
Bandersnatch: a fast elliptic curve built over the

BLS12-381 scalar field

Simon Masson1, Antonio Sanso2,3 and Zhenfei Zhang2

1Anoma
2Ethereum Foundation

3Ruhr Universität Bochum

Abstract

In this short note, we introduce Bandersnatch, a new elliptic curve
built over the BLS12-381 scalar field. The curve is equipped with an
efficient endomorphism, allowing a fast scalar multiplication algorithm.
Our benchmark shows that the multiplication is 42% faster, compared
to another curve, called Jubjub, having similar properties. Nonetheless,
Bandersnatch does not provide any performance improvement for either
rank 1 constraint systems (R1CS) or multi scalar multiplications, com-
pared to the Jubjub curve.

1 Introduction

BLS12-381 is a pairing-friendly curve created by Sean Bowe here in 2017. Cur-
rently, BLS12-381 is undergoing a standardization process from the IRTF Crypto
Forum Research Group, and is universally used for digital signatures and zero-
knowledge proofs by many projects orbiting in the blockchain universe: Zcash,
Ethereum 2.0, Anoma, Skale, Algorand, Dfinity, Chia, and more. The ZCash
team introduced Jubjub here, an elliptic curve built over the BLS12-381 scalar
field FrBLS . This curve is not pairing-friendly, but leads to constructions where
FrBLS arithmetic circuits can be manipulated using the BLS12-381 curve. The
Jubjub curve can be represented in the twisted Edwards coordinates, allowing ef-
ficiency inside zk-SNARK circuits. In order for some cryptographic applications
to scale, it is necessary to have efficient scalar multiplication on the non-pairing-
friendly curve. The main drawback of Jubjub is the slow scalar multiplication
algorithm compared, for example, with the “Bitcoin curve” (SECP256k1). It
comes from the fact that the curve does not have an efficiently computable
endomorphism, necessary for computing scalar multiplications using the GLV
method [1] (a technique protected by a US patent until Sep 2020 [2], but that
expired and is freely usable now).

1

https://anoma.network
https://electriccoin.co/blog/new-snark-curve/
https://anoma.network
https://z.cash/technology/jubjub/

Our contribution. The Jubjub curve is a curve with a large discriminant,
meaning that the GLV method is not possible on this curve. We performed an
exhaustive search of curves of small discriminant, defined over the BLS12-381
scalar field. This way, we obtain an elliptic curve using the Complex Multipli-
cation method [3], where the scalar multiplication algorithm is efficient thanks
to the GLV method [1].

We implement this curve in Rust, using the Arkworks framework, and release
our code to the open domain [4]. Table 1 shows a comparison of Bandersnatch
curve and Jubjub curve. Details deferred to Section 4.

multiplication cost

Jubjub 75 µs
Bandersnatch 44 µs

Improvement 42%

Table 1: Bandersnatch vs Jubjub

We also report the number of constraints one needs to express a group multi-
plication in the form of rank one constraint system (R1CS), a common approach
for expressing circuits for zero-knowledge proof systems. A group multiplication
takes 3325 constraints when the point is in affine form over the twisted Edwards
curve. This matches what we have for Jubjub curve.

Organization of the paper. In Section 2, we describe how we obtained
several curves allowing the GLV method together with cryptographic security.
Then, we introduce in Section 3 the Bandersnatch curve in different models
(in Weierstrass, Montgomery and twisted Edwards coordinates). Finally, we
compare the scalar multiplication algorithm over the Bandersnatch and the
Jubjub curves in Section 4 from a practical point of view.

2 Small discriminant curves

The GLV method [1] is a well known trick for accelerating scalar multiplication
over particular curve. In a nutshell, it applies to elliptic curves where an endo-
morphism ψ can be efficiently computed. The GLV method applies in particular
for j-invariant j = 0 (resp. j = 1728) curves because a non-trivial automor-
phism can be computed using only one modular multiplication. The method
also applies for other curves where the endomorphism is slightly more expensive,
called small discriminant curves.

Let E be an elliptic curve defined over Fp of trace t. E and its quadratic
twist Et are Fp2-isomorphic curves and their orders over Fp are closely related
with the trace t:

#E(Fp) = p+ 1− t #Et(Fp) = p+ 1 + t.

2

http://arkworks.rs

See [5] for a complete introduction to elliptic curves. In this work, we are
looking for cryptographic applications based on ordinary elliptic curves, meaning
that we look for t 6≡ 0 mod p. The endomorphism ring of these curves have
a particular structure: End(E) is an order of the imaginary quadratic field

Q(
√
t2 − 4p). From now, we denote −D to be the discriminant of End(E),

and {Id, ψ} a basis of the endomorphism ring. The fundamental discriminant
corresponds to the discriminant of the maximal order containing End(E). This
way, ψ is of degree D+1

4 or D/4 depending on the value of D modulo 4, and ψ can
be defined using polynomials of degree O(D) thanks to the Vélu’s formulas [6].
Thus, the evaluation of ψ is efficient only for curves of small discriminant.

In this work, we restrict to curves defined over the BLS12-381 scalar field
FrBLS

. From now, we denote p = rBLS and we look for curves with a 128-bit
cryptographic security. Curves with −D = −3 and −4 do not have a large prime
subgroup defined over Fp. Hence, we look for small discriminant −D < −4
curves with subgroup and twist-subgroup security. It means that #E(Fp) has
a roughly 256-bit prime factor, as well as #Et(Fp).

As the endomorphism cost is closely related to the discriminant, we restrict
to −D ≥ −388 so that ψ can be efficiently computed. Moreover, we restrict on
fundamental discriminants (discriminants of the maximal orders of imaginary
quadratic fields). We denote O−D the maximal order of discriminant −D. El-
liptic curves with End(E) ⊂ O−D are isogenous curves, meaning that there is a
rational map between them. Isogenous curves have the same order so that we
can restrict on fundamental discriminants for our search.

We compute an exhaustive search among all the possible (fundamental) dis-
criminants (−292 ≤ −D ≤ −3). Given a discriminant −D, roughly half of
the curves are supersingular and hence not relevant to our cryptographic ap-
plications. We list in Table 2 the ordinary curves we obtained. In this table,
pn denotes a prime of n bits. The generation of these curves is reproducible
using this file. We finally obtain an interesting curve for −D = −8 with large
prime order subgroups on both the curve and its twist. We present in Section 3
the curve in several models, together with the endomorphism in order to apply
the GLV scalar multiplication algorithm.

3 Bandersnatch

The Bandersnatch is obtained from a discriminant −D = −8, meaning that the
endomorphism ring is Z[

√
−2]. We obtain the curve j-invariant using the Com-

plex Multiplication method, based on the Hilbert class polynomial H−D(X).
The roots of H−D are j-invariants of elliptic curves whose endomorphism ring
is of discriminant −D. From a j-invariant, we obtain the curve equation in dif-
ferent models. Before looking into the details of three different representations,
we briefly recall how to exhibit the degree 2 endomorphism ψ.

Degree 2 endomorphism. The endomorphism ψ has a kernel generated
by a 2-torsion point. Hence, we can obtain the rational maps defining ψ by

3

https://github.com/asanso/Bandersnatch/blob/main/python-ref-impl/small-disc-curves.py

−D Curve sec. Curve order

−3 65-bit 22 · 3 · 97 · 19829809 · 2514214987 · 423384683867248993 · p131
14-bit 264 · 9063494 · p428
77-bit 7 · 43 · 1993 · 2137 · 43558993 · 69032539613749 · p154
41-bit 3 · 7 · 13 · 79 · 2557 · 33811 · 1645861201 · 75881076241177·

86906511869757553 · p82
13-bit 32 · 112 · 192 · 101772 · 1255272 · 8592672 · 25084092 · 25294032 · p226
118-bit 836509 · p236

−4 59-bit 232 · 5 · 73 · 9063492 · 2547602932 · p119
37-bit 22 · 29 · 233 · 34469 · 1327789373 · 19609848837063073·

159032890827948314857 · p74
37-bit 2 · 32 · 112 · 13 · 1481 · 101772 · 8592672 · 524378992 · 346160718017 · p74
57-bit 2 · 5 · 192 · 1709 · 1255272 · 25084092 · 25294032 · p114

−8 122-bit 27 · 33 · p244

126-bit 22 · p253

−11 69-bit 5 · 191 · 5581 · 18793 · 48163 · 46253594704380463613 · p138
73-bit 33 · 112 · 9269797 · 17580060420191283788101 · p147

−19 110-bit 7 · 112 · 19 · 23 · 397 · 419 · p220
74-bit 32 · 5 · 503 · 10779490483 · 433275286013779991 · p149

−24 53-bit 22 · 32 · 7 · 192 · 127 · 29402034080953 · 2970884754778276642175743 · p106
86-bit 25 · 5 · 39628279 · 1626653036429383 · p172

−51 112-bit 32 · 5 · 61223923 · p224
120-bit 232 · 41 · p241

−67 67-bit 3479887483 · 56938338857 · 8474085246072233 · p135
79-bit 32 · 8478452882270519617659314063 · p159

−88 61-bit 22 · 11 · 16984307 · 24567897636186592260640293583411 · p122
66-bit 29 · 32 · 31 · 6133 · 116471 · 69487476515565975361139 · p133

−132 73-bit 2 · 1753 · 101235113104036296384208928969 · p147
92-bit 2 · 32 · 72 · 11 · 23 · 587 · 701 · 32299799971 · p184

−136 62-bit 23 · 73 · 193 · 10939 · 11131315086725327441688173207 · p125
87-bit 22 · 5 · 5741 · 30851 · 533874022134253 · p175

−228 114-bit 2 · 32 · 19 · 89 · 5189 · p228
81-bit 2 · 947 · 277603 · 28469787063396608749 · p162

−244 89-bit 22 · 13 · 523 · 1702319 · 2827715661581 · p179
88-bit 28 · 32 · 5 · 71 · 907 · 2749 · 146221 · 2246269 · p176

−264 83-bit 23 · 11 · 131 · 12543757399 · 2818746796297 · p167
82-bit 22 · 3 · 52 · 2287 · 2134790941497418864559 · p165

−276 70-bit 2 · 112 · 8839 · 78797899 · 323360863688748558301 · p140
88-bit 2 · 3 · 5 · 6197 · 138617 · 16664750312513 · p177

−292 92-bit 2 · 54983 · 5220799 · 2671917733 · p185
86-bit 2 · 112 · 149 · 354689 · 24012883 · 32483123 · p172

Table 2: Curves for discriminants −3 ≥ −D ≥ −292.

looking at the curves 2-isogenous to Bandersnatch. Only one has the same j-
invariant, meaning that up to an isomorphism, the Vélu’s formulas [6] let us
obtain compute ψ. For cryptographic use-cases, we are interested in computing
ψ on the p253-order subgroup of the curve. On these points, ψ acts as a scalar
multiplication by the eigenvalue

λ = 0x13b4f3dc4a39a493edf849562b38c72bcfc49db970a5056ed13d21408783df05.

By construction, ψ is the endomorphism
√
−2 ∈ O−8. Thus, λ satisfies λ2 +2 =

0 mod p253. In the following sections, we provide details on the curve equation,

4

the ψ rational maps, and a generator of the p253-order subgroup in the case of
the affine Weierstrass, projective Montgomery and projective twisted Edwards
representations. The parameters are reproducible using the script of this file.

3.1 Weierstrass curve

Curve equation. The Bandersnatch curve can be represented in the Weier-
strass model using the equation

EW : y2 = x3 − 3763200000x− 78675968000000.

Endomorphism. The endomorphism ψ can obtained using the method de-
tailed above. We obtain the following expression:

ψW(x, y) =

(
u2 · x

2 + 44800x+ 2257920000

x+ 44800
, u3 · y · x

2 + 2 · 44800x+ t0
(x+ 44800)2

)
.

u=0x23c58c92306dbb96236140669daf1e2420ffd8fc8de2036c69307ddaa306c7d4

t0=0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffffef10be001.

Subgroup generator. The generator of the p253-order subgroup is computed
by finding the lexicographically smallest valid x-coordinate of a point of the
curve, and scaling it by the cofactor 4 such that the result is not the point at
infinity. From a point with x = 2, we obtain a generator EW (xW , yW) where:

xW=a76451786f95a802c0982bbd0abd68e41b92adc86c8859b4f44679b21658710

yW=44d150c8b4bd14f79720d021a839e7b7eb4ee43844b30243126a72ac2375490a.

3.2 Twisted Edwards curve

Curve equation. Bandersnatch can also be represented in twisted Edwards
coordinates, where the group law is complete. In this model, the Bandersnatch
curve can be defined by the equation

ETE : −5x2+y2 = 1+dx2y2, d =
138827208126141220649022263972958607803

171449701953573178309673572579671231137
.

Twisted Edwards group law is more efficient with a coefficient a = −1 (see [7]
for details). In our case, −5 is not a square in Fp. Thus, the curve with equation
−x2 + y2 = 1 − dx2y2/5 is the quadratic twist of Bandersnatch. We provide
a representation with a = −5, leading to a slightly more expensive group law
because multiplying by −5 is more expensive than a multiplication by −1, but
this cost will be neglected compared to the improvement of the GLV method.
See Section 4 for details.

5

https://github.com/asanso/Bandersnatch/blob/main/python-ref-impl/get_params.py

Endomorphism. From this representation, we exhibit the degree 2 endomor-
phism in twisted Edwards coordinates:

ψTE(x, y, z) = (xa1(y+a2z)(y+a3z), b1(y+b2z)(y+b3z)yz
2, (y+c1z)(y+c2z)yz

2)

a1=0x23c58c92306dbb95960f739827ac195334fcd8fa17df036c692f7ddaa306c7d4

a2=0x52c9f28b828426a561f00d3a63511a882ea712770d9af4d6ee0f014d172510b4

a3=0x2123b4c7a71956a2d149cacda650bd7d2516918bf263672811f0feb1e8daef4d

b1=0x52c9f28b828426a561f00d3a63511a882ea712770d9af4d6ee0f014d172510b4

b2=0x50d06958b6e8ce1ab1b2745bd377e5bde07e867f02611eae1c098cd1519b574a

b3=0x231d3dfa72b4af2d818763ac3629f247733f1d83fd9d3d50e3f6732dae64a8b7

c1=0x5ede5fd005b839be71b70d491ebfddeff693de40b4c002a7fc1ae7171cc9f7b5

c2=0x150f478323e54389c182cabeeae1fa155d29c5c24b3e595703e518e7e336084c.

This map can be computed in 17 multiplications and 6 additions modulo p.

Subgroup generator. The generator of the p253-order subgroup obtained in
Section 3.1 has twisted coordinates of the form ETE(xTE, yTE, 1) with

xTE=29c132cc2c0b34c5743711777bbe42f32b79c022ad998465e1e71866a252ae18

yTE=2a6c669eda123e0f157d8b50badcd586358cad81eee464605e3167b6cc974166.

3.3 Montgomery curve

Curve equation. A twisted Edwards curve is always birationally equivalent
to a Montgomery curve. We obtain the mapping between these two representa-
tions following [8]. While the twisted Edwards model fits better for Fp circuit
arithmetic and more generally for the zero-knowledge proof context, we provide
here the Montgomery version because the scalar multiplication is more efficient
in this model:

EM : By2 = x3 +Ax2 + x

B=0x300c3385d13bedb7c9e229e185c4ce8b1dd3b71366bb97c30855c0aa41d62727

A=0x4247698f4e32ad45a293959b4ca17afa4a2d2317e4c6ce5023e1fd63d1b5de98.

Endomorphism. Montgomery curves allow efficient scalar multiplication us-
ing the Montgomery ladder. We provide here the endomorphism ψ in this
model:

ψM(x,−, z) = (−(x− z)2 − cxz,−, 2xz)

c=0x4247698f4e32ad45a293959b4ca17afa4a2d2317e4c6ce5023e1fd63d1b5de9a.

Subgroup generator. The generator of the p253-order subgroup given above
is of the form EM (xM ,−, 1) with:

xM=67c5b5fed18254e8acb66c1e38f33ee0975ae6876f9c5266a883f4604024b3b8.

6

3.4 Security of Bandersnatch

The Bandersnatch curve order is 22 · r for a 253-bit long prime r. Its quadratic
twist has order 27 · 33 · r′, where r′ is another prime of 244 bits. Hence, the
Bandersnatch curve satisfies twist security after a quick cofactor check. We
estimate that the Bandersnatch curve (resp. its quadratic twist) has 126 bits of
security (resp. 122 bits of security).

4 Comparison

The twisted Edwards representation is mostly used in practice, and we now
focus on the comparison between Jubjub and Bandersnatch in this model.

4.1 Scalar multiplications for a variable base point

Because of its large discriminant, the scalar multiplication on Jubjub is a basic
double-and-add algorithm, meaning that it computes a multiplication by n in
log n doublings and log n/2 additions (in average) on the curve.

The endomorphism ψ lets us compute the scalar multiplication faster than
a double-and-add algorithm with few precomputations. For a point P and a
scalar n, we first evaluate ψ at P and decompose n = n1 + λn2. Then a multi
scalar multiplication is computed in log n/2 doublings and 3 log n/8 additions
(in average) on the curve.

We benchmarked our implementation with both GLV enabled and disabled,
and compared it with Arkworks’ own Jubjub implementation. Our benchmark
is conducted over an AMD 5900x CPU, with Ubuntu 20.04, rust 1.52 stable ver-
sion, and Arkwork 0.3.0 release version. We used criterion micro-benchmark
toolchain, version 0.3.0, for data collection. We compile Arkworks with two
options, namely default and asm, respectively. The default setup relies on
num bigint crate for large integer arithmetics, while asm turns on assembly for
finite field multiplication.

Arkworks use the aforementioned double-and-add multiplication methodol-
ogy, without side channel protections such as Montgomery ladders. Our non-
GLV implementation also follows this design. For our GLV implementation,
there are three components, namely, the endomorphism, the scalar decomposi-
tion, and the multi scalar multiplication (MSM). We implement those schemes
and present the micro-benchmarks in Table 3. Specifically, we do not use the
MSM implementation in Arkworks: our scalars, after the decomposition, con-
tain roughly 128 bits of leading zeros, and our own MSM implementation is
optimized for this setting.

Table 3 presents the full picture of the benchmark. When GLV is disabled,
we observe a similar but a little worse performance for Bandersnatch curve,
compared to the Jubjub curve, due to the slightly larger coefficient a = −5
and a larger scalar field of 253 bits (Jubjub curve has a = −1 and a scalar
field of 252 bits). When GLV is enabled, we report a 45% improvement of the
Bandersnatch curve, and a 42% improvement over the Jubjub curve.

7

https://docs.rs/criterion
https://docs.rs/criterion

default asm

Jubjub 75 µs 69 µs

Bandersnatch without GLV 78 µs 72 µs

Bandersnatch with GLV 44 µs 42 µs
Endomorphism 2.4 µs 1.8 µs
Scalar decomposition 0.75 µs 0.7 µs
multi scalar multiplication 42 µs 40.8 µs

Overall Improvement 42% 39%

Table 3: Bandersnatch vs Jubjub: Performance

To make a meaningful comparison, we benchmark the cost of the group mul-
tiplication over the default generators. Note that Arkworks do not implement
optimizations for fixed generators nonetheless. We then sample field elements
uniformly at random, for each new iteration, and the benchmark result is con-
solidated over 100 iterations.

4.2 Multi scalar multiplications

This section reports the performance of variable base multi scalar multiplications
(MSM). Note that this MSM is compatible, but different from the MSM inside
the GLV. In particular, for a sum of k scalar multiplications, we report the data
point for:

• invoking the MSM over the k base scalars randomly sampled, expected to
be around 256 bits;

• using GLV endomorphism to break the k base scalars into 2k new base
scalars, of halved size, i.e. of 128 bits.

The data is presented in Figure 4.2. Specifically, as a baseline, the trivial so-
lution, captained by GLV without MSM, is the product of the number of bases
and the cost of doing a single GLV multiplication. Note that the MSM algo-
rithms incur an overhead to build some tables, which make them less favorable
compared to the trivial solution when dimension is really small. For a dimen-
sion greater than 4, MSM algorithms begin to out-perform trivial solutions. For
dimension greater than 128, it is more efficient to invoke the MSM directly,
rather than doing it over the GLV basis. The reason is that the size of the basis
becomes too large, so that the gain we get from halving the scalars is offset from
the gain we get from halving the basis. We remark that this threshold point is
platform dependent.

4.3 R1CS constraints

The Bandersnatch curve is zk-SNARK friendly: its base field matches the scalar
field for the BLS12-381 curve, a pairing-friendly curve, on top of which people

8

 10

 100

 1000

 10000

 100000

 1x106

 0 2 4 6 8 10 12 14

m
ic

ro
se

co
nd

log(dim)

Multi-scalar-multiplications

GLV without MSM
multi-scalar-mul
GLV with MSM

build zk-SNARK systems, such as Groth16 [9] or Plonk [10]. In such a setting,
the prover can sufficiently argue certain relationships over arithmetic circuits
rather than binary circuits. The circuit is expressed in a form of Rank-1 con-
straint system (R1CS), and in general, the complexity is determined by the
number of constraints in an R1CS.

We evaluate the number of constraints for a variable base group multipli-
cation. For a double-and-add algorithm, our code reports 3325 constraints in
total. As a sanity check, within the core logic, it takes 6 constraints per addi-
tion, 5 constraints per doubling and 2 constraints per bit selection. This adds
up to 13 constraints per bit, or 3315 constraints per group multiplication (and
we reasonably assume some system overhead consumes another 10 constraints).

5 Conclusion

Tne last decade has seen great improvements on practical zk-SNARK systems.
An essential stepping stone of these schemes is an efficient elliptic curve whose
base field matches the scalar field for some pairing-friendly curve. On this note,
we present Bandersnatch as an alternative to the commonly used base curve
Jubjub. Due to the existence of an efficiently computable endomorphism, the
scalar multiplication over this curve is 42% times faster than the Jubjub curve.
For multi scalar multiplications, we report a narrowed advantage over Jubjub

9

curve when the dimension is small, but it vanishes for larger dimensions. We
also do not observe any improvement in terms of number of constraints in the
corresponding R1CS circuit.

Acknowledgments. We would like to thank Weikeng Chen, Luca De Feo,
Justin Drake, Dankrad Feist, Gottfried Herold and Daira Hopwood for fruitful
discussions.

References

[1] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster
point multiplication on elliptic curves with efficient endomorphisms. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 190–200.
Springer, Heidelberg, August 2001.

[2] Robert Gallant, Robert Lambert, Scott A. Vanstone. Method for acceler-
ating cryptographic operations on elliptic curves, 2020. https://patents.
google.com/patent/US7110538B2/en.

[3] A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math.
Comp, 61:29–68, 1993.

[4] Bandersnatch team. Bandersnatch: a fast elliptic curve built
over the BLS12-381 scalar field. https://github.com/zhenfeizhang/

bandersnatch-glv.

[5] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of
Graduate texts in mathematics. Springer, 1986.

[6] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de
l’Académie des Sciences de Paris, 273:238–241, 1971.

[7] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Daw-
son. Twisted Edwards curves revisited. In Josef Pieprzyk, editor, ASI-
ACRYPT 2008, volume 5350 of LNCS, pages 326–343. Springer, Heidel-
berg, December 2008.

[8] Craig Costello and Benjamin Smith. Montgomery curves and their arith-
metic - the case of large characteristic fields. Journal of Cryptographic
Engineering, 8(3):227–240, September 2018.

[9] Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016.

10

https://patents.google.com/patent/US7110538B2/en
https://patents.google.com/patent/US7110538B2/en
https://github.com/zhenfeizhang/bandersnatch-glv
https://github.com/zhenfeizhang/bandersnatch-glv

[10] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

11

https://eprint.iacr.org/2019/953

	Introduction
	Small discriminant curves
	Bandersnatch
	Weierstrass curve
	Twisted Edwards curve
	Montgomery curve
	Security of Bandersnatch

	Comparison
	Scalar multiplications for a variable base point
	Multi scalar multiplications
	R1CS constraints

	Conclusion

