
Labeled PSI from Homomorphic Encryption with Reduced
Computation and Communication

Kelong Cong1, Radames Cruz Moreno2, Mariana Botelho da Gama1, Wei Dai2, Ilia Iliashenko1,
Kim Laine2, and Michael Rosenberg3

1 imec-COSIC, KU Leuven, Leuven, Belgium
2 Microsoft Research, Redmond, WA, USA

3 University of Maryland, College Park, MD, USA

Abstract. It is known that fully homomorphic encryption (FHE) can be used to build efficient (labeled)
Private Set Intersection protocols in the unbalanced setting, where one of the sets is much larger than the
other (Chen et al. (CCS’17, CCS’18)). In this paper we demonstrate multiple algorithmic improvements
upon these works. In particular, our protocol has an asymptotically better computation cost, requiring
only O(

√
|X|) homomorphic multiplications, and communication complexity sublinear in the larger set

size |X|.
We demonstrate that our protocol is significantly better than that of Chen et al. (CCS’18) for many
practical parameters, especially in terms of online communication cost. For example, when intersecting
228 and 2048 item sets, our protocol reduces the online computation time by more than 71% and
communication by more than 63%. When intersecting 224 and 4096 item sets, our protocol reduces the
online computation time by 27% and communication by 63%. Our comparison to other state-of-the-
art unbalanced PSI protocols shows that our protocol has the best total communication complexity
when |X| ≥ 224. For labeled PSI our protocol also outperforms Chen et al. (CCS’18). When intersecting
220 and 256 item sets, with the larger set having associated 288-byte labels, our protocol reduces the
online computation time by more than 67% and communication by 34%.
Finally, we demonstrate a modification that results in nearly constant communication cost in the larger
set size |X|, but impractically high computation complexity on today’s CPUs. For example, to intersect
a 210-item set with sets of size 222, 224, or 226, our proof-of-concept implementation requires only
0.76 MB of online communication, which is more than a 24-fold improvement over Chen et al. (CCS’18).

1 Introduction

Consider two parties, each with a private dataset of items. They want to learn the intersection of
their respective sets without leaking any other information to each other. For example, two countries
want to trace criminal suspects by finding matching identities in their police databases, while hiding
other sensitive data from each other, or two banks want to identify clients with obscure financial
transactions, without revealing any other data about their clients.

To solve the above problems, the two parties can engage in a Private Set Intersection (PSI)
protocol. PSI refers to an interactive cryptographic protocol that takes two private sets as input,
finds their intersection, and outputs it to one or both of the participants. If one party obtains the
results of a PSI protocol (one-way PSI), we call this party the receiver and the other party the
sender. General two-way PSI can be realized via two rounds of one-way PSI, where participants
swap the roles of the receiver and the sender. In practice, one-way PSI stands on its own as an
important primitive in various privacy-preserving protocols, including private contact discovery in
mobile messengers (e.g., Signal or WhatsApp) [42,28], checking for the presence of leaked password
in a breach database [37,2], and contact tracing for containing the spread of infectious diseases [60].

In this work, we focus on a variant of one-way PSI where the receiver’s set is much smaller than
the sender’s. We also assume that the receiver has limited resources for computation and storage
(e.g., a mobile phone or a wearable device), while the sender is equipped with much more powerful
machinery (e.g., a server in a datacenter). This specific setting is referred to as unbalanced. The

1

goal in the unbalanced setting is thus to delegate as much computation as possible to the sender
and reduce communication between the parties.

Let X and Y denote the sender’s and the receiver’s sets, respectively; in unbalanced PSI, we have
|Y | � |X|. State-of-the-art protocols for unbalanced PSI have either O(|X|) communication cost [36]
or Õ(|X|) computation complexity [13]. We will focus on the latter line of work, which allows to
achieve a quasilogarithmic communication complexity. Our work uses leveled Fully Homomorphic
Encryption (FHE), i.e., randomized encryption that allows computation on arithmetic circuits of any
fixed multiplicative depth in the encrypted domain, without decryption. Leveled FHE schemes such
as BGV [7] and BFV [22] induce quasipolynomial overhead both in communication and computation
complexity with respect to the multiplicative depth.

Following the outline of [13], we also consider labeled PSI, a special type of PSI with computation.
In this scenario, every element in the sender’s set has associated data — a label — and the receiver
hopes to learn the labels of the elements in the intersection. This is a generalization of the single-
server Private Information Retrieval (PIR) by keywords problem introduced by Chor et al. [16].
The practical applications of labeled PSI include targeted price discrimination [45] and key retrieval
in mobile messengers [42,28], where a user queries the public key of people from her contact list.

1.1 Related work

Early PSI protocols from the 1980s [43,33] were based on Diffie-Hellman (DH) key-exchange [18]. In
essence, Alice and Bob perform a DH key-exchange for every element in their set; a match is found
if the resulting shared secrets match. Freedman et al. [24] introduced a protocol based on oblivious
polynomial evaluation and homomorphic encryption. Ateniese et al. [4] introduced a construction
based on RSA accumulator. Since PSI can be thought of as a special case of secure two-party
computation, it is possible to use standard techniques such as garbled circuits to construct a PSI
protocol [32,49,51]. More recently many protocols [19,52,46,40,55,48,12] have been based on OT
extension [34] and Oblivious Pseudo-Random Functions (OPRF).

The aforementioned work are primarily designed for the balanced setting, where the sender set
is roughly the same as the receiver set. Below we zoom in on two of the most efficient paradigms in
the literature in the unbalanced setting, which is the focus of this work.

Unbalanced PSI Based on OPRF A PSI protocol based on OPRF was first proposed in [23],
where the OPRF was build from the Naor-Reingold (NR) pseudorandom function [44]. With the
help of garbled circuits (GC) [61], later work introduced a PSI protocol from AES-based OPRF [50].
The current state-of-the-art protocol materialized in the work of Kales et al. [36], which is derived
from [39] and [54]. The protocol has two phases, the preprocessing phase and the online phase. The
authors introduced many optimizations to push as much computation and communication cost to
the preprocessing phase as possible. Below we give an overview of the protocol idea from this line of
work. During the preprocessing phase, the sender with a large set S generates a PRF key k and
computes PRFk(s) for every s ∈ S. Then it inserts every PRF output into a cuckoo filter [21] and
sends it to the receiver. To compute the intersection in the online phase, the receiver computes the
OPRF with the help of the sender. That is, the receiver obtains PRFk(r) for every value r in its set
R without the knowledge of k. Finally, the receiver locally checks whether any of its items are in
the cuckoo filter.

The online phase is very efficient, and does not depend on the set size of the sender. For a
receiver with 210 items, the communication overhead is only a little higher than 2 megabytes [36].
The computation is also efficient since there are no expensive public-key operations when using

2

the GC version of the protocol.4 The biggest bottleneck in this class of protocols is the bandwidth
consumption and storage requirement during the preprocessing phase. Namely, the cuckoo filter
that the sender must distribute to every receiver is linear in the size of the sender’s set. When the
sender set has 228 items, the cuckoo filter size is more than one gigabyte [36].

Unbalanced Protocols Based on FHE On the other side of the spectrum, Chen et al. [14]
introduced an unbalanced PSI protocol based on leveled FHE that has a communication overhead
linear in the (smaller) receiver’s set and logarithmic in the (larger) sender’s set. Their work was
later refined in [13], which strengthened the security model using OPRF, allowed arbitrary-length
items, and extended the protocol to the labeled PSI setting with arbitrary-length labels.

In both works [14,13], the BFV scheme [22] is used, which has Õ(D2) memory and Õ(D3) running
time overhead with D being the multiplicative depth of computation. The communication cost of
the PSI protocol is O(log |X|) ciphertexts and its computation complexity is O(|X|) homomorphic
multiplications with multiplicative depth D ∈ O(log log |X|). As a result, the dependency on the
sender’s set size is quantified as follows: the communication complexity is Õ(C) with C = log |X|,
whereas the computation complexity is Õ(|X|).

The working principal is the starting point of this work. Thus we defer the detailed explanation
to Section 3.

1.2 Contributions

We introduce several optimizations and improvements to the protocols of Chen et al. [14,13] that
result in improved running time and improved communication complexity in the sender’s set size.
Our contributions can be summarized as follows:

– We show how to remove the slow extension field arithmetic used in [13], while still supporting
arbitrary-length items and labels.

– We reduce the communication cost by using extremal postage stamp bases [11] instead of the
less efficient windowing technique of [14,13].

– We show how to evaluate the intersection circuit inO(
√
|X|) ciphertext-ciphertext multiplications

using the Paterson-Stockmeyer algorithm [47], which is a quadratic improvement over [13].

– We use the techniques of [56] to achieve a very fast hash-to-curve implementation for the FourQ
curve [17]. Hash-to-curve is needed for an OMGDH-based OPRF protocol [35,54,13], which is a
critical component of our protocol.5

– We improve the communication overhead by exploiting depth-free homomorphic Frobenius
automorphisms. This operation allows to compute xt, where t is the plaintext modulus of
the FHE scheme, without ciphertext-ciphertext multiplications. As a result, to compute the
intersection circuit with depth O(log log |X|) the sender needs only O(1) ciphertexts. This
reduces the communication complexity to Õ(C2) with C = log log |X| from Õ(2CC2) given in
prior work [14,13].

– We created an open-source reference implementation of our protocol.

4 Evaluating the GC-based OPRF requires OT, but it is possible to do this in the preprocessing phase using random
OT extension.

5 OPRF was used optionally by [13] to significantly strengthen the security model.

3

2 Preliminaries

2.1 Notation

Throughout this paper we denote the set of integers {i, i+ 1, ..., j} by [i, j], and [j] is shorthand for
the case i = 1. The logarithm in base b is denoted by logb x. For the binary logarithm of x, we omit
the base and write log x. Vectors are denoted by lowercase Latin letters with the arrow, i.e., ~a. For
a given vector ~a = (a1, . . . , ad), its 1-norm is defined as |~a|1 =

∑d
i=1 |ai|.

2.2 Unbalanced private set intersection

There are two parties — the receiver and the sender — having a set Y and a set X, respectively.
We assume that |X| � |Y | and the set sizes are public. Each set contains a pair of strings (ai, Li)
where ai is an element ID and Li is its label. The length σ of IDs and length ` of labels are shared
among all elements of X ∪ Y .

A (one-way) private set intersection (PSI) protocol is an interactive protocol that outputs
{ai : ∀ai ∈ X ∩ Y } to the receiver and nothing to the sender without leaking any other information
about X and Y . In the labeled PSI, the protocol returns {(ai, Li) : ∀ai ∈ X ∩ Y } to the receiver.

2.3 Fully homomorphic encryption

Fully homomorphic encryption (FHE) is a family of encryption schemes that allow arbitrary
operations to be performed on encrypted data without decryption. Most existing FHE schemes
[25,8,9,6,22,7,27,20,15] are based on the LWE [53] or RLWE [41] problems, which imply the presence
of noise in encrypted messages. The noise associated with a ciphertext grows with each homomorphic
operation (additively with additions and multiplicatively with multiplications). Thus, in order to
avoid decryption error, one must take care to ensure that the noise does not become large enough
to interfere with the underlying plaintext. Such noise management is realized with two frameworks.

The first framework consists of a somewhat homomorphic encryption (SHE) scheme that is
capable of homomorphically computing its own decryption circuit, or perform a so-called bootstrapping
operation that reduces the noise size. For such FHE schemes, encryption parameters can be fixed
such that any circuit is computable given the bootstrapping information. However, the bootstrapping
operation is much slower in comparison to other homomorphic operations; thus, it is usually avoided
in practice.

The idea of the second framework is to choose large enough encryption parameters for computing
a predetermined family of circuits. In this case, bootstrapping is never used, but encryption
parameters grow with the depth of circuits. The SHE schemes whose encryption parameters increase
polynomially with the circuit depth are called leveled FHE schemes. For shallow enough circuits,
leveled FHE schemes are more efficient in practice.

In this work, we use two leveled FHE schemes, BGV [7] and BFV [22], implemented in the
HElib [31] and SEAL [57] libraries, respectively. Both schemes are defined over a ring R =
Z[X]/ 〈Φm(X)〉 where Φm(X) is the cyclotomic polynomial of order m and degree n. Their ci-
phertext space is R2

q = (R/ 〈q〉)2 where q is a positive integer. The size of each ciphertext is
2n log q.

The plaintext space of these schemes is defined analogously as Rt for some positive integer t� q.
The size of each plaintext is n log t. We assume that t is a prime number. Let d be the multiplicative
order of t modulo m. In this case, Φm(X) splits into k factors of degree d modulo t. Hence, the
Chinese remainder theorem yields the isomorphism Rt ∼= Fk

td
. Each copy of Ftd is called a slot. Using

this isomorphism, one can encode and encrypt multiple data values from Ftd into a single ciphertext,

4

and have the homomorphic additions and multiplications over R2
q correspond to slot-wise additions

and multiplications over the encoded values. Such encoding is called the SIMD packing [59]. Abusing
notation, we denote a ciphertext encrypting a value a ∈ Ftd in one of its slots by JaK.

The noise size is defined by the standard deviation of the noise distribution, σe, which is typically
set to 3.19.

The parameters n, q and σe define the security level of our schemes, where σe denotes the
standard deviation of the noise distribution, and is ordinarily set to 3.19. The security level is
estimated using the LWE estimator [1].

Homomorphic operations and their cost. The basic homomorphic operations we use are
addition and multiplication, which can be performed on two ciphertexts or on a pair consisting
of a ciphertext and a plaintext. We will also use a Frobenius operation which, given an encrypted
message JyK and a positive integer i, returns JytiK (see [26] for more details).

The cost of every homomorphic operation is defined by its running time and the amount of
noise added to its output. For the cost analysis, we assume that both ciphertexts and plaintexts are
represented in the Double-CRT form [26] and ciphertext noise is measured by its infinity norm. We
also assume that the hybrid key-switching method is used (see [38] for more details).

Homomorphic addition is the last costly operation, taking only O(n log q) integer additions. The
output noise is the sum of the input noises up to some small factor about O(t).

Plaintext-ciphertext multiplications, which we call scalar multiplications, amount to O(log q)
coefficient-wise multiplications of n-dimensional vectors. Hence, this operation takes O(n log q)
integer multiplications. Scalar multiplication scales the input noise by a factor of O(t

√
n).

Ciphertext-ciphertext non-scalar multiplication has two steps: vector convolution and key-
switching. The first step performs O(n log n) integer multiplications and the second one performs
O(n log n log q+n(log q)2) integer multiplications. Thus, the running time of non-scalar multiplication
is O(n log n log q + n(log q)2) integer multiplications (see [38]). If the input ciphertexts have noises
of size V1 and V2, then the noise of their product is equal to O(n · t ·max(V1, V2)).

The Frobenius operation first permutes the Double-CRT form of a ciphertext and then performs
key-switching. The permutation does not require integer multiplications. Hence, the Frobenius
operation is faster than non-scalar multiplication and its running time is dominated by key-switching;
it takes O(n log n log q + n(log q)2) integer multiplications. The noise introduced by the Frobenius
operations is also dominated by the one introduced by key-switching (see, e.g., [29]), which adds a
value about O(

√
n(log q)2) to the noise of the input ciphertext.

To sum up, the most costly homomorphic operation both in running time and in noise growth is
non-scalar multiplication. We therefore measure the runtime complexity of our algorithms in terms
of the number of non-scalar multiplications. We also measure the depth of our circuits in relation to
non-scalar multiplications. We say, then, that one (sequential) non-scalar multiplication consumes
one multiplicative level.

Note that non-scalar multiplications can sometimes be replaced by the Frobenius operation
when computing ciphertext powers. Since the Frobenius operation introduces only additive noise,
we say that the Frobenius operation consumes no multiplicative levels, i.e., it is depth-free.

3 Unlabeled PSI

Our basic PSI protocol follows closely the frameworks of Chen et al. [14,13], which are based on
ideas from [49].

Input. The receiver has an input set Y of size |Y |. The sender’s input is a set X of size |X|.
Both sets contain bit strings of length σ. The values of |Y |, |X| and σ are public.

Output. The receiver outputs X ∩ Y .

5

Setup. The receiver and the sender agree on an SHE scheme with the plaintext space being a finite
field F. They also publicly choose the number (typically three) of hash functions hi : {0, 1}σ → [M],
where M is a positive integer. Finally, they agree an OPRF function Fk : X ∪ Y → F.

The receiver generates the public and the secret keys of the SHE scheme. The sender samples an
OPRF key k and computes X ′ := {Fk(x) | x ∈ X}. Then, both parties interact to apply the OPRF
to the receiver’s set, whereby the receiver obtains Y ′ := {Fk(y) | y ∈ Y }. Now computing X ∩ Y
amounts to computing X ′ ∩ Y ′.

We note that there are multiple benefits in using OPRF values instead of the original items. Most
importantly, it is necessary to provide security against a malicious receiver, because homomorphic
encryption does not automatically provide input privacy for the sender’s input. To address this
issue, [14] used a noise flooding technique to prove security against a semi-honest receiver, but
their approach does not extend to the malicious case. Another reason is discussed more below in
Section 3.1: using OPRF values allows us to completely avoid costly extension field arithmetic.

Next, the receiver places each y ∈ Y ′ into a cuckoo hash table BR with bin size 1. Specifically, it
will construct a table BR such that no bin in BR has more than one element, and for all y ∈ Y ′
there is an i such that BR[hi(y)] = y. The sender creates a cuckoo hash table BS with bin size
potentially greater than 1. For all x ∈ X ′ and all i, the sender places x into BS [hi(x)], again, allowing
for multiple x per bin. It is shown in [14] that if |X| � M , then each bin of the sender contains
O(|X|/M) values with high probability. This setup ensures that the intersection of X ′ and Y ′ is
equal to the union of the respective bin intersections, namely,

X ′ ∩ Y ′ =
⋃

j∈[M]

BR[j] ∩BS [j] =
⋃

j∈[M]

{yj} ∩BS [j],

where yj denotes the y value at BR[j]. Both parties encode their respective bins into the plaintext
field F. The receiver encrypts all its bins and sends them to the sender.

Intersection. Given the encryption JyjK of the bin BR[j], the sender computes the intersection
polynomial

JzjK := P (JyjK) =
∏

x∈BS [j]

(JyjK− x) (1)

If yj ∈ BS [j], then JzjK is an encryption of zero. Otherwise, JzjK encrypts some non-zero value in F,
depending on Y ′. This non-zero value does not leak any information about Y , due to the OPRF
step. The sender sends JzjK to the receiver, who decrypts it and checks whether zj = 0.

Security. As shown in [13], the OPRF step makes the above PSI protocol secure against a
malicious receiver and provides privacy against a malicious sender in the random oracle model. Our
protocol differs from [13] in algorithmic aspects; the security guarantees and the security proof
remain the same as in [13], i.e., the protocol guarantees security against a malicious receiver and
privacy against a malicious sender [30]. With a small extra computational overhead the protocol
can be upgraded to provide further protection against a malicious sender, as is described in [13].

3.1 Optimizations

In this section we discuss various optimization techniques to make the above protocol practical. Some
of these (SIMD packing, partitioning, and windowing) have been discussed in the past in [14,13]
and remain essential to our protocol. We improve the SIMD packing technique to use only more
efficient and flexible prime fields, although this mainly presents challenges in the labeled case
discussed below in Section 4. We utilize the Paterson-Stockmeyer algorithm [47] to improve the

6

computational complexity and enable new communication-computation trade-offs. We change the
windowing technique to use more efficient extremal postage-stamp bases [10,11], which reduces
our communication cost significantly in many cases. We show how many powers of the receiver’s
input can be computed with zero multiplicative depth, resulting in a variant of the protocol with
extremely low communication cost. Finally, we adapt the Elligator 2 [5] map for the FourQ elliptic
curve [17] for a fast hash-to-curve implementation, which is needed for the OMGDH-based OPRF
protocol.

Permutation-based hashing [49] can be applied immediately in our work to reduce the item
lengths by a few bits. But this technique will have only a marginal performance impact compared
to our other techniques, so we do not include it this work.

SIMD packing. As discussed in Section 2.3, we can pack multiple data values into one ciphertext,
such that these values can be simultaneously processed with homomorphic operations. Using this
method, the receiver can essentially treat the slots in a ciphertext as bins of the cuckoo hash table
BR, and thus encode multiple values yj ∈ Y ′ in a single ciphertext. The sender can subsequently
compute several intersection circuits (eq. (1)) in parallel, which results in a significant improvement
in both computation and communication cost.

In [13] the authors were able to support arbitrary-length items by first hashing them down to
a smaller domain and, using SIMD packing with extension field values that are large enough to
hold the hash values. Unfortunately, extension field arithmetic can have a devastating effect on
performance; this effect is particularly prominent in the labeled mode. Furthermore, the extension
fields must have certain size characteristics to be useful, which in some cases leads to suboptimal
parameter choices.

We observe that it is possible to not use extension fields at all, and instead use SIMD packing
only over prime fields. Since the element hashes are larger than a single SIMD slot, we simply split
the hash values to occupy several sequential slots. This was not possible in [13], because the authors
considered the OPRF step as optional: since the individual SIMD slot values are small, they can be
guessed, and even a semi-honest adversary can learn information about partially matching items
with non-negligible probability. This problem is resolved by always performing the OPRF step,
which randomizes the items and protects the sender’s dataset from partial item leakage. A few issues
remain in the labeled case, which we will discuss and resolve in Section 4.

Partitioning. To reduce the depth of computation, [14] proposed to split every sender’s bin into α
subsets and then compute intersection on each of these subsets separately. If B is the maximal size
of a sender’s bin, then this method reduces the circuit depth from dlogBe to dlog dB/αee at the
cost of increasing the number of ciphertexts sent by the sender to the receiver by a factor of α.

To compute the intersection polynomial P (JyK) of degree B, the sender can first compute all
the monomial powers JyK2, . . . , JyKdB/αe using dB/αe − 1 non-scalar multiplications. These powers
can be used repeatedly to compute the intersection circuits for each of the α partitions. Another
advantage of partitioning: after the monomial powers have been computed once, they can be used
for each partition, i.e., α times, in relatively cheap scalar multiplication operations to evaluate the
intersection circuits.

Paterson-Stockmeyer algorithm. One issue with partitioning is that in many situations it is
advantageous to take B to be relatively large (say, in the few thousands), requiring dB/αe − 1 non-
scalar multiplications, while α remains relatively small (say, 10). In such a case the computational
cost of the non-scalar multiplications may dominate the online running time. We suggest applying

7

the Paterson-Stockmeyer algorithm [47] to compute the intersection polynomial in O(
√
B) non-scalar

multiplications instead. We now explain how this works.
First, pick positive integers L and H such that B = LH − 1 and L ≈

√
2(B + 1). The sender

starts by computing the low powers JyK2, JyK3, . . . , JyKL−1 and the high powers JyKL, JyK2L, JyK3L,
. . . , JyK(H−1)L of the receiver’s ciphertext JyK. Then the intersection polynomial can be rewritten as

P (JyK) =
H−1∑
i=0

JyKiL
L−1∑
j=0

aiL+jJyKj , (2)

where ak is the k-th coefficient of P . The internal sums can be computed by scalar multiplications
and additions from the low powers. Non-scalar multiplications are only needed to multiply these
internal sums by the high powers. The total computation complexity of computing P (JyK) is equal
to

L− 2 + 2(H − 1) = L+ 2H − 4 (3)

non-scalar multiplications. The minimal non-scalar complexity O(
√
B) is achieved when L ≈√

2(B + 1).
In fact, Paterson and Stockmeyer designed a slightly faster algorithm with the same asymptotic

complexity. Unfortunately, it cannot be directly exploited in our work as it relies on the fact that
the coefficient ring of an evaluated polynomial is a Euclidean domain. The coefficients of P (JyK) are
plaintexts from the ring Rt, which is not Euclidean.

If the partitioning technique is used, then P (JyK) is replaced by α polynomials Pi(JyK), i ∈ [α] of
degree dB/αe. Select positive integers Lα, Hα such that dB/αe = LαHα − 1. To evaluate each Pi,
the sender precomputes Lα low powers and Hα high powers and computes each Pi as in eq. (2).
Multiplication by the high powers is performed for each Pi, i.e., α(Hα − 1) times. It implies that
the non-scalar multiplicative complexity of evaluating every Pi is equal to

Lα − 2 +Hα − 1 + α(Hα − 1) = Lα + (α+ 1)Hα − (α+ 3). (4)

Similar to eq. (3), the minimal non-scalar complexityO(
√
B) is achieved by taking Lα ≈

√
(α+ 1) (dB/αe+ 1).

Example 1. Consider a bin of size B = 81. Depending on the number of partitions, α, we can
compute the intersection either with the Paterson-Stockmeyer method or with a näıve method,
that precomputes all the powers Jy2K, . . . , JydB/αeK. When α ≤ 5, the Paterson-Stockmeyer method
requires fewer non-scalar multiplications, as demonstrated in the following table:

α 1 2 3 4 5 6 7

P.-S. mult. 23 18 16 14 14 15 16

Näıve mult. 80 40 26 20 16 13 11

In Appendix A, we show how to identify from α and B whether the Paterson-Stockmeyer method
with partitioning outperforms the näıve method.

Windowing. In modern leveled FHE schemes, encryption parameters are set depending on
the multiplicative depth of computation: higher multiplicative depth requires larger parameters.
Unfortunately, larger parameters increase both the communication and computation complexity.

8

The multiplicative depth of the Paterson-Stockmeyer algorithm (as in eq. (2)) is equal to
dlog((H − 1)L+ 1)e+ 1, which is at most one bigger than the depth of computing a polynomial
of degree B = LH − 1. To reduce the depth, the receiver can send encryptions of additional
precomputed powers of y. For example, if JyK and JyLK are given to the sender, it can compute eq. (2)
with a circuit of depth max{dlog(H − 1)e , dlog(L− 1)e}+ 1. Since the multiplicative complexity is
minimal when L > H (eq. (3)), the depth of computing the intersection polynomial (2) is equal to

dlog(L− 1)e+ 1 ≈ log
√

2(B + 1) + 1 =
log(B + 1)

2
+

3

2
.

Sending more additional powers reduces multiplicative depth. The windowing technique, as
described in [14], relies on the fact that any integer B > 0 can be represented uniquely in some

base b > 1, namely B =
∑blogbBc

i=0 Bib
i with Bi ∈ [0, b− 1]. This means that yB =

∏blogbBc
i=0 yBib

i
. If

all the powers yib
j

with i ∈ [b− 1] and j ∈ [0, blogbBc] are precomputed, then yB can be obtained
by a circuit of depth dlog(blogbBc + 1)e. As a result, the receiver can send encryptions of these
(b−1)(blogbBc+1) additional powers such that the sender can compute all the powers JyK2, . . . , JyKB

with the aforementioned depth.

In practice, it is convenient to fix a multiplicative depth D and derive b from it. Since the
function (b− 1)(blogbBc+ 1) is increasing with b, the smallest possible b supporting depth D results
in the minimal number of ciphertexts sent from the receiver to the sender.

Let D be the target depth. This means that D should satisfy

D = dlog (blogbBc+ 1)e ≥ log (blogbBc+ 1) .

Hence, we obtain 2D− 1 ≥ blogbBc > logbB− 1 and thus 2D > logbB. As a result, b is the smallest

integer satisfying b > B2−D , or b = bB2−D + 1c. The number of powers that must be sent is therefore
bounded by

(b− 1) (blogbBc+ 1) ≤ (b− 1) (logbB + 1) < B2−D(2D + 1). (5)

While using the Paterson-Stockmeyer algorithm, the sender should compute low and high powers
and then multiply linear combinations of the low powers by the high powers as in eq. (2). This
means that to achieve a target depth D while computing the intersection polynomial, the sender
should be able to compute both sets of powers with depth at most D − 1.6

Following the discussion above, we obtain that the receiver should send (bL − 1)(blogbL(L −
1)c + 1) encryptions of powers of y for the sender to compute the low powers with the base

bL = b(L− 1)2
−(D−1)

+ 1c. To compute the high powers with the same depth, the sender needs only

(bH − 1)(blogbH (H − 1)c+ 1) encryptions of powers of yL with the base bH = b(H − 1)2
−(D−1)

+ 1c.
The upper bound on the number of powers that the receiver needs to send is defined by the following
lemma.

Lemma 1. To compute a polynomial P (JyK) of degree B > 0 with the multiplicative depth D ≥ 0

using the Paterson-Stockmeyer method, the sender needs fewer than 3(B + 1)2
−D

(2D−1 + 1) powers
of JyK.

The proof can be found in Appendix B.

6 The low powers need to be further scalar-multiplied by the polynomial coefficients, which increases noise comparably
to the non-scalar multiplications for some parameterizations. Thus, in some cases we require that high powers are
compted with depth D − 1 and low powers with depth D − 2.

9

Extremal postage-stamp bases. The windowing technique of [14] described above is easy to
use: the receiver always knows exactly which powers to send. Unfortunately, it is far from optimal.
To demonstrate this point, consider a case where B = 26. The user could choose to encrypt and
send powers {1, 2, 4, 8, 16} of their query, which the sender can use to compute all powers up to
26 in a depth-two computation, as illustrated by the first graph of Figure 1. However, the second
graph of Figure 1 demonstrates an alternative computation, also of depth two, but with only three
source powers: {1, 5, 8}. This immediately translates to a 40% reduction in the receiver-to-sender
communication.

More generally, we would like to answer the question: which powers of the query should be sent
so that the sender can compute all powers of the query up to as large of a bound B as possible,
without exceeding a target depth.

Fig. 1. Graphs depicting two possible ways for the sender to compute all powers up to 26 of the receiver’s query
from a given set of source powers. The two arrows pointing out from a node indicate which lower powers need to be
multiplied together to produce the power indicated in the node label.

26

2

24

8 16

25

1

23

3 20

4

22 21 19

18 17

15

12

14 13

56

7

910

11

26

1016

58

25

9

1

24 23

13

22

6

21 201918

2

17 15 143 4 7 1112

This problem can be viewed as a variant of the global postage-stamp problem [10,11]:

Definition 1 (Global postage-stamp problem). Given positive integers h and k, determine
a set of k positive integers Ak = {a1 = 1 < a2 < . . . < ak} such that all integers 1, 2, . . . , n can
be written as a sum of h or fewer of the aj, and n is as large as possible. The set Ak is called an
extremal postage-stamp basis.

The connection to our problem is clear. In the notation of Definition 1, if the receiver sends encrypted
powers {Jya1K, Jya2K, . . ., JyanK} to the sender, then the sender can compute all powers up to B = n
in multiplicative depth dlog2 he. Concretely, consider the powers {1, 5, 8} used in Figure 1. Upon
receiving {JyK, Jy5K, Jy8K}, the sender iterates (in order) over all integers up to B = 26, and for each
power that it has not yet computed (or received), it chooses a depth-optimal way of computing it as
a product of two lower powers. This is exactly how the graphs in Figure 1 were generated. In fact,
the basis {1, 5, 8} is a unique extremal postage-stamp basis for h = 4, k = 3 [10].

No simple way of finding extremal postage-stamp bases is known, nor is the complexity class
of the global postage-stamp problem known. Furthermore, extremal solutions are often unique (or

10

almost unique) and quickly become hard to find. Fortunately we only need solutions for small
instances of the problem, which have been brute-forced and are presented in [11].

Extremal postage-stamp bases can be used in two ways with the Paterson-Stockmeyer algorithm.
Recall that in this case the sender must compute all powers of the receiver’s query up to some
positive integer L− 1, and all powers that are multiples of L not exceeding the bin size B.

Naturally, an extremal postage-stamp basis with n = L− 1 can be used to achieve the first goal.
For enabling the sender to compute as many powers of L as possible from as few source powers as
possible, the receiver can apply a (possibly different) extremal postage-stamp basis, but this time
multiply the exponents by L.

For example, consider again the extremal postage-stamp basis {1, 5, 8} in Figure 1. This works
great for Paterson-Stockmeyer, when L− 1 = 26. To use Paterson-Stockmeyer, we could additionally
send powers {L, 5L, 8L} = {27, 135, 216}, which would allow the server to compute polynomials up
to degree 26L+ 26 = 728 with a depth 3 circuit.

Extremal postage-stamp bases with large h (like 23 or 24) can be hard to find, but if found, such
bases allow very high-degree polynomials to be evaluated without increasing the depth, but possibly
with a significant increase in online computation time due to the large number of powers needing to
be computed through non-scalar multiplications.

Low depth exponentiation via the Frobenius operation. As mentioned in Section 2.3, the
Frobenius operation is a cheaper alternative to non-scalar multiplication in terms of running time
and added noise. Using this operation, the sender can compute powers of JyK saving multiplicative
depth. Hence, the receiver can send fewer powers, decreasing the communication complexity.

Example 2. Take a plaintext modulus t = 2; every SIMD slot is isomorphic to F2d for some d and
the Frobenius operation can compute JxK 7→ Jx2iK for i ∈ [d− 1].

Suppose the sender has 255 values in its set. This means that it should compute the intersection
polynomial P (JyK) of degree 255. Using the Paterson-Stockmeyer algorithm, it needs JyiK and Jy16iK
for i ∈ [15] to compute P (JyK) with depth 1. In total, the receiver has to send 30 ciphertexts
encrypting these powers.

However, the sender can compute Jy16iK from JyiK by applying the Frobenius operation JxK 7→
Jx22K, which is depth-free. Moreover, any even power Jy2eaK with odd a can be obtained from JyaK
with the Frobenius operation JxK 7→ Jx2eK. As a result, the receiver needs to send only 8 encrypted
powers, namely JyK, Jy3K, Jy5K, Jy7K, Jy9K, Jy11K, Jy13K and Jy15K. Having these powers, the sender
computes all the low and high powers for the Paterson-Stockmeyer algorithm with 22 Frobenius
operations and then performs only 15 non-scalar multiplications to compute P (JyK) with a depth 1
circuit.

The communication complexity can be reduced even further at the cost of increased depth.
If the receiver sends only JyK, then the sender first computes JyK, Jy2K, Jy4K, Jy8K with depth 0
using the Frobenius operations and then obtains the powers Jy3K = JyK · Jy2K, Jy5K = JyK · Jy4K,
Jy7K = JyK · Jy2K · Jy4K, Jy9K = JyK · Jy8K, Jy11K = JyK · Jy2K · Jy8K, Jy13K = JyK · Jy4K · Jy8K, Jy15K =
JyK · Jy2K · Jy4K · Jy8K with multiplicative binary-tree circuits of depth at most 2. The remaining low
and high powers are again computed with Frobenius operations. Thus, the sender can compute
P (JyK) with depth 3 having been given only one ciphertext, JyK.

The idea above is formalized in Lemma 2 that indicates how many consecutive powers of JyK can be
computed by the sender with a depth D circuit. This lemma implies that if P (JyK) has degree B,
then the sender needs only O(1) encrypted powers of y to compute Jy2K, . . . , JyBK with a circuit of
multiplicative depth O(log logB). In the prior work [13], O(logB) powers are needed to perform
the same task.

11

Lemma 2. Let JyK be a ciphertext encrypting a plaintext message from Rt. Let D be a positive
integer. Then, using a depth D circuit, the sender can compute all the powers JyK, Jy2K, . . . , JyeDK
where

eD =
((

2D mod (t− 1)
)

+ 2
)
· t

⌊
2D

t−1

⌋
− 2.

The proof of this lemma can be found in Appendix C.

Example 3. Let t := 2. In this case 2D mod (t− 1) = 0, so eD = 22
D+1− 2. Since e1 = 6, the sender

can compute {Jy2K, . . . , Jy6K} with a circuit of depth 1, which is supported by the second part of
Example 2.

Example 4. Let t := 3. Since 2D mod (t− 1) = 0 for any D > 0, eD = 2 · 32D−1 − 2.

This technique requires the receiver to send additional evaluation keys to perform Frobenius
operations. In particular, the receiver should send blogtBc evaluation keys to the sender to compute
powers Jy2K, . . . , JyBK. Furthermore, the receiver can send only one evaluation key corresponding to
the basic Frobenius operation JxK 7→ JxtK. The size of the evaluation keys can be significant (see
Section 5 for more details), but they can be cached by the sender and used repeatedly for multiple
executions of the protocol.

In practice, the advantage of the Frobenius operation is at odds with the SIMD packing capacity.
In general, the packing capacity is equal to n/d where d is the order of the plaintext modulus t
modulo the order m of the ring R, i.e m|td−1. This implies that d > logtm and thus n/d < n · logm t.
Hence, a smaller plaintext modulus yields a smaller packing capacity, but it results in a better
multiplicative depth due to Lemma 2.

Fast OPRF from FourQ The OPRF stage is essential to our protocol, as was pointed out in
Section 3.1. The sender’s task is significant: it needs to choose a random number modulo the
OMGDH-hard group order to act as the OPRF key, hash each of its items into a uniformly random
group element, and multiply the group element with the key.

For performance reasons, we use the FourQ curve [17] for the group, which provides fast scalar
multiplication of random points, as well as a fast implementation of hash-to-curve as follows. We
apply the birational map (u, v) 7→ (u/v, (u−1)/(u+ 1)) to modify the Elligator 2 [5] construction. A
naive inspection of the required Fp2 operations suggests that this needs at least four exponentiations
in Fp, but a careful combination of the tricks from the literature (see [56]) allowed the full map to
the curve to be achieved with just 3 field exponentiations (all to the power of (p − 3)/4), and a
handful of additional operations in Fp. A mini-scalar multiplication by the cofactor moves these
hashed points inside the large prime order subgroup.

We measured our implementation to take around 12, 000 clock cycles for the the hash-to-curve
function, and 42, 000 clock cycles for the scalar multiplication. This is faster than GLS-254, a curve
optimized for the unbalanced PSI application by Aranha and Resende [54], which takes around
50, 000 clock cycles for a scalar multiplication.

4 Labeled PSI

4.1 Labeled PSI in Chen et al., 2018

In labeled PSI, the sender holds a bytestring Li, called a label, of length ` for each of its items
xi ∈ X. The receiver learns the corresponding label Li for each of its items yj = xi ∈ X ∩ Y in

12

the intersection. The basic idea, as introduced in [13], is for the sender to construct interpolation
polynomials

G(y) =

{
Li if y = xi;

random field element otherwise.

The sender evaluates the polynomial on the receiver’s encrypted input exactly like it evaluates the
intersection polynomials, and sends the result back to the receiver.

It remains to construct the polynomials G(y), however, the construction in [13] relies on the
fact that the intepolation is done over extension fields, where non-zero field elements can be fully
randomized by multiplying with a non-zero random field element.

4.2 Improvements

The above approach does not work immediately for our construction, because we break our items into
prime-field element sized chunks, and compute the intersection polynomial on them independently.
Thus, a partial match, which may be easy to brute-force due to the small size of the prime fields,
would immediately leak the corresponding part of the label.

Fortunately, [13] already provides a partial solution to this problem: since we have to use OPRF
in any case, we can extend the output of the OPRF and use one part of the OPRF value to represent
the item in the intersection polynomial, and another part as a key for a symmetric cipher to encrypt
the label. Then, instead of interpolating over parts of the label, we interpolate over parts of the
encrypted label (see Figure 2 for an example). The receiver will be able to decrypt the result after
extracting the key from the full OPRF value for the item. This technique ensures that only the
receivers that know the item in the intersection can decrypt the label corresponding to that item.

L′1 L′2 L′3 . . . L′20

L′1,1

L′1,2

...

L′1,10

G1(y)

G2(y)

...

G10(y)

Fig. 2. In this example, there are 20 encrypted labels {L′1, . . . , L′20}, every label is split into 10 parts. The red dotted
lines indicate the different parts. A label polynomial Gi(y) is created for every part.

One major downside of this approach is the O(B2) complexity of interpolation in field operations.
Using prime-fields yields a substantial improvement over the extension fields of [13], but the
cost is still unfortunately high for practical parameters. To address this issue, we note that the
precomputation is easily updatable: items can be added or removed, and labels can be updated.
This presents a problem when the symmetric cipher is an XOR stream cipher: if the label for an
item is changed and the encryption key and nonce remain unchanged, then even a semi-honest
receiver can find the XOR of the labels (or label parts) before and after the change. One simple
solution is to use a strictly incrementing nonce for the encryption, but this can be challenging to
maintain in practice. Another solution is to always choose a random nonce for each label on each
update, and append it to be a part of the label data. This way the receiver always obtains the
correct nonce and can use it to decrypt the label itself. In practice, the label data, especially when

13

appended with a random nonce, is likely to be longer than the item. In this case the label data is
simply broken up into item-size fragments and a separate interpolation polynomial is formed for
each fragment. The receiver will then obtain a separate result for each fragment, reconstruct the
encrypted label, and finally decrypt it.

It was pointed out in [13] that returning the intersection result to the receiver in addition to the
label result is not strictly speaking necessary, but it may be necessary in practice for the receiver to
know which label values hold valid data. Thus, we consider the labeled PSI protocol to return both
the intersection result as well as one or more label results, depending on whether the label consists
of a single or multiple item-length fragments.

Resolving a subtle issue Unfortunately, there is one remaining technicality to address with the
above approach. To understand the problem, note that [13] performed interpolation over large
extension fields, where an extension field element encoded an entire item. As items never repeat,
interpolation would always succeed. Since we suggest to use a separate interpolation polynomial
for each prime-field size part of the label, interpolation is done over a much smaller field, where it
is easy to end up with item-part collisions: a single partition (recall Section 3.1) can end up with
repeating item parts in the same bin. If the corresponding label parts do not match, as is likely to
be the case, interpolation is impossible.

To resolve this issue, the sender must check, when inserting an item, that none of its parts do
not already appear in the same locations in the partition in which the item is being inserted. If a
collision is encountered, the sender must either try to insert the item in a different partition, or as a
last resort create an entirely new partition where the troublesome item can be inserted.

The procedure described above results in an unfortunate phenomenon, where labeled PSI
produces more partitions and with a lower ‘fill rate’ for the sender’s data structures compared to
unlabeled PSI.

Security While [13] did not explicitly discuss a security proof for the labeled case, we note that
the ideal functionality ([13], Figure 3) and the security proof of the unlabeled case ([13], Theorem 1)
are straightforward to extend to the labeled case.

In the ideal functionality the sender inputs both its set X and a set of labels {Lx ∈ {0, 1}` | x ∈
X}, and the receiver learns {(x, Lx) | x ∈ X ∩ Y }. A simulator playing the role of a sender uses the
random oracle to extract the malicious receiver’s input Y ∗ from the OPRF queries it made. Then
Y ∗ is given to the ideal functionality that responds with {(x, Lx) | x ∈ X ∩ Y ∗}; the simulator pads
this to size |X| with random pairs (x, L), where x ∈ X \ Y ∗ and L ∈ {0, 1}`, encrypts the label
values corresponding to the receiver’s input with keys derived from the corresponding OPRF values,
and creates the response ciphertext data. The proof is completed exactly as in Theorem 1 of [13].

5 Experiments

We tested the aforementioned techniques in two C++ libraries, HElib [31] and SEAL [57], which
implement the BGV [7] and BFV [22] schemes, respectively. The encryption parameters used in
this section support at least 128 bits of security unless marked otherwise (see Tables 5 and 6). The
benchmarks are performed on an Intel Xeon Platinum 8272CL CPU @ 2.60 GHz, with 24 physical
cores and 192 GB of RAM. We assume this is comparable to the 32-core machine used in [13].

The rationale behind two implementations is the following. The SEAL implementation helps us
provide an adequate comparison with the prior works [14,13]. However, SEAL supports a limited set
of encryption parameters that obstructs the low-depth exponentiation technique from Section 3.1 —

14

our most powerful tool for reducing the communication cost. In particular, the order of the ring
R in SEAL is fixed such that td must be congruent to 1 modulo a power of two greater than or
equal to 212. The multiplicative order d of the plaintext modulus must be relatively small, i.e.,
80 ≤ d log t ≤ 100, to allow encoding of 80-bit strings with maximal SIMD capacity. We found
that there are no such primes t in the range [2, 3000]. For larger t, the low-depth exponentiation
technique is almost useless in practice, as the Frobenius operation yields a very sparse set of powers.
To solve the above issue, we resort to the HElib library, where the cyclotomic ring R can be of any
order.

In the SEAL-based implementation, we aim to show how our optimizations reduce both the
running time and the communication cost over prior work, in particular [13]. This setting exploits
all the techniques of Section 3.1, except for the low-depth exponentiation method. In the HElib
implementation, we focus solely on the communication cost and rely on the low-depth exponentiation,
the SIMD packing, and the Paterson-Stockmeyer methods.

Unlike the SEAL version, the HElib version is a proof-of-concept implementation, written only
to demonstrate the low-depth exponentiation technique used to reduce the communication cost.
Namely, we do not implement OPRF or networking. Nevertheless, we are able to accurately compute
the communication cost since the cost of OPRF is fixed (32 bytes) per item in the receiver’s set
and the ciphertext sizes can be computed in HElib. We omit the computation cost of OPRF in
our presentation (Appendix D) since it is harder to estimate accurately and our focus is on the
communication cost.

Our SEAL-based protocol is implemented in an open-source library available at https://GitHub.
com/Microsoft/APSI.

5.1 SEAL Implementation: Unlabeled Mode

The computation and communication cost of our SEAL implementation running in the unlabeled
mode is given in Table 1. For each pair (|X|, |Y |) we present only one result, but in reality the
situation is not that simple: the protocol involves rather complex parameterization with many
communication-computation trade-offs. The results we present demonstrate one setting for each
size of the problem that we felt captured the overall performance best, but it is always possible to
reduce the running time by increasing communication, and vice versa.

Table 1 includes a comparison for single-threaded execution with Chen et al. [13], including
details for sender-to-receiver and receiver-to-sender communication. Furthermore, in Table 2 we
present another a side-by-side comparison with Chen et al. [13], Kales et al. [36], and Aranha and
Resende [54], which represent different state-of-the-art protocols for unbalanced PSI.

Regarding Chen et al. [13], it is clear that our protocol is faster in many cases, especially for
larger parameters, and has a much smaller communication cost in every case. For example, with
|X| = 224 and |Y | = 11041 our computation-communication trade-offs allowed us to reduce the
communication by 71% at the expense of a marginal increase in online computation. With |X| = 228

and |Y | = 2048, both our computation and communication cost are roughly a third of what is
presented in [13].

The comparison between our work and Kales et al. [36] is more nuanced because the protocols
and applications are different. For the protocol aspect, the main difference is that Kales et al. has
a significant sender-side preprocessing step and requires a possibly large cuckoo filter (O(|X|)) to
be communicated ahead of time from the sender to the receiver, while our protocol has no such
offline communication. On the other hand, the computation cost of Kales et al. is better in the
online phase, as well as the preprocessing phase, since they do not need to perform any costly
homomorphic encryption operations. In terms of applications, Kales et al. [36] focuses on mobile

15

https://GitHub.com/Microsoft/APSI
https://GitHub.com/Microsoft/APSI

Set sizes Sender offline (s) Sender online (s) Comm. (MB)

|X| |Y | T=1 T=4 T=8 T=24 (T=32) T=1 T=4 T=8 T=24 R → S S → R

228

4096 - - - 3,400 152 38.9 20.9 8.3 6.5 3.7
2048 - - - 3,528 (4,638) 148 37.3 20.3 8.1 (28.5) 4.5 (11.8) 3.5 (10.2)
1024 - - - 3,680 (4,638) 141 36.2 19.6 7.8 (12.1) 2.6 (8.2) 3.5 (10.2)

1 - - - 1,469 50.7 13.9 7.1 3.6 2.6 1.2

224

4096 820 (806) 249 153 92.9 16.1 (22.0) 4.4 2.5 1.0 4.0 (8.7) 1.9 (7.2)
2048 827 (747) 256 159 96.9 15.1 (12.6) 4.1 2.4 1.0 2.9 (8.2) 1.7 (8.1)
1024 833 (1,430) 269 171 109 14.0 (17.7) 3.8 2.3 0.9 1.8 (3.1) 1.7 (5.1)

1 463 141 85.7 51.3 6.3 1.8 1.2 0.6 1.6 0.9

220

4096 33.6 (43) 11.4 7.7 6.6 4.82 (4.2) 1.34 0.72 0.38 3.4 (4.2) 2.8 (7.2)
2048 33.4 (39) 11.1 7.5 5.4 5.79 (2.1) 1.58 0.81 0.37 2.6 (2.9) 1.8 (3.6)
1024 33.5 (40) 10.9 7.4 5.6 5.59 (2.0) 1.52 0.77 0.36 1.6 (2.5) 1.7 (2.5)

1 25.8 7.7 4.9 4.0 0.13 0.04 0.02 0.01 0.86 0.87

Table 1. Computation and communication cost of our SEAL implementation. ‘T’ denotes the thread count, and
‘R→S’ and ‘S→ R’ the receiver-to-sender and sender-to-receiver communication sizes, respectively. The times are
averaged over 10 runs of the protocol. Corresponding values from Chen et al. (CCS’18), for single-threaded execution
are in parentheses, except for the case of |X| = 228, where Chen et al. (CCS’18) uses 32 threads and we compare
against our execution on 24 threads.

contact discovery, where the receiver is a low-powered mobile device, but our protocol does not target
a specific application. For this reason Kales et al. may have selected protocols that require more
online communication, e.g., GC-based OPRF, to reduce the computation cost of the mobile device
in the online phase. Nevertheless, we would like to highlight that our communication complexity in
the online phase is either comparable or a lot better than the two protocols in [36].

What cannot be seen from the table is that the cuckoo filter also causes Kales et al. [36] to have
a non-negligible false-positive probability. In their experiments, they parameterized the cuckoo filter
to have a false-positive probability of 2−29. For example, if |Y | = 11041, this results in a probability
of around 2−15.6 for the receiver to see at least one false positive result, so at least one invocation
of the protocol out of less than 49, 000 invocations would report a false positive. While in some
applications this may be acceptable, in others it may not be. On the other hand, [13,14], as well as
our variant, have a false-positive probability of at most 2−40, and often much smaller in practical
instantiations.

As Kales et al. [36] and Chen et al. [13], we also include a comparison to the work or Aranha
and Resende [54]. However, we note that [54] uses extremely aggressive cuckoo filter parameters,
resulting in online performance far better than any other protocol, but with an impractically high
false-positive rate of 2−13. Despite the aggressive cuckoo filter parameters, [54] suffers from the high
offline communication complexity when the sender’s set is large.

5.2 Very Large Senders

It was pointed out by Kales et al. [36] that in practical applications, such as mobile contact discovery,
it is realistic to encounter sender’s set sizes of more than a billion. While our protocol easily extends
to this case, running our implementation on such a large set requires significantly more RAM
than our system had available, resulting in extensive paging and a massive slowdown in online
computation.

Therefore, for very large senders a more viable solution is to partition the dataset into smaller
parts and run the protocol multiple times with smaller parameters. We note that the receiver-to-
sender communication needs to be done only once, so for example running our protocol against a

16

|X| |Y | Protocol Sender offline (s)
Offline comm. and

Sender online (s) Online comm. (MB)
receiver storage (MB)

228

2048
[13] (T=32) 4,628 0 28.5 22.28

Ours (T=24) 3,528 0 8.06 8.07

1024

[54] (T=32) 182 806 0.16 0.07
LowMC-GC-PSI [36] 1,869 1,072 0.93 24.01

ECC-NR-PSI [36] 52,332 1,072 1.34 6.06
[13] (T=32) 4,628 0 12.1 18.57

Ours (T=24) 3,680 0 7.80 6.08

224

11041

[54] 342 48 0.71 0.67
LowMC-GC-PSI [36] 117 67 12.51 258.79

ECC-NR-PSI [36] 3,298 67 11.94 65.24
[13] 656 0 20.10 41.48

Ours 783 0 21.16 11.87

5535

[54] 342 48 0.35 0.34
LowMC-GC-PSI [36] 117 67 5.63 129.73

ECC-NR-PSI [36] 3,298 67 5.93 32.71
[13] 806 0 22.01 16.39

Ours 824 0 17.07 6.95

220

11041

[54] 22 3 0.71 0.67
LowMC-GC-PSI [36] 7.3 4.2 12.51 258.79

ECC-NR-PSI [36] 242 4.2 11.94 65.24
[13] 43 0 4.47 14.34

Ours 29 0 4.21 8.94

5535

[54] 22 3 0.35 0.34
LowMC-GC-PSI [36] 7.3 4.2 5.63 129.73

ECC-NR-PSI [36] 242 4.2 5.93 32.71
[13] 43 0 4.23 11.50

Ours 28 0 3.23 5.39

Table 2. Comparison to prior work. All executions are with a single thread, except those where the thread count is
explicitly marked with T=thread count.

17

sender with |X| = 231 would require only 2.6+8×3.5 = 30.6 MB of communication, with |Y | = 1024,
whereas [36] would require a cuckoo filter of ≈ 8 GB to be communicated from the sender to the
receiver, which is clearly impractical.

5.3 SEAL Implementation: Labeled Mode

We demonstrate a few examples in the labeled mode as well. The label size matters a lot, namely,
recall from Section 4.2 that if labels are longer than the item length (more correctly, the length of
the OPRF value used to represent the item), then the label must be broken into multiple item-length
chunks and separate interpolation polynomials must be formed, and later evaluated, per each chunk.
Since the same encrypted query data is used to evaluate the interpolation polynomials for each
chunk, the label size has no direct impact on the receiver-to-sender communication. However, the
sender-to-receiver communication increases linearly with the number of chunks. Thus, if the labels are
very long, it is beneficial to parameterize the protocol in a way that minimizes the sender-to-receiver
communication at the cost of increased receiver-to-sender communication.

Unfortunately there are not many meaningful points of comparison. Chen et al. [13] presented a
single datapoint comparing to a PIR paper [3], where the label size was ` = 288 B. We replicated
this experiment using our optimizations; the results are presented in Table 3. Our protocol clearly
outperforms both points of comparison in all measured aspects. More examples for label sizes
` = 16 B and ` = 32 B are in Table 4.

` |X| |Y | Protocol Sender online (s) Client encrypt (s) Comm. (MB)

288 220 256
[3] 20.5 4.92 120
[13] 4.6 0.77 17.6

Ours 1.5 0.05 11.6

Table 3. Comparison to prior work in the labeled mode for label byte-length ` = 288. The sender uses 16 threads and
the receiver a single thread.

Set sizes Sender offline (s) Sender online (s) Comm. (MB)

` |X| |Y | T=24 T=1 T=4 T=8 T=24 R → S S → R

32
222 4096 857 20.1 6.8 4.0 3.8 4.1 3.9

1 199 8.1 2.8 2.7 2.7 1.6 1.7

220 4096 48.3 7.65 2.20 1.19 0.65 5.2 4.3
1 19.5 2.83 0.84 0.44 0.27 1.24 1.19

16
222 4096 472 13.3 4.6 2.5 2.3 4.0 2.4

1 116 5.1 1.8 1.7 1.7 1.6 1.0

220 4096 28.9 5.43 1.59 0.87 0.48 5.2 3.2
1 12.2 2.60 0.76 0.39 0.22 1.24 0.79

Table 4. Computation and communication cost of our SEAL implementation in the labeled setting. The label byte-size
is ` while the number of threads is denoted by T. The times are averaged over 10 runs of the protocol.

5.4 HElib Implementation: Optimizing for Communication Complexity

Our proof-of-concept implementation in HElib aims to illustrate that unbalanced PSI can achieve
a sublogarithmic communication complexity in |X|. We conducted experiments with X and Y

18

containing elements of arbitrary bit length. These elements are hashed to 80-bit strings in the
cuckoo hashing stage of the protocol. The set sizes are |X| ∈ {220, 222, 224, 226} for the sender
and |Y | ∈ {126, 210, 341, 558, 1245} for the receiver. To get the smallest possible communication
cost, we avoid partitioning (i.e., we take α = 1). Neither the windowing method, nor the extremal
postage-stamp bases are exploited.

As mentioned in Section 3.1, before executing our PSI protocol the receiver sends O(log |X|)
evaluation keys to the sender. The number of keys can be reduced to one, at the cost of additional
Frobenius operations. Since the evaluation keys are independent of Y , they can be sent only once
and cached for repeated executions of the protocol. Thus, this communication overhead Table 5 can
be amortized over multiple receiver’s requests.

Key size (MB)
|Y | |X| = 220 222 224 226

1245* 5.72 6.88 7.50 8.12

1024 [13] 1.05 - 2.11 -

558 5.49 6.18 6.87 8.13

512 [13] 0.43 - 0.43 -

341 7.71 9.90 11.1 12.2

256 [13] 0.43 - 0.21 -

210 6.22 7.44 8.31 9.17

128 [13] 0.03 - 0.03 -

126 7.97 9.02 10.6 -

Table 5. Evaluation key size of our HElib implementation and of the prior work [13] in the offline stage. The security
level of all the parameters used in these experiments is at least 128 bits except for the parameters with ‘*’ where it is
at least 106 bits.

The communication cost of our PSI protocol is shown in Table 6. For comparison, we also
included the communication cost of [13]. Note that in [13], evaluation keys and ciphertexts are
generated in the symmetric-key mode, which allows us to almost halve their size. Unfortunately,
we do not have access to this mode in HElib, but we requested the corresponding communication
size [13] in the public-key mode from the authors.

As shown in Table 6, the communication cost of our implementation grows very slowly with
the sender’s set size. For example, it remains constant for |Y | ∈ {210, 341, 1245} from |X| = 222 to
|X| = 226. Furthermore, a 64-fold increase of the sender’s set results in a 6-20% larger communication
size for all the parameters we tested. This is a much smaller growth in comparison to [13], where a
16-fold increase of |X| leads to a 40-291% rise in communication. More results with corresponding
encryption parameters and running time can be found in Appendix D.

6 Conclusions

We have demonstrated several improvements to the protocol of [13], reducing the communication
and online computation cost significantly. Our improvements enable very powerful communication-
computation trade-offs that can be leveraged to make the protocol practical and scalabe in various
scenarios. Finally, we showed that homomorphic encryption can be used to enable PSI in the
unbalanced setting, with sublogarithmic communication cost in the larger set, although this protocol
is not practical to use today. In the future, hardware acceleration to homomorphic encryption may
change the situation.

19

Communication (MB)
|Y | |X| = 220 222 224 226

1245* 2.09 2.28 2.28 2.28

1024 [13] 6.45 - 9.02 -

558 1.27 1.27 1.27 1.36

512 [13] 5.01 - 10.64 -

341 1.10 1.32 1.32 1.32

256 [13] 4.73 - 13.58 -

210 0.72 0.76 0.76 0.76

128 [13] 4.69 - 18.32 -

126 0.63 0.63 0.66 -

Table 6. Communication cost of our HElib implementation and of the prior work [13] in the online stage. The security
level of all the parameters used in these experiments is at least 128 bits except for the parameters with ‘*’ where it is
at least 106 bits.

Acknowledgments

We would like to thank Craig Costello and Patrick Longa (Microsoft Research) for significant help
and advise regarding the hash-to-curve algorithm for the FourQ curve and support with the FourQlib
library, as well as Hao Chen (Facebook) for helpful discussions in preliminary phases of this work.

This work is supported by CyberSecurity Research Flanders with reference number VR20192203.
Additionally, the first author is supported by the Defense Advanced Research Projects Agency
(DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No.
FA8750-19-C-0502. The third author is supported by ERC Advanced Grant ERC-2015-AdG-IMPaCT
and by the Flemish Government through FWO SBO project SNIPPET S007619N. The fifth author
is supported by a Junior Postdoctoral Fellowship from the Research Foundation – Flanders (FWO).

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of CyberSecurity Research Flanders, DARPA,
the US Government, the ERC or the FWO. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Finally, we would like to thank the anonymous reviewers for their helpful comments.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Mathematical
Cryptology 9(3), 169–203 (2015), http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/

jmc-2015-0016.xml

2. Ali, J.: Validating leaked passwords with k-anonymity. https://blog.cloudflare.com/

validating-leaked-passwords-with-k-anonymity/ (2018), accessed: 2021-04-26
3. Angel, S., Chen, H., Laine, K., Setty, S.: Pir with compressed queries and amortized query processing. In: 2018

IEEE Symposium on Security and Privacy (SP). pp. 962–979. IEEE (2018)
4. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: Size-hiding private set intersection. In: Catalano, D.,

Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (Mar
2011). https://doi.org/10.1007/978-3-642-19379-8 10

5. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve points indistinguishable from
uniform random strings. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. pp. 967–980 (2013)

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO. Lecture Notes in Computer Science, vol. 7417, pp. 868–886. Springer (2012)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. pp. 309–325. ACM (2012)

8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent
messages. In: Advances in Cryptology–CRYPTO 2011, pp. 505–524. Springer (2011)

20

http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/
https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/
https://doi.org/10.1007/978-3-642-19379-8_10

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM Journal
on Computing 43(2), 831–871 (2014)

10. Challis, M.F.: Two new techniques for computing extremal h-bases ak. The Computer Journal 36(2), 117–126
(1993)

11. Challis, M.F., Robinson, J.P.: Some extremal postage stamp bases. Journal of Integer Sequences 13(2), 3 (2010)
12. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight oblivious PRF. In: Shacham,

H., Boldyreva, A. (eds.) CRYPTO 2020, Part III. pp. 34–63. LNCS, Springer, Heidelberg (Aug 2020)
13. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic encryption with malicious

security. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1223–1237. ACM Press (Oct
2018). https://doi.org/10.1145/3243734.3243836

14. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1243–1255. ACM Press (Oct / Nov 2017).
https://doi.org/10.1145/3133956.3134061

15. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In: International Conference on the Theory and Application of Cryptology and Information
Security. pp. 3–33. Springer (2016)

16. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Citeseer (1997)
17. Costello, C., Longa, P.: Fourq: four-dimensional decompositions on a q-curve over the mersenne prime. Cryptology

ePrint Archive, Report 2015/565 (2015), https://eprint.iacr.org/2015/565
18. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6),

644–654 (1976)
19. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable proto-

col. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 789–800. ACM Press (Nov 2013).
https://doi.org/10.1145/2508859.2516701

20. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less than a second. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (Apr 2015)

21. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: Practically better than bloom.
In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and
Technologies. p. 75–88. CoNEXT ’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2674005.2674994

22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report
2012/144 (2012), http://eprint.iacr.org/

23. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (Feb 2005)

24. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (May 2004).
https://doi.org/10.1007/978-3-540-24676-3 1

25. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. vol. 9, pp. 169–178 (2009)
26. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Advances in Cryptology–

CRYPTO 2012, pp. 850–867. Springer (2012)
27. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler,

asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO (1). Lecture Notes in Computer
Science, vol. 8042, pp. 75–92. Springer (2013). https://doi.org/10.1007/978-3-642-40041-4, http://dx.doi.org/
10.1007/978-3-642-40041-4

28. Hagen, C., Weinert, C., Sendner, C., Dmitrienko, A., Schneider, T.: All the numbers are US: Large-scale abuse of
contact discovery in mobile messengers. In: 28th Annual Network and Distributed System Security Symposium,
NDSS. The Internet Society (2021)

29. Halevi, S., Shoup, V.: Design and implementation of helib: a homomorphic encryption library. Cryptology ePrint
Archive, Report 2020/1481 (2020), https://eprint.iacr.org/2020/1481

30. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious
and covert adversaries. In: Canetti, R. (ed.) Theory of Cryptography. pp. 155–175. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)

31. HElib: An implementation of homomorphic encryption (2.1.0). https://github.com/homenc/HElib (Mar 2021),
iBM

32. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better than custom protocols? In:
NDSS 2012. The Internet Society (Feb 2012)

33. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: Proceedings
of the 1st ACM Conference on Electronic Commerce. p. 78–86. EC ’99, Association for Computing Machinery,
New York, NY, USA (1999). https://doi.org/10.1145/336992.337012, https://doi.org/10.1145/336992.337012

21

https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://eprint.iacr.org/2015/565
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2674005.2674994
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-642-40041-4
https://github.com/homenc/HElib
https://doi.org/10.1145/336992.337012
https://doi.org/10.1145/336992.337012

34. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-
540-45146-4 9

35. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: International Conference on Security and
Cryptography for Networks. pp. 418–435. Springer (2010)

36. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private contact discovery at scale. In:
Heninger, N., Traynor, P. (eds.) USENIX Security 2019. pp. 1447–1464. USENIX Association (Aug 2019)

37. Kannepalli, S., Laine, K., Moreno, R.C.: Password monitor: Safeguarding passwords in microsoft edge. https://www.
microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/

(2021), accessed: 2021-04-26
38. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for finite fields. Cryptology ePrint

Archive, Report 2021/204 (2021), https://eprint.iacr.org/2021/204
39. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for unequal set sizes with mobile

applications. PoPETs 2017(4), 177–197 (Oct 2017). https://doi.org/10.1515/popets-2017-0044
40. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to

private set intersection. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS
2016. pp. 818–829. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.2978381

41. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. Journal of the
ACM (JACM) 60(6), 43 (2013)

42. Marlinspike, M.: The difficulty of private contact discovery. A company sponsored blog post (2014), https:

//signal.org/blog/contact-discovery/

43. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the absence of a continu-
ously available third party. In: 1986 IEEE Symposium on Security and Privacy. pp. 134–134 (April 1986).
https://doi.org/10.1109/SP.1986.10022

44. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. Journal of the ACM
51(2), 231–262 (2004)

45. Odlyzko, A.: Privacy, economics, and price discrimination on the internet. In: Proceedings of the 5th international
conference on Electronic commerce. pp. 355–366. ACM (2003)

46. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with application to private set intersec-
tion. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Heidelberg (Feb 2017).
https://doi.org/10.1007/978-3-319-52153-4 22

47. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications necessary to evaluate polynomials.
SIAM Journal on Computing 2(1), 60–66 (1973)

48. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: Fast, malicious private set intersection. In: Rijmen,
V., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. pp. 739–767. LNCS, Springer, Heidelberg (May 2020)

49. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection using permutation-based
hashing. In: 24th USENIX Security Symposium (USENIX Security 15). pp. 515–530 (2015)

50. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (Dec 2009)

51. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via cuckoo hashing. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 125–157. Springer, Heidelberg (Apr / May
2018). https://doi.org/10.1007/978-3-319-78372-7 5

52. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: Fu, K., Jung, J.
(eds.) USENIX Security 2014. pp. 797–812. USENIX Association (Aug 2014)

53. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R.
(eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May
22-24, 2005. pp. 84–93. ACM (2005). https://doi.org/10.1145/1060590.1060603, http://doi.acm.org/10.1145/
1060590.1060603

54. Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In: Meiklejohn, S., Sako, K. (eds.) FC
2018. LNCS, vol. 10957, pp. 203–221. Springer, Heidelberg (Feb / Mar 2018)

55. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. pp. 1229–1242. CCS ’17, ACM, New York,
NY, USA (2017). https://doi.org/10.1145/3133956.3134044, http://doi.acm.org/10.1145/3133956.3134044

56. Scott, M.: A note on the calculation of some functions in finite fields: Tricks of the trade. Cryptology ePrint
Archive, Report 2020/1497 (2020), https://eprint.iacr.org/2020/1497

57. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL (Nov 2020), microsoft Research, Redmond,
WA.

58. Shoup, V.: NTL: A library for doing number theory (11.4.3). https://libntl.org/ (Jan 2021)
59. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs, codes and cryptography 71(1), 57–81

(2014)

22

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://doi.org/10.1515/popets-2017-0044
https://doi.org/10.1145/2976749.2978381
https://signal.org/blog/contact-discovery/
https://signal.org/blog/contact-discovery/
https://doi.org/10.1109/SP.1986.10022
https://doi.org/10.1007/978-3-319-52153-4_22
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1145/1060590.1060603
http://doi.acm.org/10.1145/1060590.1060603
http://doi.acm.org/10.1145/1060590.1060603
https://doi.org/10.1145/3133956.3134044
http://doi.acm.org/10.1145/3133956.3134044
https://eprint.iacr.org/2020/1497
https://github.com/Microsoft/SEAL
https://libntl.org/

60. Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: Lightweight contact tracing with strong privacy
(2020)

61. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS. pp. 162–167. IEEE
Computer Society Press (Oct 1986). https://doi.org/10.1109/SFCS.1986.25

A Complexity of the Paterson-Stockmeyer algorithm with partitioning

Let α be the number of partitions as in Section 3.1. The Paterson-Stockmeyer algorithm achieves

the minimal non-scalar multiplicative complexity when Lα =
⌊√

(α+ 1) (dB/αe+ 1)
⌋
. By taking

Lα =
⌊√

(α+ 1) (dB/αe+ 1)
⌋
, we obtain Hα =

⌈
dB/αe+1

Lα

⌉
. Thus, the minimal complexity from (4)

is bounded as follows

Lα + (α+ 1)Hα − (α+ 3)

<
√

(α+ 1) (dB/αe+ 1) + (α+ 1)

(
dB/αe+ 1

Lα
+ 1

)
− (α+ 3)

<
√

(α+ 1) (dB/αe+ 1) +
(dB/αe+ 1)(α+ 1)√

(α+ 1) (dB/αe+ 1)− 1
− 2

Let C =
√

(α+ 1) (dB/αe+ 1). Then, the above upper bound turns into

C +
C2

C − 1
− 2 =

C2 − C + C2 − 2C + 2

C − 1
=

2C2 − 3C + 2

C − 1

= 2C − 1 +
1

C − 1
< 2C = 2

√
(α+ 1) (dB/αe+ 1)

< 2
√

(α+ 1)B/α+ 2α+ 2 = 2
√
B +B/α+ 2α+ 2

As a result, we obtain that the optimal number of non-scalar multiplications in the Paterson-
Stockmeyer algorithm with partitioning is around 2

√
B +B/α+ 2α+ 2 where α is the number of

partitions.
If α is big enough, this complexity can exceed dB/αe − 1, the multiplicative complexity of

evaluating all the powers of Jy2K, . . . , JydB/αeK to compute all the polynomials Pi(JyK)’s.
Let us demonstrate when the Paterson-Stockmeyer method with partitioning should be used

instead of computing all the powers of JyK. Assume that α =
√
B/r. If r > 4, then substituting α in

the above upper bound yields

Lα + (α+ 1)Hα − (α+ 3) < 2
√
B +B/α+ 2α+ 2

< 2

√√√√B +

(
r +

2

r

)√
B +

(
r + 2

r

2

)2

= 2

(
√
B +

r + 2
r

2

)
= 2
√
B + r +

2

r

= 2
√
B +

√
B

α
+

2α√
B
.

This upper bound is lower than B/α− 1, when

2α2 +
(

2B +
√
B
)
α+B −B

√
B < 0.

23

https://doi.org/10.1109/SFCS.1986.25

It follows that if the number of partitions satisfies

α <
−2B −

√
B +

√
4B2 + 12B

√
B − 7B

4
, (6)

then the Paterson-Stockmeyer method is more efficient than computing all the powers of JyK.

B Proof of Lemma 1

Recall from Section 3.1 that the windowing base for the low powers is equal to bL = b(L−1)2
−(D−1)

+1c
and the base for the high powers is set to bH = b(H − 1)2

−(D−1)
+ 1c. Note that bH ≤ bL when L is

optimally chosen since L > H. In this case, the communication complexity is equal to

(bL − 1)
(⌊

logbL(L− 1)
⌋

+ 1
)

+ (bH − 1)
(⌊

logbH (H − 1)
⌋

+ 1
)

<(bL − 1)
(
logbL(L− 1) + 1

)
+ (bH − 1)

(
logbH (H − 1) + 1

)
Since logbb+1c x ≤ logb x for any real b > 1, we have

(bL − 1)
(
logbL(L− 1) + 1

)
+ (bH − 1)

(
logbH (H − 1) + 1

)
<(bL − 1)

(
2D−1 + 1

)
+ (bH − 1)

(
2D−1 + 1

)
≤
(

(L− 1)2
−(D−1)

+ (H − 1)2
−(D−1)

) (
2D−1 + 1

)
Recall that LH ≥ B + 1 and L = b

√
2(B + 1)c in the optimal case. Then, H = d(B + 1)/Le and

H − 1 < (B + 1)/L <
√
B + 1. Hence, we can rewrite the above bound as follows(

(L− 1)2
−(D−1)

+ (H − 1)2
−(D−1)

)(
2D−1 + 1

)
<
(

22
−D

(B + 1)2
−D

+ (B + 1)2
−D
) (

2D−1 + 1
)

<(B + 1)2
−D
(

22
−D

+ 1
) (

2D−1 + 1
)

<3(B + 1)2
−D (

2D−1 + 1
)

The last inequality holds as D ≥ 0.

C Proof of Lemma 2

As in Example 2, the sender can compute JytiK for any i with depth-free Frobenius operations. It
means that any encrypted power JyaK can be obtained by non-scalar multiplications of elements
from the set {JytiK}i and Frobenius operations. In particular, the sender finds the biggest i such that
ti|a and then sets a′ = a/ti. This means that JyaK can be computed from Jya′K with one Frobenius
operation.

Next, the sender decomposes a′ in base t and obtains a′ =
∑`−1

i=0 a
′
it
i with a′i ∈ [0, t− 1] for any i

and ` = blogt a
′c+ 1. This decomposition indicates that to obtain Jya′K the sender can compute a

product with a′i copies of JytiK for any i ∈ [0, `− 1]. Let ~a′ denote a vector (a′0, . . . , a
′
`−1) ∈ Z`. Note

that |~a′|1 = |~a|1. Hence, JyaK can be computed with a binary tree circuit containing |~a|1 nodes and
of depth dlog2 |~a|1e.

24

Consider the minimal a such that JyaK can be computed with a circuit of depth D + 1. In other
words, a is the minimal positive integer that satisfies |~a|1 = 2D + 1. Let a have the following base-t
decomposition

~a = (t− 1, t− 1, . . . , t− 1, r) (7)

where r ≤ t− 1 and |~a|1 = 2D + 1. For any positive v < a, it holds that vi ≤ ai for any i and vj < aj
for some j. Hence, |~v|1 < |~a|1, which results in |~v|1 ≤ 2D. Thus, all the powers {JyK, Jy2K, . . . , Jya−1K}
can be computed with a depth D binary-tree circuit, which implies that a satisfies the above property.
Hence, eD = a− 1.

From (7), it follows that |~a|1 =
∑`−1

i=0(t − 1) + r. Hence, |~a|1 = `(t − 1) + r = 2D + 1, which
leads to r − 1 = 2D − `(t− 1). Since r − 1 < t− 1, this implies that r = (2D mod (t− 1)) + 1 and

` = 2D−(r−1)
t−1 =

⌊
2D

t−1

⌋
.

Since a =
∑`−1

i=0(t− 1)ti + rt`, we obtain

a = (t− 1)
t` − 1

t− 1
+ rt` = (r + 1)t` − 1

=
((

2D mod (t− 1)
)

+ 2
)
· t

⌊
2D

t−1

⌋
− 1.

Thus, eD = ((2D mod (t− 1)) + 2) · t
⌊

2D

t−1

⌋
− 2, which concludes the proof.

D Experimental results in HElib

To test our PSI protocol in the unlabeled mode using the HElib library, we fixed the plaintext
parameters corresponding to different receiver’s set size (see Table 7). The windowing and the

|Y | t m n k

1337 2789 18719 18718 2674

1245 1033 21923 19920 2490

819 107 19939 19656 1638

746 41 22381 22380 1492

672 53 19517 18816 1344

558 23 21223 20088 1116

419 11 20113 20112 838

341 7 21143 21142 682

210 5 14981 14700 420

126 3 12853 12852 252

Table 7. Plaintext parameter sets fixed for different sender’s set sizes |Y |. t is the plaintext modulus; m is the order
of the cyclotomic ring R; n is the dimension of R; k is the number of SIMD slots.

partitioning techniques are ignored (i.e. α = 1). The bit-length of hashed items is equal to σ = 80
as in [13].

The experiments were conducted with 12 and 24 threads (Table 8). The security parameter λ is
defined by the LWE estimator [1] with relation to the modulus qP , the ring dimension n and the
error standard deviation σe = 3.19. The secret keys have ternary coefficients and their Hamming
weight is arbitrary.

We were not able to run our experiment for the parameter set with |X| = 226 and |Y | = 126
because the NTL library [58] could not handle very large polynomials by default and returned the
“Polynomial too big for FFT” error.

25

Parameters Running time (s) Communication (MB)

|X| |Y | q qP c λ
Offline Online Encryption

Dec. Offline
Online

Total
Total

(online)T = 12 24 12 24 12 24 R → S S → R

226

1337 471 635 3 100 421 268 1190 783 0.264 0.128 1.14 10.5 2.20 0.224 12.9 2.42
1245 412 635 2 106 466 296 1310 889 0.240 0.124 1.24 8.12 2.04 0.233 10.4 2.28
819 299 470 2 145 642 406 1420 884 0.196 0.105 1.04 7.91 1.46 0.217 9.59 1.68
746 269 425 2 188 807 511 2120 1200 0.218 0.115 1.21 9.71 1.50 0.219 11.4 1.71
672 269 425 2 155 770 480 2050 1210 0.187 0.112 0.918 7.81 1.26 0.186 9.26 1.44
558 231 341 2 213 1030 638 2210 1310 0.202 0.123 0.959 8.13 1.15 0.208 9.49 1.36
419 215 317 2 232 1390 866 2530 1480 0.154 0.010 0.882 9.60 1.07 0.189 10.9 1.26
341 215 317 2 246 1990 1270 2570 1650 0.217 0.112 0.944 12.2 1.12 0.195 13.5 1.32
210 170 280 2 187 2260 1450 3050 1640 0.147 0.083 0.533 9.17 0.619 0.143 9.93 0.762
126 170 280 2 160 − − − − − − − − − − − −

224

1337 471 635 3 100 92.9 59.9 336 276 0.105 0.089 1.14 9.75 2.20 0.224 12.2 2.42
1245 412 635 2 106 102 64.7 400 338 0.112 0.104 1.23 7.50 2.04 0.233 9.78 2.28
819 323 475 2 143 140 89.3 395 307 0.105 0.087 1.03 7.32 1.58 0.198 9.09 1.77
746 269 425 2 188 176 111 432 298 0.112 0.103 1.18 8.84 1.50 0.219 10.6 1.71
672 269 425 2 155 168 106 446 295 0.109 0.08 0.887 7.13 1.26 0.186 8.58 1.44
558 215 317 2 232 217 138 466 314 0.118 0.081 0.955 6.87 1.07 0.193 8.14 1.27
419 215 317 2 232 298 185 597 376 0.095 0.079 0.876 8.70 1.07 0.189 9.96 1.26
341 215 317 2 246 423 264 610 382 0.088 0.072 0.925 11.1 1.12 0.195 12.4 1.32
210 170 280 2 187 484 305 588 354 0.065 0.05 0.491 8.31 0.619 0.143 9.07 0.762
126 170 280 2 160 774 509 738 469 0.057 0.043 0.369 10.6 0.540 0.123 11.3 0.663

222

1337 471 635 3 100 20.2 13.4 103 92.9 0.105 0.089 1.11 8.99 2.20 0.224 11.4 2.42
1245 412 635 2 106 21.7 14.1 149 140 0.107 0.102 1.21 6.88 2.04 0.233 9.16 2.28
819 323 475 2 143 30.3 19.3 139 121 0.083 0.069 1.01 6.64 1.58 0.198 8.42 1.77
746 269 425 2 188 38.1 24.2 133 110 0.084 0.071 1.15 7.98 1.50 0.219 9.69 1.71
672 269 425 2 155 36.5 23.1 132 108 0.072 0.074 0.862 6.45 1.26 0.186 7.89 1.44
558 215 317 2 232 46.9 30.1 134 111 0.088 0.067 0.939 6.18 1.07 0.193 7.45 1.27
419 215 317 2 232 63.9 39.6 155 117 0.068 0.069 0.850 7.80 1.07 0.189 9.06 1.26
341 215 317 2 246 90.1 56.5 161 120 0.073 0.068 0.904 9.90 1.12 0.195 11.2 1.32
210 170 280 2 187 104 65.2 150 105 0.05 0.049 0.463 7.44 0.619 0.143 8.20 0.762
126 161 265 2 171 164 106 179 112 0.043 0.036 0.380 9.02 0.511 0.116 9.65 0.628

220

1337 419 586 3 108 4.22 2.79 26.1 23.9 0.075 0.079 1.12 7.60 1.96 0.224 9.78 2.18
1245 377 580 2 117 4.56 2.88 45.8 43.4 0.087 0.08 1.24 5.72 1.87 0.213 7.81 2.09
819 269 421 2 164 6.34 4.10 49.9 48.1 0.073 0.074 1.02 5.29 1.32 0.198 6.81 1.52
746 269 425 2 188 8.13 5.18 52.5 49.3 0.073 0.068 1.15 7.11 1.50 0.219 8.82 1.71
672 269 425 2 155 7.88 4.97 52.7 49.6 0.066 0.064 0.861 5.77 1.26 0.186 7.21 1.44
558 215 317 2 232 10.0 6.44 49.5 46.1 0.065 0.069 0.915 5.49 1.07 0.193 6.76 1.27
419 215 317 2 232 13.5 8.30 53.9 45.3 0.063 0.062 0.844 6.90 1.07 0.189 8.16 1.26
341 170 280 2 284 19.2 11.9 45.6 38.0 0.058 0.060 0.890 7.71 0.892 0.206 8.81 1.10
210 161 265 2 199 22.2 14.0 45.1 38.7 0.04 0.047 0.467 6.22 0.587 0.136 6.95 0.722
126 161 265 2 171 34.5 22.3 51.7 40.6 0.043 0.033 0.363 7.97 0.511 0.116 8.60 0.628

Table 8. Complexity of our HElib implementation using 12 and 24 threads on the sender and 1 thread on the receiver.
q denotes the ciphertext modulus of the BGV scheme; qP is the modulus of key-switching keys in the BGV scheme; c
is the key-switching parameter in HElib; λ is the security parameter; T is the number of threads; ‘R → S’ and ‘S → R’
denote the communications from receiver to sender, and from sender to receiver. The receiver’s communication consists
of ciphertexts (ciph.) and key-switching keys (keys). The plaintext parameters for a given |Y | can be found in Table 7.

26

	Labeled PSI from Homomorphic Encryption with Reduced Computation and Communication

