
Safe-Error Attacks on SIKE and CSIDH
Fabio Campos˚, Juliane Krämer :, and Marcel Müller:

˚ Max Planck Institute for Security and Privacy, Bochum, Germany
campos@sopmac.de

: QPC, Technische Universität Darmstadt, Germany
{juliane,marcel}@qpc.tu-darmstadt.de

Abstract—The isogeny-based post-quantum schemes SIKE
(NIST PQC round 3 alternate candidate) and CSIDH (Asiacrypt
2018) have received only little attention with respect to their fault
attack resilience so far. We aim to fill this gap and provide a
better understanding of their vulnerability by analyzing their
resistance towards safe-error attacks. We present four safe-
error attacks, two against SIKE and two against a constant-
time implementation of CSIDH that uses dummy isogenies. The
attacks use targeted bitflips during the respective isogeny-graph
traversals. All four attacks lead to full key recovery. By using
voltage and clock glitching, we physically carried out two of the
attacks - one against each scheme -, thus demonstrate that full
key recovery is also possible in practice.

Index Terms—post-quantum cryptography, isogeny-based
cryptography, fault attacks

I. INTRODUCTION

The youngest field of post-quantum cryptography that is
studied within NIST’s standardization process is isogeny-based
cryptography. Isogeny-based cryptography was first described
in 2006 [1, 2]. De Feo et al. presented a fast cryptographic
scheme based on isogenies, named SIDH (Supersingular
Isogeny Diffie-Hellman), in 2011 [3]. One of the schemes
submitted to NIST’s standardization process is SIKE (Super-
singular Isogeny Key Encapsulation) [4]. SIKE uses SIDH to
create a key encapsulation mechanism. SIKE was selected as
NIST round 3 alternate candidate. The alternate candidates
are those schemes which are very promising, but need to be
further studied before being considered for standardization.
In 2018, Castryck et al. presented another isogeny-based
system, called CSIDH (Commutative Supersingular Isogeny
Diffie-Hellman) [5]. Unlike SIKE, CSIDH is non-interactive,
making it a potential drop-in replacement for current Diffie-
Hellman schemes. CSIDH has not been submitted to NIST’s
standardization process because it was designed only after
the submission deadline had passed. Although recently the
actual security of the suggested CSIDH parameters against
quantum attacks was questioned [6, 7], CSIDH still is a
promising and widely discussed isogeny-based scheme. The
quantum attacks show that the young field of isogeny-based
cryptography has not been sufficiently studied with respect
to (quantum) cryptanalysis yet. Also, the physical security of
isogeny-based schemes has not been sufficiently studied yet.

In this work, we analyze the physical security of SIKE and
CSIDH. Physical attacks allow attackers to deduce secret infor-
mation of an algorithm by observing or modifying the platform

it operates on. In a passive (or side-channel) attack, the attacker
analyzes physical information that they can measure while
cryptographic operations are computed. In an active attack, on
the other hand, the attacker directly interacts with the running
algorithm, causing a change in its operations through which
information is extracted. Hence, active attacks are also called
fault attacks.

Analyzing SIKE and CSIDH with respect to a specific fault
attack is the focus of this work. We analyze both schemes
regarding their vulnerability towards safe-error attacks. This
method was first published in attacks by Yen and Joye in
2000 [8]. Yen and Joye have proposed attacks on smart cards
using a square-and-multiply algorithm. They suggested that by
inducing transient faults, an implementation leaks one bit of
information by observing if its result is correct. Shortly after,
Joye and Yen applied safe-error attacks on the Montgomery
ladder, showing that by perturbing the memory of a running
Montgomery ladder computation one can deduce one bit of
secret information [9]. Safe-error attacks are particularly in-
teresting because even if the algorithm were to detect an error
in its operation, it will still leak information. Hence, standard
countermeasures, like checking for faults and outputting a
random value in case a fault was detected, still provide the
attacker with information and therefore are not sufficient to
protect an implementation against safe-error attacks.

Unfortunately, safe-error attacks are not taken seriously
enough: Some of our attacks are similar to attacks that have
long been known in the ECC community, e.g., [8, 9]. Our
work shows that recent implementations of isogeny-based
schemes nevertheless do not provide protection against them.

Our Contribution. The focus of this work is to analyze SIKE
and CSIDH with respect to safe-error attacks. To the best of
our knowledge, SIKE has not been studied with respect to
these attacks before.

We develop attack scenarios for SIKE and CSIDH and
demonstrate the feasibility of the presented safe-error attacks
by performing practical experiments. The experiments were
performed against C implementations of SIKE and CSIDH on
a ChipWhisperer board with an ARM Cortex-M4 processor as
target core. The implementation of CSIDH that we attacked
is a constant-time implementation based on dummy isogenies.
We achieve full key recovery of all n bits of the secret key
within Opnq interactions for two of the four attacks laid out

mailto:campos@sopmac.de
mailto:{juliane,marcel}@qpc.tu-darmstadt.de

in this paper. We discuss possible countermeasures and their
performance impact. The code used for this work is available1

in the public domain, which includes the modified CSIDH and
SIKE Cortex-M4 implementation and all attack scripts.

The attack against SIKE that we carried out practically can
analogously be applied to B-SIDH [10].

Related work. Although isogeny-based cryptography
provides promising candidates for quantum-resistant public-
key schemes, only few results regarding the physical security
of isogeny-based cryptography and SIDH [11–14], SIKE [15],
and CSIDH [16–18] exist. Galbraith et al. presented the
first fault attack on SIDH, together with corresponding
countermeasures [12]. In [11], Koziel et al. propose different
zero-value attacks on SIDH. Based on loop-abort fault
injection, Gélin and Wesolowski presented side-channel
and fault attacks against isogeny-based primitives [13]. Ti
proposes a fault attack on SIDH by changing the base point
to a random point via fault injection [14]. The only published
physical attack on SIKE so far is a power side-channel attack
exploiting differences in calculations depending on the secret
key [15]. CSIDH has been analyzed for potential attacks by
Cervantes-Vázquez et al. [17]. A recent work by Campos et
al. presents safe-error and further fault attacks, together with
countermeasures, on a constant-time CSIDH implementation
with dummy isogenies [16]. As another countermeasure,
LeGrow and Hutchinson suggest to randomize the order of
execution of isogenies [18].

Organization. In Section II, we present necessary background
on SIKE, CSIDH, and safe-error attacks. In Sections III
and IV, we present safe-error attacks on SIKE and CSIDH,
respectively. In Section V, we explain how to perform the
described safe-error attacks on a real device and present
full key recovery. We discuss possible countermeasures in
Section VI and conclude this work in Section VII.

II. BACKGROUND

We first discuss implementation details of SIKE and
CSIDH. For readers not familiar with isogenies, we refer
to [19]. Afterwards, the introduction to safe-errors shows the
pattern common to the attacks and how they work.

A. SIKE

SIKE (Supersingular Isogeny Key Encapsulation) is an
interactive key encapsulation using supersingular elliptic
curves [20]. SIKE has passed into the third round of the NIST
process2 as alternate candidate for future standardization. To
achieve the goal of becoming standardized it will need to be
studied further, especially with respect to efficiency improve-
ments and all aspects of misuse resistance. SIKE uses SIDH
internally, and SIDH will be the main target of the attacks
presented in the following section. For a detailed overview of
SIDH as used in SIKE, we refer to [20].

1https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
2https://csrc.nist.gov/news/2020/pqc-third-round-candidate-announcement

SIDH is constructed as follows: A public prime p “

2e23e3 ´1 such that 2e2 « 3e3 is chosen, as well as two points
on the torsion group associated to their base: P,Q P E0r2e2s

or E0r3e3s. These represent the respective public generators.
The rest of the algorithm is done in Fp2 . At the start of the
exchange, each party agrees on picking a base of either 2
or 3 as long as they differ between them. Afterwards, each
party generates a private key sk P Fp2 . Of note here is that
in the efficient implementation of [20], three points are used.
The third point is R “ P ´ Q and is used to speedup the
computation through a three-point ladder [21](cf. Algorithms 1
and 4 and Listing 1). Using these generators as well as their
private key, each party then computes their public curve E2 or
E3. This curve is calculated through a chain of e2 2-isogenies,
or e3 3-isogenies respectively. Each isogeny uses a generator
of the form xP ` rsksQy as the kernel. The projection of the
other party basis point and this curve are then sent to the other
party, where the same procedure is repeated to arrive at the
curve E2{3 and E3{2. These two curves are isomorphic to each
other and thus the parties have arrived at a shared secret: the
j-invariant of E2{3 and E3{2, respectively.

Listing 1. LADDER3PT – SIKE
352 / / Main loop
353 f o r (i = 0 ; i < n b i t s ; i ++) {
354 b i t = (m[i >> LOG2RADIX] >> (i &

(RADIX´1))) & 1 ;
355 swap = b i t ^ p r e v b i t ;
356 p r e v b i t = b i t ;
357 mask = 0 ´ (d i g i t _ t) swap ;
358
359
360 s w a p _ p o i n t s (R , R2 , mask) ;
361 xDBLADD(R0 , R2 , R´>X, A24) ;
362 fp2mul_mont (R2´>X, R´>Z , R2´>X) ;
363 }

The submitted implementation from round 3 is constant-
time and already includes several countermeasures against
fault attacks. The implementation is secure against the attack
presented in Section III-A, but vulnerable to the second one
as presented in Section III-B.

B. CSIDH

CSIDH (Commutative Supersingular Isogeny Diffie-
Hellman) describes a non-interactive key exchange using
supersingular elliptic curves [5]. For a more detailed overview
of the key exchange, we refer to [5].

CSIDH is constructed as follows: A prime p is chosen of
the form p “ 4 ¨ ℓ1 ¨ ¨ ¨ ℓn ´ 1, where the ℓi are small pairwise
distinct odd primes. The rest of the algorithm is computed in
Fp. The algorithm uses elliptic curves in Montgomery form:
E0 : y2 “ x3`Ax2`x. To begin, each party generates a secret
key pe1, . . . , enq, where each ei is sampled uniformly random
from the interval r´m,ms with m P N. The key exchange is
then prepared by calculating the elliptic curve associated with
the secret key: For each ei a total of signpeiq ℓi-isogenies

https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://csrc.nist.gov/news/2020/pqc-third-round-candidate-announcement

Algorithm 1: xDBLADD

1 function xDBLADD
Input: pXP : ZP q, pXQ, ZQq, pXQ´P : ZQ´P q,

and pa`
24 : 1q pA ` 2C : 4Cq

Output: pXr2sP : Zr2sP q, pXP`Q, ZP`Qq

2 t0 Ð XP ` ZP

3 t1 Ð XP ´ ZP

4 Xr2sP Ð t20
5 t2 Ð XQ ´ ZQ

6 xP`Q Ð XQ ` ZQ

7 Zr2sP Ð t21
8 t1 Ð t1 ¨ XP`Q

9 t2 Ð Xr2sP ¨ ´Zr2sP

10 Xr2sP Ð Xr2sP ¨ Zr2sP

11 XP`Q Ð a`
24 ¨ t2

12 ZP`Q Ð t0 ´ t1
13 Zr2sP Ð XP`Q ` Zr2sP

14 XP`Q Ð t0 ` t1
15 Zr2sP Ð Zr2sP ¨ t2
16 ZP`Q Ð Z2

P`Q

17 XP`Q Ð X2
P`Q

18 ZP`Q Ð XQ´P ¨ ZP`Q

19 XP`Q Ð ZQ´P ¨ XP`Q

20 return pXr2sP : Zr2sP q, pXP`Q, ZP`Qq

have to be calculated. The sign of ei represents the direction
taken in the respective ℓi-isogeny graph. As the composition
of isogenies is commutative, each computed curve will be
isomorphic no matter in which order they are calculated.
The isognies are then chained to compute the public curve
associated to the secret key: E0

pe1,...,enq
ÝÝÝÝÝÝÑ EA. Bob does the

same to calculate EB . The parameter of the curves EA and EB

correspond to the public keys and are then exchanged and each
party repeats their isogeny calculation using the other’s public
key as the starting curve: Alice calculates EB

pe1,...,enq
ÝÝÝÝÝÝÑ EBA

and Bob calculates EAB in a similar fashion. The final curves
EBA and EAB are the same, and the shared secret is the A
parameter of this curve in montgomery form.

The straightforward implementation of the algorithm would
be highly variable in time, since different amounts of isogenies
need to computed, depending on the secret key. It would be
easy for an attacker to trace the amount of isogenies calculated
and their degree as isogenies with a larger degree require
more computational effort. In 2019 Meyer et al. have presented
a constant-time implementation of CSIDH [22]. The authors
tackle this issue by making the amount of isogeny evaluations
constant, thus only leaking the degree of the isogenies them-
selves and not the exact number of them. This follows from the
aforementioned fact that higher degree isogenies take longer
to construct and, e.g., could be recovered through a timing
attack. They achieve this by calculating ”dummy” isogenies
which serve as extra computational time to thwart timing
attacks from finding the real amount of isogenies of a given

Algorithm 2: CSIDH Algorithm by Onuki et al.
Input: A P Fp,m P N, a list of integers

pe1, . . . , enq P r´m,msn and n distinct odd
primes ℓ1, . . . , ℓn s.t. p “ 4

ś

i ℓi ´ 1.
Output: B P Fp,m P N s.t. EB “ ple11 ¨ ¨ ¨ le2n q ˚ EA,

where li “ pℓi, π ´ 1q for i “ 1, . . . , n, and π
is the p-th power Frobenius endomorphism of
EA.

1 Set e1
i “ m ´ |ei| for i “ 1, . . . , n

2 while some ei ‰ 0 or e1
i ‰ 0 do

3 Set S “ ti|ei ‰ 0 or e1
i ‰ 0u

4 Set k “
ś

iPS ℓi
5 Generate points P0 P EArπ ` 1s and

P1 P EArπ ´ 1s by Elligator
6 Let P0 Ð rpp ` 1q{ksP0 and P1 Ð rpp ` 1q{ksP1

7 for i P S do
8 Set s the sign bit of ei
9 Set Q “ rk{ℓisPs

10 Let P1´s Ð rℓisP1´s.
11 if Q ‰ 8 then
12 if ei ‰ 0 then
13 Compute an isogeny ϕ : EA Ñ EB

with kerϕ “ xQy

14 Let A Ð B,P0 Ð ϕpP0q, P1 Ð ϕpP1q,
and ei Ð ei ´ 1 ` 2s

15 else
16 Dummy computation
17 Let A Ð A,Ps Ð rℓisPs, and

e1
i Ð e1

i ´ 1.

18 Let k Ð k{ℓi

19 return A

degree. Further, they change the interval from which the secret
key parts are sampled from r´m,ms to r0, 2ms so that an
attacker cannot tell apart secret keys with unbalanced positive
and negative parts. Unfortunately, these dummy calculations
have added a new attack vector: loop-abort attacks. Such an
attack was first described in passing by Cervantes-Vázquez
et al. in [17]. In [16] the approach using dummy isogenies
has been further refined. Campos et al. analyzed the constant-
time implementation for fault-injection attacks. This resulted,
among others, in added safeguards to the point evaluation and
codomain curve algorithm. However, these safeguards do not
protect against the attack described in Section IV-A, as the
attacker assumed in this paper has a different threat model.

Following [22] Onuki et al. proposed to speed-up the imple-
mentation by reverting the secret key part interval to r´m,ms

and guarding against unbalanced keys by using two points
instead of one [23]. This change, however, has introduced a
possible new attack vector as described in Section IV-B.

C. Safe-Error Attacks

In [8], Yen and Joye introduce a new category of active
attacks, so called safe-error attacks. In this kind of attacks, the
adversary uses fault injections to perturb a specific memory
location with the intent of not modifying the final result of
the computation: the algorithm may overwrite or throw away
modified values, making them "safe errors". The presence or
absence of an error then gives insight into which codepath the
algorithm executed. Two kinds of safe-error attacks exist: in a
memory safe-error (M safe-error) attack, the attacker modifies
the memory, i.e., in general these attacks focus on specific
implementations [9, 24, 25]. In a computational safe-error (C
safe-error) attack, however, the computation itself is attacked
through, e.g., skipping instructions. Hence, C safe-error attacks
rather target algorithmic vulnerabilities [9, 25].

The general construction of a safe-error attack is as follows:

Algorithm 3: A toy algorithm vulnerable to a variable-
access attack

Input: S the n-bit secret key
Output: a public message M

1 M Ð 1
2 K Ð 0
3 P Ð 0
4 for i P 0..n do
5 if Si “ 0 then
6 K Ð calculatepSi, P,Kq

7 else
8 P Ð calculatepSi,K, P q

9 M Ð M ` K ˚ P

10 return M

Suppose an algorithm iterates over secret data. It then
branches and does slightly different calculations depending
on whether a given bit in the secret data is equal to 0 or
1. The algorithm presented in Algorithm 3 has been secured
against timing side-channel attacks, and takes the same time
in each branch. This predictability, enforced to thwart timing
attacks, makes safe-error attacks easier to carry out, as they
require timed fault-injections. Such measures, that are intended
to add security or efficiency, but enable new attacks, are
commonly called footguns3 and need to be avoided unless their
implications are fully understood. In implementations, explicit
branching on secret data is usually avoided. However, the dif-
ferent memory access patterns still occur due to the structure of
the respective algorithm. As we show in Section III-A, using a
constant time swap algorithm instead of condition branching
is not sufficient and may even provide an additional attack
vector.

Analyzing the read and write patterns of Algorithm 3
and classing them according to the state that they occur in
allows to look for differences that could be exploitable. These

3See the following thread in the NIST-PQC mailinglist: https://tinyurl.com/
yy4m7rud

TABLE I
ACCESS PATTERNS DEPENDING ON THE i-TH BIT OF THE SECRET KEY

Condition Read Variables Written Variables

Si “ 0 P,K K
Si “ 1 P,K P

differences can be rendered in a table, such as Table I. This
allows for visual inspection of differences.

This representation makes it immediately clear that even
though the same method is being called, it affects different
data. This allows an attacker to exploit the difference between
the two branches by modifying one memory location and
checking whether a safe-error occurred.

a) Example:: Let’s assume we try to attack the first
branch, when Si “ 0. During the calculate routine, we modify
the memory used by the variable K in such a way that it
does not change the result of the computation. This is done
by perturbing the memory once the given memory location is
not read anymore, but before it is being potentially written to.
After the calculate routine has executed, either K or P has
been overwritten. If our guess of Si “ 0 was correct, due to
being overwritten after being perturbed by the fault, K now
holds again correct information in context of the algorithm.
Letting the algorithm finish leaks the information whether our
guess was correct: If it finishes normally, Si was indeed 0. If
we assume that M is known and verifiable, we can check to
see if the outcome was wrong, or, simpler, an error occurred.
If either happened, then Si was 1, as the faulted K did not
get overwritten and subsequently changed the calculation. This
attack needs to be then repeated n times to fully recover the
secret key S.

III. ATTACKS ON SIKE

In this section, we analyze the implementation of SIKE
submitted to round 3 of NIST’s standardization process [20]
in the context of safe-error attacks. This implementation is
implemented in a constant-time manner. First, we describe a
memory safe-error attack in Section III-A, then we describe
a computational safe-error attack in Section III-B. For both
attacks, we assume that the victim has a static secret key.
Both the encapsulator and the decapsulator can be the victim
of this attack.

A. M-Safe Attack on SIKE

We first give a high-level overview on how the attack is
constructed. Then, we give a more detailed analysis of the
individual steps of the attack.

As shown in Section II-A each SIKE participant has their
own secret key m P Fp2 . This key is used to calculate the
subgroup xP, rmsQy representing the kernel of their secret
isogeny. The point multiplication rmsQ is performed through a
three-point ladder algorithm as seen in Algorithm 4. Important
here is that the LADDER3PT function is called with the
secret key m as the first argument. The attacker requires the
following capabilities: They need to be able to introduce a

https://tinyurl.com/yy4m7rud
https://tinyurl.com/yy4m7rud

Algorithm 4: The 3-Point Ladder

1 function LADDER3PT
Input: m “ pml´1, ...,m0q2 P Z, pxP , xQ, xQ´P q, and pA : 1q

Output: pXP`rmsQ : ZP`rmsQq

2 ppX0 : Z0q, pX1 : Z1q, pX2 : Z2qq Ð ppxQ : 1q, pxP : 1q, pxQ´P : 1qq

3 a`
24 Ð pA ` 2q{4

4 for i “ 0 to l ´ 1 do
5 if mi “ 1 then
6 ppX0 : Z0q, pX1 : Z1qq Ð xDBLADDppX0 : Z0q, pX1 : Z1q, pX2 : Z2q, pa`

24 : 1qq

7 else
8 ppX0 : Z0q, pX2 : Z2qq Ð xDBLADDppX0 : Z0q, pX2 : Z2q, pX1 : Z1q, pa`

24 : 1qq

9 return pX1, Z1q

TABLE II
ACCESS PATTERNS DEPENDING ON THE iTH-BIT OF THE SECRET KEY

Condition Read Variables Written Variables

mris “ 0 pX0, Z0q, pX1, Z1q, pX2, Z2q pX0, Z0q, pX2, Z2q

mris “ 1 pX0, Z0q, pX1, Z1q, pX2, Z2q pX0, Z0q, pX1, Z1q

memory fault during a specific point of execution, as well
as be able to verify the result of a given SIKE run. Both the
shared secret as well as any execution errors need to be known
afterwards. The attack proposed in this section then follows
three parts:

With the goal of extracting an n-bit secret key, the attacker

1) initiates a SIKE key agreement,
2) introduces a memory fault of any kind (bit-flip, scram-

bling,...) during the i-th iteration of LADDER3PT,
and

3) uses the result of the SIKE run to obtain the value of
the i-th bit of the secret key.

Steps 1 to 3 have to be repeated n times to reconstruct the
complete secret key.

In detail, this means that the attack on this three-point ladder
algorithm follows the schema as described in Section II-C.
Depending on a given bit of the secret key, different variables
are modified. This can be seen in Table II. In this case either
pX1, Z1q or pX2, Z2q are passed to xDBLADD. Without
loss of generality, let’s assume for the rest of this section that
we attack m and that the guess for the i-th bit is mris “ 1. By
following the general outlines of a safe-error attack one needs
to modify pX1, Z1q between its last use and the moment it
gets written to. Such a moment exists in Algorithm 4 Line
6 (cf. Section II-A): pX1, Z1q is passed to the xDBLADD
subroutine as the second argument, thus pXQ, ZQq = pX1, Z1q

in Algorithm 1 (cf. Section II-A). pX1, Z1q is passed as the
third argument in Line 8, this difference is dependent on the
secret key. The xDBLADD method (as seen in Line 6 in
Algorithm 1) then returns two values, one of which is assigned
to pX1, Z1q in Algorithm 4. In the xDBLADD routine from
Line 7 onwards, pXQ, ZQq is no longer read, and thus the

value of pX1, Z1q stays unused until the function returns. This
is where the attacker executes the active attack, by scrambling
the values backing pXQ, ZQq, i.e., pX1, Z1q. If the attack on
the memory location of pX1, Z1q was successful and our guess
was correct, the algorithm will, upon return, overwrite our
modification and finish without encountering an error. One
can thus conclude that mris “ 1. Should our guess of mris “

1 be incorrect, then the algorithm computes a mismatching
shared secret or raises an error. In this case, mris “ 0. Either
way, a single bit of information is gained of the secret key.
Consequently, all n bits of the static secret key m can be read
by this method and the full key can be recovered through n
runs of this attack. The complete attack thus consists of these
steps:

1) The attacker observes a normal SIKE key agreement.
2) As xDBLADD gets called during LADDER3PT,

overwrite pX1, Z1q on the i-th iteration and observe the
final result.

3) If the SIKE de/encapsulation fails, we know that
pX1, Z1q did not get overridden. Thus mris “ 0 oth-
erwise mris “ 1.

Repeat steps 1 to 3 n times to recover the complete n-bit
secret key.

The SIKE implementation in [20] has several parameter
sets, each influencing the range of possible values of the secret
key. For example, SIKEp610 has an exponent e2 “ 305 with
an estimated NIST security level 3 [20]. The private key m
is thus sampled from t0, ..., 2305 ´ 1u, giving the private key
305 bits of total length. Therefore an attacker, trying to attack
a SIKEp610 instantiation, would need to repeat the attack at
least 305 times to achieve full key recovery.

In the latest version of xDBLADD, as published for
the third NIST PQC process round [20], the authors have
chosen to use a simultaneous double-and-add algorithm. This
implementation prevents this particular attack as there is no
moment during execution that P or Q is written before it
is potientially read. This is also true during compilation: the
order of operations in the assembly stays the same. Nonethe-
less, future implementations have to make sure that they are
not vulnerable when using a different algorithm.

B. C-Safe Attack on SIKE

Similar to the M safe-error attack on SIKE described in the
previous section, the attack described in this section exploits
the difference in memory accesses depending on a bit of the
secret key. Again, each party generates their own private key
m, used to generate the subgroup xP ` rmsQy of their private
isogeny (cf. Section II-A). This point multiplication P `rmsQ
is done through a three-point ladder as seen in Algorithm 4 and
Figure 1 (cf. Section II-A). In the C implementation, published
in [20], the authors use a constant-time swapping algorithm to
exchange the points R and R2 depending on the i-th bit of the
secret key (see Line 360 of Listing 1). The function is called
swap_points and accepts both points and a mask as input.
We denote the i-th bit of the secret key as mris. The mask
of the swapping function is calculated as xorpmris,mri´1sq,
with a starting value of 0 for mri´ 1s if i “ 0. If the mask is
1 the points are exchanged, otherwise they are left as is. This
behavior can be exploited by meddling with this function call.
It could for example simply be skipped, or the computation of
the mask be perturbed such that on a 0 mask it stays 0, but on a
1 mask the value is randomized. Assuming xorpmris,mri´1sq

and an attacker skips this function call using an active attack
on the i-th loop, the end result will be unchanged. If the value
had been xorpmris,mri ´ 1sq, then the end result would be
wrong, as the wrong point would have been used for the rest
of the calculation.4 Since we know that in the first iteration
mri ´ 1s is forced to 0, the mask is simply set to the value
of xorpmr0s, 0q “ mr0s. The second iteration of attack then
knows the value of mr0s and so on. Thus, in general the bit
mris is leaked through a C safe-error. As the keyspace for m is
equal to r0, ..., 2e2 ´ 1s, similar to the attack in Section III-A,
the attack needs to be repeated at least 305 times to achieve
full key recovery when the parameter set SIKEp610 is used.

IV. ATTACKS ON CSIDH

In this section, we analyse CSIDH with respect to safe-error
attacks. We analyse two recent implementations of CSIDH [16,
23]. Both implementations are constant-time implementations,
and both implementations achieve this kind of timing attack
resistance through dummy isogeny computations. The main
difference between both implementations is that in [16],
computations are done on one point only, while in [23], two
points are used. The analysis of both implementations with
respect to safe-error attacks is presented in Section IV-A and
Section IV-B, respectively. For both of the presented attacks,
it is assumed that the victim uses a static secret key.

A. M Safe-Error Attack on an Implementation Using One
Point

In [16] Campos et al. have evaluated possible physical
attack vectors for CSIDH implementations using dummy
isogenies. One threat model they did not consider, is one
that can introduce memory faults. This will be the focus
of the attack in this section. The attacker only needs to

4Wrong shared secret or an error raised from the algorithm.

TABLE III
ACCESS PATTERN DEPENDING ON THE SECRET KEY e DURING THE KEY

EXCHANGE

Condition Read Variables Written Variables

ei ‰ 0 P0, P1 P0, P1

ei “ 0 Ps where s is the sign bit of ei Ps

be able to change a single bit in a certain byte range. In
[16], during the execution of a dummy isogeny, the curve
parameter A is not modified. If however a non-dummy isogeny
is calculated, then the A parameter is changed corresponding
to the newly calculated curve. This leads to a possible attack
vector: assume without loss of generality that the algorithm is
currently calculating isogenies of degree ℓi. If it is currently
calculating a dummy isogeny, a new parameter A is computed,
but directly discarded. If a real isogeny is calculated, that
result is then used further. A fault injected with the intent of
modifying the parameter A can now discern if a real or dummy
isogeny is being calculated: if one attacks a real isogeny, the
modified value will be propagated and cause a mismatch of
the final shared secret. If it was a dummy isogeny however,
the modified A was discarded and the shared secret is not
impacted. This is now repeated for each possible value of ei,
so as to find out the first time a dummy isogeny is calculated.
The value of ei is then the amount of real isogenies that have
been calculated for ℓi. In the implementation in [16] ei is
sampled from the range r0, 10s, therefore one needs on average
5 attacks per ei to recover its value. In CSIDH-512 of [16]
the secret key has 74 components, thus on average, an attacker
would need to run 5 ˆ 74 “ 370 attacks to recover the full
key.

B. M Safe-Error Attacks on an Implementation Using Two
Points

In [23], Onuki et al. have introduced a new algorithm that
uses two points to calculate the CSIDH action. This version
has an issue similar to the one described in Section IV-A,
where the parameter A is discarded when calculating a dummy
isogeny. Thus it has also the potential for an M safe-error
attack by attacking the A parameter assignment. Unlike the
implementation in [16], in [23] the range r´5, 5s is used for
each ei. Even though an attacker additionally needs to recover
the sign of ei now, this reduces the amount of overall attacks
required to recover a single ei.

Further, the CSIDH action as described in [23] has another
M safe-error attack vector that will be explained in this
section. Table III shows the access patterns of two different
variables depending on a part of the secret key: only one
point is overwritten when ei equals 0 during the CSIDH action
calculation at Line 17 in Algorithm 2 (cf. Section II-B). This
opens up the potential of perturbing a given P0 or P1 and
finding out if this had any effect on the calculation. If there
was no effect, then the sign of ei is equal to the index of the
point that was overwritten: 0 if positive, 1 if negative. This
allows the attacker to find the sign of a specific ei since the

dependency between isogenies of degree ℓi and its running
allows for attacking a specific degree ℓi [5]. Now let si be
the sign of ei. In total, Algorithm 2 does ei calculations of
isogenies of order ℓi. After each calculation, it decrements
ei to keep track of how many more real isogenies need to be
computed. Once ei “ 0, only dummy operations are executed.
The task is thus, to find out how many real isogenies are
calculated. One can run the following procedure to find the
value of ei: Start with n “ 0. Modify Psi after n iterations
just before it is potentially overwritten, and check the final
result. If the shared secret is correct or n is larger than the
maximal possible value for ei, we know ei ă n at that point
and we can stop the process, otherwise ei ą n, increment
n and retry. Once this procedure terminates, ei equals the
amount of calculated real isogenies. Applying this procedure
repeatedly, one can deduce the whole secret key pe1, . . . , enq.
As [23] uses an instantiation where the private key elements
can range from ´5 to 5, in total 2.5 ` 1 “ 3.5 attacks are
required per ei, as well as finding si. In that instantiation, 74
elements are used per secret key, therefore an attacker would
need to run 74ˆ3.5 “ 259 attacks on average for the signs and
the full key recovery in total. The attack can be summarised
as follows:

1) Reveal which ℓi is currently being computed from the
length of computation.

2) On Line 17 in Algorithm 2 only Psi is being assigned.
Thus, perturbing the memory of Psi while rℓisPsi is
being calculated will allow to deduce whether i “ 0, or
i “ 1. From now on, we assume that si is known for
each ei.

3) Knowing the sign allows us to now explicitly attack
either P0 or P1 and thus find out whether a real or
dummy isogeny is being calculated.

If the final shared secret is correct, it was a real isogeny,
otherwise it was a dummy. The value of ei is equal to
the count of real isogenies. Once all ei and their signs si
have been recovered, the full private key pe1, . . . , enq can be
reconstructed.

V. PRACTICAL EXPERIMENTS

In this section, we explain how to perform the described
attacks on a ChipWhisperer board and present the achieved
security impact. In the case of SIKE, we present full key
recovery. In the case of CSIDH, due to the relatively long
runtime on the target architecture (« 7 seconds for the reduced
version of CSIDH), we calculated the maximum number
of possible runs in advance and determined further attack
parameters accordingly.

All practical attacks were implemented using the Chip-
Whisperer tool chain5 (version 5.3.0) in Python (version
3.8.2) and performed on a ChipWhisperer-Lite board with
a 32-bit STM32F303 ARM Cortex-M4 processor as tar-
get core. Based on available implementations, we wrote
slightly modified ARM implementations of SIKEp434 and

5https://github.com/newaetech/chipwhisperer, commit fa00c1f

CSIDH512 to make them suitable for our setup. Security-
critical spots remained unchanged. All binaries were build
using the GNU Tools for ARM Embedded Processors 9-2019-
q4-major6 (gcc version 9.2.1 20191025 (release) [ARM/arm-
9-branch revision 277599]) using the flags: -0s -mthumb
-mcpu=cortex-m4 -mfloat-abi=soft.

In all attack models the adversary aims to attack the calcu-
lation of the shared secret in order to learn parts of the private
key. The shared secrets are calculated without randomness,
i.e., points and private keys used were computed in advance.
Both in the case of SIKE and CSIDH, the adversary is able to
randomise variables or skip instructions by injecting one fault
per run. Furthermore, we assume that the attacker is able to
trigger and attack the computation of the shared secret multiple
times using the same pre-computed private keys. However,
in a real environment the attacker is limited to observe the
impact of a fault injection (whether both shared secrets are
equal or not), by noticing possible unexpected behaviour in
the protocol.

A. Attacks on SIKE

Since the current implementation [20] is immune to the
attack described in Section III-A, we focus on the attack
explained in Section III-B. As described, the adversary de-
ploys safe-error analysis to recover the private key during
the computation of the three-point ladder. Since the attacked
algorithm runs in constant time, an attacker can easily locate
the critical spot, which in our case represents the main loop
within the ladder computation. Thus, an attacker who can
accurately induce any kind of computational fault inside that
spot at the i-th iteration, may be able to deduce if the i-th
bit of the private key is set or not, i.e, ski “ 0 or ski “ 1
according to whether the resulting shared secret is incorrect or
not. Thus, in this model the required number of injections for
a full key recovery only depends on the length of the private
key. In this setup, the fault is injected by suddenly modifying
the clock (clock glitching), thus, forcing the target core to skip
an instruction.

The SIKEp434 Cortex-M4 implementation7 available
at the pqm4 project [26] provided the basis for our
implementation. However, this attack can be applied to all
available software implementations of SIKE8 including the
round-3 submission [20] to NISTs standardisation process.
More precisely, the code part that represents this vulnerability
remains the same across all available implementations.

Results. Assuming that the attacker knows critical spots
within the attacked loop (cf. Listing 1) which reveal one
bit of the private key after a single fault injection with
high accuracy. As shown in this work, such spots and the
corresponding suitable parameters for the injection (e.g., width
and internal offset of the clock glitch) can be empirically
determined in advance with manageable effort.

6https://developer.arm.com/
7https://github.com/mupq/pqm4, commit 20bcf68
8https://sike.org/#implementation

https://github.com/newaetech/chipwhisperer
https://developer.arm.com/
https://github.com/mupq/pqm4
https://sike.org/#implementation

In order to determine the success rate for each individual
of the 218 bits of the private key, we performed 21,800
fault injections (100 injections for each bit) and achieved
a relatively high accuracy. More precisely, we obtained on
average over all bits 100% (leading to an error probability
p0 “ 0, as denoted in Fig. 1) accuracy for the case ski “ 0
and an accuracy of over 86% (denoted as p1 in Fig. 1) for the
case ski “ 1. As shown in Fig. 1, only 5 fault injections are
required for each bit, thus 1,090 injections in total to achieve
a success rate above 99% for full key recovery. Since in our
inexpensive setup a single run takes about 12 seconds, full key
recovery requires about 4 hours.

B. Attacks on CSIDH

Since the practical implementation is similar for both at-
tacks, we show without loss of generality how we realised the
attack described in Section IV-A. The attacker aims to distin-
guish a real from a dummy isogeny. For this, they inject a fault
during the computation of an isogeny and observe if it impacts
the resulting shared secret. In this attacker model the adversary
can target isogeny computations at positions of their choice
and is further able to trace the faulty isogeny computation to
determine its degree. Due to non-constant time computation
within the calculation of the isogeny (e.g., a square-and-
multiply exponentiation based on the degree [16, 22, 23]), the
degree of a given isogeny might be recovered with manageable
effort, e.g., using Simple Power Analysis [27].

In our setup, the fault is injected by temporarily under-
powering the target core, i.e., by reducing for some clock
cycles the value of the supply voltage of the attacked device
below the minimum value the device is specified for. Such
an attack might lead to an unpredictable state in the target
variable during an assignment and can therefore be applied
to attack the vulnerable spot regarding the co-domain curve
A, as defined in Section IV-B. Without loss of generality,
the attacks occur during the calculation of the first isogeny.
The implemented attacks are based on the implementation
from [16].

Results.
As suggested in [16], in order to increase the number of

attempts by reducing the time required for a single run, we
reduced the key space in CSIDH512 from 1174 to 32. Further,
all required values, e.g. points of corresponding order, were
calculated in advance, leading in total to a reduction from
15,721M to 115M clock cycles for a single run. Due to the
reduced key space, private keys are of the form S “ pe0, e1q,
where ei P r´1, 1s. To obtain results for both cases (dummy
and real), we performed experiments using different private
keys. In the first case, the private key S1 “ p´1, 1q consists
of real isogenies only. Thus, attacks should not impact the
computation of the shared secret. As expected, after 2,500 at-
tempts, there is no faulty shared secret, achieving an accuracy
of 100% (leading to an error probability p0 “ 0, as denoted
in Fig. 1). In the second case, however, the selected private
key S2 “ p0, 1q implies the calculation of a dummy isogeny

TABLE IV
RESULTS FOR CSIDH ATTACKING THE FIRST ISOGENY

key # of trials faulty shared secret accuracy

S1 “ p´1, 1q 2500 0.0% 100.0%
S2 “ p0, 1q 2500 92.4% 92.4%

since e0 “ 0. Hence, fault injections should lead to a faulty
shared secret. Here, we achieved an accuracy of over 92%
(denoted as p1 in Fig. 1). Table IV shows the achieved results
of the applied attacks in our setup. Hence, based on these
numbers, we assume an attacker can distinguish real from
dummy isogenies with a single injection with high accuracy.

Since in dummy-based constant-time implementations of
CSIDH (e.g., Meyer, Campos, and Reith (MCR) [22] or Onuki,
Aikawa, Yamazaki, and Takagi (OAYT) [23]), the private key
vector pe1, . . . , enq is sampled from an interval defined by
a bound vector m “ pm1,m2, . . . ,mnq, the number of fault
injections required to obtain the absolute value of a certain
ei strongly depends on the corresponding bound vector. More
precisely, since the computation of a given degree ℓi occurs
deterministically (real-then-dummy), the attacker performs a
binary search through the corresponding mi to identify the
computation of the first dummy isogeny. Thus, the number of
attacks required to obtain the absolute value of a certain ei
depends only on the corresponding bound mi.

The achieved key space reductions are due to the fact
that an attacker after a certain number of attacks knows the
absolute values for the private key vector pe1, . . . , enq. In
the case of the OAYT implementation of CSIDH512 (where
´mi ď ei ď mi,mi “ 5 for i “ 0, . . . , 73), our approach
leads to a private key space reduction from 2256 to 274 in
the worst case (ei ‰ 0 for i “ 0, . . . , 73) and to 267.06 in
the average case after at least 222 ¨ 4 “ 888 fault injections
for a success rate over 99%. The remaining key space can
be further reduced by a meet-in-the-middle approach [5] to
about 234.5 in the average case. For achieving a success rate
over 99%, when attacking the MCR implementation (where
0 ď ei ď mi,mi P r1, 10s for i “ 0, . . . , 73), at least
296¨4 “ 1184 injections are required for full key recovery (cf.
Fig. 1) since only positive values are allowed for the private
key vector. Considering the running time of the non-optimised
implementation of CSIDH512 of about 5 minutes for a single
run in our setup, full key recovery would require about 98
hours in the case of the MCR implementation and about 74
hours to achieve the mentioned key space reduction in the case
of the OAYT version.

Since recent works [6, 7] suggests that CSIDH-512 may not
reach the post-quantum security as initially considered [5],
some works recommend to increase the size of the CSIDH
prime p [6, 7, 28]. However, from a classical perspective, since
the classical security only depends on the size of the private
key space, the number of prime factors ℓi remains unchanged.
Thus, apart from the longer running time due to possibly larger
prime factors, increasing the quantum security has no further

Fig. 1. Success rate for full key recovery as a function of the number of fault injections per bit (SIKE) or isogeny (CSIDH), respectively. Let α be the number
of injections for each bit/isogeny. Since a single faulty shared secret is sufficient to distinguish the cases, the success rate for full key recovery can be calculated
by P pαq “ rp0.5 ¨ p1 ´ Bp0, α, p1qqq ` p0.5 ¨ Bp0, α, p0qqqsλ, where λ equals the number of bits in the case of SIKE and equals

řn
i“1rlog2pmiqs for

all mi of the corresponding bound vector m “ pm1,m2, . . . ,mnq in the case of CSIDH, Bpk, n, pq “
`n
k

˘

¨ pkp1 ´ pqn´k , and p0, p1 correspond to the
respective probabilities.

influence on the effectiveness of the presented attack.

VI. COUNTERMEASURES

In this section we discuss general countermeasures against
safe-error attacks and then present concrete countermeasures
for SIKE and CSIDH.

In safe-error attacks, a simple check of the final result before
transmitting can still leak one bit. This can be easily seen in
the attack on SIKE in Section III-B. If the attacker successfully
executes an attack, even if the result is checked for correctness,
the implementation will leak one bit: either the algorithm
fails or it returns an unusable result, or the induced error is
overwritten, both of which represent a successful attack. This
makes efficient generic countermeasures hard to design, as, for
instance, simply repeating a calculation after a fault has been
detected can be detected, too: an algorithm that suddenly takes
twice as long shows that the attack was successful. Such foot
guns need to be avoided so as not to introduce new attacks
while mitigating others.

Using infective computation [29], a succesfully induced
fault directly, i.e., without the necessity of checking, modifies
the output value such that the faulty output does not allow to
reveal secret values. In case of safe-error attacks, this is also
not a solution, since any faulty output shows that the fault
was successful. This is all an attacker needs to know in case
of safe-error attacks.

An effective countermeasure consists in redundant compu-
tation with consistency check, i.e., calculating the susceptible
operations repeatedly and then choose the value to be output
by majority vote. However, this is costly, since, assuming
that an attacker can realize a fault n times within a single
computation of the algorithm, the susceptible operations have
to be computed 2 ¨ n ` 1 times. Since second-order faults,
i.e., two faults within one computation, are practical [30], this
would require at least a fivefold repetition of the susceptible
operations.

Another route, which is not in the hands of the imple-
menter, is the selection of hardware the algorithm executes
on. Hardware-based detection of fault attacks through, for
instance, voltage sensing or intrusion detection, are possible
ways of shutting down the execution - independent of the

effect of the fault on the computation - before any information
could have been leaked [31].

It is important to note that the attacks presented in this paper
exploit secret-dependent memory access. Implementations and
future optimizations should thus take special care to eliminate
any such occurrence and treat them with the same rigour
as secret-depending timings. This also extends to ”branch-
less” versions of algorithms, where, for instance, a pointer
is swapped depending on the bit of a secret key; this does not
remove the secret dependence of the underlying memory.

The discussion shows that to prevent safe-error attacks, the
susceptible functions have to be adjusted, as in [8].

A. Securing SIKE

As explained in Section III-A, by using a simultaneous
double-and-add algorithm within xDBLADD [20], the par-
ticular M safe-error attack on SIKE can be prevented.

A possible countermeasure against the key recovery
presented in Section III-B is to add an additional check to
the LADDER3PT algorithm. The attack relies on skipping
the swap_points method. Hence, a relatively inexpensive
way of detecting an attack is to verify whether the swap
actually took place. Thus, in each loop the implementation
would save the current points, run the swap operation, and
eventually check if the calculated mask had the intended effect.

Although the proposed countermeasure to conditional point
swaps from [16] could be adapted to SIKE, the described
approach (cf. [16], Section VI, paragraph C, point 1) represents
no real countermeasure. An attack in the case where no swap
takes place (decision bit = 0) does not lead to a false result
(wrong point order), while attacking the conditional swap in
the case of a swap (decision bit = 1) the order check of the
resulting point should fail.

B. Securing CSIDH

Since the current CSIDH action algorithms branch on the
secret key, it is a prime target for exploitation. One possible
way of making attacks more difficult is shown in [18]. Here,
LeGrow and Hutchinson show that using a binary decision
vector to interleave the different ℓi-isogenies, an attacker has

to do more than 8x as many attacks to gain the same amount
of information.

Another approach is to choose an implementation that is
dummy-free. So far however, dummy-free implementations
have come at the cost of being twice as slow [17]. Further re-
search might be able to close this performance gap and thereby
completely eliminate attacks based on dummy isogenies.

Securing CSIDH against physical attacks is clearly difficult.
Moreover, care has to be taken to not accidentally introduce
a foot-gun in the form of a novel attack vector. One such
occurrence are dummy isogenies, introduced as timing attack
countermeasures in [22], which allow an attacker to learn
secret information through fault injections.

VII. CONCLUSION

This work shows how safe-error attacks can be applied
to recent isogeny-based cryptographic schemes. We presented
four different attacks on the SIKE and CSIDH cryptosystems.
It is important to note that the resilience of SIKE against
the attack described in Section III-A solely depends on the
structure of the actual implementation. As such, any further
implemententations need to make sure to not introduce the
possibility of this safe-error attack. We have shown how to
practically realize two of these attacks and how to achieve
full key recovery in a static key context on both SIKE and
CSIDH.

We discussed that securing cryptosystems against safe-error
attacks is non-trivial. This also partially explains why some
of the attacks that we applied to isogeny-based cryptographic
schemes have similarly been known in the ECC community
for a long time, and yet have not been prevented in current
implementations of SIKE and CSIDH. As safe-errors exploit
differences of computation and memory access depending on
the secret key, a simple check is not sufficient. It is equally
important, that countermeasures against certain attacks do not
open ways for further safe-error attacks [24]. This can be
the case for example when implementing a simple consis-
tency check, which might not trigger on all injections, thus
inadvertently leaking data. The same holds true for constant-
time implementations, which are designed to thwart timing
attacks. The implementations of CSIDH that we attacked in
this work are constant-time, but based on dummy isogenies,
which enable our attack. Dummy-free implementations, which
do also exist, are probably not vulnerable to the attacks
presented in this paper; however, they are prone to timing
attacks. Future research therefore needs to find a way to secure
CSIDH at the same time against timing and safe-error attacks.

REFERENCES

[1] J.-M. Couveignes, “Hard homogeneous spaces,” Cryptol-
ogy ePrint Archive, Report 2006/291, 2006, http://eprint.
iacr.org/2006/291. 1

[2] A. Rostovtsev and A. Stolbunov, “Public-Key Cryptosys-
tem Based On Isogenies,” Cryptology ePrint Archive,
Report 2006/145, 2006, http://eprint.iacr.org/2006/145. 1

[3] L. De Feo, D. Jao, and J. Plût, “Towards quantum-
resistant cryptosystems from supersingular elliptic curve
isogenies,” Cryptology ePrint Archive, Report 2011/506,
2011, http://eprint.iacr.org/2011/506. 1

[4] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello,
L. De Feo, B. Hess, A. Jalali, B. Koziel,
B. LaMacchia, P. Longa, M. Naehrig, J. Renes,
V. Soukharev, and D. Urbanik, “SIKE,” National
Institute of Standards and Technology, Tech. Rep.,
2017, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions.
1

[5] W. Castryck, T. Lange, C. Martindale, L. Panny, and
J. Renes, “CSIDH: An efficient post-quantum commu-
tative group action,” in ASIACRYPT 2018, Part III, ser.
LNCS, T. Peyrin and S. Galbraith, Eds., vol. 11274.
Brisbane, Queensland, Australia: Springer, Heidelberg,
Germany, Dec. 2–6, 2018, pp. 395–427. 1, 2, 7, 8

[6] C. Peikert, “He gives C-sieves on the CSIDH,” in EU-
ROCRYPT 2020, Part II, ser. LNCS, A. Canteaut and
Y. Ishai, Eds., vol. 12106. Zagreb, Croatia: Springer,
Heidelberg, Germany, May 10–14, 2020, pp. 463–492.
1, 8

[7] X. Bonnetain and A. Schrottenloher, “Quantum security
analysis of CSIDH,” in EUROCRYPT 2020, Part II, ser.
LNCS, A. Canteaut and Y. Ishai, Eds., vol. 12106. Za-
greb, Croatia: Springer, Heidelberg, Germany, May 10–
14, 2020, pp. 493–522. 1, 8

[8] S.-M. Yen and M. Joye, “Checking before output may
not be enough against fault-based cryptanalysis,” IEEE
Trans. Comput., vol. 49, no. 9, pp. 967 – 970, Sep. 2000.
[Online]. Available: https://doi.org/10.1109/12.869328 1,
4, 9

[9] M. Joye and S.-M. Yen, “The Montgomery powering
ladder,” in CHES 2002, ser. LNCS, B. S. Kaliski Jr.,
Çetin Kaya. Koç, and C. Paar, Eds., vol. 2523. Red-
wood Shores, CA, USA: Springer, Heidelberg, Germany,
Aug. 13–15, 2003, pp. 291–302. 1, 4

[10] C. Costello, “B-SIDH: supersingular isogeny Diffie-
Hellman using twisted torsion,” Cryptology ePrint
Archive, Report 2019/1145, 2019, https://eprint.iacr.org/
2019/1145. 2

[11] B. Koziel, R. Azarderakhsh, and D. Jao, “Side-channel
attacks on quantum-resistant supersingular isogeny
Diffie-Hellman,” in SAC 2017, ser. LNCS, C. Adams and
J. Camenisch, Eds., vol. 10719. Ottawa, ON, Canada:
Springer, Heidelberg, Germany, Aug. 16–18, 2017, pp.
64–81. 2

[12] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, “On
the security of supersingular isogeny cryptosystems,” in
ASIACRYPT 2016, Part I, ser. LNCS, J. H. Cheon and
T. Takagi, Eds., vol. 10031. Hanoi, Vietnam: Springer,
Heidelberg, Germany, Dec. 4–8, 2016, pp. 63–91. 2

[13] A. Gélin and B. Wesolowski, “Loop-abort faults on
supersingular isogeny cryptosystems,” in Post-Quantum
Cryptography - 8th International Workshop, PQCrypto

http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2006/291
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2011/506
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1109/12.869328
https://eprint.iacr.org/2019/1145
https://eprint.iacr.org/2019/1145

2017, T. Lange and T. Takagi, Eds. Utrecht, The
Netherlands: Springer, Heidelberg, Germany, Jun. 26–28
2017, pp. 93–106. 2

[14] Y. B. Ti, “Fault attack on supersingular isogeny cryp-
tosystems,” in Post-Quantum Cryptography - 8th In-
ternational Workshop, PQCrypto 2017, T. Lange and
T. Takagi, Eds. Utrecht, The Netherlands: Springer,
Heidelberg, Germany, Jun. 26–28 2017, pp. 107–122. 2

[15] F. Zhang, B. Yang, X. Dong, S. Guilley, Z. Liu,
W. He, F. Zhang, and K. Ren, “Side-channel analysis
and countermeasure design on arm-based quantum-
resistant SIKE,” IEEE Trans. Computers, vol. 69,
no. 11, pp. 1681–1693, 2020. [Online]. Available:
https://doi.org/10.1109/TC.2020.3020407 2

[16] F. Campos, M. J. Kannwischer, M. Meyer, H. Onuki, and
M. Stöttinger, “Trouble at the CSIDH: Protecting CSIDH
with Dummy-Operations against Fault Injection Attacks,”
in 2020 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2020. 2, 3, 6, 8, 9

[17] D. Cervantes-Vázquez, M. Chenu, J.-J. Chi-Domínguez,
L. De Feo, F. Rodríguez-Henríquez, and B. Smith,
“Stronger and faster side-channel protections for
CSIDH,” in LATINCRYPT 2019, ser. LNCS, P. Schwabe
and N. Thériault, Eds., vol. 11774. Springer, Heidelberg,
Germany, 2019, pp. 173–193. 2, 3, 10

[18] J. LeGrow and A. Hutchinson, “An analysis of fault
attacks on CSIDH,” Cryptology ePrint Archive, Report
2020/1006, 2020, https://eprint.iacr.org/2020/1006. 2, 9

[19] C. Costello, “Supersingular isogeny key exchange for be-
ginners,” Cryptology ePrint Archive, Report 2019/1321,
2019, https://eprint.iacr.org/2019/1321. 2

[20] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello,
L. De Feo, B. Hess, A. Jalali, B. Koziel,
B. LaMacchia, P. Longa, M. Naehrig, J. Renes,
V. Soukharev, D. Urbanik, G. Pereira, K. Karabina,
and A. Hutchinson, “SIKE,” National Institute
of Standards and Technology, Tech. Rep.,
2020, available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.
2, 4, 5, 6, 7, 9

[21] A. Faz-Hernández, J. C. López-Hernández, E. Ochoa-
Jiménez, and F. Rodríguez-Henríquez, “A faster software
implementation of the supersingular isogeny Diffie-
Hellman key exchange protocol,” IEEE Trans. Comput-
ers, vol. 67, no. 11, pp. 1622–1636, 2018. [Online].
Available: https://doi.org/10.1109/TC.2017.2771535 2

[23] H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi,
“(Short paper) A faster constant-time algorithm of
CSIDH keeping two points,” in IWSEC 19, ser. LNCS,
N. Attrapadung and T. Yagi, Eds., vol. 11689. Tokyo,

[22] M. Meyer, F. Campos, and S. Reith, “On lions and
elligators: An efficient constant-time implementation of
CSIDH,” in Post-Quantum Cryptography - 10th Interna-
tional Conference, PQCrypto 2019, J. Ding and R. Stein-
wandt, Eds. Chongqing, China: Springer, Heidelberg,
Germany, May 8–10 2019, pp. 307–325. 3, 8, 10
Japan: Springer, Heidelberg, Germany, Aug. 28–30,
2019, pp. 23–33. 3, 6, 7, 8

[24] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, “A counter-
measure against one physical cryptanalysis may benefit
another attack,” in ICISC 01, ser. LNCS, K. Kim, Ed.,
vol. 2288. Seoul, Korea: Springer, Heidelberg, Germany,
Dec. 6–7, 2002, pp. 414–427. 4, 10

[25] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-
Jae Moon, “Rsa speedup with chinese remainder theo-
rem immune against hardware fault cryptanalysis,” IEEE
Transactions on Computers, vol. 52, no. 4, pp. 461–472,
2003. 4

[26] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stof-
felen, “pqm4: Testing and benchmarking NIST PQC on
ARM cortex-M4,” Cryptology ePrint Archive, Report
2019/844, 2019, https://eprint.iacr.org/2019/844. 7

[27] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power
Analysis,” in CRYPTO ’99. Springer, 1999, pp. 388–
397. 8

[28] J. Chávez-Saab, J.-J. Chi-Domínguez, S. Jaques, and
F. Rodríguez-Henríquez, “The SQALE of CSIDH:
Square-root vélu Quantum-resistant isogeny Action with
Low Exponents,” Cryptology ePrint Archive, Report
2020/1520, 2020, https://eprint.iacr.org/2020/1520. 8

[29] B. Gierlichs, J. Schmidt, and M. Tunstall, “Infective com-
putation and dummy rounds: Fault protection for block
ciphers without check-before-output,” in LATINCRYPT,
2012. 9

[30] J. Blömer, R. G. d. Silva, P. Günther, J. Krämer, and J.-P.
Seifert, “A practical second-order fault attack against a
real-world pairing implementation,” in 2014 Workshop on
Fault Diagnosis and Tolerance in Cryptography, 2014,
pp. 123–136. 9

[31] B. Yuce, N. F. Ghalaty, C. Deshpande, C. Patrick,
L. Nazhandali, and P. Schaumont, “FAME: fault-
attack aware microprocessor extensions for hardware
fault detection and software fault response,” in
Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016, HASP@ICSA
2016, Seoul, Republic of Korea, June 18, 2016.
ACM, 2016, pp. 8:1–8:8. [Online]. Available:
https://doi.org/10.1145/2948618.2948626 9

https://doi.org/10.1109/TC.2020.3020407
https://eprint.iacr.org/2020/1006
https://eprint.iacr.org/2019/1321
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1109/TC.2017.2771535
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2020/1520
https://doi.org/10.1145/2948618.2948626

	Introduction
	Background
	SIKE
	CSIDH
	Safe-Error Attacks

	Attacks on SIKE
	M-Safe Attack on SIKE
	C-Safe Attack on SIKE

	Attacks on CSIDH
	M Safe-Error Attack on an Implementation Using One Point
	M Safe-Error Attacks on an Implementation Using Two Points

	Practical Experiments
	Attacks on SIKE
	Attacks on CSIDH

	Countermeasures
	Securing SIKE
	Securing CSIDH

	Conclusion

