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Abstract. In this report we study efficient binary approximations of the FSM of
ZUC-256 with high correlation around 2−21.1 between the keystream words and the
LFSR. We then map these approximations into a binary distinguisher with complexity
around 2234. Thereafter, we convert to an approximation in the LFSR’s field Zp

with correlation around 2−33.6. We share a number of observations and state open
problems for further research and considerations.
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1 Introduction
ZUC-256 [ZUC18] is a stream cipher with the target to be used in 5G as one of the 256-bit
security algorithms for confidentiality and integrity. At the moment, ZUC-256 is under
evaluation by ETSI SAGE and understanding it’s strength is therefore important.
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Figure 1: The keystream generation phase of the ZUC-256 stream cipher.

This work was inspired by recent results in [SJZ+21], and we decided to check whether
similar methods may be applied to ZUC-256. The keystream generator of ZUC-256 is
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depicted on Figure 1, and for more details we refer to the original specification of the
design [ZUC18].

2 FSM approximation and correlation trails

We introduce additional intermediate signals T1, T2 and T1′, T2′ as on Figure 1, then two
consecutive keystream words can be expressed as follows:

z = (((T1 �X1)⊕X0) � (T2⊕X2))⊕X3
z′ = ((S(T1′)⊕X0′) � S(T2′))⊕X3′

where (T1′, T2′) = (L1, L2) · (T1, T2)≪16 = σ(T1, T2)

There is a linear relation between (T1, T2) and (T1′, T2′). Thus, if we have a pair of
masks (m1,m2) for (T1, T2), then corresponding masks for (T1′, T2′) will be (m′1,m′2)
such that (m1,m2) · (T1, T2) = (m′1,m′2) · (T1′, T2′); the masks (m′1,m′2) can be derived
linearly from (m1,m2), and vice versa.

The steps of the FSM approximation may be derived as follows:

α · z = α · [(((T1 �X1)⊕X0) � (T2⊕X2))⊕X3]
→ m0 · [((T1 �X1)⊕X0]⊕m2 · [T2⊕X2]︸ ︷︷ ︸

ρ�(α,m0,m2)

⊕α ·X3

→ m1 · T1⊕m1 ·X1︸ ︷︷ ︸
ρ�(m0,m1,m1)

⊕m0 ·X0⊕m2 · T2⊕m2 ·X2⊕ α ·X3

β · z′ = β · [((S(T1′)⊕X0′) � S(T2′))⊕X3′]
→ k1 · (S(T1′)⊕X0′)⊕ k2 · S(T2′)︸ ︷︷ ︸

ρ�(β,k1,k2)

⊕β ·X3′

→ k1 · S(m′1 · T1′)︸ ︷︷ ︸
ρS(k1,m′1)

⊕k1 ·X0′ ⊕ k2 · S(m′2 · T2′)︸ ︷︷ ︸
ρS(k2,m′2)

⊕β ·X3′,

where ρ�(s, a, b), ρ�(s, a, b), ρS(k,m) are correlation values for approximations of arith-
metical additions, subtractions, and S-boxes, given input and output masks. Recall that a
correlation ρ(X) of a random binary variable X is ρ(X) = Pr{X = 0} − Pr{X = 1}.

I.e., the biased binary correlation between two consecutive keystream words and the
bits of the LFSR is thus expressed through X-terms, which are composed directly from
the bits of the LFSR in the Bit-Reorganisation step of the cipher:

α · z ⊕ β · z′ → m0 ·X0⊕m1 ·X1⊕m2 ·X2⊕ α ·X3⊕ k1 ·X0′ ⊕ β ·X3′.

For an efficient search of the masks and computation of correlation values, we utilised
methods similar to [SJZ+21]. In our search for a good approximation trail with high
correlation we found:



Alexander Maximov 3

α = 0x01860405

m0 = 0x01860607

m1 = 0x01040405

m2 = 0x01010405

β = 0x00200000

m′1 = 0x00040000

m′2 = 0x00010000

k1 = 0x00300000

k2 = 0x00200000

ρ�(α,m0,m2) = +2−10.000000

ρ�(m0,m1,m1) = +2−4.000000

ρ�(β, k1, k2) = +2−1.000000

ρS(k1,m
′
1) = −2−3.415037

ρS(k2,m
′
2) = +2−3.192645

ρtot = −2−21.607683

Simulation results. Because of the reality might be different from the theory, e.g.,
due to dependencies in the above sequence of approximations, and in order to confirm the
above correlation, we run simulations of ZUC-256 and collected 253 samples directly from
the keystream generator. The resulting correlation value from simulations is:

ρsim(from 253 samples) ≈ −2−21.093495,

which is a value of high confidence. These simulations confirm the found correlation, and
show that it is actually slightly stronger than the theoretical one ρtot.

Platform for simulations. We have utilised a compute cloud with around 600
nodes, and 253 samples were collected in about 3 days. The whole workload was split into
214 sub-jobs, each initialised with a unique random state of ZUC-256 and producing in
average 239 samples. All the samples (or, actually, the counts) were then summed up in
the end and the total of 253 samples is thus received.

Relation between the two masks
We have noticed that the result we found is very similar to the correlation trail given on
page 33 of [ETS11]. We did a quick simulation test of the masks from [ETS11] and after
collecting 248 samples we received the correlation −2−21.137037, which is again stronger
than the theoretical one −2−21.6. I.e., at least two trails can now give the same strong
correlation, which, perhaps, might be combined in some way further. The two correlation
equations from this report and [ETS11] can be written as:

0x01860405 · z ⊕ 0x00200000 · z′ → 0x01860607 ·X0⊕ 0x01040405 ·X1⊕ 0x01010405 ·X2
⊕ 0x01860405 ·X3⊕ 0x00300000 ·X0′ ⊕ 0x00200000 ·X3′ (in this report)

0x01040607 · z ⊕ 0x00200000 · z′ → 0x01040405 ·X0⊕ 0x01860607 ·X1⊕ 0x01010405 ·X2
⊕ 0x01040607 ·X3⊕ 0x00300000 ·X0′ ⊕ 0x00200000 ·X3′ (in [ETS11])

if we sum them up together, then we get the difference of the two masks:

∆ : 0x00820202 · z → 0x00820202 · (X0⊕X1⊕X3).

3 Linear analysis based on the binary approximation
In [YJM19] the authors found a 32-bit multidimensional distinguisher on ZUC-256 of
complexity 2236 by using spectral analysis tools. Here we combine some ideas from the
mentioned paper and map the found binary correlation to a binary distinguisher.

For random variables s1, s2, s3, s4 ∈ Zp, where p = 2n − 1 is a prime, such that

s1 + s2 = s3 + s4 mod p (1)



4 Some observations on ZUC-256 (Extended)

and for a given mask τ , the following is a biased expression:

Qτ = τ · (s1 ⊕ s2 ⊕ s3 ⊕ s4). (2)

Observation 1. If we assume there exist a low-degree 3-weight multiple, instead of a
4-weight as in Equation 1, then for any τ we get a very small correlation of ρ(Qτ ). I.e., it
seems that a 3-weight multiple cannot be used in combination with a binary approximation
of the FSM in ZUC-256, but it might be useful if an FSM approximation could be done
directly over Zp.

Let s(t) be the value of the register S0 in time t, then the found binary correlations
can be rewritten as:

α · z(t) ⊕ β · z(t+1) →
16⊕
i=0

τi · s(t+i)

for a set of 31-bit masks τ0, . . . , τ16, some of them are zeroes. Then, similarly to [YJM19],
we find time instances (t1, t2, t3, t4), where t1 = 0 and

s(t1) + s(t2) = s(t3) + s(t4) mod p,

which can be done with complexity 2167. Finally, we derive the total expression for a
sample in time t1 as follows (it works for both masks):

q(t1) =
4⊕
i=1

(α · z(ti) ⊕ β · z(ti+1)) (3)

=
4⊕
i=1

µ(ti) ⊕ τ16s
(ti+16) ⊕ τ15s

(ti+15) ⊕ τ14s
(ti+14) ⊕ τ11s

(ti+11) ⊕ τ9s
(ti+9)

⊕ τ7s
(ti+7) ⊕ τ5s

(ti+5) ⊕ τ3s
(ti+3) ⊕ τ2s

(ti+2) ⊕ τ0s
(ti+0)

where µ(ti) is the noise variable from the binary approximation of the FSM, collected in
time ti. We know that ρ(µ(ti)) ≈ −2−21.1, and then the bias of q(t1) is

ρ(q(t1)) = (−2−21.1)4 ·
16∏
i=0

ρ(Q(t1)
τi

) (4)

By collecting about O(ρ−2(q(t))) samples we can distinguish ZUC-256 from random.
What now remains is to derive values of all involved ρ(Q(t1)

τi ).

Values of Qτ for the binary correlation
Given a mask τ , we want to compute the value of ρ(Qτ ). Note that when hw(τ) = 1 it
follows from Theorem 7 in [YJM19] (set t = 1):

Pr{Qτ = 0} ≈ 2/3 → ρ(Qτ ) ≈ 1/3,

irrespective where the bit ‘1’ is located in the mask τ , and the error becomes negligible as
n grows. For other masks where τ is not a power of 2, we are missing the formulae.

Problem 1. How to compute ρ(Qτ ) in Equation 2 efficiently for any inputs n and τ?
If we can find an efficient formulae to compute these values, then we could include it into
the automatic search of the best FSM approximation.
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For some smaller n and p we can actually compute a full table for the noise probabilities
exhaustively, for all masks τ , see Appendix A. From the study of these tables, we make
the following observations, without proofs at the moment.

Observation 2. Following the study of the tables in Appendix A we conjecture:

1. For any mask τ we have ρ(Qτ ) ≥ 0;

2. For any mask τ with ρ(Qτ ), and for any k = 1..n: ρ(Qτ≪nk) = ρ(Qτ );

3. Let some mask τ = τ1 ⊕ τ2, then ρ(Qτ ) ≥ ρ(Qτ1) · ρ(Qτ2).

We could use Observation 2(3) for an estimate of the lower bound of the sample’s bias,
but instead we will simulate these masks with n = 31, since we expect high correlation
values there. We generate uniformly distributed random variables s1, s2, s3 ∈ Zp (i.e.,
Pr{si = x} = 1/p), then derive s4 mod p as in Equation 1. Next, we compute the value
of Qτ as in Equation 2 and collect the statistics.

Table 1: Statistics on Qτ for a 4-weight multiple and n = 31 with 235 samples
this report [ETS11]

τi value ρ(Q(t1)
τi ) value ρ(Q(t1)

τi )
τ16 0x00180000 → 0x003 2−1.584962 0x00180000 → 0x003 2−1.584962

τ15 0x00c30000 → 0x0c3 2−3.169244 0x00820000 → 0x041 2−3.167130

τ14 0x00000607 → 0x607 2−4.169800 0x00000405 → 0x405 2−4.169622

τ11 0x00000104 → 0x041 2−3.167130 0x00000186 → 0x0c3 2−3.169244

τ9 0x02028000 → 0x405 2−4.169622 0x03038000 → 0x607 2−4.169800

τ7 0x00000101 → 0x101 2−3.169748 0x00000101 → 0x101 2−3.169748

τ5 0x02028000 → 0x405 2−4.169622 0x02028000 → 0x405 2−4.169622

τ3 0x00000020 → 0x001 2−1.584962 0x00000020 → 0x001 2−1.584962

τ2 0x00000186 → 0x0c3 2−3.169244 0x00000104 → 0x041 2−3.167130

τ0 0x02028000 → 0x405 2−4.169622 0x03038000 → 0x607 2−4.169800∏
ρ(Qτ )→ 2−32.523996 2−32.522020

Result. The total bias of the samples as in Equation 3 is

ρ(q(t1)) ≈ 2−4·21.1−32.5 = 2−116.9,

which leads to a distinguishing attack with complexity around T ≈ D ≈ 2234,M ≈ 2167.
The complexity appears to be similar to that in [YJM19], but here we have a binary
distinguisher.

A hypothetical correlation attack on ZUC-256
Correlation attacks presented in [GZ21] and [SJZ+21] are quite generic for this class of
stream ciphers where LFSR is involved and a biased parity check expression is available.
However, the methods are only given for when the LFSR is over a field of characteristic 2,
i.e., a binary LFSR. In ZUC-256 we, however, have to deal with a prime LFSR where the
base field has characteristic larger than 2; in case of ZUC-256 it is the prime p = 231 − 1.
Intuitively, a correlation attack starts with a system where we have n-bits of entropy (e.g.,
the length of the LFSR in bits). Then we use the found correlation as a biased binary
parity check. We then “inject” one such parity check into the system and by this the
entropy of the system is reduced. By injecting many enough of such parity checks, the
system becomes more and more determined, i.e., the LFSR is then recovered. We believe
that the performance of such an attack for prime LFSRs should be similar as for binary
LFSRs.
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Problem 2. Given a biased binary parity check on the LFSR state bits like in Equation 3,
how to recover the LFSR that is over a non-binary domain Zp with p > 2?

At this moment we do not know an exact method how to use a biased binary parity
check for recovering a prime LFSR, and we leave this as an open question. However, if the
attack performance on prime LFSRs is similar to the complexity of recovering an LFSR over
GF(2), then given the correlation 2−21.1 and n ≈ 496 bits (n← 16 log2(231−1)), one could
expect a correlation attack on ZUC-256 with complexities around T ≈ M ≈ D ≈ 2176,
derived as in [GZ21].

4 Converting a binary approximation to a non-binary
In previous approximations we have a binary expression on the left side, α · z ⊕ β · z′, and
a binary expression on the right side in terms of 31-bit words s(t) from the LFSR. I.e.,
if we take some certain bits of the LFSR state and XOR them, then we have a strong
correlation to the keystream bits. We think that it might be used in a correlation attack,
but at the moment we do not know an exact method, see Problem 2.

In this section we consider the possibility to convert a binary approximation into a
non-binary, more specifically for the modulus p = 2n − 1, where n = 31 is the case of
ZUC-256, i.e.:

α · z ⊕ β · z′ ρ=−2−21.1

−−−−−−−→ τ1 · S1 ⊕ τ2 · S2 ⊕ . . . (5)
ρ=?−−→ (λ1 · S1 + λ2 · S2 + . . . mod p) mod 2 (6)

In this case, what we can observe on the keystream bits will correlate to the first bit of
an expression on LFSR state words over Zp, which might lead to a more straight-forward
correlation attack on ZUC-256.

Note that in this specific modulus, if τ = 2k then it maps well to λ = 2n−k, since
2n−k · S = S≫k, thus the first bits of τ · S and (λ · S mod p) will match with correlation
1. However, the situation is a bit more complicated when the binary mask τ is not just a
power of 2.

We had been experimenting with these two types of approximations for smaller n, and
we came to the following observations (no proofs though):

Observation 3. Consider two 1-bit expressions on n-bit variables S1, S2, . . . in two
different domains – one is over GF(2), and another is over Zp, where p = 2n − 1, as
follows:

B = τ1 · S1 ⊕ τ2 · S2 ⊕ . . .
A = (λ1 · S1 + λ2 · S2 + . . . mod p) mod 2

We are interesting in a larger correlation value between A and B, then we make the
following conjectures:

1. There may exist a high correlation between A and B if and only if the total Hamming
weight of all binary masks τi is odd. If the total Hamming weight is even, then the
maximum correlation is rather small of order around 1/p.

2. Given binary masks τi (modulo 2n), the masks λi (modulo p) for the largest overall
correlation between A and B, should be constructed in the following way. Let some
binary mask τ be expressed as:

τ =
n−1∑
t=0

bt · 2t mod 2n, where bt = {0, 1},
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then the best approximation A would contain a corresponding λ, constructed as

λ =
n−1∑
t=0
±bt · 2n−t mod p,

where ± indicates that there are multiple possibilities to choose from, but not all of
the choices would give the largest correlation value of B → A in the full expression.

The τ -masks found in this report are even since the total Hamming weight is 30 bits,
while the masks from [ETS11] are odd with 29 bits of weight. Following our discovery in
Observation 3(1), only the odd binary mask can be used to approximate B → A. In the
following, we will proceed with searching for λ-masks given τ -masks as in [ETS11].

Problem 3 (Binary to non-binary conversion). In Observation 3, given all binary masks
τs, how to find the best set of λ-masks that maximises the correlation between A and B?
Given both sets of τ - and λ-masks, how to compute the correlation value efficiently?
If we find a solution to the stated problem, then we could include it into the FSM
approximation steps.

Observation 3(2) shrinks the search space for λ-masks significantly. However, even if
we have τs and construct a candidate tuple of λs, we still cannot derive the correlation
value since there is no formulae. Thus, we can actually simulate and collect statistics,
thus we determine the correlation that way. In order to speed up the process, we split the
ten τ -masks into 3 groups (odd number), each having an odd total Hamming weight, as
follows:

Group 1: τ0 = 0x03038000, τ2 = 0x00000104, τ3 = 0x00000020, τ5 = 0x02028000 (hw = 11)
Group 2: τ7 = 0x00000101, τ9 = 0x03038000, τ11 = 0x00000186 (hw = 11)
Group 3: τ14 = 0x00000405, τ15 = 0x00820000, τ16 = 0x00180000 (hw = 7)

I.e., for the “heaviest” groups 1 and 2 we can exhaustively test 211 variants of λs, and then
we perform simulations, collect about 226 samples, and store those λ-tuples in each group
where the sub-correlations are the largest. These simulations resulted in the following:

Table 2: Simulation results for searching of λ-tuples in each of the sub-groups.
Group ρ #λ-tuples

1 ≈ 2−4.8 128
2 ≈ 2−3.8 64
3 ≈ 2−3.2 32

The next step is to pick one λ-tuple in each group, and simulate the full stack of ten τ -
and λ-masks. Since there the expected combined correlation is much smaller, we have to
increase the number of samples to about 232, and thereafter double check with 236 samples.
The result is that almost every combination resulted in around ρ(B → A) ≈ ±2−12.6. We
give one example of a complete set of λ-masks:

λ0 = 0x0000bfc0, λ2 = 0x607fffff, λ3 = 0x04000000, λ5 = 0x0000c040

λ7 = 0x7f800000, λ9 = 0x0000bfc0, λ11 = 0x20800000

λ14 = 0x60200000, λ15 = 0x7fffc0ff, λ16 = 0x00000800

simulation of which gave us the correlation 2−12.485698 after collecting 236 samples.
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Result. The above findings mean that an attacker can observe the first bit (with some
noise) of an expression on the LFSR state in the domain over Zp:

0x01040607 · z(t) ⊕ 0x00200000 · z(t+1) → (λ0 · s(t) + λ2 · s(t+2) + λ3 · s(t+3) (7)
+ λ5 · s(t+5) + λ7 · s(t+7) + λ9 · s(t+9) + λ11 · s(t+11) + λ14 · s(t+14)

+ λ15 · s(t+15) + λ16 · s(t+16) mod p) mod 2

with the correlation:

ρ(in modulo p) ≈ −2−21.1 · 2−12.5 = −2−33.6.

Problem 4 (FSM approximation over modulo p). How to perform a binary approximation
of the FSM while extracting the halfs of the X-terms out in modulo p domain?
In Equation 5 we basically did two steps – we first found a binary approximation, then
“converted” it into an arithmetical approximation over Zp. However, the final correlation
may be larger if we would include the arithmetical approximation into the steps of the
FSM approximation directly. What we actually want to achieve is e.g.:

α · z ⊕ β · z′ ⊕Noise = (c1 ·X0L + c2 ·X0H + ...+ c12 ·X3′H mod p) mod 2,

where the masks ci ∈ Zp. That form can be mapped directly to S-terms in modulo
p domain without loss of information. Moreover, in this case we might be able to use
a 3-weight multiple of the LFSR feedback polynomial, which may help to reduce the
complexity of a distinguishing attack significantly.

Finally, the main reason for us to look into non-binary approximations is to get closer
to the possibility of the first correlation attack on ZUC-256.

Problem 5 (Correlation attack over a non-binary field). How to use a 1-bit correlation
on expressions over Zp, p > 2, like in Equation 7, for recovering the LFSR over the same
field Zp?

Problem 6 (Multidimensional linear analysis). Let us have a noise expression N with
mixed operations such as ⊕,�n and + mod p. How to construct an n-bit multidimensional
distribution of N?
A solution to this problem would allow us to analyse the cipher by inspecting WHT-kind
of spectrum, and perform multidimensional approximations and spectral analysis of the
cipher including the modulo p domain.
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A Exhaustive tables for ρ(Qτ) for small n = 5, 7
Complete table for n = 5, p = 31, where P = Pr{Qτ = 0}:

τ = 00001 P = 0.667014
τ = 00010 P = 0.667014
τ = 00100 P = 0.667014
τ = 01000 P = 0.667014
τ = 10000 P = 0.667014

τ = 00011 P = 0.667014
τ = 00110 P = 0.667014
τ = 01100 P = 0.667014
τ = 11000 P = 0.667014

τ = 10001 P = 0.667014

τ = 00101 P = 0.593971
τ = 01010 P = 0.593971
τ = 10100 P = 0.593971
τ = 01001 P = 0.593971
τ = 10010 P = 0.593971

τ = 00111 P = 0.576785
τ = 01110 P = 0.576785

τ = 11100 P = 0.576785
τ = 11001 P = 0.576785
τ = 10011 P = 0.576785

τ = 01011 P = 0.559599
τ = 10110 P = 0.559599
τ = 01101 P = 0.559599
τ = 11010 P = 0.559599
τ = 10101 P = 0.559599

τ = 01111 P = 0.572488
τ = 11110 P = 0.572488
τ = 11101 P = 0.572488
τ = 11011 P = 0.572488
τ = 10111 P = 0.572488

τ = 11111 P = 0.538116

Similar table for n = 7, p = 127:

τ = 0000001 P = 0.66668
τ = 0000010 P = 0.66668
τ = 0000100 P = 0.66668
τ = 0001000 P = 0.66668
τ = 0010000 P = 0.66668
τ = 0100000 P = 0.66668
τ = 1000000 P = 0.66668

τ = 0000011 P = 0.66668
τ = 0000110 P = 0.66668
τ = 0001100 P = 0.66668
τ = 0011000 P = 0.66668
τ = 0110000 P = 0.66668
τ = 1100000 P = 0.66668
τ = 1000001 P = 0.66668

τ = 0000101 P = 0.58545
τ = 0001010 P = 0.58545
τ = 0010100 P = 0.58545
τ = 0101000 P = 0.58545
τ = 1010000 P = 0.58545
τ = 0100001 P = 0.58545
τ = 1000010 P = 0.58545

τ = 0000111 P = 0.58145
τ = 0001110 P = 0.58145
τ = 0011100 P = 0.58145
τ = 0111000 P = 0.58145
τ = 1110000 P = 0.58145
τ = 1100001 P = 0.58145
τ = 1000011 P = 0.58145

τ = 0001001 P = 0.56695
τ = 0010010 P = 0.56695
τ = 0100100 P = 0.56695
τ = 1001000 P = 0.56695
τ = 0010001 P = 0.56695

τ = 0100010 P = 0.56695
τ = 1000100 P = 0.56695

τ = 0001011 P = 0.56045
τ = 0010110 P = 0.56045
τ = 0101100 P = 0.56045
τ = 1011000 P = 0.56045
τ = 0110001 P = 0.56045
τ = 1100010 P = 0.56045
τ = 1000101 P = 0.56045

τ = 0001101 P = 0.56045
τ = 0011010 P = 0.56045
τ = 0110100 P = 0.56045
τ = 1101000 P = 0.56045
τ = 1010001 P = 0.56045
τ = 0100011 P = 0.56045
τ = 1000110 P = 0.56045

τ = 0001111 P = 0.56420
τ = 0011110 P = 0.56420
τ = 0111100 P = 0.56420
τ = 1111000 P = 0.56420
τ = 1110001 P = 0.56420
τ = 1100011 P = 0.56420
τ = 1000111 P = 0.56420

τ = 0010011 P = 0.55645
τ = 0100110 P = 0.55645
τ = 1001100 P = 0.55645
τ = 0011001 P = 0.55645
τ = 0110010 P = 0.55645
τ = 1100100 P = 0.55645
τ = 1001001 P = 0.55645

τ = 0010101 P = 0.53546
τ = 0101010 P = 0.53546

τ = 1010100 P = 0.53546
τ = 0101001 P = 0.53546
τ = 1010010 P = 0.53546
τ = 0100101 P = 0.53546
τ = 1001010 P = 0.53546

τ = 0010111 P = 0.54071
τ = 0101110 P = 0.54071
τ = 1011100 P = 0.54071
τ = 0111001 P = 0.54071
τ = 1110010 P = 0.54071
τ = 1100101 P = 0.54071
τ = 1001011 P = 0.54071

τ = 0011011 P = 0.55920
τ = 0110110 P = 0.55920
τ = 1101100 P = 0.55920
τ = 1011001 P = 0.55920
τ = 0110011 P = 0.55920
τ = 1100110 P = 0.55920
τ = 1001101 P = 0.55920

τ = 0011101 P = 0.54071
τ = 0111010 P = 0.54071
τ = 1110100 P = 0.54071
τ = 1101001 P = 0.54071
τ = 1010011 P = 0.54071
τ = 0100111 P = 0.54071
τ = 1001110 P = 0.54071

τ = 0011111 P = 0.53421
τ = 0111110 P = 0.53421
τ = 1111100 P = 0.53421
τ = 1111001 P = 0.53421
τ = 1110011 P = 0.53421
τ = 1100111 P = 0.53421
τ = 1001111 P = 0.53421

τ = 0101011 P = 0.53571
τ = 1010110 P = 0.53571
τ = 0101101 P = 0.53571
τ = 1011010 P = 0.53571
τ = 0110101 P = 0.53571
τ = 1101010 P = 0.53571
τ = 1010101 P = 0.53571

τ = 0101111 P = 0.52521
τ = 1011110 P = 0.52521
τ = 0111101 P = 0.52521
τ = 1111010 P = 0.52521
τ = 1110101 P = 0.52521
τ = 1101011 P = 0.52521
τ = 1010111 P = 0.52521

τ = 0110111 P = 0.52921
τ = 1101110 P = 0.52921
τ = 1011101 P = 0.52921
τ = 0111011 P = 0.52921
τ = 1110110 P = 0.52921
τ = 1101101 P = 0.52921
τ = 1011011 P = 0.52921

τ = 0111111 P = 0.52946
τ = 1111110 P = 0.52946
τ = 1111101 P = 0.52946
τ = 1111011 P = 0.52946
τ = 1110111 P = 0.52946
τ = 1101111 P = 0.52946
τ = 1011111 P = 0.52946

τ = 1111111 P = 0.51796

https://ia.cr/2019/1352
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http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf
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