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Abstract. The Oil and Vinegar signature scheme, proposed in 1997 by Patarin, is one of
the oldest and best understood multivariate quadratic signature schemes. It has excellent
performance and signature sizes but suffers from large key sizes on the order of 50 KB,
which makes it less practical as a general-purpose signature scheme. To solve this problem,
this paper proposes MAYO, a variant of the UOV signature scheme whose public keys
are two orders of magnitude smaller. MAYO works by using a UOV map P : Fn

q → Fn
q

with an unusually small oil space, which makes it possible to represent the public key
very compactly. The usual UOV signing algorithm fails if the oil space is too small, but
MAYO works around this problem by “whipping up” the oil and vinegar map P into a
larger map P⋆ : Fkn

q → Fm
q , that does have a sufficiently large oil space. With parameters

targeting NISTPQC security level I, MAYO has a public key size of only 518 Bytes and
a signature size of 494 Bytes. This makes MAYO more compact than state-of-the-art
lattice-based signature schemes such as Falcon and Dilithium. Moreover, we can choose
MAYO parameters such that, unlike traditional UOV signatures, signatures provably only
leak a negligible amount of information about the private key.

1 Introduction

The Oil and Vinegar signature scheme, introduced by Patarin in 1997, is a simple and seemingly
well understood signature scheme in Multivariate Quadratic (MQ) cryptography. This scheme
is based on a trapdoored multivariate map P : Fn

q → Fm
q , which consists of m multivariate

quadratic polynomials in n variables. The trapdoor is a secret m-dimensional linear subspace O
of Fn

q , called the oil space, on which P vanishes. (I.e., P(o) = 0 for all o in O.) Knowledge of
this oil space allows a user to efficiently sample preimages for P. This trapdoor can be converted
into a post-quantum signature scheme with the Full Domain Hash approach: to sign a message
M , the signer produces a preimage x such that P(x) = H(M), where H is a hash function that
outputs elements of Fm

q .

Clearly, the security of the scheme relies on the assumption that given P, it is hard to find the
oil space O ⊂ Fn

q on which P vanishes. Not surprisingly, if we increase n for fixed m = dim(O),
then finding O becomes more difficult. Initially Patarin proposed to use n = 2m, but Kipnis
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and Shamir showed that in this case O can be found in polynomial time. Their attack runs in
time Õ(qn−m)1, so the attack quickly becomes infeasible if n is sufficiently larger than 2m. This
is why Kipnis et al. proposed to use UOV with n = 3m. Despite recent progress in key recovery
algorithms [1] (which breaks a parameter set with n = 2.4m), the n = 3m proposal still seems
secure today.

The main drawback of the UOV scheme is that the public keys are large. A public key consists
of a list of m multivariate quadratic polynomials in n variables, which requires O(mn2 log q)
bits to represent. For example, conservative parameters targeting NIST security level 1 are
m = 53, n = 3m, q = 31, which results in a key size of 421 KB. Petzoldt et al. [10] realized that
it is possible to generate a large part of the public key with a PRNG and choose the remaining
part such that P vanishes on a secret space O. This technique allows to reduce the key size from
O(mn2 log q) to O(m3 log q), which is a significant reduction. For the previous example, this
reduces the key size from 421 KB to 48 KB. However, the public key remains large compared
to other post-quantum signature schemes.

Contributions. For the UOV trapdoor to work, the dimension of the oil space needs to be at
least as large as the number of polynomials m. In this paper, we propose a signing algorithm
that uses a UOV map with o = dim(O) < m, which has two immediate benefits:

– By reducing dim(O), the complexity of key recovery attacks increases, which allows us to
choose smaller parameters.

– If dim(O) is smaller, the constraint that P vanishes on O becomes weaker, so we can generate
a larger part of P pseudo-randomly with the technique of Petzoldt et al [10]. This reduces
the overall key size significantly. We get a key size of O(mo2 log q) instead of O(m3 log q).

To achieve this, we show how to “whip up” the oil and vinegar: given a UOV map P : Fn
q →

Fm
q that vanishes on some unknown oil space of dimension o, one can construct a larger map

P⋆ : Fkn
q → Fm

q that vanishes on a space of dimension ko. A simple example of such a map is
given by P⋆(x1, . . . ,xk) = P(x1) + · · ·+P(xk), although we will see that this choice of P⋆ will
not result in a secure signature scheme. Using this technique, the signature scheme is simple:
The public key is a UOV map P : Fn

q → Fm
q with an oil space of dimension o < m. Both the

signer and the verifier locally whip up this map to get the larger map P⋆ with an oil space of
size ko ≥ m, which they use as if it was a standard UOV trapdoor.

The case where k = 1 (no whipping) and o = m is equivalent to the standard UOV signature
scheme, but choosing larger k allows us to reduce o to ⌈m/k⌉, so that we achieve the advantages
mentioned earlier.

In this paper, we analyze the security of this construction. We formulate two hard problems,
and we show if these problems are indeed hard, then the MAYO scheme is EUF-CMA secure in
the random oracle model. Since one of the hardness assumptions is new, this security reduction
itself provides little to no evidence for the security of MAYO. However, we hope that by carefully
formulating our assumptions, we can help others to understand and cryptanalyze our scheme.

1 The Õ-notation ignores polynomial factors.
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We propose parameter sets aiming for NIST security level I, III, and V. For example, targeting
NIST security level I, we propose and implement the parameter set q = 31, n = 62,m = 60, o = 6,
and k = 10. This results in a signature size of 420 bytes, and a public key size of only 803
bytes, which is two orders of magnitude smaller than classic UOV public keys, and even more
compact than lattice-based signature schemes such as Falcon [11] and Dilithium [9]. With our
implementation, the signing operation takes roughly 1 ms and the verification operation takes 0.5
ms on an intel i5-8400H CPU. Our hope is that the good communication sizes and performance
numbers of MAYO will motivate external cryptanalysis of our scheme.

2 Preliminaries

Notation. We denote by Fq the finite field of q elements. If X is a finite set, we write x← X
to denote sampling an element from X uniformly at random and assigning the result to x. If
A is a (possibly probabilistic) algorithm, we write y ← A(x) to denote running the algorithm
A on input x, and assigning the output to y. We denote the n-by-n identity matrix by In. For
a square matrix A = {aij}1≤i,j≤n, we denote by Upper(A) the upper diagonal matrix that is
equal to A up to the addition of an anti-symmetric matrix, i.e., Upper(A) = {bij}≤i,j≤n, where
bij = aij + aji if i ≤ j, bij = aij if i = j or bij = 0 otherwise. We say a function f(λ) : N→ R is
negligible if for every c > 0, there exits λ0 such that |f(λ)| < λ−c for all λ > λ0.

Multivariate quadratic maps. The central object in Multivariate Quadratic cryptography
is the multivariate quadratic map. A multivariate quadratic map P over Fq with n variables
and m components is a sequence p1(x), · · · , pm(x) of m multivariate quadratic polynomials in n
variables x = (x1, · · · , xn), with coefficients in a finite field Fq. We denote the set of multivariate
quadratic maps over Fn

q with n variables and m components by MQn,m,q.

To evaluate a map P ∈ MQn,m,q at a value a ∈ Fn
q , we simply evaluate each of its component

polynomials in a to get a vector b = (b1 = p1(a), · · · , bm = pm(a)) of m output elements. We
denote this by P(a) = b.

MQ problem. The main source of computational hardness for multivariate cryptosystems is
the Multivariate Quadratic (MQ) problem. Given a multivariate quadratic map P ∈ MQn,m,q,
and given a target t ∈ Fm

q , the MQ problem asks to find a solution s such that P(s) = t.
This problem is NP-hard, and even though it can be solved in polynomial time if m ≥ n(n +
1)/2 or n ≥ m(m + 1), it is believed to be exponentially hard on average if n ∼ m, even
for quantum algorithms. Currently, the best algorithms to solve instances of this problem (for
cryptographically relevant parameters) are algorithms such as F4/F5 or XL that use a Gröbner-
basis-like approach [6, 4].

Polar forms. To a homogeneous multivariate quadratic polynomial p(x), we can associate the
symmetric bilinear form

p′(x,y) := p(x+ y)− p(x)− p(y) ,

which is called the polar form of p(x). Similarly, we define the polar form of a multivariate
quadratic map P(x) = p1(x), · · · , pm(x), to be P ′(x,y) = p′1(x,y), · · · , p′m(x,y).
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3 The UOV signature scheme

As mentioned in the introduction, the Oil and Vinegar signature scheme is based on an elegant
multivariate quadratic trapdoor function P : Fn

q → Fm
q . This trapdoor function is converted

into a signature scheme with the Full Domain Hash approach: The public key is a description
of the trapdoor function P ∈ MQn,m,q, the secret key contains the trapdoor information, and
a signature on a message M is simply an input s such that P(s) = H(M ||salt), where H is a
cryptographic hash function that outputs elements in the range of P and where salt is a bit
string of length 2λ, chosen at random when the signature is generated. Therefore, to understand
the UOV signature scheme, we only need to understand how the UOV trapdoor function works.

3.1 UOV trapdoor function

The UOV trapdoor function is a multivariate quadratic map P : Fn
q → Fm

q that vanishes on a
secret linear subspace O ⊂ Fn

q of dimension dim(O) = m, i.e.

P(o) = 0 for all o ∈ O .

The trapdoor information is nothing more than a basis for O. To generate the trapdoor function
one first picks the subspace O uniformly at random and then one picks P uniformly at random
from the set of multivariate quadratic maps with m components in n variables that vanish on
O. Note that on top of the qm “artificial” zeros in the subspace O, we expect roughly qn−m

“natural” zeros that do not lie in O.

Given a target t ∈ Fm
q , how do we use this trapdoor to find x ∈ Fn

q such that P(x) = t? To do
this, one picks a vector v ∈ Fn

q and solves the system P(v+ o) = t for a vector o ∈ O. This can
simply be done by solving a linear system for o, because

P(v + o) = P(v)︸ ︷︷ ︸
fixed by choice of v

+P(o)︸ ︷︷ ︸
=0

+ P ′(v,o)︸ ︷︷ ︸
linear function of o

= t .

With probability roughly 1−1/q over the choice of v the linear map P ′(v, ·) will be non-singular,
in which case the linear system P(v + o) = t has a unique solution. If this is not the case, one
can simply pick a new value for v and try again.

Oil space can have basis of the form
(
O I0

)⊤
. In practice, we choose O as the row space

of a random matrix of the form
(
O Io

)
∈ Fo×n

q . Since most o-dimensional subspaces can be
represented in this form, this restriction does not affect the security of the scheme much.

Last m entries of v can be zero. In the original Oil and Vinegar signature scheme the vector
v is not chosen uniformly at random, but the last m entries are fixed to zero. This is slightly
more efficient, and it does not affect the output distribution of the signing algorithm. To see
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why this is the case, notice that adding a vector o⋆ ∈ O to the choice for v does not affect the
output of the signing algorithm: If o was the solution to P(v+o) = t, then o−o⋆ is the solution
to P(v+ o⋆ + o′) = t, so the signing algorithm outputs v+ o if it started from v, or it outputs
(v+ o⋆) + (o− o⋆) if it starts from v+ o⋆. Either way, the output is the same. Therefore, since
every v ∈ Fn

q can be written as v′ + o, where the last m entries of v′ are zero, it follows that
the last m entries of v can be fixed at zero without affecting the distribution of the signatures.

4 Key recovery attacks against UOV

A straightforward approach to attack the UOV signature scheme is to completely ignore the
existence of the oil subspace and directly try to solve the system P(s) = H(M ||salt) to produce
a signature for the message M . This can be done with a Gröbner basis-like approach such as
XL or F4/F5 [6, 4]. This is called a direct attack.

More interestingly, the attacker can first try to find the oil space O. After O is found, the attacker
can sign any message as if he was a legitimate signer. It was shown by Kipnis and Shamir [8],
that O can be found in polynomial time if n = 2m, which was the cased for the original oil
and vinegar proposal. That is why the current proposals use n > 2m, which is known as the
Unbalanced Oil and Vinegar (UOV) signature scheme. The conservative recommendation is to
use n = 3m or even n = 4m, and with these choices there are no known attacks that outperform
a direct attack.

In the remainder of this section we summarize the known algorithms for recovering a linear
subspace O of dimension o, given a multivariate quadratic map P : Fn

q → Fm
q that vanishes

on this subspace O. Usually, these algorithms are specialized to o = m, since this corresponds
to the UOV signature use-case. Here, we will generalize the attacks to the case where o is not
necessarily equal to m because this is relevant for MAYO. The presentation of the attacks is
mostly borrowed from Beullens [1], with slight modifications to generalize to the o ≤ m case.

4.1 Reconciliation attack

The reconciliation attack was developed by Ding et al. as a stepping stone towards the Rainbow
Band Separation (RBS) attack against the Rainbow signature scheme [5].

The attack tries to find a number of vectors o1,o2, . . . in O, until a complete basis for O is
found. To find the first vector o1 we simply try to find a solution to the system P(o1) = 0.
By assumption, this system of equations has a o-dimensional linear space of solutions, so if we
impose o affine constraints on the entries of o1, we expect a unique solution o1 ∈ O such that
P(o1) = 0. This step amounts to finding a solution to a system of m equations in n−o variables,
because we can use the o affine constraints to eliminate o variables in the system.

Once the first vector o1 ∈ O is found, it becomes easier to find additional vectors, because the
second vector o2 satisfies P(o2) = 0, as well as P ′(o1,o2) = 0, which for fixed o1 is a set of m
linear equations in the entries of o2. Therefore, after imposing o additional affine constraints,
the second step amounts to solving a system of m quadratic equations in n −m − o variables.
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Compared to the first step, the number of variables is reduced by m, which makes the second
step much more efficient. Similarly, finding subsequent vectors oi ∈ O amounts to finding a
solution to the system 

P(oi) = 0

P ′(o1,oi) = 0

. . .

P ′(oi−1,oi) = 0

,

which after imposing o additional affine constraints and eliminating variables amounts to solving
a system of m quadratic equations in n − (i − 1)m − o variables. If n < (i − 1)m + o, then we
can ignore the quadratic equations and just solve a system of linear equations to find oi.

The attack does not work as described if n − o > m, because in this case the first system
P(o1) = 0 is underdetermined, and the system has O(qn−o−m) solutions, only one of which lies
in O. If you start with a solution o1 ̸∈ O, the subsequent steps will fail to find additional vectors
o2, . . . ,oo. In this case one can enumerate all the solutions P(o1) = 0, or solve the system

P(o1) = 0

P(o2) = 0

P ′(o1,o2) = 0

,

to find o1 and o2 simultaneously. In this paper, we will only use UOV maps with n− o ≤ m, so
this more complicated attack is not relevant for us.

If n − o ≤ m, then the complexity of the attack is dominated by the complexity of finding the
first oil vector o1, which is the complexity of solving a system of m quadratic equations in n− o
variables.

4.2 Kipnis-Shamir attack

Historically, the first attack on the OV signature scheme was given by Kipnis and Shamir [8].
The basic version of this attack works when n = 2o, which was the case for the parameter sets
initially proposed by Patarin.

Attack if n = 2o. The attack looks at them components of P ′(x,y). Each component p′i(x,y) =
pi(x+ y)− pi(x)− pi(y), defines a matrix Mi such that p′i(x,y) = x⊤Miy. Kipnis and Shamir
observed the following useful property of Mi.

Lemma 1. For each i ∈ {1, · · · ,m}, we have that MiO ⊂ O⊥. That is, each Mi sends O into
its own orthogonal complement O⊥.

Proof. For any o1,o2 ∈ O we need to prove that ⟨o2,Mio1⟩ = 0. This follows from the assump-
tion that pi vanishes on O:

⟨o2,Mio1⟩ = o⊤2 Mio1 = p′i(o1,o2) = pi(o1 + o2)− pi(o1)− pi(o2) = 0 .
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If n = 2o, then dim(O⊥) = n − o = o, so if Mi is nonsingular (which happens with high
probability if q is odd), then Lemma 1 turns into an equality MiO = O⊥. This means that for
any pair of invertible Mi,Mj , we have that M−1j MiO = O, i.e. that O is an invariant subspace

of M−1j Mi. It turns out that finding a common invariant subspace of a large number of linear
maps can be done in polynomial time, so this gives an efficient algorithm for finding O. For
more details we refer to [8]

Fn
q Fn

q

O O⊥M1

M2

Fn
q Fn

q

O
O⊥M1O

M2O

M1

M2

Fig. 1. Behavior of O under M1 and M2, in case n = 2o (on the left) and 2o < n < 3o (on the right).

Attack if n > 2o. If n > 2o, then it is still the case that Mi sends O into O⊥, but because
dim(O⊥) = n − o > o the equality MiO = MjO may no longer hold. Therefore, M−1i Mj is
no longer guaranteed to have O as an invariant subspace and the basic attack fails. However,
even though in general MiO ̸= MjO, they still have an unusually large intersection (see Fig-
ure 1): MiO and MjO are both subspaces of O⊥, so their intersection has dimension at least
dim(MiO) + dim(MjO) − dim(O⊥) = 3o − n. Kipnis et al. [7] realized that this means that
vectors in O are more likely to be eigenvectors of M−1j Mi.

Heuristically, for x ∈ O, the probability that it gets mapped by Mi to some point in the
intersection MiO ∩MjO is approximately

|MiO ∩MjO|
|MiO|

= q2o−n .

If this happens, then the probability that M−1j maps Mix back to a multiple of x is expected

to be (q − 1)/|O| ≈ q1−o. Therefore, we can estimate that the probability that a vector in O is
an eigenvector of M−1j Mi is approximately q1+o−n, and the expected number of eigenvectors in

O is therefore q1+2o−n.

The same analysis holds when you replaceMi andMj by arbitrary invertible linear combinations
of the Mi. The attacker can repeatedly compute the eigenvectors of F−1G, where F and G are
random invertible linear combinations of the Mi. After qn−2o attempts he can expect to find a
vector in O (he can verify whether a given eigenvector x is in O by checking that P(x) = 0).
The complexity of the attack is Õ(qn−2o), so the attack runs in polynomial time if n = 2o, but
quickly becomes infeasible for unbalanced instances of the OV construction. For more details on
the attack, we refer to [7].
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4.3 Intersection attack

The intersection attack, introduced by Beullens [1], is a generalisation of the reconciliation
attack which uses the the ideas behind the Kipnis-Shamir attack. After choosing k matrices
M1, . . . ,Mk as in the Kipnis-Shamir attack, the attacker tries to find a vector x in the intersection
M1O ∩ · · · ∩MkO. This intersection has dimension at least ko− (k − 1)(n− o), so the attacker
chooses k such that this is strictly positive. If a vector x is in this intersection, then M−1i x ∈ O
for all i ∈ {1, . . . , k}, which means that x satisfies the following system of equations:{

P(M−1i x) = 0 ∀i ∈ {1, . . . , k}
P ′(M−1i x,M−1j x) ∀i < j ∈ {1, . . . , k}2

. (1)

The attacker uses a Gröbner-basis-like algorithm to find a solution x to this system, and recovers
k vectors M−11 x, . . . ,M−1k x in O. Extending these to a basis of O can be done efficiently, as
described in Sect. 4.1.

The complexity of the intersection attack is dominated by the complexity of solving a system
of
(
k+1
2

)
m− 2

(
k
2

)
linearly independent multivariate quadratic equations (the

(
k+1
2

)
m equations

in (1) are linearly dependent) in n − dim(M1O ∩ · · · ∩MkO) = kn − (2k − 1)o variables. For
more details, we refer to [1].

5 Whipping Oil and Vinegar

In this section we introduce a “whipping” transformation, that turns a multivariate quadratic
map P : Fn

q → Fm
q into a larger map P⋆ : Fkn

q → Fm
q for an integer k > 1. Our whipping

transformation has the property that if P(x) vanishes on a subspace O ⊂ Fn
q , then P⋆ vanishes

on Ok ⊂ Fkn
q . This allows us to transform a useless UOV map with o < m into a more useful

map that vanishes on a space of dimension at least m.

First attempt. A first attempt is to simply use

P⋆(x1, . . . ,xk) = P(x1) + · · ·+ P(xk) .

If P vanishes on O, then clearly this P⋆ vanishes on Ok. However, it turns out that this P⋆ is
not preimage resistant for k > 1, so we can not use this construction for our signature scheme.
To illustrate the problem, suppose k ≥ 2 and suppose there exists α ∈ Fq such that α2 = −1.
Then the attacker can choose δ ∈ Fn

q at random, put x2 = αx1 + δ, and put xi = 0 for i > 2.
Then we have

P⋆(x1, . . . ,xk) = P(x1) + P(αx1 + δ)

= P(x1) + P(αx1) + P(δ) + P ′(αx1, δ)

= P(δ) + P ′(αx1, δ) ,

where we have used that P is homogeneous, such that P(αx1) = −P(x1). What remains is
linear in x1, so an attacker can efficiently solve for x1 such that P⋆(x1, αx1 + δ, 0, . . . , 0) = t.
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Second attempt. The first attempt resulted in a whipped up map that could be made to
collapse into a linear map. To fix this problem, we will add some “emulsifier” maps to the mix.2

Concretely, for the second attempt we choose k invertible linear m-by-m matrices E1, . . . ,Ek at
random and set

P⋆(x1, . . . ,xk) = E1P(x1) + · · ·+EkP(xk) .

This blocks attacks of the type that broke our first attempt: Suppose the attacker sets xi =
αix1+ δi, for i > 1 and for some αi ∈ Fq and δi ∈ Fn

q , then the quadratic part of P⋆(x1, . . . ,xk)
becomes (

E1 +

k∑
i=2

α2
iEi

)
P(x1) .

If the Ei are chosen at random, then for each choice of αi, the probability that the quadratic
terms vanish is q−m

2

, so a union bound says that the probability that there exist αi such that
the quadratic part vanishes is at most qk−1−m

2

, which can be made negligibly small by choosing
the parameters appropriately. However, the attacker can still take advantage of αi such that
E1 +

∑k
i=2 α

2
iEi has low rank. Therefore, we choose the Ei from a set of qm matrices such that

any non-zero linear combination of these matrices has full rank. We use the set of matrices that
correspond to multiplication by elements of Fqm . In the following, we fix an embedding of Fqm

in the algebra of m-by-m matrices over Fq, and with a mild abuse of notation, we will identify
the elements of Fqm with the corresponding matrices. With this choice of “emulsifier maps”, the

probability that there exists a linear combination E1 +
∑k

i=2 α
2
iEi with rank lower than n (i.e.

rank 0) is at most qk−1−m, which can still be made negligible.3

However, there is still a different issue. Since P⋆ is the sum of k functions with independent
inputs the problem of finding a preimage for P⋆ reduces to a k-SUM problem. The attacker
constructs k lists of evaluations of Ei(P(x)) respectively, and searches for one value in each
list such that their sum is t. This can be done in time O(qm/⌊log2(k)⌋) with Wagner’s k-tree
algorithm [14]. For moderately large values of k (e.g. k = 8) this attack will be more efficient
than the other known attacks against our signature scheme, so it is worthwhile to choose a
different P⋆ that is not susceptible to this attack.

Final construction. To avoid the k-tree attacks, we finally propose to use the following con-
struction: fix invertible linear matrices Ei,j for all (i, j) with 1 ≤ i ≤ j ≤ n (still representing
multiplication by an element of Fqm), and let

P⋆(x1, . . . ,xk) =

k∑
i=1

Ei,i(P(xi)) +
∑

1≤i<j≤n

Ei,j(P ′(xi,xj)) .

The probability that there exist αi such that the quadratic part of P⋆(x1, α2x2+ δ2, . . . , αkx1+
δ1) is still bounded by qk−1−m. Moreover, the cross-terms Ei,jP ′(xi,xj) prevent the list-sum at-
tack, because in general P⋆(0, . . . ,xi, . . . , 0)+P⋆(0, . . . ,xj , . . . , 0) ̸= P⋆(0, . . . ,xi, . . . ,xj , . . . , 0).

2 An emulsifier is a chemical that stabilizes an emulsion. An example is Lecithin, which is found in egg
yolks, and which can stabilize a foam of oil droplets in an oil and vinegar mixture to form mayonnaise.

3 For odd q we can get a slightly better bound of
(
q+1
2

)k−1
q−m, because each α2

i can only take (q+1)/2
distinct values.
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6 Mayo signatures

In this section we introduce our new signature scheme that uses UOV maps with o < m. Recall
that in the o = m case, the signature generation algorithms proceeds by picking a random salt of
length 2λ and a random vector v ∈ Fn

q , and solving for o ∈ O such that P(v+o) = Hash(M ||salt),
which is a linear system of equations. If o < m the same strategy fails because the linear system
has m equations, but only o < m degrees of freedom, such that with large probability the system
will not have any solutions. To solve this problem, we fix some k such that ko ≥ m and we let
the signer whip up P(x) into a larger map P⋆(x1, . . . ,xk) with the method from the previous
section with some set of emulsifier maps {Eij}1≤i≤j≤k that are fixed as system parameters. For

example, they might be chosen at random, or if
(
k
2

)
< m we can simply choose Eij that represent

multiplication by 1, X,X2, . . . , X(k2)−1 in Fq[X]/(f(X) for some monic irreducible polynomial
f(X) of degree m. Now the signer can choose (v1, . . . ,vk) ∈ Fkn

q , and solve for (o1, . . . ,ok) ∈ Ok

such that P(v1 + o1, . . . ,vk + ok) = t. This amounts to solving a system of m linear equations
with ko ≥ m degrees of freedom, so solutions can be found with large probability. The signature
consists of the salt, and the preimage {si = vi + oi}i∈[k]. Note that, as in the original UOV
signature algorithm, we can let the last o entries of the vi be zero to speed up the signing
algorithm without affecting its output distribution.

To verify a signature, the verifier simply hashes M ||salt to obtain t, and accepts the signature
if and only if P⋆(si) = t.

To generate a key-pair, a user first chooses a random oilspace by sampling a uniformly random
o-by-(n−o) matrix O, and letting O be the rowspace of (OIo), where Io is the identity matrix of
size o. Then the user generates a random multivariate quadratic map P(x) that vanishes on O.
Recall that every multivariate quadratic polynomial pi(x) of the public key can be represented
with an upper triangular matrix Pi such that

pi(x) = x⊤Pix = x⊤

(
P

(i)
i P

(2)
i

0 P
(3)
i

)
x ,

where P
(1)
i and P

(3)
i are square upper triangular matrices of size n− o and o respectively, and

where P
(2)
i is rectangular of size (n − o)-by-o. To reduce the size of the public key, we choose

the matrices P
(i)
i and P

(2)
i pseudo-randomly from a random seed value seed ∈ {0, 1}λ. Then we

solve for P
(3)
i such that pi vanishes on O. The polynomial pi(x) vanishes on O if

(O Io)

(
P

(i)
i P

(2)
i

0 P
(3)
i

)
(O Io)

⊤ = OP
(1)
i O⊤ +OP

(2)
i +P

(3)
i = 0 ,

so it suffices to set P
(3)
i to be Upper(−OP

(1)
i O⊤ − OP

(2)
i ). Note that taking Upper does not

influence the quadratic polynomial represented by Pi.

The key generation, signing and verification algorithms are described in more detail in Figure 6.

The following lemma says that if the Eij are not chosen poorly, then the probability that the
signing algorithm needs to restart is small if ok ≥ m. The proof is not particularly interesting,
so in the interest of space we put it in Appendix A.
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KeyGen():

1: O← Fo×(n−o)
q

2: seed← {0, 1}λ
3: for i from 1 to m do
4: P

(1)
i ← Expand(seed||P1||i) ▷ Upper triangular (n− o)-by-(n− o) matrix.

5: P
(2)
i ← Expand(seed||P2||i) ▷ o-by-(n− o) matrix.

6: P
(3)
i ← Upper(−OP

(1)
i O⊤ −OP

(2)
i )

7: return (pk, sk) = ((seed, {P(3)
i }i∈{i,...,m}), (seed,O)).

Sign(M, sk):

1: (seed,O)← sk
2: salt← {0, 1}2λ
3: t← Hash(M ||salt)
4: P∗(x1, . . .xk)←

∑k
i=1 EiiP(xi) +

∑
1≤i<j≤k EijP ′(xi,xj)

5: vi ← Fn−m
q × {0}m

6: If P∗(v1 + o1, . . . ,vk + ok) does not have full rank, return to step 2.
7: Solve P∗(v1 + o1, . . . ,vk + ok) = t for o1, . . . ,ok ∈ RowSpace(

(
OIo

)
).

8: return σ = (salt, {si = vi + oi}i∈[k])

Verify(M, pk, σ):

1: (salt, {si}i∈[k])← σ
2: t← Hash(M ||salt)
3: t′ ←

∑k
i=1 EiiP(si) +

∑
1≤i<j≤k EijP ′(si, sj)

4: return accept if t = t′ and reject otherwise.

Fig. 2. The key generation, signing, and verification algorithms of the MAYO signature scheme.
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Lemma 2. Suppose we chose the Eij matrices such that

E =


E11 E12 . . . E1k

E12 E22 . . .
...

...
...

. . .
...

E1k . . . . . . Ekk


is nonsingular. Then if O,P, and {vi}ı∈[k] in Fn−m

q ×{0}m are chosen uniformly at random as
in the MAYO signature scheme, then as a function of {oi}i∈[k] ∈ O the affine map

P⋆(v + o) =

k∑
i=1

EiiP(vi + oi) +
∑

1≤i<j≤k

EijP ′(vi + oi,vj + ok)

has full rank except with probability bounded by qk−(n−o)

q−1 + qm−ko

q−1 .

7 Security Analysis

Traditional MQ signature algorithms usually rely on ad-hoc assumptions, which makes it im-
possible to prove security reductions from well-established hardness assumptions.4 The MAYO
signature scheme is no exception. However, we will still formally define two assumptions based
on which our scheme can be proven to be secure. Since one of the assumptions is new, this secu-
rity reduction itself does not provide any kind of guarantee for the security of the scheme. Still,
we hope the security reduction is valuable for cryptanalysts to understand what is necessary to
attack our scheme. Most notably, we prove that if ko is sufficiently larger than m, each signature
only leaks a negligible amount of information about the secret key.

Our first hardness assumption says that it is hard to distinguish a random multivariate quadratic
map that vanishes on a random linear subspace from a uniformly random quadratic map.

Definition 3 (UOV problem). For O ∈ Fo×(n−o)
q , we let MQn,m,q(O) denote the set of

P ∈ MQn,m,q that vanish on the rowspace of
(
O Io

)
. The UOV problem asks to distinguish a

random multivariate quadratic map P ∈ MQn,m,q, from a random multivariate quadratic map

in MQn,m,q(O) for a random O ∈ Fo×(n−o)
q .

Let A be a UOV distinguisher algorithm. We say the distinguishing advantage of A is

AdvUOV
n,m,o,q(A) =

∣∣∣∣Pr [A(P) = 1
∣∣P ← MQm,n,q

]
−Pr

[
A(P) = 1

∣∣∣∣ O← Fo×(n−o)
q

P ← MQn,m,q(O)

]∣∣∣∣ .
4 Signature schemes such as MQDSS [3, 12] and MUDFISH [2] that do not make use of trapdoors are
an exception because they enjoy security reductions from the one-wayness of a system of uniformly
random multivariate quadratic equations.
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The UOV problem has been studied since the invention of the UOV signature scheme in 1997
and seems relatively well understood. In contrast, our second hardness assumption is tailored
to the MAYO signature scheme and is therefore a new assumption. This assumption says that
picking a random multivariate quadratic map P ∈ MQn,m,q, and whipping it up to a larger map
P⋆ ∈ MQkn,m,q results in a preimage resistant function on average.

Definition 4 (Whipped MQ problem). For some matrices {Eij}1≤i≤j≤k ∈ Fqm , and given
random P ∈ MQn,m,q, and t ∈ Fm

q , the whipped MQ problem asks to compute s1, . . . , sk, such

that
∑k

i=1 EiiP(si) +
∑

1≤i<j≤k EijP ′(si, sj) = t.

Let A be an adversary. We say that the advantage of A against the whipped MQ problem is

AdvWMQ
{Eij},n,m,k,q(A) = Pr

 k∑
i=1

EiiP(si) +
∑
i<j

EijP ′(si, sj) = t

∣∣∣∣∣∣
P ← MQn,m,q

t← Fm
q

(s1, . . . , sk)← A(P, t)

 .

Finally, we state the standard EUF-CMA and EUF-KOA security definition for digital signature
algorithms in the random oracle model.

Definition 5 (EUF-CMA/EUF-KOA security). Let O be a random oracle, and let A be an
adversary. We say the advantage of A gainst the EUF-CMA game of a signature scheme S =
(KeyGen, SignO, V erifyO) in the random oracle model is

AdvEUF-CMA
S (A) = Pr

 VerifyO(pk,m, σ) = 1,

and SignO(sk, ·) was
not queried on input m

∣∣∣∣∣∣ (pk, sk)← KeyGen()

(m,σ)← AO,SignO(sk,·)(pk)

 .

The EUF-KOA advantage AdvEUF-KOA
S (A) is defined in the same way, except that A does not

have access to the signing oracle SignO(sk, ·).

With these definitions out of the way we can formulate our security theorem.

Theorem 6. Let A be an EUF-CMA adversary that runs in time T against the MAYO signature
in the random oracle model with parameters n,m, o, k, q, and which makes Qs signing queries

and Qh queries to the random oracle. Let B = qk−(n−o)

q−1 + qm−ko

q−1 be the bound on the restarting
probability from Lemma 2 and suppose QsB < 1, then there exist adversaries AUOV and AWMQ

against the UOVn,m,o,q and WMQn,m,k,q assumptions respectively, that run in time T + (Qs +
Qh + 1) · poly(n,m, k, q) such that

AdvEUF−CMA
n,m,o,k,q (A) ≤

(
AdvUOV

n,m,o,q(B) +QhAdv
WMQ
{Eij},n,m,k,q(B

′) + q−m
)
(1−QsB)

−1

+ (Qh +Qs)Qs2
−2λ .

We prove the theorem with two lemmas. The first lemma reduces the EUF-CMA security of the
MAYO signature scheme to its EUF-KOA security, by showing that we can simulate a signing
oracle if ko is sufficiently larger than m. The second lemma then finishes the proof by giving a
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reduction from the UOV and WMQ problems to the EUF-KOA security game. The reduction
from the WMQ problem loses a factor Qh in advantage, because the reduction programs the
random oracle to output the target t from WMQ instance for one of the Qh random oracle
queries, and succeeds only if the adversary forges a signature for that particular query. The
proofs of Lemma 7 and 8 can be found in Appendix B and C respectively.

Lemma 7. If there exists an adversary A, that runs in time T against the EUF-CMA security of
the MAYO signature in the random oracle model with parameters n,m, o, k, q, with k < (n− o),
and which makes Qh queries to the random oracle and Qs queries to the signing oracle. Let

B = qk−(n−o)

q−1 + qm−ko

q−1 be the bound on the restarting probability from Lemma 2 and suppose
QsB < 1, then there exists an adversary B against the EUF-KOA security of the MAYO signature
scheme, that runs in time T +O((Qh +Qs)poly(n,m, k, q)) such that

AdvEUF−CMA
n,m,o,k,q (A) ≤ AdvEUF-KOA

n,m,o,q (B) (1−QsB)
−1

+ (Qh +Qs)Qs2
−2λ .

Lemma 8. Let A be an EUF-KOA adversary that runs in time T against the MAYO signature in
the random oracle model with parameters n,m, o, k, q, and which makes Qh queries to the random
oracle. Then there exists an adversary B against the UOVn,m,o,q problem, and an adversary B′
against the WMQn,m,k,q problem, that run in time T +O((1 +Qh)poly(n,m, k, q)) such that

AdvEUF-KOA
n,m,o,k,q(A) ≤ AdvUOV

n,m,o,q(B) + (1 +Qh)Adv
WMQ
{Eij},n,m,k,q(B

′) + q−m .

8 Parameter selection and implementation

In this section, we choose some parameter sets for the MAYO signature scheme. A parameter
set consists of five values n,m, o, k, and q (as well as the length of the salt, which we choose
to be 256, 384 or 512 bits long for NIST security levels I, III, and V respectively.) The only
requirement for the correctness of the signature scheme is that ko ≥ m because otherwise, the
signing algorithm will fail with high probability. For security, we need to choose n,m, o, k and
q such that the UOV and WMQ problems are hard. The best known attacks against the UOV
assumption are summarized in Section 3. Since we are not aware of attacks that exploit the
whipping structure, we estimate that the hardness of the WMQ problem is the same as the
hardness of breaking the preimage resistance of a uniformly random multivariate quadratic map
P ∈ MQkn,m,q. These systems are very underdetermined, so we can use the technique of Thomae
and Wolf [13] to reduce the problem of finding a solution to a system in MQkn,m,q, to a system
in MQn′,m′,q, where n

′ = m′ = ⌈m+1− nk
m ⌉. To achieve NISTPQC security levels I, III, or V we

choose parameters such that finding such a solution with the Hybrid XL algorithm, or breaking
the UOV assumption costs at least 2143, 2207, or 2272 bit operations respectively. The fact that
all known attacks require frequently accessing large amounts of memory provides a comfortable
security margin. Table 1 contains the proposed parameter sets. Estimates of the bit complexity
of known attacks against these parameter sets are given in Table 2.

Our security reduction has a factor Qh advantage loss for the reduction from the WMQ prob-
lem, where Qh is the number of random oracle queries that the adversary is allowed to make.

14



Therefore, if one wanted the reduction to guarantee l bits of security, we would have to pick
parameters such that the WMQ problem has 2l bits of hardness. We choose not to do this be-
cause it would come at a significant cost in performance and communication size, and we are not
aware of any attacks that exploit the looseness in the reduction. E.g., for our parameters, there
do not appear to exist multi-target attacks on the WMQ problem that meaningfully outperform
single-target attacks. (This is also the case for the standard MQ problem.)

Information-theoretically, UOV signatures (and variants such as Rainbow) leak information
about the secret key. Although it seems hard to exploit this leakage in an attack, one might
want to stop this leakage altogether. For the UOV scheme, it would be possible to stop the leakage
by choosing o > m, but this would come at a very significant cost in terms of performance. For
the MAYO signatures, it is much cheaper to prevent the leakage, because we only need ko > m.
Table 1 proposes two parameter sets per NIST security level: a first parameter set that does
not attempt to prevent leakage, and a second parameter set that satisfies B ≤ 2−65, such that
Lemma 7 gives a tight reduction from EUF-KOA security to EUF-CMA security for adversaries
that are allowed to make up to 264 signature queries. Figure 3 shows the signature size and public
key size of a variety of MAYO parameter sets (with and without leaky signatures), compared
to the key and signature sizes of the three finalist signature schemes in the NISTPQC process.
We see that by choosing the parameters, we can make a trade-off between signature size and
public key size. We also see that the cost of making the signatures statistically close to random
is small.

Table 1. Parameter sets for the MAYO signature scheme.

no Parameters |pk| |sig|
SL leakage n m o k q (Bytes) (Bytes)

I
✗ 66 67 5 14 16 518 494
✓ 67 68 6 14 16 730 501

III
✗ 98 99 6 17 16 1055 881
✓ 99 102 6 20 16 1087 1038

V
✗ 130 132 7 19 16 1864 1299
✓ 131 132 8 19 16 2392 1308

Table 2. Estimated complexities (log2 of number of bit operations) of known attacks against MAYO
parameter sets.

no Parameters direct KS recon. inters.
SL leakage n m o k q

I
✗ 66, 67, 5, 14, 16 143 239 146 287
✓ 67, 68, 6, 14, 16 146 235 144 279

III
✗ 98, 99, 6, 17, 16 207 361 210 426
✓ 99, 102, 6, 20, 16 207 365 209 430

V
✗ 130, 132, 7, 19, 16 273 482 273 565
✓ 131, 132, 8, 19, 16 273 478 273 557
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Fig. 3. A comparison of the key and signature sizes of the MAYO signature scheme with various
parameter sets, and the key and signature sizes of the NISTPQC signature finalists.

Implementation. We made a C implementation with some preliminary AVX2 optimizations of
MAYO for the parameter set (n = 62,m = 60, o = 6, k = 10, q = 31), which aims for NISTPQC
security level I. The implementation is available on

https://github.com/WardBeullens/MAYO .

We instantiate the H and Expand random oracles with the SHAKE128 extendable output func-
tion. With these choices, the public key and signatures have a size of 803 Bytes and 420 Bytes
respectively. On an Intel i5-8400H CPU at 2.5GHz, a signing operation takes 2.50 million cycles,
and a verification operation takes 1.3 million cycles (i.e., 1 ms or 0.5 ms respectively). A large
fraction of the time is spent expanding the public seed with Expand, therefore, if one can spare
137 KB to store the expanded seed the signing and verification time can be reduced by 30%
and 40%, to 1.7 million cycles and 820 thousand cycles respectively (i.e., 0.7 ms or 0.3 ms). We
leave a more optimized constant-time implementation of MAYO for future work.
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A Proof of Lemma 2

Before we prove the lemma, we recall the following result, which is useful to prove that cer-
tain random matrices are of full rank with high probability. In particular the result applies to
uniformly random matrices, and uniformly random symmetric matrices.

Lemma 9. Let M be a distribution of matrices in Fn×m
q with n ≥ m, such that for all x ∈

Fm
q \ {0}, we have

Pr
M←M

[Mx = 0] = q−n ,

then the probability that M←M does not have full rank is bounded by qm−n

q−1 .
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Proof. From the assumption, it follows that the average number of non-zero kernel vectors is
(qm− 1)q−n. Since every matrix which does not have full rank has at least q− 1 non-zero kernel
vectors, it follows that

Pr
M←M

[rank(M) < m](q − 1) ≤ (qm − 1)q−n < qm−n .

A.1 Proof of Lemma 2

Proof. First of all, we show that if v1, · · · ,vk ∈ Fn−o
q × {0}o are linearly independent, then the

linear maps P ′(v1, ·), . . . ,P ′(vk, ·) from O to Fm
q are all independent and uniformly distributed.

To see this, it suffices to show that for a basis y1, · · ·yo of O, the matrices {p′i(va,yb)}a∈[k],b∈[o]
are independent and uniformly random for all i ∈ [m]. If we choose the basis where yb is the
b-th row of

(
O Io

)
, then a calculation shows that these matrices are

V
(
(P

(1)
i +P

(1)⊤
i )O⊤ +P

(2)
i

)
,

where the rows of V ∈ Fk×(n−o)
q consists of the first n − o entries of the vi. Therefore, if the

vi are linearly independent, then V has full rank, and if k < (n− o), then it follows that these

matrices are uniformly random and independent because the P
(2)
i matrices are chosen uniformly

at random during the key generation algorithm.

In particular, if M1, . . . ,Mk ∈ Fm×o
q are the matrix representations of P ′(vi, ·) (i.e. the matrices

such that for all i ∈ [k], we have P ′(vi,
∑

i uiyi) = Miu ). Then we have shown that if the vi

are linearly independent, then the Mi are independent and uniformly random matrices.

As a warm-up, let us now look at the case k = 1 first. In this case the linear part of P⋆(v+o) is
P⋆′(v,o) = E11P ′(v,o). This has the matrix representation E11M1, where if v ̸= 0, the matrix
M1 is uniformly random. Therefore, since E11 is invertible, we see that the signing algorithm
has to restart only if M1 does not have full rank, which happens with probability bounded by

qo−n +
qm−o

q − 1

because either v = 0, which happens with probability bounded by qo−n, and in which case
E11P(v + o) is exactly zero, so it definitely is not full rank, or otherwise the linear part of
E11P(v + o) is a uniformly random linear map from O to Fm

q , so it fails to have full rank with

probability bounded by qm−o

q−1 (Lemma 9).

In general, the linear part of P⋆(v + o) is equal to

P ′⋆(v,o) =
k∑

i=1

EiiP ′(vi,oi) +
∑
i<j

Eij [P ′(vi + oi,vj + oj)− P ′(vi,vj)− P ′(oi,oj)] (2)

=

k∑
i=1

EiiP ′(vi,oi) +
∑
i<j

Eij [P ′(vi,oj) + P ′(vj ,oi)] (3)
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Let M1, . . . ,Mk be the matrix representations of P ′(vi, ·), then the matrix representation of
P⋆′(v, ·) is

(
M′1 . . . M′k

)
∈ Fm×ko

q , where

M′1
...

M′k

 = E

M1

...
Mk

 =


E11 E12 . . . E1k

E12 E22 . . .
...

...
...

. . .
...

E1k . . . . . . Ekk


M1

...
Mk

 . (4)

Since E is invertible, we see that the M′i are uniformly random if the Mi are uniformly random,
which we know happens if the vi are linearly dependent. We now consider two cases:

– So either the vi are linearly dependent (with probability bounded by qk−(n−o)

q−1 (Lemma 9),

– or theM′i are uniformly random and therefore P ′⋆(v, ·) fails to have full rank with probability

bounded by qm−ko

q−1 (Lemma 9 again).

By the union bound we have that P ′⋆(v, ·) has full rank except with probability bounded by

qk−(n−o)

q − 1
+

qm−ko

q − 1
.

B Proof of Lemma 7

Proof. The EUF-KOA adversary B works as follows. When B is given a public key P, it starts
simulating A on input P. To simulate random oracle queries B maintains a list of queries L,
that is initially empty. When A queries a random oracle at input m, B responds with t if there
is an entry (m, t) ∈ L and otherwise B samples t ∈ Fm

q uniformly at random, adds (m, t) to L
and responds with t.

When A makes a query to sign a message M , B chooses a random salt and aborts if there is an
entry (m||salt, ⋆, ⋆) in L. Otherwise, B samples s1, . . . , sk ∈ Fn

q , and sets t =
∑

ij EijP(si + sj).
Then B adds (m||salt,E, t) to L and outputs the signature (salt, s1, · · · , sk).

Finally, when A outputs a message-signature pair (m,σ), B just outputs the same pair.

It is clear that B runs in time T + O((Qh + Qs + 1)poly(n,m, k, q)), so to finish the proof we
need to show that B succeeds in the EUF-KOA game with a sufficiently large probability. We
prove this with a sequence of games.

– Let Game0 be A’s EUF-CMA game against the MAYO signature scheme. By definition we
have Pr[Game0() = 1] = AdvEUF−CMA

n,m,o,k,q (A).
– Let Game1 be identical to Game0, except that the game aborts and outputs 0 if to answer

a signing query m, the challenger picks a salt, such that the random oracle was already
queried at input m||salt. Since there are in total Qh +Qs queries to the random oracle, the
probability of an abort is at most (Qs + Qh)2

−2λ for each signing query, which makes for
a total probability of an abort of (Qs +Qh)Qs2

−2λ. Therefore, we have Pr[Game1() = 1] ≥
Pr[Game0() = 1]− (Qs +Qh)Qs2

−2λ.

19



– Let Game2 be the same as Game1 except that the game aborts and outputs 0 if during one of
the calls to the signing oracle, the challenger has to restart the signing algorithm because he
arrives at a linear system P⋆(v1 + o1, . . . ,vk + ok) = t which does not have full rank. Note
that the view of the adversary in Game1 is independent of the number of signing attempts: if
the signing algorithm encounters a system that does not have full rank, it just restarts from
the beginning. Therefore, the output of the signing algorithm is independent of the number
of signing attempts. It follows from Lemma 2 that

Pr[Game2() = 1] = Pr[Game1() = 1 ∧ no restart] = Pr[Game1() = 1] Pr[no restart]

≥ Pr[Game1() = 1]

(
1−Qs

(
qk−(n−o)

q − 1
+

qm−ko

q − 1

))
.

– The final game Game3 is just the EUF-KOA game played by BA. If Game2 does not abort,
then the view of A is identical in Game2 and Game3, because if no salt is chosen more
than once for the same message, then B simulates the random oracle perfectly. Moreover,
since all of the linear systems have full rank, the signatures are computed as s = v + o,
where v is chosen uniformly at random in (Fn−o

q × {0}o)k, and o is uniformly random

in Ok. By construction we have (Fn−o
q × {0}o) + O = Fn

q , so the signatures in Game2
are uniformly distributed, which means that B simulates the signing oracle perfectly by
just choosing random s ∈ Fkn

q . Therefore, the probability that A outputs a forgery in
Game2 is at least as big as the probability that it outputs a forgery in Game3 (it could be
larger, since Game3 aborts less often, but this is not important for our analysis), so we have
AdvEUF-KOA

n,m,o,q (B) > Pr[Game2() = 1].

In case
(
1−Qs

(
qk−(n−o)

q−1 + qm−ko

q−1

))
> 0, we can combine the 3 inequalities to get

AdvEUF−CMA
n,m,o,k,q (A) ≤ AdvEUF-KOA

n,m,o,q (B)
(
1−Qs

(
qk−(n−o)

q − 1
+

qm−ko

q − 1

))−1
+ (Qh +Qs)Qs2

−2λ .

C Proof of Lemma 8

Proof. We do the proof with a short sequence of games. The first game Game0 is the EUF-KOA
game played by A. By definition we have Pr[Game0() = 1] = AdvEUF-KOA

n,m,o,k,q(A).

The next game is the same as Game0, except that during the key generation step the challenger
chooses a uniformly random P ∈ MQn,m,q, instead of a P that vanishes on some oil space
O. We construct the adversary B against the UOV assumption as follows. When B is given a

multivariate quadratic map P, it computes the matrix representation {P(1)
i ,P

(2)
i ,P

(3)
i }i∈[m] of

P. Then, B pick a random seed, and runs A on input pk = (seed, {P(3)
i }i∈[m]), while faithfully

simulating a random oracle, and an Expand oracle that outputs P
(1)
i on input seed||P1||i, that

outputs P
(2)
i on input seed||P1||i, and that outputs random matrices of the appropriate shape

otherwise. We designed B in such a way, that if B is given a P that is a (n,m, o, q) UOV map,
then B is exactly Game0, and if B is given a random map P, then B is Game1. Therefore we
have

AdvUOV
n,m,o,q(B) = |Pr[Game0() = 1]− Pr[Game1() = 1]| .
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For the next game we define the adversary B′ against the whipped MQ problem. When B′ is
given a WMQ instance P, t, it does the same thing as Game1, except that instead of simulating
a random oracle honestly, B′ chooses an integer I ∈ [Qh] uniformly at random, and outputs t
for the I-th distinct random oracle query (and all the subsequent queries for the same message).
If A outputs a valid message-signature pair (m, (salt, s)), then the B′ adversary checks if m||salt
was the I-th random oracle query. If this is the case, then B′ outputs s, and otherwise B′ aborts.
The view of A in this game is the same as the view of a in Game1, so A outputs a valid message-
signature pair with probability Pr[Game1() = 1]. The probability that A outputs a valid pair
(m, (salt, s)) such that it has not queried the random oracle on input m||salt is at most q−m.
Note that the guess I is information-theoretically hidden from A, so if A outputs a valid forgery
for the J-th random oracle query, then the probability that I = J is 1/Qh. Therefore we have
AdvWMQ

n,m,k,q(B′) ≥ (Pr[Game1() = 1]− q−m)/Qh.

We can now finish the proof by combining Pr[Game0() = 1] = AdvEUF-KOA
n,m,o,k,q(A) with inequalities

from the two game transitions to get

AdvEUF-KOA
n,m,o,k,q(A) ≤ AdvUOV

n,m,o,q(B) +QhAdv
WMQ
n,m,k,q(B

′) + q−m .
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