enough for
security. However, min-entropy as low a 50 bits might also be acceptable if
the working entropy at higher workloads is sufficiently high. For simplicity,
however, it is desired to have a min-entropy matching the overall target
security level.

In key agreement, Alice can sometimes work out the exact probability
distributions of her deliveries. When Alice can find these probability distri-
butions, she may then be able to work out the exact working entropy, and
thereby assess security against all types of trial search.

In other settings, Alice may only be able to estimate the probability
distribution, in which case she can estimate the working entropy.

D.5 Reduced search: trading workload for

entrophy

To be completed.

If Betsy has a trial search method with workload w and entrophy h, then
Betsy also has a trial search method with workload w − r < w, simply by
reducing the number of trials, which we call reduced search. The benefit
(for Betsy) of reduced search is less workload. The cost (for Betsy) of reduced
for Betsy) is a potentially lower success rate, or equivalently a higher entrophy
h′.

2In the previous work of the author, Formally Assessing Cryptographic Entropy.

D.5. REDUCED SEARCH: TRADING WORKLOAD FOR ENTROPHY363

Two natural ways to reduce the number of trials are as follows. In
the quit-early reduction method, Betsy uses the same sequence of tri-
als a1, a2, . . . , but simply stops earlier, using trials a1, . . . , a2w−r instead of
a1, . . . , a2w . In the randomized reduction method, Betsy chooses a uni-
formly random set of integers 1 ≤ t1, . . . , t2w−r ≤ 2w, and then makes trials
at1 , . . . , at2w−r

.
In imitative search, the quit-early and randomized reduction methods

have the same effect, because the trials in imitative are already independent
of each other.

We say that Betsy’s trial search is sorted if Betsy chooses trials a1, a2, a3, . . . ,
which have non-increasing order of individual trial discovery. If Betsy has a
sorted trial search with workload w bit and entropy h bits, and the corre-
sponding reduced search is arranged to have workload w − r bits, then the
reduced search has entrophy h′ for

h ≤ h′ ≤ h + r.

So, assuming a sorted trial search, a workload-to-entrophy tradeoff is possi-
ble. Also, the use of bits to measure both workload and entrophy seems to
be justifiable because of these bounds and tradeoffs.

If Betsy’s search is not sorted, the randomized reduction method can still
be useful.

For example, if Betsy has a sorted trial search with workload of 64 bits and
entrophy of 64 bits, then Betsy’s also has trial search, obtained by reducing
the the initial strategy, with workload 0 bits, and entrophy between 64 and
128 bits.

Because of this tradeoff, it may seem to prudent to rate the resistance to
trial search as the minimum, over all trial search methods, of w + h, where
w is workload and h is entrophy.

However, taking the sum w + h as a security metric fails to take into
account the declining costs of computation, and thus workload. Of course,
as computation becomes cheaper, key agreement users Alice and Charlie can
afford more computation if that improves their security. But the security of
past deliveries is only hindered by increases in computing power. A possible
resolution of this defect is to incorporate the age a of delivery, normalized
in bits (each bit in age representing a doubling of the number of trials com-
putable at a given cost), into the security metric, giving w + h − a.

Diversion D.5.1. It sometimes make sense to add workload to working entropy, getting a
quantity w+Ww(p). A more precise function is log2⌊2w⌋+Ww(p), which is a non-decreasing

364 APPENDIX D. TRIAL SEARCH

function of w. Therefore, it is always at least W0(p) = H∞(p), the min-entropy. For many
p, this function’s graph has the appearance of a hockey stick, flat initially, and then rising
up (with a slope approaching 1).

For small w, a low value of w + Ww(p), such as 64 bits, may be tolerable, but as
w increases, the workload becomes large, and the security lifetime or age needs to be
accounted because of the effects of falling costs of computation. So, generally, one wants
w + Ww(p) to start at least 64 bits, but then rise quickly (as possible) to 128 bits. (Since
Ww(p) is non-increasing, w + Ww(p) can only rise as fast as w + W0(p), so it can reach
128 bits (starting from 64 bits) only by workload w ≥ 64.).

Perhaps 128 bits is a reasonable maximum feasible workload, even accounting for
declining costs of computation. Under that prediction, we can ignore values of w + Ww(p)
for w ≥ 128.

Diversion D.5.2. It would be illuminating to generalize the lower bound (from Lemma D.6.1
on average delivery bit length to working entropy. For example, suppose that average bit
length of a delivery had to be at least Ww(p) + w − 2 (such as bound would be ideal in
terms of its simplicity).

For concreteness, suppose that a probability distribution p of deliveries had W0(p) =
W64 = 64. This might be considered a secure probability distribution: with tolerably low
probability of rapid search, and very low success rate and workload for feasible search.
If the working entropy bound Ww(p) + w − 2 were in effect, then we could deduce that
average bit length delivery would be at least 126 bits.

Diversion D.5.3. Many real-world key agreement schemes, such as Diffie–Hellman, need
considerably larger deliveries than those required to resist (exhaustive) trial search attack.
For example, in elliptic curve Diffie–Hellman key agreement, the delivery bit lengths are
about twice the minimum needed to resist to exhaustive search.

The reason for the larger delivery size is that there exist attacks faster than exhaustive
search. In the case of elliptic curve Diffie–Hellman, the Pollard rho attack is possible, whose
run-time hinges on the birthday surprise effect, with the number of steps taking the square
root of the search space.

D.6 Average bit length of deliveries

In addition to looking at the cost of trial search for the adversary Betsy, we
can also look at the cost for Alice and Charlie to resist trial search attacks,
such as optimal search.

By the results of previous sections, Betsy’s entrophy (logarithm of success
rate) is closely related to the entropy of Alice’s deliveries.

If Alice’s delivery has η bits of Shannon entropy, well-known theorems
due to Shannon provide a lower bound of η on the average bit-length of a
prefix-free encoding of the deliveries. It is also well-known that Shannon

D.6. AVERAGE BIT LENGTH OF DELIVERIES 365

entropy is at least min-entropy, and at least the Renyi (collision) entropy.
Therefore, for Alice to resist some of the trial search attacks, the average
prefix-free encoded delivery bit length must be at least be the entrophy of
the attack she wishes to resist.

The following result is therefore redundant relative to such theorems.
In this result, Alice takes the naive view of bit strings have a given length,
instead of the more robust prefix-free encoding. (Put another way, Alice may
contemplate the deliveries before the application of a prefix-free encoding.
For example, file system users are able to distinguish two file contents even if
is a prefix of the other: the file system resolves by using an end-of-file marker,
and so on.) Also, Alice may opt to focus on min-entropy, rather than Renyi
or Shannon entropy, knowing that sufficient min-entropy is likely to resist to
resist optimal search (even with tradeoffs between workload and entrophy).

Lemma D.6.1 (Redundant special case of Shannon’s theorem). If Alice’s
delivery has a min-entropy of h bits, then the average bit length of Alice’s
delivery must be at least h − 2 bits.

Proof. Let d1, d2, d3, . . . be the possible deliveries of Alice, and let pi be the
probability of delivery di. Then

∑

i pi = 1. Arrange the indices such that pi

is non-increasing: so pi ≥ pi+1 for all i.
The average bit length of a delivery is at least the average bit length

of optimally-compressed delivery. The optimally compressed delivery di =
k2(ai) can be achieved by representing di with the non-leading bits of the
standard binary representation of the integer i. (So, for example: the most
common delivery is represented by the empty string; the fifth most com-
mon delivery is represented by the bit string 01.) The optimally compressed
delivery di thus has bit length ⌊log2(i)⌋.

The average bit length of an optimally compressed delivery is

δ =
∞∑

i=1

pi⌊log2(i)⌋.

Let

∆(i) =
i∑

j=1

⌊log2 j⌋.

Then

∆(i) = (i + 1)⌊log2 i⌋ − 21+⌊log2 i⌋ + 2,

366 APPENDIX D. TRIAL SEARCH

which can be shown by induction, or other techniques. Let

qi =
pi − pi+1

p1
.

Then

qi ≥ 0,
∞∑

i=1

qi = 1,

∞∑

i=1

iqi = 1/p1,

∞∑

i=1

qi∆(i) = δ/p1,

by various telescoping arguments.
If we extend the domain of ∆ to real numbers by making it a piece-wise

linear function, then ∆ is a convex function, obeying the formula above for
reals above 1. By convexity of ∆, Jensen’s inequality can be applied to get

δ/p1 =
∞∑

i=1

qi∆(i) ≥ ∆

(
∞∑

i=1

(qi)i

)

= ∆(1/p1).

Substituting p1 = 2−h and ⌊log2 1/p1⌋ = ⌊h⌋ into the formula for ∆ gives:

δ ≥ (1 + 2−h)⌊h⌋ − 2−h+1+⌊h⌋ + 21−h ≥ ⌊h⌋ − 21−(h−⌊h⌋) ≥ h − 2,

which is what we sought to prove.

Diversion D.6.1. The lower bound δ ≥ h − 2 in the lemma is sometimes quite tight.
For example, let m be an integer, and let pi = 1/(2m − 1) for 1 ≤ i ≤ 2m − 1, so that p
represents a uniform distribution over 2m − 1 values. With m = 10, we have h ≈ 9.99859
and δ ≈ 8.00978.

Diversion D.6.2. The lower bound δ ≥ h − 2 in the lemma is sometimes quite loose. For
example, if p1 = 0.99 and pi = 2−128/100 for 2 ≤ i ≤ 1 + 2128, then average bit-length is
δ ≈ 128 but min-entropy h ≈ 0.0144.

Appendix E

Previous work

The general ideas in this report are so simple, that much previous has been
done on them.

Due to the great generality of the semigroups, many of the specific details
are to be found in previous work scattered among a wide variety of sources,
only a few of which have informed this report. The hope is eventually trace
back through the literature to credit all the appropriate discoverers.

E.1 A brief history of key agreement

Key agreement was introduced by Diffie, Hellman and Merkle when they
introduced public-key cryptography. Key agreement is a goal for two parties,
who initially have no common cryptographic key, to agree on a key, by only
exchanging public information (and never actually meeting in secret).

Diversion E.1.1. Terms with broader meaning than key agreement include:

• key distribution,

• key exchange,

• key establishment, and

• key encapsulation.

All four alternatives include schemes that are not key agreement (in the sense used in this
report).

Diffie–Hellman key agreement, introduced soon after by Diffie and Hell-

367

368 APPENDIX E. PREVIOUS WORK

man, is a specific scheme1 for key agreement. The public values exchanged
are computed using the mathematical operation of modular exponentiation,
and further modular exponentiation is used to compute the key.

Diversion E.1.2. This report uses notes like this to discuss topics that can be seen as
peripheral to the essential topics of this report: and can often be treated as optional.

Subsequently, it was realized that Diffie–Hellman key agreement very nat-
urally generalizes to use any mathematical group. Recall that a group in-
cludes a set equipped with an associative operation, written as multiplication
by default. Diffie–Hellman key agreement use group exponentiation, which
means repeated group multiplications. Not all groups are secure if used in
Diffie–Hellman key agreement. Generally, security requires that a computa-
tional problem, the discrete logarithm problem (essentially the opposite
of exponentiation) is difficult in the group.

Koblitz and Miller realized that elliptic curves (from algebraic geom-
etry), seem to provide groups with a difficult discrete logarithm problem,
yielding elliptic curve cryptography, often abbreviated to ECC. The
most relevant ECC scheme for this report is elliptic curve Diffie–Hellman
key agreement (ECDH).

By 2018, elliptic curve Diffie–Hellman key agreement has become widely
used on the Internet: in the Transport Layer Security (TLS) protocol, which
is used, for example, to protect communication between web browsers and
secure web sites. The feature of forward secrecy, possessed by key agree-
ment, is one of the main reasons that Diffie–Hellman has replaced previously
used public-key algorithms, such RSA public-key encryption (which lacks
forward secrecy).

Meanwhile, other types of key agreement have been considered. For exam-
ple, super-singular-isogeny key exchange (SIKE, also known as SIDH),
uses maps between elliptic curve groups, but does not exponentiation the
way DH key agreement does.

Alternative key agreement schemes are considered because of their poten-
tial to resist quantum computers, other types of attacks on Diffie–Hellman
key agreement.

1Emphasis, as in scheme, introduces terms used with specialized meanings (usually
narrowing of their meanings outside of this report): with formal definitions for the most
important terms.

E.2. ON ASSOCIATIVE KEY AGREEMENT 369

E.2 On associative key agreement

Some very similar previous work in cryptography is Ding–Lin–Xie key agree-
ment [DXL12], which briefly mentions associativity being useful to achieve
key agreement, very much in the manner of associative key agreement. Specif-
ically, they mention associativity of matrix multiplication. They thus ar-
guably give the impression that associative key agreement is generally not
feasible, because their only example is matrices, where matrix division defeats
the security.

Ding, Lin and Xie recognize the insecurity of using matrices in associa-
tive key agreement, but instead seeking more secure semigroups (as in this
report), they introduce errors and error correction to arrive a probabilistic
key agreement scheme. Alice and Charlie agree with high probability. This
error correction approach formally excludes an associative axiom that holds
for all elements of the semigroup. So, their work does not give an exact
semigroup.

Also, Ding, Lin and Xie, do make the connection between Diffie–Hellman
key agreement and associativity.

I would not be surprised, if even earlier work describe the general idea
of associative key agreement. The rest of this section consists of further
updates, in the order that I learn of them.

Rabi and Sherman [RS93] describe using an associative binary operation
for a key agreement protocol, which is essentially this report calls multiplica-
tive key agreement.

Berenstein and Chernyak [BC04]2 describe a key establishment scheme
based on a commuting double action, and then give left and right semigroup
multiplication as one example of a commuting double action. In some sense,
they have described associative key agreement, but it is by way of an inter-
mediate notion. They do not seem to emphasize the relevance of division,
and the wide variability of semigroups available.

E.3 On semigroups in crypto

I found several papers on cryptography that apply semigroups to cryptogra-
phy, but not through the idea of an associative key agreement scheme (the
topic of this report).

2I thank US patent examiner Y. Bayou for alerting me to [BC04].

370 APPENDIX E. PREVIOUS WORK

These other applications of semigroups included the following.

1. Generalizing the group of public keys in Diffie–Hellman (such as an
elliptic curve group, or the multiplicative group of a finite field), by
allowing the group to become a semigroup. The security then depends
on the discrete logarithm problem in the semigroup. I believe that there
is a result of LaFlamme and others [?] showing the Shor’s algorithm
can be used to solve the discrete logarithm in finite semigroups. In
infinite semigroups, I think somebody has observed that the discrete
logarithm can be often be deduced by the data size.

2. Generalizing the group of the private keys in Diffie–Hellman (under
multiplication) to semigroup with an action on a set, in the sense that
private key acts on public keys in Diffie–Hellman key agreement. One
example is the so-called hard homogeneous spaces (introduced by Cou-
veignes???).

3. Generalizing the groups used in other algebraic cryptographic schemes,
such as those based on braid groups. The hard problems involved in
these schemes are not division, not discrete logarithm, but yet other
problems, such as the conjugacy problem. (There may be some overlap
with cryptography using semigroup actions).

E.4 On division algorithms

Many of the general ideas for division algorithms are common knowledge in
the discipline of mathematics. This report has tried to re-construct some
detail about division algorithms from this common knowledge.

For more specific details of division algorithms, I referred to Knuth [Knu98]
for information on some division algorithms. I referred to Conway [Con76]
and Lenstra [Len97, Len77], for some division algorithms involving combi-
natorial games. I referred to Cox, Little, O’Shea [CLO91] for some division
algorithms related to polynomial rings and their ideals.

E.5 On semigroups themselves

The theory of semigroups extends the classical and fundamental theory of
groups, rings, and fields (see Lang [Lan93], for example).

E.5. ON SEMIGROUPS THEMSELVES 371

The wider theory of semigroups was unfamiliar to me before 2017. To
learn some of the basics of this wider theory, I referred extensively to Wikipedia
(especially wikipedia.org/wiki/semigroup). For greater details, I referred
to some books (borrowed from the U. of Waterloo library), including: Clif-
ford and Preston [CP64a, CP64b]; Liapin [Lia63]; Howie [How76]; Hall, Jones
and Meakin [HJM91]; Petrich [Pet84]; and Okninski [Okn91]. I also referred
to online works: the Online Encyclopedia of Integer Sequence oeis.org; and
the thesis of Distler [Dis10]. Large parts of report were written independently
of the references (in fact, after I returned these books), so any flaws in this
report were almost certainly added by me (inadvertently).

wikipedia.org/wiki/semigroup
oeis.org

Bibliography

[BC04] A. Berenstein and L. Chernyak. Geometric key establish-

ment. In Canadian Mathematical Society Conference, pp. 1–19.
2004. 1.4, 2.11, E.2, 2

[Con76] J. H. Conway. On Numbers and Games. Academic Press, 2nd
edn., 1976. E.4

[Cou06] J.-M. Couveignes. Hard homogeneous spaces. ePrint
2006/291, International Association for Cryptologic Research,
ia.cr/2006/291, 2006. C.2

[CKS08] D. Cash, E. Kiltz and V. Shoup. The twin Diffie–Hellman

problem and applications. ePrint 2008/067, International Associa-
tion for Cryptologic Research, ia.cr/2008/067, 2008. 2.23.1, A.3,
C.20.5.10

[CLO91] D. Cox, J. Little and D. O’Shea. Ideals, Varieties, and Algo-

rithms. Undergraduate Texts in Mathematics. Springer, 2nd edn.,
1991. C.22.3, E.4

[CP64a] A. H. Clifford and G. B. Preston. Algebraic theory of semi-

groups, No. 7 in Mathematical surveys, vol. 1. American Mathe-
matical Society, 2nd edn., 1964. E.5

[CP64b] ———. Algebraic theory of semigroups, No. 7 in Mathematical
surveys, vol. 2. American Mathematical Society, 1964. E.5

[Dis10] A. Distler. Classification and enumeration of finite

semigroups. Ph.D. thesis, University of St. Andrews,
https://research-repository.st-andrews.ac.uk/, 2010.
B.3.35, C.1, E.5

372

ia.cr/2006/291
ia.cr/2008/067
https://research-repository.st-andrews.ac.uk/

BIBLIOGRAPHY 373

[DXL12] J. Ding, X. Xie and X. Lin. A simple provably secure

key exchange scheme based on the learning with errors problem.
ePrint 2012/688, International Association for Cryptologic Re-
search, ia.cr/2012/688, 2012. E.2

[Feo17] L. D. Feo. Mathematics of isogeny based cryptography. Tech. rep.,
U. de Versailles, https://arxiv.org/pdf/1711.04062.pdf, 2017.
1

[How76] J. M. Howie. Introduction to semigroup theory. No. 7 in London
Mathematical Society monographs. Academic Press, 1976. E.5

[Hut81] H. C. Hutchins. Examples of Commutative Rings. Polygonal
Publishing House, 1981. B.12

[HJM91] T. E. Hall, P. R. Jones and J. C. Meakin (eds.). Monash

Conference on Semigroup Theory: in honour of G.B. Preston.
World Scientific, 1991. E.5

[Knu98] D. E. Knuth. The Art of Computer Programming, vol. 2: Seminu-
merical Algorithms. Addison–Wesley, 3rd edn., 1998. 5.14.1, 5.15.1,
5.15.2, E.4

[Kob98] N. Koblitz. Algebraic Aspects of Cryptography. No. 3 in Algo-
rithms adn Computation in Mathematics. Springer, 1998. B.8.30

[Lan93] S. Lang. Algebra. Addison–Wesley, 3rd edn., 1993. E.5

[Len77] H. W. Lenstra, Jr. On the algebraic closure of two. In Proceed-

ings of Koninklijke Nederlandse Akademia, A, vol. 80, pp. 379–396.
1977. E.4

[Len97] ———. Nim multiplication. Seminaire de Theorie des Nombres de
Bordeaux, pp. 1–23, 1997. E.4

[Lia63] E. S. Liapin. Semigroups. No. 3 in Translations of mathematical
monographs. American Mathemtical Society, Translated by A. A.
Brown and others, 1963. E.5

[Okn91] J. Okninski. Semigroup algebras. No. 138 in Monographs and
textbooks in pure and applied mathematics. M . Dekker, 1991. E.5

ia.cr/2012/688
https://arxiv.org/pdf/1711.04062.pdf

374 BIBLIOGRAPHY

[Pet84] M. Petrich. Inverse semigroups. Pure and applied mathematics.
Wiley, 1984. B.7.10, B.7.14, E.5

[RS93] M. Rabi and A. T. Sherman. Associative one-

way functions: A new paradigm for secret-key agree-

ment and digital signatures. Tech. Rep. CS-TR-
3183/UMIACS-TR-93-124, University of Maryland, 1993.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.6837&rep=rep1&ty

1.4, 2.11, E.2

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.6837&rep=rep1&type=pdf

	1 Introduction
	1.1 Key agreement
	1.2 The quantum threat
	1.3 Semigroups and rings
	1.4 Associative key agreement
	1.5 All key agreement is essentially associative
	1.6 Ring and semigroup security

	2 Key agreement
	2.1 Schemes
	2.2 Diffie–Hellman
	2.3 Domain and Ranges
	2.4 Aside: rock, scissors, paper
	2.5 Computation and communication
	2.6 Practical schemes
	2.7 Sessions
	2.8 Subschemes
	2.9 Probabilistic schemes
	2.10 Aside: faulty schemes
	2.11 Multiplicative schemes
	2.12 Aside: reflective and chiral schemes
	2.13 Associative schemes
	2.14 Aside: non-associative scheme
	2.15 Equivalent schemes
	2.16 Aside: derived schemes
	2.17 Essentially associative schemes
	2.18 Diffie–Hellman is essentially associative
	2.19 Aside: a more general Diffie–Hellman realm
	2.20 Key agreement is essentially associative
	2.21 Aside: packed associated semigroups
	2.22 Aside: reduction to a category
	2.23 Reduction to a ring
	2.24 Reductionism

	3 Security aims
	3.1 Watchers (generalized DHP)
	3.1.1 Real world impacts of a watcher
	3.1.2 Seclusive key agreement
	3.1.3 Watcher existence and uniqueness
	3.1.4 Reduction of watchers to wedges
	3.1.5 Probabilistic watchers

	3.2 Divulgers (generalized DLP)
	3.2.1 Variant divulgers
	3.2.2 Watchers from divulgers
	3.2.3 Extra impact of divulgers
	3.2.4 Extra assurance against divulgers
	3.2.5 Aside: instance-verifiability of divulgers
	3.2.6 Reduction of divulgers to division
	3.2.7 Divulgers by exhaustive search
	3.2.8 Divulgers by trial search
	3.2.9 Divesters
	3.2.10 Divergers
	3.2.11 Weak-input divulgers

	3.3 Distinguishers (generalized DDHP)
	3.3.1 Impact of distinguishers
	3.3.2 Distinguishers from watchers
	3.3.3 Variant distinguishers
	3.3.4 Detectors

	3.4 Esoteric security aims
	3.4.1 Impact of esoteric security
	3.4.2 Corrupted-session attacks
	3.4.3 Base-stealing
	3.4.4 Multi-session attacks
	3.4.5 Oracle attacks (generalized Gap-DHP, etc.)
	3.4.6 Agreeable and disagreeable attack definitions
	3.4.7 Semigroup-defined attacks

	4 Wedge strategies
	4.1 Wedge by division
	4.2 Wedge by inversion
	4.3 Wedge by constant
	4.4 Wedge by multiplication
	4.5 Wedge by deletion and concatenation
	4.6 Wedge by monomorphism
	4.6.1 Aside: wedge as two multiplications

	4.7 Wedge by Rees index deletion
	4.8 Wedge by coordinate
	4.9 Wedge by trial discrimination

	5 Division strategies
	5.1 Division by trial multiplication
	5.1.1 Trial multiplication in finite semigroups
	5.1.2 Eternal trials in countable semigroups
	5.1.3 Divisible eternal trial multiplication
	5.1.4 Aside: transfinite search in uncountable semigroups
	5.1.5 Optimality of trial multiplication

	5.2 Division by inversion
	5.2.1 Non-invertible elements

	5.3 Division by identity
	5.4 Division by wedge
	5.4.1 Generalized den Boer reductions

	5.5 Division by logarithm
	5.6 Division by isomorphism
	5.6.1 Division by monomorphism
	5.6.2 Difficult isomorphisms
	5.6.3 Isomorphism for factorialized addition
	5.6.4 Numerical isomorphism?

	5.7 Division by re-scaling
	5.7.1 Re-scaling by parallel right multiplication
	5.7.2 Re-scaling by inside-out multiplication
	5.7.3 Re-scaling by multiplying ratios

	5.8 Division by cross-multiplication
	5.8.1 Cross-multipliers
	5.8.2 Division by cross-multiplication
	5.8.3 Cross-multiplication by trivial operations
	5.8.4 Cross-multiplication by collision
	5.8.5 Arranging easier left division

	5.9 Division in subsemigroups
	5.10 Division by Rees matrix index search
	5.11 Division in product semigroups
	5.11.1 Division by coordinate division in Cartesian products
	5.11.2 Division by deletion in free (co)products
	5.11.3 Division by axial inversion in tensor products?
	5.11.4 Division in semidirect products – ???
	5.11.5 Division in fiber products – ???
	5.11.6 Division in (co)equalizer semigroups – ???
	5.11.7 Wreath product division?

	5.12 Division by binary search
	5.13 Division by complement-transpose
	5.14 Division by descent
	5.14.1 Descenders
	5.14.2 Finite descent
	5.14.3 Subtraction

	5.15 Power series division
	5.15.1 Standard division
	5.15.2 Functional division

	5.16 Matrix division
	5.16.1 Matrix division over fields
	5.16.2 Matrix division over commutative rings

	6 Inversion strategies
	6.1 Power inversion
	6.1.1 Shor's period-finding algorithm
	6.1.2 Elliptic curve point-counting

	6.2 Inversion by division
	6.3 Inversion by wedges
	6.4 Inversion of relations?
	6.5 Inversion of matrices over fields?
	6.6 Custom inversion algorithms

	A Applications
	A.1 Public-key encryption
	A.2 Key encapsulation
	A.3 Non-interactive key exchange
	A.4 Handshakes of interactive communication protocols
	A.5 Trust networks

	B Semigroup basics
	B.1 Operations
	B.1.1 Multiplicative semigroups
	B.1.2 Unwritten multiplication
	B.1.3 Additive semigroups
	B.1.4 Multiplying sets

	B.2 Practicality
	B.2.1 Practical multiplication
	B.2.2 Practical selection
	B.2.3 Practical representation

	B.3 Powers and logarithms
	B.3.1 Scalar multiplication
	B.3.2 Aside: exportability
	B.3.3 Powering sets
	B.3.4 Powering arrays (cyclically)
	B.3.5 Magma powering and products
	B.3.6 Discrete logarithms

	B.4 Subsemigroups
	B.4.1 Generated sets
	B.4.2 The complete lattice of subsemigroups
	B.4.3 Order, period, and torsion
	B.4.4 Aside: local and global properties

	B.5 Morphisms
	B.5.1 Congruences
	B.5.2 Natural morphisms and congruences
	B.5.3 Lattice of congruences
	B.5.4 Induced congruences
	B.5.5 Mergers
	B.5.6 Cosets
	B.5.7 Ideals
	B.5.8 Normal subsets
	B.5.9 Miscellaneous features

	B.6 Idempotents
	B.6.1 Identity elements
	B.6.2 Absorbing elements
	B.6.3 Comparison
	B.6.4 Idempotents

	B.7 Inverses
	B.7.1 Middle inverses
	B.7.2 Right inverses
	B.7.3 Mutual inverses
	B.7.4 Co-mutual inverses
	B.7.5 Sidle inverses
	B.7.6 Power inverses
	B.7.7 Divisional inverses
	B.7.8 Wedge inverses
	B.7.9 Strident inverses?
	B.7.10 Inflatable elements, inflators, and volume?

	B.8 Division
	B.8.1 Dividers
	B.8.2 Existence of dividers
	B.8.3 Alternative notations
	B.8.4 Subtraction
	B.8.5 Left dividers
	B.8.6 Notational dividers
	B.8.7 Unary dividers
	B.8.8 Feasible dividers
	B.8.9 Post-dividers
	B.8.10 Pre-dividers
	B.8.11 Aside: divisibility
	B.8.12 Aside: Green's relations
	B.8.13 Co-multiples and co-divisors
	B.8.14 Aside: division by zero
	B.8.15 Aside: traditional division examples
	B.8.16 Peremptory dividers
	B.8.17 Co-associativity
	B.8.18 Wide social dividers?

	B.9 Wedge operators
	B.9.1 Notational justification
	B.9.2 Terminology and uniqueness
	B.9.3 Incomplete wedges
	B.9.4 Binary wedge
	B.9.5 Wedge algorithms
	B.9.6 Probabilistic wedges

	B.10 Aside: Polarizable functions?
	B.10.1 Free commutative semigroups
	B.10.2 Summation maps
	B.10.3 Polarity functions
	B.10.4 Recursions for polarity functions?
	B.10.5 Polarizable functions
	B.10.6 Differential polarity function?

	B.11 Aside: productive semigroups?
	B.12 Semirings and realms
	B.12.1 Realms
	B.12.2 Subsets of realms
	B.12.3 Function between realms
	B.12.4 Semirings
	B.12.5 Nearrings
	B.12.6 Why addition is often commutative

	C Semigroup sketches
	C.1 Semigroups with almost arbitrary multiplication
	C.1.1 Quick review: Disjoint unions of sets
	C.1.2 Embedding in a 3-nilpotent semigroup
	C.1.3 Embedding into a non-nilpotent semigroup

	C.2 Semigroups from hard homogeneous space
	C.3 Semigroups from orderings
	C.3.1 Semilattices
	C.3.2 Orderly semigroups

	C.4 Small semigroups
	C.4.1 Empty semigroup
	C.4.2 Unit semigroup
	C.4.3 Semigroups of size 2
	C.4.4 Semigroups of size 3
	C.4.5 Abundance of small semigroups

	C.5 Semigroups from sets
	C.5.1 Zero semigroups
	C.5.2 Left and right semigroups
	C.5.3 Boolean semigroups
	C.5.4 Semigroups of words
	C.5.5 Semigroup of functions
	C.5.6 Semigroups of relations

	C.6 Semigroups: smaller from larger
	C.6.1 Subsemigroups
	C.6.2 Image semigroups and congruences
	C.6.3 Converse (reversal) semigroups

	C.7 Semigroup from presentations
	C.8 Extending a semigroup
	C.8.1 Solitary extensions
	C.8.2 The semigroup of subsets
	C.8.3 Stickel semigroups?
	C.8.4 Action extensions?
	C.8.5 Semigroups of ratios?
	C.8.6 Rees matrix semigroups
	C.8.7 Semigroups of special functions on a semigroup

	C.9 Combining semigroups
	C.9.1 Combining two semigroups
	C.9.2 Combining large families of semigroups

	C.10 Semigroups from semiautomata
	C.11 Semigroups from combinatorial graphs
	C.12 Semigroups from combinatorial games
	C.13 Semigroups from topology?
	C.14 Semirings with given addition or multiplication
	C.14.1 Left addition, any multiplication
	C.14.2 Left multiplication, any idempotent addition
	C.14.3 Null addition, any multiplication with a zero
	C.14.4 Null multiplication, any addition with an idempotent

	C.15 Semirings from sets
	C.15.1 Boolean semiring
	C.15.2 Semiring of relations

	C.16 A free semiring with one generator???
	C.16.1 Operation tables
	C.16.2 Ineffectiveness of representation
	C.16.3 Representation as quasi-polynomials
	C.16.4 Weighted lexicographic representation
	C.16.5 Polynomial images

	C.17 Semirings of functions on a semigroup?
	C.17.1 Nearring of semigroup functions
	C.17.2 Semiring of endomorphisms

	C.18 Semilattice semirings??
	C.18.1 Lattice semirings
	C.18.2 Total orders
	C.18.3 Incidence algebras?

	C.19 The standard semiring of positive integers
	C.19.1 Positive integers under multiplication
	C.19.2 Positive integers under addition
	C.19.3 Distributing over integer multiplication

	C.20 Semirings from semirings
	C.20.1 Subsemirings
	C.20.2 Solitary extensions of semirings
	C.20.3 Semiring of polynomials
	C.20.4 Semiring of matrices
	C.20.5 Semigroup semiring
	C.20.6 Semiring of additive subsemigroups?
	C.20.7 Hahn series
	C.20.8 Semiring of resultants (???)

	C.21 Semigroups (and semirings) from categories
	C.21.1 Category algebra
	C.21.2 Product and co-product semigroups
	C.21.3 Category completions

	C.22 Semirings from rings
	C.22.1 Weyl algebra
	C.22.2 Integer-valued polynomials
	C.22.3 Semiring of (fractional) ideals

	C.23 Semirings from calculus

	D Trial search
	D.1 Trial search strategies
	D.1.1 Inputs to trial search
	D.1.2 Target of trial search
	D.1.3 Iterations of trial search
	D.1.4 Success of trial search
	D.1.5 Impact on asynchronous key agreement
	D.1.6 Trial multiplication for division

	D.2 Metrics for trial search
	D.2.1 Runtime and workload
	D.2.2 Success rate and entrophy
	D.2.3 Eternal search

	D.3 Imitative search
	D.4 Optimal search
	D.5 Reduced search: trading workload for entrophy
	D.6 Average bit length of deliveries

	E Previous work
	E.1 A brief history of key agreement
	E.2 On associative key agreement
	E.3 On semigroups in crypto
	E.4 On division algorithms
	E.5 On semigroups themselves

